1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   default:
103     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
104                        Twine(AmdhsaCodeObjectVersion));
105   }
106 }
107 
108 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
109   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
110     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
111   return false;
112 }
113 
114 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
115   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
116     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
117   return false;
118 }
119 
120 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
121   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
122     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
123   return false;
124 }
125 
126 bool isHsaAbiVersion3Or4(const MCSubtargetInfo *STI) {
127   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI);
128 }
129 
130 #define GET_MIMGBaseOpcodesTable_IMPL
131 #define GET_MIMGDimInfoTable_IMPL
132 #define GET_MIMGInfoTable_IMPL
133 #define GET_MIMGLZMappingTable_IMPL
134 #define GET_MIMGMIPMappingTable_IMPL
135 #define GET_MIMGG16MappingTable_IMPL
136 #include "AMDGPUGenSearchableTables.inc"
137 
138 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
139                   unsigned VDataDwords, unsigned VAddrDwords) {
140   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
141                                              VDataDwords, VAddrDwords);
142   return Info ? Info->Opcode : -1;
143 }
144 
145 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
146   const MIMGInfo *Info = getMIMGInfo(Opc);
147   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
148 }
149 
150 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
151   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
152   const MIMGInfo *NewInfo =
153       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
154                           NewChannels, OrigInfo->VAddrDwords);
155   return NewInfo ? NewInfo->Opcode : -1;
156 }
157 
158 struct MUBUFInfo {
159   uint16_t Opcode;
160   uint16_t BaseOpcode;
161   uint8_t elements;
162   bool has_vaddr;
163   bool has_srsrc;
164   bool has_soffset;
165 };
166 
167 struct MTBUFInfo {
168   uint16_t Opcode;
169   uint16_t BaseOpcode;
170   uint8_t elements;
171   bool has_vaddr;
172   bool has_srsrc;
173   bool has_soffset;
174 };
175 
176 struct SMInfo {
177   uint16_t Opcode;
178   bool IsBuffer;
179 };
180 
181 #define GET_MTBUFInfoTable_DECL
182 #define GET_MTBUFInfoTable_IMPL
183 #define GET_MUBUFInfoTable_DECL
184 #define GET_MUBUFInfoTable_IMPL
185 #define GET_SMInfoTable_DECL
186 #define GET_SMInfoTable_IMPL
187 #include "AMDGPUGenSearchableTables.inc"
188 
189 int getMTBUFBaseOpcode(unsigned Opc) {
190   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
191   return Info ? Info->BaseOpcode : -1;
192 }
193 
194 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
195   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
196   return Info ? Info->Opcode : -1;
197 }
198 
199 int getMTBUFElements(unsigned Opc) {
200   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
201   return Info ? Info->elements : 0;
202 }
203 
204 bool getMTBUFHasVAddr(unsigned Opc) {
205   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
206   return Info ? Info->has_vaddr : false;
207 }
208 
209 bool getMTBUFHasSrsrc(unsigned Opc) {
210   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
211   return Info ? Info->has_srsrc : false;
212 }
213 
214 bool getMTBUFHasSoffset(unsigned Opc) {
215   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
216   return Info ? Info->has_soffset : false;
217 }
218 
219 int getMUBUFBaseOpcode(unsigned Opc) {
220   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
221   return Info ? Info->BaseOpcode : -1;
222 }
223 
224 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
225   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
226   return Info ? Info->Opcode : -1;
227 }
228 
229 int getMUBUFElements(unsigned Opc) {
230   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
231   return Info ? Info->elements : 0;
232 }
233 
234 bool getMUBUFHasVAddr(unsigned Opc) {
235   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
236   return Info ? Info->has_vaddr : false;
237 }
238 
239 bool getMUBUFHasSrsrc(unsigned Opc) {
240   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
241   return Info ? Info->has_srsrc : false;
242 }
243 
244 bool getMUBUFHasSoffset(unsigned Opc) {
245   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
246   return Info ? Info->has_soffset : false;
247 }
248 
249 bool getSMEMIsBuffer(unsigned Opc) {
250   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
251   return Info ? Info->IsBuffer : false;
252 }
253 
254 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
255 // header files, so we need to wrap it in a function that takes unsigned
256 // instead.
257 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
258   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
259 }
260 
261 namespace IsaInfo {
262 
263 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
264     : STI(STI), XnackSetting(TargetIDSetting::Any),
265       SramEccSetting(TargetIDSetting::Any) {
266   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
267     XnackSetting = TargetIDSetting::Unsupported;
268   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
269     SramEccSetting = TargetIDSetting::Unsupported;
270 }
271 
272 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
273   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
274   // absence of the target features we assume we must generate code that can run
275   // in any environment.
276   SubtargetFeatures Features(FS);
277   Optional<bool> XnackRequested;
278   Optional<bool> SramEccRequested;
279 
280   for (const std::string &Feature : Features.getFeatures()) {
281     if (Feature == "+xnack")
282       XnackRequested = true;
283     else if (Feature == "-xnack")
284       XnackRequested = false;
285     else if (Feature == "+sramecc")
286       SramEccRequested = true;
287     else if (Feature == "-sramecc")
288       SramEccRequested = false;
289   }
290 
291   bool XnackSupported = isXnackSupported();
292   bool SramEccSupported = isSramEccSupported();
293 
294   if (XnackRequested) {
295     if (XnackSupported) {
296       XnackSetting =
297           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
298     } else {
299       // If a specific xnack setting was requested and this GPU does not support
300       // xnack emit a warning. Setting will remain set to "Unsupported".
301       if (*XnackRequested) {
302         errs() << "warning: xnack 'On' was requested for a processor that does "
303                   "not support it!\n";
304       } else {
305         errs() << "warning: xnack 'Off' was requested for a processor that "
306                   "does not support it!\n";
307       }
308     }
309   }
310 
311   if (SramEccRequested) {
312     if (SramEccSupported) {
313       SramEccSetting =
314           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
315     } else {
316       // If a specific sramecc setting was requested and this GPU does not
317       // support sramecc emit a warning. Setting will remain set to
318       // "Unsupported".
319       if (*SramEccRequested) {
320         errs() << "warning: sramecc 'On' was requested for a processor that "
321                   "does not support it!\n";
322       } else {
323         errs() << "warning: sramecc 'Off' was requested for a processor that "
324                   "does not support it!\n";
325       }
326     }
327   }
328 }
329 
330 static TargetIDSetting
331 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
332   if (FeatureString.endswith("-"))
333     return TargetIDSetting::Off;
334   if (FeatureString.endswith("+"))
335     return TargetIDSetting::On;
336 
337   llvm_unreachable("Malformed feature string");
338 }
339 
340 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
341   SmallVector<StringRef, 3> TargetIDSplit;
342   TargetID.split(TargetIDSplit, ':');
343 
344   for (const auto &FeatureString : TargetIDSplit) {
345     if (FeatureString.startswith("xnack"))
346       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
347     if (FeatureString.startswith("sramecc"))
348       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
349   }
350 }
351 
352 std::string AMDGPUTargetID::toString() const {
353   std::string StringRep = "";
354   raw_string_ostream StreamRep(StringRep);
355 
356   auto TargetTriple = STI.getTargetTriple();
357   auto Version = getIsaVersion(STI.getCPU());
358 
359   StreamRep << TargetTriple.getArchName() << '-'
360             << TargetTriple.getVendorName() << '-'
361             << TargetTriple.getOSName() << '-'
362             << TargetTriple.getEnvironmentName() << '-';
363 
364   std::string Processor = "";
365   // TODO: Following else statement is present here because we used various
366   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
367   // Remove once all aliases are removed from GCNProcessors.td.
368   if (Version.Major >= 9)
369     Processor = STI.getCPU().str();
370   else
371     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
372                  Twine(Version.Stepping))
373                     .str();
374 
375   std::string Features = "";
376   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
377     switch (*HsaAbiVersion) {
378     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
379       // Code object V2 only supported specific processors and had fixed
380       // settings for the XNACK.
381       if (Processor == "gfx600") {
382       } else if (Processor == "gfx601") {
383       } else if (Processor == "gfx602") {
384       } else if (Processor == "gfx700") {
385       } else if (Processor == "gfx701") {
386       } else if (Processor == "gfx702") {
387       } else if (Processor == "gfx703") {
388       } else if (Processor == "gfx704") {
389       } else if (Processor == "gfx705") {
390       } else if (Processor == "gfx801") {
391         if (!isXnackOnOrAny())
392           report_fatal_error(
393               "AMD GPU code object V2 does not support processor " + Processor +
394               " without XNACK");
395       } else if (Processor == "gfx802") {
396       } else if (Processor == "gfx803") {
397       } else if (Processor == "gfx805") {
398       } else if (Processor == "gfx810") {
399         if (!isXnackOnOrAny())
400           report_fatal_error(
401               "AMD GPU code object V2 does not support processor " + Processor +
402               " without XNACK");
403       } else if (Processor == "gfx900") {
404         if (isXnackOnOrAny())
405           Processor = "gfx901";
406       } else if (Processor == "gfx902") {
407         if (isXnackOnOrAny())
408           Processor = "gfx903";
409       } else if (Processor == "gfx904") {
410         if (isXnackOnOrAny())
411           Processor = "gfx905";
412       } else if (Processor == "gfx906") {
413         if (isXnackOnOrAny())
414           Processor = "gfx907";
415       } else {
416         report_fatal_error(
417             "AMD GPU code object V2 does not support processor " + Processor);
418       }
419       break;
420     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
421       // xnack.
422       if (isXnackOnOrAny())
423         Features += "+xnack";
424       // In code object v2 and v3, "sramecc" feature was spelled with a
425       // hyphen ("sram-ecc").
426       if (isSramEccOnOrAny())
427         Features += "+sram-ecc";
428       break;
429     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
430       // sramecc.
431       if (getSramEccSetting() == TargetIDSetting::Off)
432         Features += ":sramecc-";
433       else if (getSramEccSetting() == TargetIDSetting::On)
434         Features += ":sramecc+";
435       // xnack.
436       if (getXnackSetting() == TargetIDSetting::Off)
437         Features += ":xnack-";
438       else if (getXnackSetting() == TargetIDSetting::On)
439         Features += ":xnack+";
440       break;
441     default:
442       break;
443     }
444   }
445 
446   StreamRep << Processor << Features;
447 
448   StreamRep.flush();
449   return StringRep;
450 }
451 
452 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
453   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
454     return 16;
455   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
456     return 32;
457 
458   return 64;
459 }
460 
461 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
462   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
463     return 32768;
464   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
465     return 65536;
466 
467   return 0;
468 }
469 
470 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
471   // "Per CU" really means "per whatever functional block the waves of a
472   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
473   // two SIMDs.
474   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
475     return 2;
476   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
477   // two CUs, so a total of four SIMDs.
478   return 4;
479 }
480 
481 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
482                                unsigned FlatWorkGroupSize) {
483   assert(FlatWorkGroupSize != 0);
484   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
485     return 8;
486   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
487   if (N == 1)
488     return 40;
489   N = 40 / N;
490   return std::min(N, 16u);
491 }
492 
493 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
494   return 1;
495 }
496 
497 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
498   // FIXME: Need to take scratch memory into account.
499   if (isGFX90A(*STI))
500     return 8;
501   if (!isGFX10Plus(*STI))
502     return 10;
503   return hasGFX10_3Insts(*STI) ? 16 : 20;
504 }
505 
506 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
507                                    unsigned FlatWorkGroupSize) {
508   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
509                     getEUsPerCU(STI));
510 }
511 
512 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
513   return 1;
514 }
515 
516 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
517   // Some subtargets allow encoding 2048, but this isn't tested or supported.
518   return 1024;
519 }
520 
521 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
522                               unsigned FlatWorkGroupSize) {
523   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
524 }
525 
526 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
527   IsaVersion Version = getIsaVersion(STI->getCPU());
528   if (Version.Major >= 10)
529     return getAddressableNumSGPRs(STI);
530   if (Version.Major >= 8)
531     return 16;
532   return 8;
533 }
534 
535 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
536   return 8;
537 }
538 
539 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
540   IsaVersion Version = getIsaVersion(STI->getCPU());
541   if (Version.Major >= 8)
542     return 800;
543   return 512;
544 }
545 
546 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
547   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
548     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
549 
550   IsaVersion Version = getIsaVersion(STI->getCPU());
551   if (Version.Major >= 10)
552     return 106;
553   if (Version.Major >= 8)
554     return 102;
555   return 104;
556 }
557 
558 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
559   assert(WavesPerEU != 0);
560 
561   IsaVersion Version = getIsaVersion(STI->getCPU());
562   if (Version.Major >= 10)
563     return 0;
564 
565   if (WavesPerEU >= getMaxWavesPerEU(STI))
566     return 0;
567 
568   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
569   if (STI->getFeatureBits().test(FeatureTrapHandler))
570     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
571   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
572   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
573 }
574 
575 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
576                         bool Addressable) {
577   assert(WavesPerEU != 0);
578 
579   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
580   IsaVersion Version = getIsaVersion(STI->getCPU());
581   if (Version.Major >= 10)
582     return Addressable ? AddressableNumSGPRs : 108;
583   if (Version.Major >= 8 && !Addressable)
584     AddressableNumSGPRs = 112;
585   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
586   if (STI->getFeatureBits().test(FeatureTrapHandler))
587     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
588   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
589   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
590 }
591 
592 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
593                           bool FlatScrUsed, bool XNACKUsed) {
594   unsigned ExtraSGPRs = 0;
595   if (VCCUsed)
596     ExtraSGPRs = 2;
597 
598   IsaVersion Version = getIsaVersion(STI->getCPU());
599   if (Version.Major >= 10)
600     return ExtraSGPRs;
601 
602   if (Version.Major < 8) {
603     if (FlatScrUsed)
604       ExtraSGPRs = 4;
605   } else {
606     if (XNACKUsed)
607       ExtraSGPRs = 4;
608 
609     if (FlatScrUsed)
610       ExtraSGPRs = 6;
611   }
612 
613   return ExtraSGPRs;
614 }
615 
616 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
617                           bool FlatScrUsed) {
618   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
619                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
620 }
621 
622 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
623   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
624   // SGPRBlocks is actual number of SGPR blocks minus 1.
625   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
626 }
627 
628 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
629                              Optional<bool> EnableWavefrontSize32) {
630   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
631     return 8;
632 
633   bool IsWave32 = EnableWavefrontSize32 ?
634       *EnableWavefrontSize32 :
635       STI->getFeatureBits().test(FeatureWavefrontSize32);
636 
637   if (hasGFX10_3Insts(*STI))
638     return IsWave32 ? 16 : 8;
639 
640   return IsWave32 ? 8 : 4;
641 }
642 
643 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
644                                 Optional<bool> EnableWavefrontSize32) {
645   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
646     return 8;
647 
648   bool IsWave32 = EnableWavefrontSize32 ?
649       *EnableWavefrontSize32 :
650       STI->getFeatureBits().test(FeatureWavefrontSize32);
651 
652   return IsWave32 ? 8 : 4;
653 }
654 
655 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
656   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
657     return 512;
658   if (!isGFX10Plus(*STI))
659     return 256;
660   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
661 }
662 
663 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
664   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
665     return 512;
666   return 256;
667 }
668 
669 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
670   assert(WavesPerEU != 0);
671 
672   if (WavesPerEU >= getMaxWavesPerEU(STI))
673     return 0;
674   unsigned MinNumVGPRs =
675       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
676                 getVGPRAllocGranule(STI)) + 1;
677   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
678 }
679 
680 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
681   assert(WavesPerEU != 0);
682 
683   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
684                                    getVGPRAllocGranule(STI));
685   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
686   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
687 }
688 
689 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
690                           Optional<bool> EnableWavefrontSize32) {
691   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
692                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
693   // VGPRBlocks is actual number of VGPR blocks minus 1.
694   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
695 }
696 
697 } // end namespace IsaInfo
698 
699 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
700                                const MCSubtargetInfo *STI) {
701   IsaVersion Version = getIsaVersion(STI->getCPU());
702 
703   memset(&Header, 0, sizeof(Header));
704 
705   Header.amd_kernel_code_version_major = 1;
706   Header.amd_kernel_code_version_minor = 2;
707   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
708   Header.amd_machine_version_major = Version.Major;
709   Header.amd_machine_version_minor = Version.Minor;
710   Header.amd_machine_version_stepping = Version.Stepping;
711   Header.kernel_code_entry_byte_offset = sizeof(Header);
712   Header.wavefront_size = 6;
713 
714   // If the code object does not support indirect functions, then the value must
715   // be 0xffffffff.
716   Header.call_convention = -1;
717 
718   // These alignment values are specified in powers of two, so alignment =
719   // 2^n.  The minimum alignment is 2^4 = 16.
720   Header.kernarg_segment_alignment = 4;
721   Header.group_segment_alignment = 4;
722   Header.private_segment_alignment = 4;
723 
724   if (Version.Major >= 10) {
725     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
726       Header.wavefront_size = 5;
727       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
728     }
729     Header.compute_pgm_resource_registers |=
730       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
731       S_00B848_MEM_ORDERED(1);
732   }
733 }
734 
735 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
736     const MCSubtargetInfo *STI) {
737   IsaVersion Version = getIsaVersion(STI->getCPU());
738 
739   amdhsa::kernel_descriptor_t KD;
740   memset(&KD, 0, sizeof(KD));
741 
742   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
743                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
744                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
745   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
746                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
747   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
748                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
749   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
750                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
751   if (Version.Major >= 10) {
752     AMDHSA_BITS_SET(KD.kernel_code_properties,
753                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
754                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
755     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
756                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
757                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
758     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
759                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
760   }
761   if (AMDGPU::isGFX90A(*STI)) {
762     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
763                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
764                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
765   }
766   return KD;
767 }
768 
769 bool isGroupSegment(const GlobalValue *GV) {
770   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
771 }
772 
773 bool isGlobalSegment(const GlobalValue *GV) {
774   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
775 }
776 
777 bool isReadOnlySegment(const GlobalValue *GV) {
778   unsigned AS = GV->getAddressSpace();
779   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
780          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
781 }
782 
783 bool shouldEmitConstantsToTextSection(const Triple &TT) {
784   return TT.getArch() == Triple::r600;
785 }
786 
787 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
788   Attribute A = F.getFnAttribute(Name);
789   int Result = Default;
790 
791   if (A.isStringAttribute()) {
792     StringRef Str = A.getValueAsString();
793     if (Str.getAsInteger(0, Result)) {
794       LLVMContext &Ctx = F.getContext();
795       Ctx.emitError("can't parse integer attribute " + Name);
796     }
797   }
798 
799   return Result;
800 }
801 
802 std::pair<int, int> getIntegerPairAttribute(const Function &F,
803                                             StringRef Name,
804                                             std::pair<int, int> Default,
805                                             bool OnlyFirstRequired) {
806   Attribute A = F.getFnAttribute(Name);
807   if (!A.isStringAttribute())
808     return Default;
809 
810   LLVMContext &Ctx = F.getContext();
811   std::pair<int, int> Ints = Default;
812   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
813   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
814     Ctx.emitError("can't parse first integer attribute " + Name);
815     return Default;
816   }
817   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
818     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
819       Ctx.emitError("can't parse second integer attribute " + Name);
820       return Default;
821     }
822   }
823 
824   return Ints;
825 }
826 
827 unsigned getVmcntBitMask(const IsaVersion &Version) {
828   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
829   if (Version.Major < 9)
830     return VmcntLo;
831 
832   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
833   return VmcntLo | VmcntHi;
834 }
835 
836 unsigned getExpcntBitMask(const IsaVersion &Version) {
837   return (1 << getExpcntBitWidth()) - 1;
838 }
839 
840 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
841   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
842 }
843 
844 unsigned getWaitcntBitMask(const IsaVersion &Version) {
845   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
846   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
847   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
848                                 getLgkmcntBitWidth(Version.Major));
849   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
850   if (Version.Major < 9)
851     return Waitcnt;
852 
853   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
854   return Waitcnt | VmcntHi;
855 }
856 
857 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
858   unsigned VmcntLo =
859       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
860   if (Version.Major < 9)
861     return VmcntLo;
862 
863   unsigned VmcntHi =
864       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
865   VmcntHi <<= getVmcntBitWidthLo();
866   return VmcntLo | VmcntHi;
867 }
868 
869 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
870   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
871 }
872 
873 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
874   return unpackBits(Waitcnt, getLgkmcntBitShift(),
875                     getLgkmcntBitWidth(Version.Major));
876 }
877 
878 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
879                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
880   Vmcnt = decodeVmcnt(Version, Waitcnt);
881   Expcnt = decodeExpcnt(Version, Waitcnt);
882   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
883 }
884 
885 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
886   Waitcnt Decoded;
887   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
888   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
889   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
890   return Decoded;
891 }
892 
893 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
894                      unsigned Vmcnt) {
895   Waitcnt =
896       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
897   if (Version.Major < 9)
898     return Waitcnt;
899 
900   Vmcnt >>= getVmcntBitWidthLo();
901   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
902 }
903 
904 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
905                       unsigned Expcnt) {
906   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
907 }
908 
909 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
910                        unsigned Lgkmcnt) {
911   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
912                                     getLgkmcntBitWidth(Version.Major));
913 }
914 
915 unsigned encodeWaitcnt(const IsaVersion &Version,
916                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
917   unsigned Waitcnt = getWaitcntBitMask(Version);
918   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
919   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
920   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
921   return Waitcnt;
922 }
923 
924 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
925   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
926 }
927 
928 //===----------------------------------------------------------------------===//
929 // hwreg
930 //===----------------------------------------------------------------------===//
931 
932 namespace Hwreg {
933 
934 int64_t getHwregId(const StringRef Name) {
935   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
936     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
937       return Id;
938   }
939   return ID_UNKNOWN_;
940 }
941 
942 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
943   if (isSI(STI) || isCI(STI) || isVI(STI))
944     return ID_SYMBOLIC_FIRST_GFX9_;
945   else if (isGFX9(STI))
946     return ID_SYMBOLIC_FIRST_GFX10_;
947   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
948     return ID_SYMBOLIC_FIRST_GFX1030_;
949   else
950     return ID_SYMBOLIC_LAST_;
951 }
952 
953 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
954   return
955     ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
956     IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
957 }
958 
959 bool isValidHwreg(int64_t Id) {
960   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
961 }
962 
963 bool isValidHwregOffset(int64_t Offset) {
964   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
965 }
966 
967 bool isValidHwregWidth(int64_t Width) {
968   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
969 }
970 
971 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
972   return (Id << ID_SHIFT_) |
973          (Offset << OFFSET_SHIFT_) |
974          ((Width - 1) << WIDTH_M1_SHIFT_);
975 }
976 
977 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
978   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
979 }
980 
981 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
982   Id = (Val & ID_MASK_) >> ID_SHIFT_;
983   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
984   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
985 }
986 
987 } // namespace Hwreg
988 
989 //===----------------------------------------------------------------------===//
990 // exp tgt
991 //===----------------------------------------------------------------------===//
992 
993 namespace Exp {
994 
995 struct ExpTgt {
996   StringLiteral Name;
997   unsigned Tgt;
998   unsigned MaxIndex;
999 };
1000 
1001 static constexpr ExpTgt ExpTgtInfo[] = {
1002   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1003   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1004   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1005   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1006   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1007   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1008 };
1009 
1010 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1011   for (const ExpTgt &Val : ExpTgtInfo) {
1012     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1013       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1014       Name = Val.Name;
1015       return true;
1016     }
1017   }
1018   return false;
1019 }
1020 
1021 unsigned getTgtId(const StringRef Name) {
1022 
1023   for (const ExpTgt &Val : ExpTgtInfo) {
1024     if (Val.MaxIndex == 0 && Name == Val.Name)
1025       return Val.Tgt;
1026 
1027     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1028       StringRef Suffix = Name.drop_front(Val.Name.size());
1029 
1030       unsigned Id;
1031       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1032         return ET_INVALID;
1033 
1034       // Disable leading zeroes
1035       if (Suffix.size() > 1 && Suffix[0] == '0')
1036         return ET_INVALID;
1037 
1038       return Val.Tgt + Id;
1039     }
1040   }
1041   return ET_INVALID;
1042 }
1043 
1044 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1045   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1046 }
1047 
1048 } // namespace Exp
1049 
1050 //===----------------------------------------------------------------------===//
1051 // MTBUF Format
1052 //===----------------------------------------------------------------------===//
1053 
1054 namespace MTBUFFormat {
1055 
1056 int64_t getDfmt(const StringRef Name) {
1057   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1058     if (Name == DfmtSymbolic[Id])
1059       return Id;
1060   }
1061   return DFMT_UNDEF;
1062 }
1063 
1064 StringRef getDfmtName(unsigned Id) {
1065   assert(Id <= DFMT_MAX);
1066   return DfmtSymbolic[Id];
1067 }
1068 
1069 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1070   if (isSI(STI) || isCI(STI))
1071     return NfmtSymbolicSICI;
1072   if (isVI(STI) || isGFX9(STI))
1073     return NfmtSymbolicVI;
1074   return NfmtSymbolicGFX10;
1075 }
1076 
1077 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1078   auto lookupTable = getNfmtLookupTable(STI);
1079   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1080     if (Name == lookupTable[Id])
1081       return Id;
1082   }
1083   return NFMT_UNDEF;
1084 }
1085 
1086 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1087   assert(Id <= NFMT_MAX);
1088   return getNfmtLookupTable(STI)[Id];
1089 }
1090 
1091 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1092   unsigned Dfmt;
1093   unsigned Nfmt;
1094   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1095   return isValidNfmt(Nfmt, STI);
1096 }
1097 
1098 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1099   return !getNfmtName(Id, STI).empty();
1100 }
1101 
1102 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1103   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1104 }
1105 
1106 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1107   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1108   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1109 }
1110 
1111 int64_t getUnifiedFormat(const StringRef Name) {
1112   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1113     if (Name == UfmtSymbolic[Id])
1114       return Id;
1115   }
1116   return UFMT_UNDEF;
1117 }
1118 
1119 StringRef getUnifiedFormatName(unsigned Id) {
1120   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1121 }
1122 
1123 bool isValidUnifiedFormat(unsigned Id) {
1124   return Id <= UFMT_LAST;
1125 }
1126 
1127 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1128   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1129   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1130     if (Fmt == DfmtNfmt2UFmt[Id])
1131       return Id;
1132   }
1133   return UFMT_UNDEF;
1134 }
1135 
1136 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1137   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1138 }
1139 
1140 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1141   if (isGFX10Plus(STI))
1142     return UFMT_DEFAULT;
1143   return DFMT_NFMT_DEFAULT;
1144 }
1145 
1146 } // namespace MTBUFFormat
1147 
1148 //===----------------------------------------------------------------------===//
1149 // SendMsg
1150 //===----------------------------------------------------------------------===//
1151 
1152 namespace SendMsg {
1153 
1154 int64_t getMsgId(const StringRef Name) {
1155   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1156     if (IdSymbolic[i] && Name == IdSymbolic[i])
1157       return i;
1158   }
1159   return ID_UNKNOWN_;
1160 }
1161 
1162 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1163   if (Strict) {
1164     switch (MsgId) {
1165     case ID_SAVEWAVE:
1166       return isVI(STI) || isGFX9Plus(STI);
1167     case ID_STALL_WAVE_GEN:
1168     case ID_HALT_WAVES:
1169     case ID_ORDERED_PS_DONE:
1170     case ID_GS_ALLOC_REQ:
1171     case ID_GET_DOORBELL:
1172       return isGFX9Plus(STI);
1173     case ID_EARLY_PRIM_DEALLOC:
1174       return isGFX9(STI);
1175     case ID_GET_DDID:
1176       return isGFX10Plus(STI);
1177     default:
1178       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1179     }
1180   } else {
1181     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1182   }
1183 }
1184 
1185 StringRef getMsgName(int64_t MsgId) {
1186   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1187   return IdSymbolic[MsgId];
1188 }
1189 
1190 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1191   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1192   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1193   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1194   for (int i = F; i < L; ++i) {
1195     if (Name == S[i]) {
1196       return i;
1197     }
1198   }
1199   return OP_UNKNOWN_;
1200 }
1201 
1202 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1203                   bool Strict) {
1204   assert(isValidMsgId(MsgId, STI, Strict));
1205 
1206   if (!Strict)
1207     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1208 
1209   switch(MsgId)
1210   {
1211   case ID_GS:
1212     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1213   case ID_GS_DONE:
1214     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1215   case ID_SYSMSG:
1216     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1217   default:
1218     return OpId == OP_NONE_;
1219   }
1220 }
1221 
1222 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1223   assert(msgRequiresOp(MsgId));
1224   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1225 }
1226 
1227 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1228                       const MCSubtargetInfo &STI, bool Strict) {
1229   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1230 
1231   if (!Strict)
1232     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1233 
1234   switch(MsgId)
1235   {
1236   case ID_GS:
1237     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1238   case ID_GS_DONE:
1239     return (OpId == OP_GS_NOP)?
1240            (StreamId == STREAM_ID_NONE_) :
1241            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1242   default:
1243     return StreamId == STREAM_ID_NONE_;
1244   }
1245 }
1246 
1247 bool msgRequiresOp(int64_t MsgId) {
1248   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1249 }
1250 
1251 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1252   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1253 }
1254 
1255 void decodeMsg(unsigned Val,
1256                uint16_t &MsgId,
1257                uint16_t &OpId,
1258                uint16_t &StreamId) {
1259   MsgId = Val & ID_MASK_;
1260   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1261   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1262 }
1263 
1264 uint64_t encodeMsg(uint64_t MsgId,
1265                    uint64_t OpId,
1266                    uint64_t StreamId) {
1267   return (MsgId << ID_SHIFT_) |
1268          (OpId << OP_SHIFT_) |
1269          (StreamId << STREAM_ID_SHIFT_);
1270 }
1271 
1272 } // namespace SendMsg
1273 
1274 //===----------------------------------------------------------------------===//
1275 //
1276 //===----------------------------------------------------------------------===//
1277 
1278 unsigned getInitialPSInputAddr(const Function &F) {
1279   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1280 }
1281 
1282 bool isShader(CallingConv::ID cc) {
1283   switch(cc) {
1284     case CallingConv::AMDGPU_VS:
1285     case CallingConv::AMDGPU_LS:
1286     case CallingConv::AMDGPU_HS:
1287     case CallingConv::AMDGPU_ES:
1288     case CallingConv::AMDGPU_GS:
1289     case CallingConv::AMDGPU_PS:
1290     case CallingConv::AMDGPU_CS:
1291       return true;
1292     default:
1293       return false;
1294   }
1295 }
1296 
1297 bool isGraphics(CallingConv::ID cc) {
1298   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1299 }
1300 
1301 bool isCompute(CallingConv::ID cc) {
1302   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1303 }
1304 
1305 bool isEntryFunctionCC(CallingConv::ID CC) {
1306   switch (CC) {
1307   case CallingConv::AMDGPU_KERNEL:
1308   case CallingConv::SPIR_KERNEL:
1309   case CallingConv::AMDGPU_VS:
1310   case CallingConv::AMDGPU_GS:
1311   case CallingConv::AMDGPU_PS:
1312   case CallingConv::AMDGPU_CS:
1313   case CallingConv::AMDGPU_ES:
1314   case CallingConv::AMDGPU_HS:
1315   case CallingConv::AMDGPU_LS:
1316     return true;
1317   default:
1318     return false;
1319   }
1320 }
1321 
1322 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1323   switch (CC) {
1324   case CallingConv::AMDGPU_Gfx:
1325     return true;
1326   default:
1327     return isEntryFunctionCC(CC);
1328   }
1329 }
1330 
1331 bool hasXNACK(const MCSubtargetInfo &STI) {
1332   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1333 }
1334 
1335 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1336   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1337 }
1338 
1339 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1340   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1341 }
1342 
1343 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1344   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1345 }
1346 
1347 bool hasG16(const MCSubtargetInfo &STI) {
1348   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1349 }
1350 
1351 bool hasPackedD16(const MCSubtargetInfo &STI) {
1352   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1353 }
1354 
1355 bool isSI(const MCSubtargetInfo &STI) {
1356   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1357 }
1358 
1359 bool isCI(const MCSubtargetInfo &STI) {
1360   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1361 }
1362 
1363 bool isVI(const MCSubtargetInfo &STI) {
1364   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1365 }
1366 
1367 bool isGFX9(const MCSubtargetInfo &STI) {
1368   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1369 }
1370 
1371 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1372   return isGFX9(STI) || isGFX10Plus(STI);
1373 }
1374 
1375 bool isGFX10(const MCSubtargetInfo &STI) {
1376   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1377 }
1378 
1379 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1380 
1381 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1382   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1383 }
1384 
1385 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1386   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1387 }
1388 
1389 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1390   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1391 }
1392 
1393 bool isGFX90A(const MCSubtargetInfo &STI) {
1394   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1395 }
1396 
1397 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1398   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1399   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1400   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1401     Reg == AMDGPU::SCC;
1402 }
1403 
1404 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1405   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1406     if (*R == Reg1) return true;
1407   }
1408   return false;
1409 }
1410 
1411 #define MAP_REG2REG \
1412   using namespace AMDGPU; \
1413   switch(Reg) { \
1414   default: return Reg; \
1415   CASE_CI_VI(FLAT_SCR) \
1416   CASE_CI_VI(FLAT_SCR_LO) \
1417   CASE_CI_VI(FLAT_SCR_HI) \
1418   CASE_VI_GFX9PLUS(TTMP0) \
1419   CASE_VI_GFX9PLUS(TTMP1) \
1420   CASE_VI_GFX9PLUS(TTMP2) \
1421   CASE_VI_GFX9PLUS(TTMP3) \
1422   CASE_VI_GFX9PLUS(TTMP4) \
1423   CASE_VI_GFX9PLUS(TTMP5) \
1424   CASE_VI_GFX9PLUS(TTMP6) \
1425   CASE_VI_GFX9PLUS(TTMP7) \
1426   CASE_VI_GFX9PLUS(TTMP8) \
1427   CASE_VI_GFX9PLUS(TTMP9) \
1428   CASE_VI_GFX9PLUS(TTMP10) \
1429   CASE_VI_GFX9PLUS(TTMP11) \
1430   CASE_VI_GFX9PLUS(TTMP12) \
1431   CASE_VI_GFX9PLUS(TTMP13) \
1432   CASE_VI_GFX9PLUS(TTMP14) \
1433   CASE_VI_GFX9PLUS(TTMP15) \
1434   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1435   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1436   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1437   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1438   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1439   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1440   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1441   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1442   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1443   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1444   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1445   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1446   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1447   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1448   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1449   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1450   }
1451 
1452 #define CASE_CI_VI(node) \
1453   assert(!isSI(STI)); \
1454   case node: return isCI(STI) ? node##_ci : node##_vi;
1455 
1456 #define CASE_VI_GFX9PLUS(node) \
1457   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1458 
1459 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1460   if (STI.getTargetTriple().getArch() == Triple::r600)
1461     return Reg;
1462   MAP_REG2REG
1463 }
1464 
1465 #undef CASE_CI_VI
1466 #undef CASE_VI_GFX9PLUS
1467 
1468 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1469 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1470 
1471 unsigned mc2PseudoReg(unsigned Reg) {
1472   MAP_REG2REG
1473 }
1474 
1475 #undef CASE_CI_VI
1476 #undef CASE_VI_GFX9PLUS
1477 #undef MAP_REG2REG
1478 
1479 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1480   assert(OpNo < Desc.NumOperands);
1481   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1482   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1483          OpType <= AMDGPU::OPERAND_SRC_LAST;
1484 }
1485 
1486 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1487   assert(OpNo < Desc.NumOperands);
1488   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1489   switch (OpType) {
1490   case AMDGPU::OPERAND_REG_IMM_FP32:
1491   case AMDGPU::OPERAND_REG_IMM_FP64:
1492   case AMDGPU::OPERAND_REG_IMM_FP16:
1493   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1494   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1495   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1496   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1497   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1498   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1499   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1500   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1501   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1502   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1503   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1504   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1505   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1506   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1507     return true;
1508   default:
1509     return false;
1510   }
1511 }
1512 
1513 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1514   assert(OpNo < Desc.NumOperands);
1515   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1516   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1517          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1518 }
1519 
1520 // Avoid using MCRegisterClass::getSize, since that function will go away
1521 // (move from MC* level to Target* level). Return size in bits.
1522 unsigned getRegBitWidth(unsigned RCID) {
1523   switch (RCID) {
1524   case AMDGPU::VGPR_LO16RegClassID:
1525   case AMDGPU::VGPR_HI16RegClassID:
1526   case AMDGPU::SGPR_LO16RegClassID:
1527   case AMDGPU::AGPR_LO16RegClassID:
1528     return 16;
1529   case AMDGPU::SGPR_32RegClassID:
1530   case AMDGPU::VGPR_32RegClassID:
1531   case AMDGPU::VRegOrLds_32RegClassID:
1532   case AMDGPU::AGPR_32RegClassID:
1533   case AMDGPU::VS_32RegClassID:
1534   case AMDGPU::AV_32RegClassID:
1535   case AMDGPU::SReg_32RegClassID:
1536   case AMDGPU::SReg_32_XM0RegClassID:
1537   case AMDGPU::SRegOrLds_32RegClassID:
1538     return 32;
1539   case AMDGPU::SGPR_64RegClassID:
1540   case AMDGPU::VS_64RegClassID:
1541   case AMDGPU::AV_64RegClassID:
1542   case AMDGPU::SReg_64RegClassID:
1543   case AMDGPU::VReg_64RegClassID:
1544   case AMDGPU::AReg_64RegClassID:
1545   case AMDGPU::SReg_64_XEXECRegClassID:
1546   case AMDGPU::VReg_64_Align2RegClassID:
1547   case AMDGPU::AReg_64_Align2RegClassID:
1548     return 64;
1549   case AMDGPU::SGPR_96RegClassID:
1550   case AMDGPU::SReg_96RegClassID:
1551   case AMDGPU::VReg_96RegClassID:
1552   case AMDGPU::AReg_96RegClassID:
1553   case AMDGPU::VReg_96_Align2RegClassID:
1554   case AMDGPU::AReg_96_Align2RegClassID:
1555   case AMDGPU::AV_96RegClassID:
1556     return 96;
1557   case AMDGPU::SGPR_128RegClassID:
1558   case AMDGPU::SReg_128RegClassID:
1559   case AMDGPU::VReg_128RegClassID:
1560   case AMDGPU::AReg_128RegClassID:
1561   case AMDGPU::VReg_128_Align2RegClassID:
1562   case AMDGPU::AReg_128_Align2RegClassID:
1563   case AMDGPU::AV_128RegClassID:
1564     return 128;
1565   case AMDGPU::SGPR_160RegClassID:
1566   case AMDGPU::SReg_160RegClassID:
1567   case AMDGPU::VReg_160RegClassID:
1568   case AMDGPU::AReg_160RegClassID:
1569   case AMDGPU::VReg_160_Align2RegClassID:
1570   case AMDGPU::AReg_160_Align2RegClassID:
1571   case AMDGPU::AV_160RegClassID:
1572     return 160;
1573   case AMDGPU::SGPR_192RegClassID:
1574   case AMDGPU::SReg_192RegClassID:
1575   case AMDGPU::VReg_192RegClassID:
1576   case AMDGPU::AReg_192RegClassID:
1577   case AMDGPU::VReg_192_Align2RegClassID:
1578   case AMDGPU::AReg_192_Align2RegClassID:
1579     return 192;
1580   case AMDGPU::SGPR_256RegClassID:
1581   case AMDGPU::SReg_256RegClassID:
1582   case AMDGPU::VReg_256RegClassID:
1583   case AMDGPU::AReg_256RegClassID:
1584   case AMDGPU::VReg_256_Align2RegClassID:
1585   case AMDGPU::AReg_256_Align2RegClassID:
1586     return 256;
1587   case AMDGPU::SGPR_512RegClassID:
1588   case AMDGPU::SReg_512RegClassID:
1589   case AMDGPU::VReg_512RegClassID:
1590   case AMDGPU::AReg_512RegClassID:
1591   case AMDGPU::VReg_512_Align2RegClassID:
1592   case AMDGPU::AReg_512_Align2RegClassID:
1593     return 512;
1594   case AMDGPU::SGPR_1024RegClassID:
1595   case AMDGPU::SReg_1024RegClassID:
1596   case AMDGPU::VReg_1024RegClassID:
1597   case AMDGPU::AReg_1024RegClassID:
1598   case AMDGPU::VReg_1024_Align2RegClassID:
1599   case AMDGPU::AReg_1024_Align2RegClassID:
1600     return 1024;
1601   default:
1602     llvm_unreachable("Unexpected register class");
1603   }
1604 }
1605 
1606 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1607   return getRegBitWidth(RC.getID());
1608 }
1609 
1610 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1611                            unsigned OpNo) {
1612   assert(OpNo < Desc.NumOperands);
1613   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1614   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1615 }
1616 
1617 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1618   if (isInlinableIntLiteral(Literal))
1619     return true;
1620 
1621   uint64_t Val = static_cast<uint64_t>(Literal);
1622   return (Val == DoubleToBits(0.0)) ||
1623          (Val == DoubleToBits(1.0)) ||
1624          (Val == DoubleToBits(-1.0)) ||
1625          (Val == DoubleToBits(0.5)) ||
1626          (Val == DoubleToBits(-0.5)) ||
1627          (Val == DoubleToBits(2.0)) ||
1628          (Val == DoubleToBits(-2.0)) ||
1629          (Val == DoubleToBits(4.0)) ||
1630          (Val == DoubleToBits(-4.0)) ||
1631          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1632 }
1633 
1634 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1635   if (isInlinableIntLiteral(Literal))
1636     return true;
1637 
1638   // The actual type of the operand does not seem to matter as long
1639   // as the bits match one of the inline immediate values.  For example:
1640   //
1641   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1642   // so it is a legal inline immediate.
1643   //
1644   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1645   // floating-point, so it is a legal inline immediate.
1646 
1647   uint32_t Val = static_cast<uint32_t>(Literal);
1648   return (Val == FloatToBits(0.0f)) ||
1649          (Val == FloatToBits(1.0f)) ||
1650          (Val == FloatToBits(-1.0f)) ||
1651          (Val == FloatToBits(0.5f)) ||
1652          (Val == FloatToBits(-0.5f)) ||
1653          (Val == FloatToBits(2.0f)) ||
1654          (Val == FloatToBits(-2.0f)) ||
1655          (Val == FloatToBits(4.0f)) ||
1656          (Val == FloatToBits(-4.0f)) ||
1657          (Val == 0x3e22f983 && HasInv2Pi);
1658 }
1659 
1660 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1661   if (!HasInv2Pi)
1662     return false;
1663 
1664   if (isInlinableIntLiteral(Literal))
1665     return true;
1666 
1667   uint16_t Val = static_cast<uint16_t>(Literal);
1668   return Val == 0x3C00 || // 1.0
1669          Val == 0xBC00 || // -1.0
1670          Val == 0x3800 || // 0.5
1671          Val == 0xB800 || // -0.5
1672          Val == 0x4000 || // 2.0
1673          Val == 0xC000 || // -2.0
1674          Val == 0x4400 || // 4.0
1675          Val == 0xC400 || // -4.0
1676          Val == 0x3118;   // 1/2pi
1677 }
1678 
1679 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1680   assert(HasInv2Pi);
1681 
1682   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1683     int16_t Trunc = static_cast<int16_t>(Literal);
1684     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1685   }
1686   if (!(Literal & 0xffff))
1687     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1688 
1689   int16_t Lo16 = static_cast<int16_t>(Literal);
1690   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1691   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1692 }
1693 
1694 bool isInlinableIntLiteralV216(int32_t Literal) {
1695   int16_t Lo16 = static_cast<int16_t>(Literal);
1696   if (isInt<16>(Literal) || isUInt<16>(Literal))
1697     return isInlinableIntLiteral(Lo16);
1698 
1699   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1700   if (!(Literal & 0xffff))
1701     return isInlinableIntLiteral(Hi16);
1702   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1703 }
1704 
1705 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1706   assert(HasInv2Pi);
1707 
1708   int16_t Lo16 = static_cast<int16_t>(Literal);
1709   if (isInt<16>(Literal) || isUInt<16>(Literal))
1710     return true;
1711 
1712   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1713   if (!(Literal & 0xffff))
1714     return true;
1715   return Lo16 == Hi16;
1716 }
1717 
1718 bool isArgPassedInSGPR(const Argument *A) {
1719   const Function *F = A->getParent();
1720 
1721   // Arguments to compute shaders are never a source of divergence.
1722   CallingConv::ID CC = F->getCallingConv();
1723   switch (CC) {
1724   case CallingConv::AMDGPU_KERNEL:
1725   case CallingConv::SPIR_KERNEL:
1726     return true;
1727   case CallingConv::AMDGPU_VS:
1728   case CallingConv::AMDGPU_LS:
1729   case CallingConv::AMDGPU_HS:
1730   case CallingConv::AMDGPU_ES:
1731   case CallingConv::AMDGPU_GS:
1732   case CallingConv::AMDGPU_PS:
1733   case CallingConv::AMDGPU_CS:
1734   case CallingConv::AMDGPU_Gfx:
1735     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1736     // Everything else is in VGPRs.
1737     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1738            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1739   default:
1740     // TODO: Should calls support inreg for SGPR inputs?
1741     return false;
1742   }
1743 }
1744 
1745 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1746   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1747 }
1748 
1749 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1750   return isGFX9Plus(ST);
1751 }
1752 
1753 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1754                                       int64_t EncodedOffset) {
1755   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1756                                : isUInt<8>(EncodedOffset);
1757 }
1758 
1759 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1760                                     int64_t EncodedOffset,
1761                                     bool IsBuffer) {
1762   return !IsBuffer &&
1763          hasSMRDSignedImmOffset(ST) &&
1764          isInt<21>(EncodedOffset);
1765 }
1766 
1767 static bool isDwordAligned(uint64_t ByteOffset) {
1768   return (ByteOffset & 3) == 0;
1769 }
1770 
1771 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1772                                 uint64_t ByteOffset) {
1773   if (hasSMEMByteOffset(ST))
1774     return ByteOffset;
1775 
1776   assert(isDwordAligned(ByteOffset));
1777   return ByteOffset >> 2;
1778 }
1779 
1780 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1781                                        int64_t ByteOffset, bool IsBuffer) {
1782   // The signed version is always a byte offset.
1783   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1784     assert(hasSMEMByteOffset(ST));
1785     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1786   }
1787 
1788   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1789     return None;
1790 
1791   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1792   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1793              ? Optional<int64_t>(EncodedOffset)
1794              : None;
1795 }
1796 
1797 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1798                                                 int64_t ByteOffset) {
1799   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1800     return None;
1801 
1802   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1803   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1804 }
1805 
1806 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1807   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1808   if (AMDGPU::isGFX10(ST))
1809     return Signed ? 12 : 11;
1810 
1811   return Signed ? 13 : 12;
1812 }
1813 
1814 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1815 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1816 // hardware bug needing a workaround).
1817 //
1818 // The required alignment ensures that individual address components remain
1819 // aligned if they are aligned to begin with. It also ensures that additional
1820 // offsets within the given alignment can be added to the resulting ImmOffset.
1821 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1822                       const GCNSubtarget *Subtarget, Align Alignment) {
1823   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1824   uint32_t Overflow = 0;
1825 
1826   if (Imm > MaxImm) {
1827     if (Imm <= MaxImm + 64) {
1828       // Use an SOffset inline constant for 4..64
1829       Overflow = Imm - MaxImm;
1830       Imm = MaxImm;
1831     } else {
1832       // Try to keep the same value in SOffset for adjacent loads, so that
1833       // the corresponding register contents can be re-used.
1834       //
1835       // Load values with all low-bits (except for alignment bits) set into
1836       // SOffset, so that a larger range of values can be covered using
1837       // s_movk_i32.
1838       //
1839       // Atomic operations fail to work correctly when individual address
1840       // components are unaligned, even if their sum is aligned.
1841       uint32_t High = (Imm + Alignment.value()) & ~4095;
1842       uint32_t Low = (Imm + Alignment.value()) & 4095;
1843       Imm = Low;
1844       Overflow = High - Alignment.value();
1845     }
1846   }
1847 
1848   // There is a hardware bug in SI and CI which prevents address clamping in
1849   // MUBUF instructions from working correctly with SOffsets. The immediate
1850   // offset is unaffected.
1851   if (Overflow > 0 &&
1852       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1853     return false;
1854 
1855   ImmOffset = Imm;
1856   SOffset = Overflow;
1857   return true;
1858 }
1859 
1860 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1861   *this = getDefaultForCallingConv(F.getCallingConv());
1862 
1863   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1864   if (!IEEEAttr.empty())
1865     IEEE = IEEEAttr == "true";
1866 
1867   StringRef DX10ClampAttr
1868     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1869   if (!DX10ClampAttr.empty())
1870     DX10Clamp = DX10ClampAttr == "true";
1871 
1872   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1873   if (!DenormF32Attr.empty()) {
1874     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1875     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1876     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1877   }
1878 
1879   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1880   if (!DenormAttr.empty()) {
1881     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1882 
1883     if (DenormF32Attr.empty()) {
1884       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1885       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1886     }
1887 
1888     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1889     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1890   }
1891 }
1892 
1893 namespace {
1894 
1895 struct SourceOfDivergence {
1896   unsigned Intr;
1897 };
1898 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1899 
1900 #define GET_SourcesOfDivergence_IMPL
1901 #define GET_Gfx9BufferFormat_IMPL
1902 #define GET_Gfx10PlusBufferFormat_IMPL
1903 #include "AMDGPUGenSearchableTables.inc"
1904 
1905 } // end anonymous namespace
1906 
1907 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1908   return lookupSourceOfDivergence(IntrID);
1909 }
1910 
1911 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1912                                                   uint8_t NumComponents,
1913                                                   uint8_t NumFormat,
1914                                                   const MCSubtargetInfo &STI) {
1915   return isGFX10Plus(STI)
1916              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1917                                             NumFormat)
1918              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1919 }
1920 
1921 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1922                                                   const MCSubtargetInfo &STI) {
1923   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
1924                           : getGfx9BufferFormatInfo(Format);
1925 }
1926 
1927 } // namespace AMDGPU
1928 
1929 raw_ostream &operator<<(raw_ostream &OS,
1930                         const AMDGPU::IsaInfo::TargetIDSetting S) {
1931   switch (S) {
1932   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
1933     OS << "Unsupported";
1934     break;
1935   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
1936     OS << "Any";
1937     break;
1938   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
1939     OS << "Off";
1940     break;
1941   case (AMDGPU::IsaInfo::TargetIDSetting::On):
1942     OS << "On";
1943     break;
1944   }
1945   return OS;
1946 }
1947 
1948 } // namespace llvm
1949