1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPUTargetTransformInfo.h" 11 #include "AMDGPU.h" 12 #include "SIDefines.h" 13 #include "AMDGPUAsmUtils.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 89 return (VersionMajor >= 10) ? 6 : 4; 90 } 91 92 /// \returns Vmcnt bit shift (higher bits). 93 unsigned getVmcntBitShiftHi() { return 14; } 94 95 /// \returns Vmcnt bit width (higher bits). 96 unsigned getVmcntBitWidthHi() { return 2; } 97 98 } // end namespace anonymous 99 100 namespace llvm { 101 102 namespace AMDGPU { 103 104 #define GET_MIMGBaseOpcodesTable_IMPL 105 #define GET_MIMGDimInfoTable_IMPL 106 #define GET_MIMGInfoTable_IMPL 107 #define GET_MIMGLZMappingTable_IMPL 108 #define GET_MIMGMIPMappingTable_IMPL 109 #include "AMDGPUGenSearchableTables.inc" 110 111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 112 unsigned VDataDwords, unsigned VAddrDwords) { 113 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 114 VDataDwords, VAddrDwords); 115 return Info ? Info->Opcode : -1; 116 } 117 118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 119 const MIMGInfo *Info = getMIMGInfo(Opc); 120 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 struct MUBUFInfo { 132 uint16_t Opcode; 133 uint16_t BaseOpcode; 134 uint8_t elements; 135 bool has_vaddr; 136 bool has_srsrc; 137 bool has_soffset; 138 }; 139 140 struct MTBUFInfo { 141 uint16_t Opcode; 142 uint16_t BaseOpcode; 143 uint8_t elements; 144 bool has_vaddr; 145 bool has_srsrc; 146 bool has_soffset; 147 }; 148 149 #define GET_MTBUFInfoTable_DECL 150 #define GET_MTBUFInfoTable_IMPL 151 #define GET_MUBUFInfoTable_DECL 152 #define GET_MUBUFInfoTable_IMPL 153 #include "AMDGPUGenSearchableTables.inc" 154 155 int getMTBUFBaseOpcode(unsigned Opc) { 156 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 157 return Info ? Info->BaseOpcode : -1; 158 } 159 160 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 161 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 162 return Info ? Info->Opcode : -1; 163 } 164 165 int getMTBUFElements(unsigned Opc) { 166 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 167 return Info ? Info->elements : 0; 168 } 169 170 bool getMTBUFHasVAddr(unsigned Opc) { 171 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 172 return Info ? Info->has_vaddr : false; 173 } 174 175 bool getMTBUFHasSrsrc(unsigned Opc) { 176 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 177 return Info ? Info->has_srsrc : false; 178 } 179 180 bool getMTBUFHasSoffset(unsigned Opc) { 181 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 182 return Info ? Info->has_soffset : false; 183 } 184 185 int getMUBUFBaseOpcode(unsigned Opc) { 186 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 187 return Info ? Info->BaseOpcode : -1; 188 } 189 190 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 191 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 192 return Info ? Info->Opcode : -1; 193 } 194 195 int getMUBUFElements(unsigned Opc) { 196 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 197 return Info ? Info->elements : 0; 198 } 199 200 bool getMUBUFHasVAddr(unsigned Opc) { 201 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 202 return Info ? Info->has_vaddr : false; 203 } 204 205 bool getMUBUFHasSrsrc(unsigned Opc) { 206 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 207 return Info ? Info->has_srsrc : false; 208 } 209 210 bool getMUBUFHasSoffset(unsigned Opc) { 211 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 212 return Info ? Info->has_soffset : false; 213 } 214 215 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 216 // header files, so we need to wrap it in a function that takes unsigned 217 // instead. 218 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 219 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 220 } 221 222 namespace IsaInfo { 223 224 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 225 auto TargetTriple = STI->getTargetTriple(); 226 auto Version = getIsaVersion(STI->getCPU()); 227 228 Stream << TargetTriple.getArchName() << '-' 229 << TargetTriple.getVendorName() << '-' 230 << TargetTriple.getOSName() << '-' 231 << TargetTriple.getEnvironmentName() << '-' 232 << "gfx" 233 << Version.Major 234 << Version.Minor 235 << Version.Stepping; 236 237 if (hasXNACK(*STI)) 238 Stream << "+xnack"; 239 if (hasSRAMECC(*STI)) 240 Stream << "+sram-ecc"; 241 242 Stream.flush(); 243 } 244 245 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 246 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 247 STI->getFeatureBits().test(FeatureCodeObjectV3); 248 } 249 250 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 251 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 252 return 16; 253 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 254 return 32; 255 256 return 64; 257 } 258 259 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 260 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 261 return 32768; 262 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 263 return 65536; 264 265 return 0; 266 } 267 268 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 269 return 4; 270 } 271 272 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 273 unsigned FlatWorkGroupSize) { 274 assert(FlatWorkGroupSize != 0); 275 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 276 return 8; 277 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 278 if (N == 1) 279 return 40; 280 N = 40 / N; 281 return std::min(N, 16u); 282 } 283 284 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 285 return getMaxWavesPerEU(STI) * getEUsPerCU(STI); 286 } 287 288 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 289 unsigned FlatWorkGroupSize) { 290 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 291 } 292 293 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 294 return 1; 295 } 296 297 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 298 // FIXME: Need to take scratch memory into account. 299 if (!isGFX10(*STI)) 300 return 10; 301 return 20; 302 } 303 304 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 305 unsigned FlatWorkGroupSize) { 306 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 307 getEUsPerCU(STI)) / getEUsPerCU(STI); 308 } 309 310 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 311 return 1; 312 } 313 314 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 315 // Some subtargets allow encoding 2048, but this isn't tested or supported. 316 return 1024; 317 } 318 319 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 320 unsigned FlatWorkGroupSize) { 321 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 322 getWavefrontSize(STI); 323 } 324 325 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 326 IsaVersion Version = getIsaVersion(STI->getCPU()); 327 if (Version.Major >= 10) 328 return getAddressableNumSGPRs(STI); 329 if (Version.Major >= 8) 330 return 16; 331 return 8; 332 } 333 334 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 335 return 8; 336 } 337 338 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 339 IsaVersion Version = getIsaVersion(STI->getCPU()); 340 if (Version.Major >= 8) 341 return 800; 342 return 512; 343 } 344 345 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 346 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 347 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 348 349 IsaVersion Version = getIsaVersion(STI->getCPU()); 350 if (Version.Major >= 10) 351 return 106; 352 if (Version.Major >= 8) 353 return 102; 354 return 104; 355 } 356 357 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 358 assert(WavesPerEU != 0); 359 360 IsaVersion Version = getIsaVersion(STI->getCPU()); 361 if (Version.Major >= 10) 362 return 0; 363 364 if (WavesPerEU >= getMaxWavesPerEU(STI)) 365 return 0; 366 367 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 368 if (STI->getFeatureBits().test(FeatureTrapHandler)) 369 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 370 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 371 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 372 } 373 374 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 375 bool Addressable) { 376 assert(WavesPerEU != 0); 377 378 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 379 IsaVersion Version = getIsaVersion(STI->getCPU()); 380 if (Version.Major >= 10) 381 return Addressable ? AddressableNumSGPRs : 108; 382 if (Version.Major >= 8 && !Addressable) 383 AddressableNumSGPRs = 112; 384 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 385 if (STI->getFeatureBits().test(FeatureTrapHandler)) 386 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 387 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 388 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 389 } 390 391 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 392 bool FlatScrUsed, bool XNACKUsed) { 393 unsigned ExtraSGPRs = 0; 394 if (VCCUsed) 395 ExtraSGPRs = 2; 396 397 IsaVersion Version = getIsaVersion(STI->getCPU()); 398 if (Version.Major >= 10) 399 return ExtraSGPRs; 400 401 if (Version.Major < 8) { 402 if (FlatScrUsed) 403 ExtraSGPRs = 4; 404 } else { 405 if (XNACKUsed) 406 ExtraSGPRs = 4; 407 408 if (FlatScrUsed) 409 ExtraSGPRs = 6; 410 } 411 412 return ExtraSGPRs; 413 } 414 415 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 416 bool FlatScrUsed) { 417 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 418 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 419 } 420 421 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 422 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 423 // SGPRBlocks is actual number of SGPR blocks minus 1. 424 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 425 } 426 427 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 428 Optional<bool> EnableWavefrontSize32) { 429 bool IsWave32 = EnableWavefrontSize32 ? 430 *EnableWavefrontSize32 : 431 STI->getFeatureBits().test(FeatureWavefrontSize32); 432 return IsWave32 ? 8 : 4; 433 } 434 435 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 436 Optional<bool> EnableWavefrontSize32) { 437 return getVGPRAllocGranule(STI, EnableWavefrontSize32); 438 } 439 440 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 441 if (!isGFX10(*STI)) 442 return 256; 443 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 444 } 445 446 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 447 return 256; 448 } 449 450 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 451 assert(WavesPerEU != 0); 452 453 if (WavesPerEU >= getMaxWavesPerEU(STI)) 454 return 0; 455 unsigned MinNumVGPRs = 456 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 457 getVGPRAllocGranule(STI)) + 1; 458 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 459 } 460 461 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 462 assert(WavesPerEU != 0); 463 464 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 465 getVGPRAllocGranule(STI)); 466 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 467 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 468 } 469 470 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 471 Optional<bool> EnableWavefrontSize32) { 472 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 473 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 474 // VGPRBlocks is actual number of VGPR blocks minus 1. 475 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 476 } 477 478 } // end namespace IsaInfo 479 480 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 481 const MCSubtargetInfo *STI) { 482 IsaVersion Version = getIsaVersion(STI->getCPU()); 483 484 memset(&Header, 0, sizeof(Header)); 485 486 Header.amd_kernel_code_version_major = 1; 487 Header.amd_kernel_code_version_minor = 2; 488 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 489 Header.amd_machine_version_major = Version.Major; 490 Header.amd_machine_version_minor = Version.Minor; 491 Header.amd_machine_version_stepping = Version.Stepping; 492 Header.kernel_code_entry_byte_offset = sizeof(Header); 493 Header.wavefront_size = 6; 494 495 // If the code object does not support indirect functions, then the value must 496 // be 0xffffffff. 497 Header.call_convention = -1; 498 499 // These alignment values are specified in powers of two, so alignment = 500 // 2^n. The minimum alignment is 2^4 = 16. 501 Header.kernarg_segment_alignment = 4; 502 Header.group_segment_alignment = 4; 503 Header.private_segment_alignment = 4; 504 505 if (Version.Major >= 10) { 506 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 507 Header.wavefront_size = 5; 508 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 509 } 510 Header.compute_pgm_resource_registers |= 511 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 512 S_00B848_MEM_ORDERED(1); 513 } 514 } 515 516 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 517 const MCSubtargetInfo *STI) { 518 IsaVersion Version = getIsaVersion(STI->getCPU()); 519 520 amdhsa::kernel_descriptor_t KD; 521 memset(&KD, 0, sizeof(KD)); 522 523 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 524 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 525 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 526 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 527 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 528 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 529 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 530 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 531 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 532 if (Version.Major >= 10) { 533 AMDHSA_BITS_SET(KD.kernel_code_properties, 534 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 535 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 536 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 537 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 538 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 539 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 540 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 541 } 542 return KD; 543 } 544 545 bool isGroupSegment(const GlobalValue *GV) { 546 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 547 } 548 549 bool isGlobalSegment(const GlobalValue *GV) { 550 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 551 } 552 553 bool isReadOnlySegment(const GlobalValue *GV) { 554 unsigned AS = GV->getAddressSpace(); 555 return AS == AMDGPUAS::CONSTANT_ADDRESS || 556 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 557 } 558 559 bool shouldEmitConstantsToTextSection(const Triple &TT) { 560 return TT.getOS() == Triple::AMDPAL; 561 } 562 563 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 564 Attribute A = F.getFnAttribute(Name); 565 int Result = Default; 566 567 if (A.isStringAttribute()) { 568 StringRef Str = A.getValueAsString(); 569 if (Str.getAsInteger(0, Result)) { 570 LLVMContext &Ctx = F.getContext(); 571 Ctx.emitError("can't parse integer attribute " + Name); 572 } 573 } 574 575 return Result; 576 } 577 578 std::pair<int, int> getIntegerPairAttribute(const Function &F, 579 StringRef Name, 580 std::pair<int, int> Default, 581 bool OnlyFirstRequired) { 582 Attribute A = F.getFnAttribute(Name); 583 if (!A.isStringAttribute()) 584 return Default; 585 586 LLVMContext &Ctx = F.getContext(); 587 std::pair<int, int> Ints = Default; 588 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 589 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 590 Ctx.emitError("can't parse first integer attribute " + Name); 591 return Default; 592 } 593 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 594 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 595 Ctx.emitError("can't parse second integer attribute " + Name); 596 return Default; 597 } 598 } 599 600 return Ints; 601 } 602 603 unsigned getVmcntBitMask(const IsaVersion &Version) { 604 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 605 if (Version.Major < 9) 606 return VmcntLo; 607 608 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 609 return VmcntLo | VmcntHi; 610 } 611 612 unsigned getExpcntBitMask(const IsaVersion &Version) { 613 return (1 << getExpcntBitWidth()) - 1; 614 } 615 616 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 617 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 618 } 619 620 unsigned getWaitcntBitMask(const IsaVersion &Version) { 621 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 622 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 623 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 624 getLgkmcntBitWidth(Version.Major)); 625 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 626 if (Version.Major < 9) 627 return Waitcnt; 628 629 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 630 return Waitcnt | VmcntHi; 631 } 632 633 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 634 unsigned VmcntLo = 635 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 636 if (Version.Major < 9) 637 return VmcntLo; 638 639 unsigned VmcntHi = 640 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 641 VmcntHi <<= getVmcntBitWidthLo(); 642 return VmcntLo | VmcntHi; 643 } 644 645 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 646 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 647 } 648 649 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 650 return unpackBits(Waitcnt, getLgkmcntBitShift(), 651 getLgkmcntBitWidth(Version.Major)); 652 } 653 654 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 655 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 656 Vmcnt = decodeVmcnt(Version, Waitcnt); 657 Expcnt = decodeExpcnt(Version, Waitcnt); 658 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 659 } 660 661 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 662 Waitcnt Decoded; 663 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 664 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 665 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 666 return Decoded; 667 } 668 669 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 670 unsigned Vmcnt) { 671 Waitcnt = 672 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 673 if (Version.Major < 9) 674 return Waitcnt; 675 676 Vmcnt >>= getVmcntBitWidthLo(); 677 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 678 } 679 680 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 681 unsigned Expcnt) { 682 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 683 } 684 685 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 686 unsigned Lgkmcnt) { 687 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 688 getLgkmcntBitWidth(Version.Major)); 689 } 690 691 unsigned encodeWaitcnt(const IsaVersion &Version, 692 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 693 unsigned Waitcnt = getWaitcntBitMask(Version); 694 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 695 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 696 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 697 return Waitcnt; 698 } 699 700 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 701 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 702 } 703 704 //===----------------------------------------------------------------------===// 705 // hwreg 706 //===----------------------------------------------------------------------===// 707 708 namespace Hwreg { 709 710 int64_t getHwregId(const StringRef Name) { 711 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 712 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 713 return Id; 714 } 715 return ID_UNKNOWN_; 716 } 717 718 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 719 if (isSI(STI) || isCI(STI) || isVI(STI)) 720 return ID_SYMBOLIC_FIRST_GFX9_; 721 else if (isGFX9(STI)) 722 return ID_SYMBOLIC_FIRST_GFX10_; 723 else 724 return ID_SYMBOLIC_LAST_; 725 } 726 727 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 728 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 729 IdSymbolic[Id]; 730 } 731 732 bool isValidHwreg(int64_t Id) { 733 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 734 } 735 736 bool isValidHwregOffset(int64_t Offset) { 737 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 738 } 739 740 bool isValidHwregWidth(int64_t Width) { 741 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 742 } 743 744 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 745 return (Id << ID_SHIFT_) | 746 (Offset << OFFSET_SHIFT_) | 747 ((Width - 1) << WIDTH_M1_SHIFT_); 748 } 749 750 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 751 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 752 } 753 754 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 755 Id = (Val & ID_MASK_) >> ID_SHIFT_; 756 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 757 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 758 } 759 760 } // namespace Hwreg 761 762 //===----------------------------------------------------------------------===// 763 // SendMsg 764 //===----------------------------------------------------------------------===// 765 766 namespace SendMsg { 767 768 int64_t getMsgId(const StringRef Name) { 769 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 770 if (IdSymbolic[i] && Name == IdSymbolic[i]) 771 return i; 772 } 773 return ID_UNKNOWN_; 774 } 775 776 static bool isValidMsgId(int64_t MsgId) { 777 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 778 } 779 780 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 781 if (Strict) { 782 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 783 return isGFX9(STI) || isGFX10(STI); 784 else 785 return isValidMsgId(MsgId); 786 } else { 787 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 788 } 789 } 790 791 StringRef getMsgName(int64_t MsgId) { 792 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 793 } 794 795 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 796 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 797 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 798 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 799 for (int i = F; i < L; ++i) { 800 if (Name == S[i]) { 801 return i; 802 } 803 } 804 return OP_UNKNOWN_; 805 } 806 807 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 808 809 if (!Strict) 810 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 811 812 switch(MsgId) 813 { 814 case ID_GS: 815 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 816 case ID_GS_DONE: 817 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 818 case ID_SYSMSG: 819 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 820 default: 821 return OpId == OP_NONE_; 822 } 823 } 824 825 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 826 assert(msgRequiresOp(MsgId)); 827 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 828 } 829 830 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 831 832 if (!Strict) 833 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 834 835 switch(MsgId) 836 { 837 case ID_GS: 838 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 839 case ID_GS_DONE: 840 return (OpId == OP_GS_NOP)? 841 (StreamId == STREAM_ID_NONE_) : 842 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 843 default: 844 return StreamId == STREAM_ID_NONE_; 845 } 846 } 847 848 bool msgRequiresOp(int64_t MsgId) { 849 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 850 } 851 852 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 853 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 854 } 855 856 void decodeMsg(unsigned Val, 857 uint16_t &MsgId, 858 uint16_t &OpId, 859 uint16_t &StreamId) { 860 MsgId = Val & ID_MASK_; 861 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 862 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 863 } 864 865 uint64_t encodeMsg(uint64_t MsgId, 866 uint64_t OpId, 867 uint64_t StreamId) { 868 return (MsgId << ID_SHIFT_) | 869 (OpId << OP_SHIFT_) | 870 (StreamId << STREAM_ID_SHIFT_); 871 } 872 873 } // namespace SendMsg 874 875 //===----------------------------------------------------------------------===// 876 // 877 //===----------------------------------------------------------------------===// 878 879 unsigned getInitialPSInputAddr(const Function &F) { 880 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 881 } 882 883 bool isShader(CallingConv::ID cc) { 884 switch(cc) { 885 case CallingConv::AMDGPU_VS: 886 case CallingConv::AMDGPU_LS: 887 case CallingConv::AMDGPU_HS: 888 case CallingConv::AMDGPU_ES: 889 case CallingConv::AMDGPU_GS: 890 case CallingConv::AMDGPU_PS: 891 case CallingConv::AMDGPU_CS: 892 return true; 893 default: 894 return false; 895 } 896 } 897 898 bool isCompute(CallingConv::ID cc) { 899 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 900 } 901 902 bool isEntryFunctionCC(CallingConv::ID CC) { 903 switch (CC) { 904 case CallingConv::AMDGPU_KERNEL: 905 case CallingConv::SPIR_KERNEL: 906 case CallingConv::AMDGPU_VS: 907 case CallingConv::AMDGPU_GS: 908 case CallingConv::AMDGPU_PS: 909 case CallingConv::AMDGPU_CS: 910 case CallingConv::AMDGPU_ES: 911 case CallingConv::AMDGPU_HS: 912 case CallingConv::AMDGPU_LS: 913 return true; 914 default: 915 return false; 916 } 917 } 918 919 bool hasXNACK(const MCSubtargetInfo &STI) { 920 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 921 } 922 923 bool hasSRAMECC(const MCSubtargetInfo &STI) { 924 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 925 } 926 927 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 928 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 929 } 930 931 bool hasPackedD16(const MCSubtargetInfo &STI) { 932 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 933 } 934 935 bool isSI(const MCSubtargetInfo &STI) { 936 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 937 } 938 939 bool isCI(const MCSubtargetInfo &STI) { 940 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 941 } 942 943 bool isVI(const MCSubtargetInfo &STI) { 944 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 945 } 946 947 bool isGFX9(const MCSubtargetInfo &STI) { 948 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 949 } 950 951 bool isGFX10(const MCSubtargetInfo &STI) { 952 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 953 } 954 955 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 956 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 957 } 958 959 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 960 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 961 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 962 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 963 Reg == AMDGPU::SCC; 964 } 965 966 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 967 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 968 if (*R == Reg1) return true; 969 } 970 return false; 971 } 972 973 #define MAP_REG2REG \ 974 using namespace AMDGPU; \ 975 switch(Reg) { \ 976 default: return Reg; \ 977 CASE_CI_VI(FLAT_SCR) \ 978 CASE_CI_VI(FLAT_SCR_LO) \ 979 CASE_CI_VI(FLAT_SCR_HI) \ 980 CASE_VI_GFX9_GFX10(TTMP0) \ 981 CASE_VI_GFX9_GFX10(TTMP1) \ 982 CASE_VI_GFX9_GFX10(TTMP2) \ 983 CASE_VI_GFX9_GFX10(TTMP3) \ 984 CASE_VI_GFX9_GFX10(TTMP4) \ 985 CASE_VI_GFX9_GFX10(TTMP5) \ 986 CASE_VI_GFX9_GFX10(TTMP6) \ 987 CASE_VI_GFX9_GFX10(TTMP7) \ 988 CASE_VI_GFX9_GFX10(TTMP8) \ 989 CASE_VI_GFX9_GFX10(TTMP9) \ 990 CASE_VI_GFX9_GFX10(TTMP10) \ 991 CASE_VI_GFX9_GFX10(TTMP11) \ 992 CASE_VI_GFX9_GFX10(TTMP12) \ 993 CASE_VI_GFX9_GFX10(TTMP13) \ 994 CASE_VI_GFX9_GFX10(TTMP14) \ 995 CASE_VI_GFX9_GFX10(TTMP15) \ 996 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 997 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 998 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 999 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 1000 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 1001 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 1002 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 1003 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 1004 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 1005 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 1006 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 1007 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 1008 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1009 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1010 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1011 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1012 } 1013 1014 #define CASE_CI_VI(node) \ 1015 assert(!isSI(STI)); \ 1016 case node: return isCI(STI) ? node##_ci : node##_vi; 1017 1018 #define CASE_VI_GFX9_GFX10(node) \ 1019 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 1020 1021 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1022 if (STI.getTargetTriple().getArch() == Triple::r600) 1023 return Reg; 1024 MAP_REG2REG 1025 } 1026 1027 #undef CASE_CI_VI 1028 #undef CASE_VI_GFX9_GFX10 1029 1030 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1031 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 1032 1033 unsigned mc2PseudoReg(unsigned Reg) { 1034 MAP_REG2REG 1035 } 1036 1037 #undef CASE_CI_VI 1038 #undef CASE_VI_GFX9_GFX10 1039 #undef MAP_REG2REG 1040 1041 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1042 assert(OpNo < Desc.NumOperands); 1043 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1044 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1045 OpType <= AMDGPU::OPERAND_SRC_LAST; 1046 } 1047 1048 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1049 assert(OpNo < Desc.NumOperands); 1050 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1051 switch (OpType) { 1052 case AMDGPU::OPERAND_REG_IMM_FP32: 1053 case AMDGPU::OPERAND_REG_IMM_FP64: 1054 case AMDGPU::OPERAND_REG_IMM_FP16: 1055 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1056 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1057 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1058 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1059 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1060 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1061 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1062 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1063 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1064 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1065 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1066 return true; 1067 default: 1068 return false; 1069 } 1070 } 1071 1072 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1073 assert(OpNo < Desc.NumOperands); 1074 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1075 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1076 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1077 } 1078 1079 // Avoid using MCRegisterClass::getSize, since that function will go away 1080 // (move from MC* level to Target* level). Return size in bits. 1081 unsigned getRegBitWidth(unsigned RCID) { 1082 switch (RCID) { 1083 case AMDGPU::SGPR_32RegClassID: 1084 case AMDGPU::VGPR_32RegClassID: 1085 case AMDGPU::VRegOrLds_32RegClassID: 1086 case AMDGPU::AGPR_32RegClassID: 1087 case AMDGPU::VS_32RegClassID: 1088 case AMDGPU::AV_32RegClassID: 1089 case AMDGPU::SReg_32RegClassID: 1090 case AMDGPU::SReg_32_XM0RegClassID: 1091 case AMDGPU::SRegOrLds_32RegClassID: 1092 return 32; 1093 case AMDGPU::SGPR_64RegClassID: 1094 case AMDGPU::VS_64RegClassID: 1095 case AMDGPU::AV_64RegClassID: 1096 case AMDGPU::SReg_64RegClassID: 1097 case AMDGPU::VReg_64RegClassID: 1098 case AMDGPU::AReg_64RegClassID: 1099 case AMDGPU::SReg_64_XEXECRegClassID: 1100 return 64; 1101 case AMDGPU::SGPR_96RegClassID: 1102 case AMDGPU::SReg_96RegClassID: 1103 case AMDGPU::VReg_96RegClassID: 1104 return 96; 1105 case AMDGPU::SGPR_128RegClassID: 1106 case AMDGPU::SReg_128RegClassID: 1107 case AMDGPU::VReg_128RegClassID: 1108 case AMDGPU::AReg_128RegClassID: 1109 return 128; 1110 case AMDGPU::SGPR_160RegClassID: 1111 case AMDGPU::SReg_160RegClassID: 1112 case AMDGPU::VReg_160RegClassID: 1113 return 160; 1114 case AMDGPU::SReg_256RegClassID: 1115 case AMDGPU::VReg_256RegClassID: 1116 return 256; 1117 case AMDGPU::SReg_512RegClassID: 1118 case AMDGPU::VReg_512RegClassID: 1119 case AMDGPU::AReg_512RegClassID: 1120 return 512; 1121 case AMDGPU::SReg_1024RegClassID: 1122 case AMDGPU::VReg_1024RegClassID: 1123 case AMDGPU::AReg_1024RegClassID: 1124 return 1024; 1125 default: 1126 llvm_unreachable("Unexpected register class"); 1127 } 1128 } 1129 1130 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1131 return getRegBitWidth(RC.getID()); 1132 } 1133 1134 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1135 unsigned OpNo) { 1136 assert(OpNo < Desc.NumOperands); 1137 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1138 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1139 } 1140 1141 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1142 if (Literal >= -16 && Literal <= 64) 1143 return true; 1144 1145 uint64_t Val = static_cast<uint64_t>(Literal); 1146 return (Val == DoubleToBits(0.0)) || 1147 (Val == DoubleToBits(1.0)) || 1148 (Val == DoubleToBits(-1.0)) || 1149 (Val == DoubleToBits(0.5)) || 1150 (Val == DoubleToBits(-0.5)) || 1151 (Val == DoubleToBits(2.0)) || 1152 (Val == DoubleToBits(-2.0)) || 1153 (Val == DoubleToBits(4.0)) || 1154 (Val == DoubleToBits(-4.0)) || 1155 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1156 } 1157 1158 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1159 if (Literal >= -16 && Literal <= 64) 1160 return true; 1161 1162 // The actual type of the operand does not seem to matter as long 1163 // as the bits match one of the inline immediate values. For example: 1164 // 1165 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1166 // so it is a legal inline immediate. 1167 // 1168 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1169 // floating-point, so it is a legal inline immediate. 1170 1171 uint32_t Val = static_cast<uint32_t>(Literal); 1172 return (Val == FloatToBits(0.0f)) || 1173 (Val == FloatToBits(1.0f)) || 1174 (Val == FloatToBits(-1.0f)) || 1175 (Val == FloatToBits(0.5f)) || 1176 (Val == FloatToBits(-0.5f)) || 1177 (Val == FloatToBits(2.0f)) || 1178 (Val == FloatToBits(-2.0f)) || 1179 (Val == FloatToBits(4.0f)) || 1180 (Val == FloatToBits(-4.0f)) || 1181 (Val == 0x3e22f983 && HasInv2Pi); 1182 } 1183 1184 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1185 if (!HasInv2Pi) 1186 return false; 1187 1188 if (Literal >= -16 && Literal <= 64) 1189 return true; 1190 1191 uint16_t Val = static_cast<uint16_t>(Literal); 1192 return Val == 0x3C00 || // 1.0 1193 Val == 0xBC00 || // -1.0 1194 Val == 0x3800 || // 0.5 1195 Val == 0xB800 || // -0.5 1196 Val == 0x4000 || // 2.0 1197 Val == 0xC000 || // -2.0 1198 Val == 0x4400 || // 4.0 1199 Val == 0xC400 || // -4.0 1200 Val == 0x3118; // 1/2pi 1201 } 1202 1203 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1204 assert(HasInv2Pi); 1205 1206 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1207 int16_t Trunc = static_cast<int16_t>(Literal); 1208 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1209 } 1210 if (!(Literal & 0xffff)) 1211 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1212 1213 int16_t Lo16 = static_cast<int16_t>(Literal); 1214 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1215 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1216 } 1217 1218 bool isArgPassedInSGPR(const Argument *A) { 1219 const Function *F = A->getParent(); 1220 1221 // Arguments to compute shaders are never a source of divergence. 1222 CallingConv::ID CC = F->getCallingConv(); 1223 switch (CC) { 1224 case CallingConv::AMDGPU_KERNEL: 1225 case CallingConv::SPIR_KERNEL: 1226 return true; 1227 case CallingConv::AMDGPU_VS: 1228 case CallingConv::AMDGPU_LS: 1229 case CallingConv::AMDGPU_HS: 1230 case CallingConv::AMDGPU_ES: 1231 case CallingConv::AMDGPU_GS: 1232 case CallingConv::AMDGPU_PS: 1233 case CallingConv::AMDGPU_CS: 1234 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1235 // Everything else is in VGPRs. 1236 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1237 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1238 default: 1239 // TODO: Should calls support inreg for SGPR inputs? 1240 return false; 1241 } 1242 } 1243 1244 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1245 return isGCN3Encoding(ST) || isGFX10(ST); 1246 } 1247 1248 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1249 if (hasSMEMByteOffset(ST)) 1250 return ByteOffset; 1251 return ByteOffset >> 2; 1252 } 1253 1254 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 1255 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 1256 return (hasSMEMByteOffset(ST)) ? 1257 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 1258 } 1259 1260 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1261 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1262 // hardware bug needing a workaround). 1263 // 1264 // The required alignment ensures that individual address components remain 1265 // aligned if they are aligned to begin with. It also ensures that additional 1266 // offsets within the given alignment can be added to the resulting ImmOffset. 1267 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1268 const GCNSubtarget *Subtarget, uint32_t Align) { 1269 const uint32_t MaxImm = alignDown(4095, Align); 1270 uint32_t Overflow = 0; 1271 1272 if (Imm > MaxImm) { 1273 if (Imm <= MaxImm + 64) { 1274 // Use an SOffset inline constant for 4..64 1275 Overflow = Imm - MaxImm; 1276 Imm = MaxImm; 1277 } else { 1278 // Try to keep the same value in SOffset for adjacent loads, so that 1279 // the corresponding register contents can be re-used. 1280 // 1281 // Load values with all low-bits (except for alignment bits) set into 1282 // SOffset, so that a larger range of values can be covered using 1283 // s_movk_i32. 1284 // 1285 // Atomic operations fail to work correctly when individual address 1286 // components are unaligned, even if their sum is aligned. 1287 uint32_t High = (Imm + Align) & ~4095; 1288 uint32_t Low = (Imm + Align) & 4095; 1289 Imm = Low; 1290 Overflow = High - Align; 1291 } 1292 } 1293 1294 // There is a hardware bug in SI and CI which prevents address clamping in 1295 // MUBUF instructions from working correctly with SOffsets. The immediate 1296 // offset is unaffected. 1297 if (Overflow > 0 && 1298 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1299 return false; 1300 1301 ImmOffset = Imm; 1302 SOffset = Overflow; 1303 return true; 1304 } 1305 1306 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F, 1307 const GCNSubtarget &ST) { 1308 *this = getDefaultForCallingConv(F.getCallingConv()); 1309 1310 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1311 if (!IEEEAttr.empty()) 1312 IEEE = IEEEAttr == "true"; 1313 1314 StringRef DX10ClampAttr 1315 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1316 if (!DX10ClampAttr.empty()) 1317 DX10Clamp = DX10ClampAttr == "true"; 1318 1319 FP32Denormals = ST.hasFP32Denormals(F); 1320 FP64FP16Denormals = ST.hasFP64FP16Denormals(F); 1321 } 1322 1323 namespace { 1324 1325 struct SourceOfDivergence { 1326 unsigned Intr; 1327 }; 1328 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1329 1330 #define GET_SourcesOfDivergence_IMPL 1331 #include "AMDGPUGenSearchableTables.inc" 1332 1333 } // end anonymous namespace 1334 1335 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1336 return lookupSourceOfDivergence(IntrID); 1337 } 1338 1339 } // namespace AMDGPU 1340 } // namespace llvm 1341