1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPUTargetTransformInfo.h"
11 #include "AMDGPU.h"
12 #include "SIDefines.h"
13 #include "AMDGPUAsmUtils.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <utility>
40 
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
42 
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
48 
49 namespace {
50 
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
52 unsigned getBitMask(unsigned Shift, unsigned Width) {
53   return ((1 << Width) - 1) << Shift;
54 }
55 
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Packed \p Dst.
59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
60   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
61   Dst |= (Src << Shift) & getBitMask(Shift, Width);
62   return Dst;
63 }
64 
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
66 ///
67 /// \returns Unpacked bits.
68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
69   return (Src & getBitMask(Shift, Width)) >> Shift;
70 }
71 
72 /// \returns Vmcnt bit shift (lower bits).
73 unsigned getVmcntBitShiftLo() { return 0; }
74 
75 /// \returns Vmcnt bit width (lower bits).
76 unsigned getVmcntBitWidthLo() { return 4; }
77 
78 /// \returns Expcnt bit shift.
79 unsigned getExpcntBitShift() { return 4; }
80 
81 /// \returns Expcnt bit width.
82 unsigned getExpcntBitWidth() { return 3; }
83 
84 /// \returns Lgkmcnt bit shift.
85 unsigned getLgkmcntBitShift() { return 8; }
86 
87 /// \returns Lgkmcnt bit width.
88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89   return (VersionMajor >= 10) ? 6 : 4;
90 }
91 
92 /// \returns Vmcnt bit shift (higher bits).
93 unsigned getVmcntBitShiftHi() { return 14; }
94 
95 /// \returns Vmcnt bit width (higher bits).
96 unsigned getVmcntBitWidthHi() { return 2; }
97 
98 } // end namespace anonymous
99 
100 namespace llvm {
101 
102 namespace AMDGPU {
103 
104 #define GET_MIMGBaseOpcodesTable_IMPL
105 #define GET_MIMGDimInfoTable_IMPL
106 #define GET_MIMGInfoTable_IMPL
107 #define GET_MIMGLZMappingTable_IMPL
108 #define GET_MIMGMIPMappingTable_IMPL
109 #include "AMDGPUGenSearchableTables.inc"
110 
111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
112                   unsigned VDataDwords, unsigned VAddrDwords) {
113   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
114                                              VDataDwords, VAddrDwords);
115   return Info ? Info->Opcode : -1;
116 }
117 
118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
119   const MIMGInfo *Info = getMIMGInfo(Opc);
120   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
121 }
122 
123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
124   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
125   const MIMGInfo *NewInfo =
126       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
127                           NewChannels, OrigInfo->VAddrDwords);
128   return NewInfo ? NewInfo->Opcode : -1;
129 }
130 
131 struct MUBUFInfo {
132   uint16_t Opcode;
133   uint16_t BaseOpcode;
134   uint8_t elements;
135   bool has_vaddr;
136   bool has_srsrc;
137   bool has_soffset;
138 };
139 
140 struct MTBUFInfo {
141   uint16_t Opcode;
142   uint16_t BaseOpcode;
143   uint8_t elements;
144   bool has_vaddr;
145   bool has_srsrc;
146   bool has_soffset;
147 };
148 
149 #define GET_MTBUFInfoTable_DECL
150 #define GET_MTBUFInfoTable_IMPL
151 #define GET_MUBUFInfoTable_DECL
152 #define GET_MUBUFInfoTable_IMPL
153 #include "AMDGPUGenSearchableTables.inc"
154 
155 int getMTBUFBaseOpcode(unsigned Opc) {
156   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
157   return Info ? Info->BaseOpcode : -1;
158 }
159 
160 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
161   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
162   return Info ? Info->Opcode : -1;
163 }
164 
165 int getMTBUFElements(unsigned Opc) {
166   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
167   return Info ? Info->elements : 0;
168 }
169 
170 bool getMTBUFHasVAddr(unsigned Opc) {
171   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
172   return Info ? Info->has_vaddr : false;
173 }
174 
175 bool getMTBUFHasSrsrc(unsigned Opc) {
176   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
177   return Info ? Info->has_srsrc : false;
178 }
179 
180 bool getMTBUFHasSoffset(unsigned Opc) {
181   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
182   return Info ? Info->has_soffset : false;
183 }
184 
185 int getMUBUFBaseOpcode(unsigned Opc) {
186   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
187   return Info ? Info->BaseOpcode : -1;
188 }
189 
190 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
191   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
192   return Info ? Info->Opcode : -1;
193 }
194 
195 int getMUBUFElements(unsigned Opc) {
196   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
197   return Info ? Info->elements : 0;
198 }
199 
200 bool getMUBUFHasVAddr(unsigned Opc) {
201   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
202   return Info ? Info->has_vaddr : false;
203 }
204 
205 bool getMUBUFHasSrsrc(unsigned Opc) {
206   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
207   return Info ? Info->has_srsrc : false;
208 }
209 
210 bool getMUBUFHasSoffset(unsigned Opc) {
211   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
212   return Info ? Info->has_soffset : false;
213 }
214 
215 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
216 // header files, so we need to wrap it in a function that takes unsigned
217 // instead.
218 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
219   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
220 }
221 
222 namespace IsaInfo {
223 
224 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
225   auto TargetTriple = STI->getTargetTriple();
226   auto Version = getIsaVersion(STI->getCPU());
227 
228   Stream << TargetTriple.getArchName() << '-'
229          << TargetTriple.getVendorName() << '-'
230          << TargetTriple.getOSName() << '-'
231          << TargetTriple.getEnvironmentName() << '-'
232          << "gfx"
233          << Version.Major
234          << Version.Minor
235          << Version.Stepping;
236 
237   if (hasXNACK(*STI))
238     Stream << "+xnack";
239   if (hasSRAMECC(*STI))
240     Stream << "+sram-ecc";
241 
242   Stream.flush();
243 }
244 
245 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
246   return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
247              STI->getFeatureBits().test(FeatureCodeObjectV3);
248 }
249 
250 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
251   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
252     return 16;
253   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
254     return 32;
255 
256   return 64;
257 }
258 
259 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
260   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
261     return 32768;
262   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
263     return 65536;
264 
265   return 0;
266 }
267 
268 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
269   return 4;
270 }
271 
272 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
273                                unsigned FlatWorkGroupSize) {
274   assert(FlatWorkGroupSize != 0);
275   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
276     return 8;
277   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
278   if (N == 1)
279     return 40;
280   N = 40 / N;
281   return std::min(N, 16u);
282 }
283 
284 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
285   return getMaxWavesPerEU(STI) * getEUsPerCU(STI);
286 }
287 
288 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
289                           unsigned FlatWorkGroupSize) {
290   return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
291 }
292 
293 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
294   return 1;
295 }
296 
297 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
298   // FIXME: Need to take scratch memory into account.
299   if (!isGFX10(*STI))
300     return 10;
301   return 20;
302 }
303 
304 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
305                           unsigned FlatWorkGroupSize) {
306   return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
307                  getEUsPerCU(STI)) / getEUsPerCU(STI);
308 }
309 
310 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
311   return 1;
312 }
313 
314 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
315   // Some subtargets allow encoding 2048, but this isn't tested or supported.
316   return 1024;
317 }
318 
319 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
320                               unsigned FlatWorkGroupSize) {
321   return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
322                  getWavefrontSize(STI);
323 }
324 
325 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
326   IsaVersion Version = getIsaVersion(STI->getCPU());
327   if (Version.Major >= 10)
328     return getAddressableNumSGPRs(STI);
329   if (Version.Major >= 8)
330     return 16;
331   return 8;
332 }
333 
334 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
335   return 8;
336 }
337 
338 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
339   IsaVersion Version = getIsaVersion(STI->getCPU());
340   if (Version.Major >= 8)
341     return 800;
342   return 512;
343 }
344 
345 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
346   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
347     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
348 
349   IsaVersion Version = getIsaVersion(STI->getCPU());
350   if (Version.Major >= 10)
351     return 106;
352   if (Version.Major >= 8)
353     return 102;
354   return 104;
355 }
356 
357 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
358   assert(WavesPerEU != 0);
359 
360   IsaVersion Version = getIsaVersion(STI->getCPU());
361   if (Version.Major >= 10)
362     return 0;
363 
364   if (WavesPerEU >= getMaxWavesPerEU(STI))
365     return 0;
366 
367   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
368   if (STI->getFeatureBits().test(FeatureTrapHandler))
369     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
370   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
371   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
372 }
373 
374 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
375                         bool Addressable) {
376   assert(WavesPerEU != 0);
377 
378   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
379   IsaVersion Version = getIsaVersion(STI->getCPU());
380   if (Version.Major >= 10)
381     return Addressable ? AddressableNumSGPRs : 108;
382   if (Version.Major >= 8 && !Addressable)
383     AddressableNumSGPRs = 112;
384   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
385   if (STI->getFeatureBits().test(FeatureTrapHandler))
386     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
387   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
388   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
389 }
390 
391 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
392                           bool FlatScrUsed, bool XNACKUsed) {
393   unsigned ExtraSGPRs = 0;
394   if (VCCUsed)
395     ExtraSGPRs = 2;
396 
397   IsaVersion Version = getIsaVersion(STI->getCPU());
398   if (Version.Major >= 10)
399     return ExtraSGPRs;
400 
401   if (Version.Major < 8) {
402     if (FlatScrUsed)
403       ExtraSGPRs = 4;
404   } else {
405     if (XNACKUsed)
406       ExtraSGPRs = 4;
407 
408     if (FlatScrUsed)
409       ExtraSGPRs = 6;
410   }
411 
412   return ExtraSGPRs;
413 }
414 
415 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
416                           bool FlatScrUsed) {
417   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
418                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
419 }
420 
421 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
422   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
423   // SGPRBlocks is actual number of SGPR blocks minus 1.
424   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
425 }
426 
427 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
428                              Optional<bool> EnableWavefrontSize32) {
429   bool IsWave32 = EnableWavefrontSize32 ?
430       *EnableWavefrontSize32 :
431       STI->getFeatureBits().test(FeatureWavefrontSize32);
432   return IsWave32 ? 8 : 4;
433 }
434 
435 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
436                                 Optional<bool> EnableWavefrontSize32) {
437   return getVGPRAllocGranule(STI, EnableWavefrontSize32);
438 }
439 
440 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
441   if (!isGFX10(*STI))
442     return 256;
443   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
444 }
445 
446 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
447   return 256;
448 }
449 
450 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
451   assert(WavesPerEU != 0);
452 
453   if (WavesPerEU >= getMaxWavesPerEU(STI))
454     return 0;
455   unsigned MinNumVGPRs =
456       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
457                 getVGPRAllocGranule(STI)) + 1;
458   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
459 }
460 
461 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
462   assert(WavesPerEU != 0);
463 
464   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
465                                    getVGPRAllocGranule(STI));
466   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
467   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
468 }
469 
470 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
471                           Optional<bool> EnableWavefrontSize32) {
472   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
473                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
474   // VGPRBlocks is actual number of VGPR blocks minus 1.
475   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
476 }
477 
478 } // end namespace IsaInfo
479 
480 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
481                                const MCSubtargetInfo *STI) {
482   IsaVersion Version = getIsaVersion(STI->getCPU());
483 
484   memset(&Header, 0, sizeof(Header));
485 
486   Header.amd_kernel_code_version_major = 1;
487   Header.amd_kernel_code_version_minor = 2;
488   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
489   Header.amd_machine_version_major = Version.Major;
490   Header.amd_machine_version_minor = Version.Minor;
491   Header.amd_machine_version_stepping = Version.Stepping;
492   Header.kernel_code_entry_byte_offset = sizeof(Header);
493   Header.wavefront_size = 6;
494 
495   // If the code object does not support indirect functions, then the value must
496   // be 0xffffffff.
497   Header.call_convention = -1;
498 
499   // These alignment values are specified in powers of two, so alignment =
500   // 2^n.  The minimum alignment is 2^4 = 16.
501   Header.kernarg_segment_alignment = 4;
502   Header.group_segment_alignment = 4;
503   Header.private_segment_alignment = 4;
504 
505   if (Version.Major >= 10) {
506     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
507       Header.wavefront_size = 5;
508       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
509     }
510     Header.compute_pgm_resource_registers |=
511       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
512       S_00B848_MEM_ORDERED(1);
513   }
514 }
515 
516 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
517     const MCSubtargetInfo *STI) {
518   IsaVersion Version = getIsaVersion(STI->getCPU());
519 
520   amdhsa::kernel_descriptor_t KD;
521   memset(&KD, 0, sizeof(KD));
522 
523   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
524                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
525                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
526   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
527                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
528   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
529                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
530   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
531                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
532   if (Version.Major >= 10) {
533     AMDHSA_BITS_SET(KD.kernel_code_properties,
534                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
535                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
536     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
537                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
538                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
539     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
540                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
541   }
542   return KD;
543 }
544 
545 bool isGroupSegment(const GlobalValue *GV) {
546   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
547 }
548 
549 bool isGlobalSegment(const GlobalValue *GV) {
550   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
551 }
552 
553 bool isReadOnlySegment(const GlobalValue *GV) {
554   unsigned AS = GV->getAddressSpace();
555   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
556          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
557 }
558 
559 bool shouldEmitConstantsToTextSection(const Triple &TT) {
560   return TT.getOS() == Triple::AMDPAL;
561 }
562 
563 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
564   Attribute A = F.getFnAttribute(Name);
565   int Result = Default;
566 
567   if (A.isStringAttribute()) {
568     StringRef Str = A.getValueAsString();
569     if (Str.getAsInteger(0, Result)) {
570       LLVMContext &Ctx = F.getContext();
571       Ctx.emitError("can't parse integer attribute " + Name);
572     }
573   }
574 
575   return Result;
576 }
577 
578 std::pair<int, int> getIntegerPairAttribute(const Function &F,
579                                             StringRef Name,
580                                             std::pair<int, int> Default,
581                                             bool OnlyFirstRequired) {
582   Attribute A = F.getFnAttribute(Name);
583   if (!A.isStringAttribute())
584     return Default;
585 
586   LLVMContext &Ctx = F.getContext();
587   std::pair<int, int> Ints = Default;
588   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
589   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
590     Ctx.emitError("can't parse first integer attribute " + Name);
591     return Default;
592   }
593   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
594     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
595       Ctx.emitError("can't parse second integer attribute " + Name);
596       return Default;
597     }
598   }
599 
600   return Ints;
601 }
602 
603 unsigned getVmcntBitMask(const IsaVersion &Version) {
604   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
605   if (Version.Major < 9)
606     return VmcntLo;
607 
608   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
609   return VmcntLo | VmcntHi;
610 }
611 
612 unsigned getExpcntBitMask(const IsaVersion &Version) {
613   return (1 << getExpcntBitWidth()) - 1;
614 }
615 
616 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
617   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
618 }
619 
620 unsigned getWaitcntBitMask(const IsaVersion &Version) {
621   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
622   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
623   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
624                                 getLgkmcntBitWidth(Version.Major));
625   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
626   if (Version.Major < 9)
627     return Waitcnt;
628 
629   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
630   return Waitcnt | VmcntHi;
631 }
632 
633 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
634   unsigned VmcntLo =
635       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
636   if (Version.Major < 9)
637     return VmcntLo;
638 
639   unsigned VmcntHi =
640       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
641   VmcntHi <<= getVmcntBitWidthLo();
642   return VmcntLo | VmcntHi;
643 }
644 
645 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
646   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
647 }
648 
649 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
650   return unpackBits(Waitcnt, getLgkmcntBitShift(),
651                     getLgkmcntBitWidth(Version.Major));
652 }
653 
654 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
655                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
656   Vmcnt = decodeVmcnt(Version, Waitcnt);
657   Expcnt = decodeExpcnt(Version, Waitcnt);
658   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
659 }
660 
661 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
662   Waitcnt Decoded;
663   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
664   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
665   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
666   return Decoded;
667 }
668 
669 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
670                      unsigned Vmcnt) {
671   Waitcnt =
672       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
673   if (Version.Major < 9)
674     return Waitcnt;
675 
676   Vmcnt >>= getVmcntBitWidthLo();
677   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
678 }
679 
680 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
681                       unsigned Expcnt) {
682   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
683 }
684 
685 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
686                        unsigned Lgkmcnt) {
687   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
688                                     getLgkmcntBitWidth(Version.Major));
689 }
690 
691 unsigned encodeWaitcnt(const IsaVersion &Version,
692                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
693   unsigned Waitcnt = getWaitcntBitMask(Version);
694   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
695   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
696   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
697   return Waitcnt;
698 }
699 
700 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
701   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
702 }
703 
704 //===----------------------------------------------------------------------===//
705 // hwreg
706 //===----------------------------------------------------------------------===//
707 
708 namespace Hwreg {
709 
710 int64_t getHwregId(const StringRef Name) {
711   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
712     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
713       return Id;
714   }
715   return ID_UNKNOWN_;
716 }
717 
718 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
719   if (isSI(STI) || isCI(STI) || isVI(STI))
720     return ID_SYMBOLIC_FIRST_GFX9_;
721   else if (isGFX9(STI))
722     return ID_SYMBOLIC_FIRST_GFX10_;
723   else
724     return ID_SYMBOLIC_LAST_;
725 }
726 
727 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
728   return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
729          IdSymbolic[Id];
730 }
731 
732 bool isValidHwreg(int64_t Id) {
733   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
734 }
735 
736 bool isValidHwregOffset(int64_t Offset) {
737   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
738 }
739 
740 bool isValidHwregWidth(int64_t Width) {
741   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
742 }
743 
744 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
745   return (Id << ID_SHIFT_) |
746          (Offset << OFFSET_SHIFT_) |
747          ((Width - 1) << WIDTH_M1_SHIFT_);
748 }
749 
750 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
751   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
752 }
753 
754 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
755   Id = (Val & ID_MASK_) >> ID_SHIFT_;
756   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
757   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
758 }
759 
760 } // namespace Hwreg
761 
762 //===----------------------------------------------------------------------===//
763 // SendMsg
764 //===----------------------------------------------------------------------===//
765 
766 namespace SendMsg {
767 
768 int64_t getMsgId(const StringRef Name) {
769   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
770     if (IdSymbolic[i] && Name == IdSymbolic[i])
771       return i;
772   }
773   return ID_UNKNOWN_;
774 }
775 
776 static bool isValidMsgId(int64_t MsgId) {
777   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
778 }
779 
780 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
781   if (Strict) {
782     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
783       return isGFX9(STI) || isGFX10(STI);
784     else
785       return isValidMsgId(MsgId);
786   } else {
787     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
788   }
789 }
790 
791 StringRef getMsgName(int64_t MsgId) {
792   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
793 }
794 
795 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
796   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
797   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
798   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
799   for (int i = F; i < L; ++i) {
800     if (Name == S[i]) {
801       return i;
802     }
803   }
804   return OP_UNKNOWN_;
805 }
806 
807 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
808 
809   if (!Strict)
810     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
811 
812   switch(MsgId)
813   {
814   case ID_GS:
815     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
816   case ID_GS_DONE:
817     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
818   case ID_SYSMSG:
819     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
820   default:
821     return OpId == OP_NONE_;
822   }
823 }
824 
825 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
826   assert(msgRequiresOp(MsgId));
827   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
828 }
829 
830 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
831 
832   if (!Strict)
833     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
834 
835   switch(MsgId)
836   {
837   case ID_GS:
838     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
839   case ID_GS_DONE:
840     return (OpId == OP_GS_NOP)?
841            (StreamId == STREAM_ID_NONE_) :
842            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
843   default:
844     return StreamId == STREAM_ID_NONE_;
845   }
846 }
847 
848 bool msgRequiresOp(int64_t MsgId) {
849   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
850 }
851 
852 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
853   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
854 }
855 
856 void decodeMsg(unsigned Val,
857                uint16_t &MsgId,
858                uint16_t &OpId,
859                uint16_t &StreamId) {
860   MsgId = Val & ID_MASK_;
861   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
862   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
863 }
864 
865 uint64_t encodeMsg(uint64_t MsgId,
866                    uint64_t OpId,
867                    uint64_t StreamId) {
868   return (MsgId << ID_SHIFT_) |
869          (OpId << OP_SHIFT_) |
870          (StreamId << STREAM_ID_SHIFT_);
871 }
872 
873 } // namespace SendMsg
874 
875 //===----------------------------------------------------------------------===//
876 //
877 //===----------------------------------------------------------------------===//
878 
879 unsigned getInitialPSInputAddr(const Function &F) {
880   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
881 }
882 
883 bool isShader(CallingConv::ID cc) {
884   switch(cc) {
885     case CallingConv::AMDGPU_VS:
886     case CallingConv::AMDGPU_LS:
887     case CallingConv::AMDGPU_HS:
888     case CallingConv::AMDGPU_ES:
889     case CallingConv::AMDGPU_GS:
890     case CallingConv::AMDGPU_PS:
891     case CallingConv::AMDGPU_CS:
892       return true;
893     default:
894       return false;
895   }
896 }
897 
898 bool isCompute(CallingConv::ID cc) {
899   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
900 }
901 
902 bool isEntryFunctionCC(CallingConv::ID CC) {
903   switch (CC) {
904   case CallingConv::AMDGPU_KERNEL:
905   case CallingConv::SPIR_KERNEL:
906   case CallingConv::AMDGPU_VS:
907   case CallingConv::AMDGPU_GS:
908   case CallingConv::AMDGPU_PS:
909   case CallingConv::AMDGPU_CS:
910   case CallingConv::AMDGPU_ES:
911   case CallingConv::AMDGPU_HS:
912   case CallingConv::AMDGPU_LS:
913     return true;
914   default:
915     return false;
916   }
917 }
918 
919 bool hasXNACK(const MCSubtargetInfo &STI) {
920   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
921 }
922 
923 bool hasSRAMECC(const MCSubtargetInfo &STI) {
924   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
925 }
926 
927 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
928   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
929 }
930 
931 bool hasPackedD16(const MCSubtargetInfo &STI) {
932   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
933 }
934 
935 bool isSI(const MCSubtargetInfo &STI) {
936   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
937 }
938 
939 bool isCI(const MCSubtargetInfo &STI) {
940   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
941 }
942 
943 bool isVI(const MCSubtargetInfo &STI) {
944   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
945 }
946 
947 bool isGFX9(const MCSubtargetInfo &STI) {
948   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
949 }
950 
951 bool isGFX10(const MCSubtargetInfo &STI) {
952   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
953 }
954 
955 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
956   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
957 }
958 
959 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
960   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
961   const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
962   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
963     Reg == AMDGPU::SCC;
964 }
965 
966 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
967   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
968     if (*R == Reg1) return true;
969   }
970   return false;
971 }
972 
973 #define MAP_REG2REG \
974   using namespace AMDGPU; \
975   switch(Reg) { \
976   default: return Reg; \
977   CASE_CI_VI(FLAT_SCR) \
978   CASE_CI_VI(FLAT_SCR_LO) \
979   CASE_CI_VI(FLAT_SCR_HI) \
980   CASE_VI_GFX9_GFX10(TTMP0) \
981   CASE_VI_GFX9_GFX10(TTMP1) \
982   CASE_VI_GFX9_GFX10(TTMP2) \
983   CASE_VI_GFX9_GFX10(TTMP3) \
984   CASE_VI_GFX9_GFX10(TTMP4) \
985   CASE_VI_GFX9_GFX10(TTMP5) \
986   CASE_VI_GFX9_GFX10(TTMP6) \
987   CASE_VI_GFX9_GFX10(TTMP7) \
988   CASE_VI_GFX9_GFX10(TTMP8) \
989   CASE_VI_GFX9_GFX10(TTMP9) \
990   CASE_VI_GFX9_GFX10(TTMP10) \
991   CASE_VI_GFX9_GFX10(TTMP11) \
992   CASE_VI_GFX9_GFX10(TTMP12) \
993   CASE_VI_GFX9_GFX10(TTMP13) \
994   CASE_VI_GFX9_GFX10(TTMP14) \
995   CASE_VI_GFX9_GFX10(TTMP15) \
996   CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
997   CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
998   CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
999   CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
1000   CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
1001   CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
1002   CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
1003   CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
1004   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
1005   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
1006   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
1007   CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
1008   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1009   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1010   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1011   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1012   }
1013 
1014 #define CASE_CI_VI(node) \
1015   assert(!isSI(STI)); \
1016   case node: return isCI(STI) ? node##_ci : node##_vi;
1017 
1018 #define CASE_VI_GFX9_GFX10(node) \
1019   case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
1020 
1021 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1022   if (STI.getTargetTriple().getArch() == Triple::r600)
1023     return Reg;
1024   MAP_REG2REG
1025 }
1026 
1027 #undef CASE_CI_VI
1028 #undef CASE_VI_GFX9_GFX10
1029 
1030 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1031 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
1032 
1033 unsigned mc2PseudoReg(unsigned Reg) {
1034   MAP_REG2REG
1035 }
1036 
1037 #undef CASE_CI_VI
1038 #undef CASE_VI_GFX9_GFX10
1039 #undef MAP_REG2REG
1040 
1041 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1042   assert(OpNo < Desc.NumOperands);
1043   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1044   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1045          OpType <= AMDGPU::OPERAND_SRC_LAST;
1046 }
1047 
1048 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1049   assert(OpNo < Desc.NumOperands);
1050   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1051   switch (OpType) {
1052   case AMDGPU::OPERAND_REG_IMM_FP32:
1053   case AMDGPU::OPERAND_REG_IMM_FP64:
1054   case AMDGPU::OPERAND_REG_IMM_FP16:
1055   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1056   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1057   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1058   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1059   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1060   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1061   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1062   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1063   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1064   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1065   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1066     return true;
1067   default:
1068     return false;
1069   }
1070 }
1071 
1072 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1073   assert(OpNo < Desc.NumOperands);
1074   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1075   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1076          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1077 }
1078 
1079 // Avoid using MCRegisterClass::getSize, since that function will go away
1080 // (move from MC* level to Target* level). Return size in bits.
1081 unsigned getRegBitWidth(unsigned RCID) {
1082   switch (RCID) {
1083   case AMDGPU::SGPR_32RegClassID:
1084   case AMDGPU::VGPR_32RegClassID:
1085   case AMDGPU::VRegOrLds_32RegClassID:
1086   case AMDGPU::AGPR_32RegClassID:
1087   case AMDGPU::VS_32RegClassID:
1088   case AMDGPU::AV_32RegClassID:
1089   case AMDGPU::SReg_32RegClassID:
1090   case AMDGPU::SReg_32_XM0RegClassID:
1091   case AMDGPU::SRegOrLds_32RegClassID:
1092     return 32;
1093   case AMDGPU::SGPR_64RegClassID:
1094   case AMDGPU::VS_64RegClassID:
1095   case AMDGPU::AV_64RegClassID:
1096   case AMDGPU::SReg_64RegClassID:
1097   case AMDGPU::VReg_64RegClassID:
1098   case AMDGPU::AReg_64RegClassID:
1099   case AMDGPU::SReg_64_XEXECRegClassID:
1100     return 64;
1101   case AMDGPU::SGPR_96RegClassID:
1102   case AMDGPU::SReg_96RegClassID:
1103   case AMDGPU::VReg_96RegClassID:
1104     return 96;
1105   case AMDGPU::SGPR_128RegClassID:
1106   case AMDGPU::SReg_128RegClassID:
1107   case AMDGPU::VReg_128RegClassID:
1108   case AMDGPU::AReg_128RegClassID:
1109     return 128;
1110   case AMDGPU::SGPR_160RegClassID:
1111   case AMDGPU::SReg_160RegClassID:
1112   case AMDGPU::VReg_160RegClassID:
1113     return 160;
1114   case AMDGPU::SReg_256RegClassID:
1115   case AMDGPU::VReg_256RegClassID:
1116     return 256;
1117   case AMDGPU::SReg_512RegClassID:
1118   case AMDGPU::VReg_512RegClassID:
1119   case AMDGPU::AReg_512RegClassID:
1120     return 512;
1121   case AMDGPU::SReg_1024RegClassID:
1122   case AMDGPU::VReg_1024RegClassID:
1123   case AMDGPU::AReg_1024RegClassID:
1124     return 1024;
1125   default:
1126     llvm_unreachable("Unexpected register class");
1127   }
1128 }
1129 
1130 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1131   return getRegBitWidth(RC.getID());
1132 }
1133 
1134 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1135                            unsigned OpNo) {
1136   assert(OpNo < Desc.NumOperands);
1137   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1138   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1139 }
1140 
1141 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1142   if (Literal >= -16 && Literal <= 64)
1143     return true;
1144 
1145   uint64_t Val = static_cast<uint64_t>(Literal);
1146   return (Val == DoubleToBits(0.0)) ||
1147          (Val == DoubleToBits(1.0)) ||
1148          (Val == DoubleToBits(-1.0)) ||
1149          (Val == DoubleToBits(0.5)) ||
1150          (Val == DoubleToBits(-0.5)) ||
1151          (Val == DoubleToBits(2.0)) ||
1152          (Val == DoubleToBits(-2.0)) ||
1153          (Val == DoubleToBits(4.0)) ||
1154          (Val == DoubleToBits(-4.0)) ||
1155          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1156 }
1157 
1158 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1159   if (Literal >= -16 && Literal <= 64)
1160     return true;
1161 
1162   // The actual type of the operand does not seem to matter as long
1163   // as the bits match one of the inline immediate values.  For example:
1164   //
1165   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1166   // so it is a legal inline immediate.
1167   //
1168   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1169   // floating-point, so it is a legal inline immediate.
1170 
1171   uint32_t Val = static_cast<uint32_t>(Literal);
1172   return (Val == FloatToBits(0.0f)) ||
1173          (Val == FloatToBits(1.0f)) ||
1174          (Val == FloatToBits(-1.0f)) ||
1175          (Val == FloatToBits(0.5f)) ||
1176          (Val == FloatToBits(-0.5f)) ||
1177          (Val == FloatToBits(2.0f)) ||
1178          (Val == FloatToBits(-2.0f)) ||
1179          (Val == FloatToBits(4.0f)) ||
1180          (Val == FloatToBits(-4.0f)) ||
1181          (Val == 0x3e22f983 && HasInv2Pi);
1182 }
1183 
1184 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1185   if (!HasInv2Pi)
1186     return false;
1187 
1188   if (Literal >= -16 && Literal <= 64)
1189     return true;
1190 
1191   uint16_t Val = static_cast<uint16_t>(Literal);
1192   return Val == 0x3C00 || // 1.0
1193          Val == 0xBC00 || // -1.0
1194          Val == 0x3800 || // 0.5
1195          Val == 0xB800 || // -0.5
1196          Val == 0x4000 || // 2.0
1197          Val == 0xC000 || // -2.0
1198          Val == 0x4400 || // 4.0
1199          Val == 0xC400 || // -4.0
1200          Val == 0x3118;   // 1/2pi
1201 }
1202 
1203 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1204   assert(HasInv2Pi);
1205 
1206   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1207     int16_t Trunc = static_cast<int16_t>(Literal);
1208     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1209   }
1210   if (!(Literal & 0xffff))
1211     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1212 
1213   int16_t Lo16 = static_cast<int16_t>(Literal);
1214   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1215   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1216 }
1217 
1218 bool isArgPassedInSGPR(const Argument *A) {
1219   const Function *F = A->getParent();
1220 
1221   // Arguments to compute shaders are never a source of divergence.
1222   CallingConv::ID CC = F->getCallingConv();
1223   switch (CC) {
1224   case CallingConv::AMDGPU_KERNEL:
1225   case CallingConv::SPIR_KERNEL:
1226     return true;
1227   case CallingConv::AMDGPU_VS:
1228   case CallingConv::AMDGPU_LS:
1229   case CallingConv::AMDGPU_HS:
1230   case CallingConv::AMDGPU_ES:
1231   case CallingConv::AMDGPU_GS:
1232   case CallingConv::AMDGPU_PS:
1233   case CallingConv::AMDGPU_CS:
1234     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1235     // Everything else is in VGPRs.
1236     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1237            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1238   default:
1239     // TODO: Should calls support inreg for SGPR inputs?
1240     return false;
1241   }
1242 }
1243 
1244 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1245   return isGCN3Encoding(ST) || isGFX10(ST);
1246 }
1247 
1248 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1249   if (hasSMEMByteOffset(ST))
1250     return ByteOffset;
1251   return ByteOffset >> 2;
1252 }
1253 
1254 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1255   int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
1256   return (hasSMEMByteOffset(ST)) ?
1257     isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
1258 }
1259 
1260 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1261 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1262 // hardware bug needing a workaround).
1263 //
1264 // The required alignment ensures that individual address components remain
1265 // aligned if they are aligned to begin with. It also ensures that additional
1266 // offsets within the given alignment can be added to the resulting ImmOffset.
1267 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1268                       const GCNSubtarget *Subtarget, uint32_t Align) {
1269   const uint32_t MaxImm = alignDown(4095, Align);
1270   uint32_t Overflow = 0;
1271 
1272   if (Imm > MaxImm) {
1273     if (Imm <= MaxImm + 64) {
1274       // Use an SOffset inline constant for 4..64
1275       Overflow = Imm - MaxImm;
1276       Imm = MaxImm;
1277     } else {
1278       // Try to keep the same value in SOffset for adjacent loads, so that
1279       // the corresponding register contents can be re-used.
1280       //
1281       // Load values with all low-bits (except for alignment bits) set into
1282       // SOffset, so that a larger range of values can be covered using
1283       // s_movk_i32.
1284       //
1285       // Atomic operations fail to work correctly when individual address
1286       // components are unaligned, even if their sum is aligned.
1287       uint32_t High = (Imm + Align) & ~4095;
1288       uint32_t Low = (Imm + Align) & 4095;
1289       Imm = Low;
1290       Overflow = High - Align;
1291     }
1292   }
1293 
1294   // There is a hardware bug in SI and CI which prevents address clamping in
1295   // MUBUF instructions from working correctly with SOffsets. The immediate
1296   // offset is unaffected.
1297   if (Overflow > 0 &&
1298       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1299     return false;
1300 
1301   ImmOffset = Imm;
1302   SOffset = Overflow;
1303   return true;
1304 }
1305 
1306 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F,
1307                                                const GCNSubtarget &ST) {
1308   *this = getDefaultForCallingConv(F.getCallingConv());
1309 
1310   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1311   if (!IEEEAttr.empty())
1312     IEEE = IEEEAttr == "true";
1313 
1314   StringRef DX10ClampAttr
1315     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1316   if (!DX10ClampAttr.empty())
1317     DX10Clamp = DX10ClampAttr == "true";
1318 
1319   FP32Denormals = ST.hasFP32Denormals(F);
1320   FP64FP16Denormals = ST.hasFP64FP16Denormals(F);
1321 }
1322 
1323 namespace {
1324 
1325 struct SourceOfDivergence {
1326   unsigned Intr;
1327 };
1328 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1329 
1330 #define GET_SourcesOfDivergence_IMPL
1331 #include "AMDGPUGenSearchableTables.inc"
1332 
1333 } // end anonymous namespace
1334 
1335 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1336   return lookupSourceOfDivergence(IntrID);
1337 }
1338 
1339 } // namespace AMDGPU
1340 } // namespace llvm
1341