1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDGPUTargetTransformInfo.h"
13 #include "SIDefines.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/IntrinsicsR600.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSectionELF.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include "llvm/MC/SubtargetFeature.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstdint>
41 #include <cstring>
42 #include <utility>
43 
44 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
45 
46 #define GET_INSTRINFO_NAMED_OPS
47 #define GET_INSTRMAP_INFO
48 #include "AMDGPUGenInstrInfo.inc"
49 #undef GET_INSTRMAP_INFO
50 #undef GET_INSTRINFO_NAMED_OPS
51 
52 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
53   "amdhsa-code-object-version", llvm::cl::Hidden,
54   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3));
55 
56 namespace {
57 
58 /// \returns Bit mask for given bit \p Shift and bit \p Width.
59 unsigned getBitMask(unsigned Shift, unsigned Width) {
60   return ((1 << Width) - 1) << Shift;
61 }
62 
63 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
64 ///
65 /// \returns Packed \p Dst.
66 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
67   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
68   Dst |= (Src << Shift) & getBitMask(Shift, Width);
69   return Dst;
70 }
71 
72 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
73 ///
74 /// \returns Unpacked bits.
75 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
76   return (Src & getBitMask(Shift, Width)) >> Shift;
77 }
78 
79 /// \returns Vmcnt bit shift (lower bits).
80 unsigned getVmcntBitShiftLo() { return 0; }
81 
82 /// \returns Vmcnt bit width (lower bits).
83 unsigned getVmcntBitWidthLo() { return 4; }
84 
85 /// \returns Expcnt bit shift.
86 unsigned getExpcntBitShift() { return 4; }
87 
88 /// \returns Expcnt bit width.
89 unsigned getExpcntBitWidth() { return 3; }
90 
91 /// \returns Lgkmcnt bit shift.
92 unsigned getLgkmcntBitShift() { return 8; }
93 
94 /// \returns Lgkmcnt bit width.
95 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
96   return (VersionMajor >= 10) ? 6 : 4;
97 }
98 
99 /// \returns Vmcnt bit shift (higher bits).
100 unsigned getVmcntBitShiftHi() { return 14; }
101 
102 /// \returns Vmcnt bit width (higher bits).
103 unsigned getVmcntBitWidthHi() { return 2; }
104 
105 } // end namespace anonymous
106 
107 namespace llvm {
108 
109 namespace AMDGPU {
110 
111 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
112   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
113     return None;
114 
115   switch (AmdhsaCodeObjectVersion) {
116   case 2:
117     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
118   case 3:
119     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
120   default:
121     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
122   }
123 }
124 
125 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
126   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
127     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
128   return false;
129 }
130 
131 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
132   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
133     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
134   return false;
135 }
136 
137 #define GET_MIMGBaseOpcodesTable_IMPL
138 #define GET_MIMGDimInfoTable_IMPL
139 #define GET_MIMGInfoTable_IMPL
140 #define GET_MIMGLZMappingTable_IMPL
141 #define GET_MIMGMIPMappingTable_IMPL
142 #define GET_MIMGG16MappingTable_IMPL
143 #include "AMDGPUGenSearchableTables.inc"
144 
145 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
146                   unsigned VDataDwords, unsigned VAddrDwords) {
147   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
148                                              VDataDwords, VAddrDwords);
149   return Info ? Info->Opcode : -1;
150 }
151 
152 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
153   const MIMGInfo *Info = getMIMGInfo(Opc);
154   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
155 }
156 
157 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
158   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
159   const MIMGInfo *NewInfo =
160       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
161                           NewChannels, OrigInfo->VAddrDwords);
162   return NewInfo ? NewInfo->Opcode : -1;
163 }
164 
165 struct MUBUFInfo {
166   uint16_t Opcode;
167   uint16_t BaseOpcode;
168   uint8_t elements;
169   bool has_vaddr;
170   bool has_srsrc;
171   bool has_soffset;
172 };
173 
174 struct MTBUFInfo {
175   uint16_t Opcode;
176   uint16_t BaseOpcode;
177   uint8_t elements;
178   bool has_vaddr;
179   bool has_srsrc;
180   bool has_soffset;
181 };
182 
183 struct SMInfo {
184   uint16_t Opcode;
185   bool IsBuffer;
186 };
187 
188 #define GET_MTBUFInfoTable_DECL
189 #define GET_MTBUFInfoTable_IMPL
190 #define GET_MUBUFInfoTable_DECL
191 #define GET_MUBUFInfoTable_IMPL
192 #define GET_SMInfoTable_DECL
193 #define GET_SMInfoTable_IMPL
194 #include "AMDGPUGenSearchableTables.inc"
195 
196 int getMTBUFBaseOpcode(unsigned Opc) {
197   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
198   return Info ? Info->BaseOpcode : -1;
199 }
200 
201 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
202   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
203   return Info ? Info->Opcode : -1;
204 }
205 
206 int getMTBUFElements(unsigned Opc) {
207   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
208   return Info ? Info->elements : 0;
209 }
210 
211 bool getMTBUFHasVAddr(unsigned Opc) {
212   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
213   return Info ? Info->has_vaddr : false;
214 }
215 
216 bool getMTBUFHasSrsrc(unsigned Opc) {
217   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
218   return Info ? Info->has_srsrc : false;
219 }
220 
221 bool getMTBUFHasSoffset(unsigned Opc) {
222   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
223   return Info ? Info->has_soffset : false;
224 }
225 
226 int getMUBUFBaseOpcode(unsigned Opc) {
227   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
228   return Info ? Info->BaseOpcode : -1;
229 }
230 
231 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
232   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
233   return Info ? Info->Opcode : -1;
234 }
235 
236 int getMUBUFElements(unsigned Opc) {
237   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
238   return Info ? Info->elements : 0;
239 }
240 
241 bool getMUBUFHasVAddr(unsigned Opc) {
242   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
243   return Info ? Info->has_vaddr : false;
244 }
245 
246 bool getMUBUFHasSrsrc(unsigned Opc) {
247   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
248   return Info ? Info->has_srsrc : false;
249 }
250 
251 bool getMUBUFHasSoffset(unsigned Opc) {
252   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
253   return Info ? Info->has_soffset : false;
254 }
255 
256 bool getSMEMIsBuffer(unsigned Opc) {
257   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
258   return Info ? Info->IsBuffer : false;
259 }
260 
261 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
262 // header files, so we need to wrap it in a function that takes unsigned
263 // instead.
264 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
265   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
266 }
267 
268 namespace IsaInfo {
269 
270 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
271   auto TargetTriple = STI->getTargetTriple();
272   auto Version = getIsaVersion(STI->getCPU());
273 
274   Stream << TargetTriple.getArchName() << '-'
275          << TargetTriple.getVendorName() << '-'
276          << TargetTriple.getOSName() << '-'
277          << TargetTriple.getEnvironmentName() << '-'
278          << "gfx"
279          << Version.Major
280          << Version.Minor
281          << Version.Stepping;
282 
283   if (hasXNACK(*STI))
284     Stream << "+xnack";
285   if (hasSRAMECC(*STI))
286     Stream << "+sram-ecc";
287 
288   Stream.flush();
289 }
290 
291 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
292   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
293     return 16;
294   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
295     return 32;
296 
297   return 64;
298 }
299 
300 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
301   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
302     return 32768;
303   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
304     return 65536;
305 
306   return 0;
307 }
308 
309 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
310   // "Per CU" really means "per whatever functional block the waves of a
311   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
312   // two SIMDs.
313   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
314     return 2;
315   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
316   // two CUs, so a total of four SIMDs.
317   return 4;
318 }
319 
320 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
321                                unsigned FlatWorkGroupSize) {
322   assert(FlatWorkGroupSize != 0);
323   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
324     return 8;
325   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
326   if (N == 1)
327     return 40;
328   N = 40 / N;
329   return std::min(N, 16u);
330 }
331 
332 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
333   return 1;
334 }
335 
336 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
337   // FIXME: Need to take scratch memory into account.
338   if (!isGFX10Plus(*STI))
339     return 10;
340   return hasGFX10_3Insts(*STI) ? 16 : 20;
341 }
342 
343 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
344                                    unsigned FlatWorkGroupSize) {
345   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
346                     getEUsPerCU(STI));
347 }
348 
349 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
350   return 1;
351 }
352 
353 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
354   // Some subtargets allow encoding 2048, but this isn't tested or supported.
355   return 1024;
356 }
357 
358 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
359                               unsigned FlatWorkGroupSize) {
360   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
361 }
362 
363 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
364   IsaVersion Version = getIsaVersion(STI->getCPU());
365   if (Version.Major >= 10)
366     return getAddressableNumSGPRs(STI);
367   if (Version.Major >= 8)
368     return 16;
369   return 8;
370 }
371 
372 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
373   return 8;
374 }
375 
376 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
377   IsaVersion Version = getIsaVersion(STI->getCPU());
378   if (Version.Major >= 8)
379     return 800;
380   return 512;
381 }
382 
383 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
384   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
385     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
386 
387   IsaVersion Version = getIsaVersion(STI->getCPU());
388   if (Version.Major >= 10)
389     return 106;
390   if (Version.Major >= 8)
391     return 102;
392   return 104;
393 }
394 
395 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
396   assert(WavesPerEU != 0);
397 
398   IsaVersion Version = getIsaVersion(STI->getCPU());
399   if (Version.Major >= 10)
400     return 0;
401 
402   if (WavesPerEU >= getMaxWavesPerEU(STI))
403     return 0;
404 
405   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
406   if (STI->getFeatureBits().test(FeatureTrapHandler))
407     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
408   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
409   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
410 }
411 
412 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
413                         bool Addressable) {
414   assert(WavesPerEU != 0);
415 
416   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
417   IsaVersion Version = getIsaVersion(STI->getCPU());
418   if (Version.Major >= 10)
419     return Addressable ? AddressableNumSGPRs : 108;
420   if (Version.Major >= 8 && !Addressable)
421     AddressableNumSGPRs = 112;
422   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
423   if (STI->getFeatureBits().test(FeatureTrapHandler))
424     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
425   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
426   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
427 }
428 
429 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
430                           bool FlatScrUsed, bool XNACKUsed) {
431   unsigned ExtraSGPRs = 0;
432   if (VCCUsed)
433     ExtraSGPRs = 2;
434 
435   IsaVersion Version = getIsaVersion(STI->getCPU());
436   if (Version.Major >= 10)
437     return ExtraSGPRs;
438 
439   if (Version.Major < 8) {
440     if (FlatScrUsed)
441       ExtraSGPRs = 4;
442   } else {
443     if (XNACKUsed)
444       ExtraSGPRs = 4;
445 
446     if (FlatScrUsed)
447       ExtraSGPRs = 6;
448   }
449 
450   return ExtraSGPRs;
451 }
452 
453 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
454                           bool FlatScrUsed) {
455   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
456                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
457 }
458 
459 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
460   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
461   // SGPRBlocks is actual number of SGPR blocks minus 1.
462   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
463 }
464 
465 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
466                              Optional<bool> EnableWavefrontSize32) {
467   bool IsWave32 = EnableWavefrontSize32 ?
468       *EnableWavefrontSize32 :
469       STI->getFeatureBits().test(FeatureWavefrontSize32);
470 
471   if (hasGFX10_3Insts(*STI))
472     return IsWave32 ? 16 : 8;
473 
474   return IsWave32 ? 8 : 4;
475 }
476 
477 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
478                                 Optional<bool> EnableWavefrontSize32) {
479 
480   bool IsWave32 = EnableWavefrontSize32 ?
481       *EnableWavefrontSize32 :
482       STI->getFeatureBits().test(FeatureWavefrontSize32);
483 
484   return IsWave32 ? 8 : 4;
485 }
486 
487 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
488   if (!isGFX10Plus(*STI))
489     return 256;
490   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
491 }
492 
493 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
494   return 256;
495 }
496 
497 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
498   assert(WavesPerEU != 0);
499 
500   if (WavesPerEU >= getMaxWavesPerEU(STI))
501     return 0;
502   unsigned MinNumVGPRs =
503       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
504                 getVGPRAllocGranule(STI)) + 1;
505   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
506 }
507 
508 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
509   assert(WavesPerEU != 0);
510 
511   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
512                                    getVGPRAllocGranule(STI));
513   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
514   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
515 }
516 
517 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
518                           Optional<bool> EnableWavefrontSize32) {
519   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
520                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
521   // VGPRBlocks is actual number of VGPR blocks minus 1.
522   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
523 }
524 
525 } // end namespace IsaInfo
526 
527 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
528                                const MCSubtargetInfo *STI) {
529   IsaVersion Version = getIsaVersion(STI->getCPU());
530 
531   memset(&Header, 0, sizeof(Header));
532 
533   Header.amd_kernel_code_version_major = 1;
534   Header.amd_kernel_code_version_minor = 2;
535   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
536   Header.amd_machine_version_major = Version.Major;
537   Header.amd_machine_version_minor = Version.Minor;
538   Header.amd_machine_version_stepping = Version.Stepping;
539   Header.kernel_code_entry_byte_offset = sizeof(Header);
540   Header.wavefront_size = 6;
541 
542   // If the code object does not support indirect functions, then the value must
543   // be 0xffffffff.
544   Header.call_convention = -1;
545 
546   // These alignment values are specified in powers of two, so alignment =
547   // 2^n.  The minimum alignment is 2^4 = 16.
548   Header.kernarg_segment_alignment = 4;
549   Header.group_segment_alignment = 4;
550   Header.private_segment_alignment = 4;
551 
552   if (Version.Major >= 10) {
553     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
554       Header.wavefront_size = 5;
555       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
556     }
557     Header.compute_pgm_resource_registers |=
558       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
559       S_00B848_MEM_ORDERED(1);
560   }
561 }
562 
563 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
564     const MCSubtargetInfo *STI) {
565   IsaVersion Version = getIsaVersion(STI->getCPU());
566 
567   amdhsa::kernel_descriptor_t KD;
568   memset(&KD, 0, sizeof(KD));
569 
570   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
571                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
572                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
573   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
574                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
575   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
576                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
577   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
578                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
579   if (Version.Major >= 10) {
580     AMDHSA_BITS_SET(KD.kernel_code_properties,
581                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
582                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
583     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
584                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
585                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
586     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
587                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
588   }
589   return KD;
590 }
591 
592 bool isGroupSegment(const GlobalValue *GV) {
593   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
594 }
595 
596 bool isGlobalSegment(const GlobalValue *GV) {
597   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
598 }
599 
600 bool isReadOnlySegment(const GlobalValue *GV) {
601   unsigned AS = GV->getAddressSpace();
602   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
603          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
604 }
605 
606 bool shouldEmitConstantsToTextSection(const Triple &TT) {
607   return TT.getArch() == Triple::r600;
608 }
609 
610 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
611   Attribute A = F.getFnAttribute(Name);
612   int Result = Default;
613 
614   if (A.isStringAttribute()) {
615     StringRef Str = A.getValueAsString();
616     if (Str.getAsInteger(0, Result)) {
617       LLVMContext &Ctx = F.getContext();
618       Ctx.emitError("can't parse integer attribute " + Name);
619     }
620   }
621 
622   return Result;
623 }
624 
625 std::pair<int, int> getIntegerPairAttribute(const Function &F,
626                                             StringRef Name,
627                                             std::pair<int, int> Default,
628                                             bool OnlyFirstRequired) {
629   Attribute A = F.getFnAttribute(Name);
630   if (!A.isStringAttribute())
631     return Default;
632 
633   LLVMContext &Ctx = F.getContext();
634   std::pair<int, int> Ints = Default;
635   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
636   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
637     Ctx.emitError("can't parse first integer attribute " + Name);
638     return Default;
639   }
640   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
641     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
642       Ctx.emitError("can't parse second integer attribute " + Name);
643       return Default;
644     }
645   }
646 
647   return Ints;
648 }
649 
650 unsigned getVmcntBitMask(const IsaVersion &Version) {
651   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
652   if (Version.Major < 9)
653     return VmcntLo;
654 
655   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
656   return VmcntLo | VmcntHi;
657 }
658 
659 unsigned getExpcntBitMask(const IsaVersion &Version) {
660   return (1 << getExpcntBitWidth()) - 1;
661 }
662 
663 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
664   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
665 }
666 
667 unsigned getWaitcntBitMask(const IsaVersion &Version) {
668   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
669   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
670   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
671                                 getLgkmcntBitWidth(Version.Major));
672   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
673   if (Version.Major < 9)
674     return Waitcnt;
675 
676   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
677   return Waitcnt | VmcntHi;
678 }
679 
680 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
681   unsigned VmcntLo =
682       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
683   if (Version.Major < 9)
684     return VmcntLo;
685 
686   unsigned VmcntHi =
687       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
688   VmcntHi <<= getVmcntBitWidthLo();
689   return VmcntLo | VmcntHi;
690 }
691 
692 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
693   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
694 }
695 
696 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
697   return unpackBits(Waitcnt, getLgkmcntBitShift(),
698                     getLgkmcntBitWidth(Version.Major));
699 }
700 
701 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
702                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
703   Vmcnt = decodeVmcnt(Version, Waitcnt);
704   Expcnt = decodeExpcnt(Version, Waitcnt);
705   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
706 }
707 
708 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
709   Waitcnt Decoded;
710   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
711   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
712   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
713   return Decoded;
714 }
715 
716 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
717                      unsigned Vmcnt) {
718   Waitcnt =
719       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
720   if (Version.Major < 9)
721     return Waitcnt;
722 
723   Vmcnt >>= getVmcntBitWidthLo();
724   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
725 }
726 
727 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
728                       unsigned Expcnt) {
729   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
730 }
731 
732 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
733                        unsigned Lgkmcnt) {
734   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
735                                     getLgkmcntBitWidth(Version.Major));
736 }
737 
738 unsigned encodeWaitcnt(const IsaVersion &Version,
739                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
740   unsigned Waitcnt = getWaitcntBitMask(Version);
741   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
742   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
743   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
744   return Waitcnt;
745 }
746 
747 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
748   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
749 }
750 
751 //===----------------------------------------------------------------------===//
752 // hwreg
753 //===----------------------------------------------------------------------===//
754 
755 namespace Hwreg {
756 
757 int64_t getHwregId(const StringRef Name) {
758   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
759     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
760       return Id;
761   }
762   return ID_UNKNOWN_;
763 }
764 
765 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
766   if (isSI(STI) || isCI(STI) || isVI(STI))
767     return ID_SYMBOLIC_FIRST_GFX9_;
768   else if (isGFX9(STI))
769     return ID_SYMBOLIC_FIRST_GFX10_;
770   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
771     return ID_SYMBOLIC_FIRST_GFX1030_;
772   else
773     return ID_SYMBOLIC_LAST_;
774 }
775 
776 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
777   return
778     ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
779     IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
780 }
781 
782 bool isValidHwreg(int64_t Id) {
783   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
784 }
785 
786 bool isValidHwregOffset(int64_t Offset) {
787   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
788 }
789 
790 bool isValidHwregWidth(int64_t Width) {
791   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
792 }
793 
794 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
795   return (Id << ID_SHIFT_) |
796          (Offset << OFFSET_SHIFT_) |
797          ((Width - 1) << WIDTH_M1_SHIFT_);
798 }
799 
800 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
801   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
802 }
803 
804 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
805   Id = (Val & ID_MASK_) >> ID_SHIFT_;
806   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
807   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
808 }
809 
810 } // namespace Hwreg
811 
812 //===----------------------------------------------------------------------===//
813 // MTBUF Format
814 //===----------------------------------------------------------------------===//
815 
816 namespace MTBUFFormat {
817 
818 int64_t getDfmt(const StringRef Name) {
819   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
820     if (Name == DfmtSymbolic[Id])
821       return Id;
822   }
823   return DFMT_UNDEF;
824 }
825 
826 StringRef getDfmtName(unsigned Id) {
827   assert(Id <= DFMT_MAX);
828   return DfmtSymbolic[Id];
829 }
830 
831 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
832   if (isSI(STI) || isCI(STI))
833     return NfmtSymbolicSICI;
834   if (isVI(STI) || isGFX9(STI))
835     return NfmtSymbolicVI;
836   return NfmtSymbolicGFX10;
837 }
838 
839 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
840   auto lookupTable = getNfmtLookupTable(STI);
841   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
842     if (Name == lookupTable[Id])
843       return Id;
844   }
845   return NFMT_UNDEF;
846 }
847 
848 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
849   assert(Id <= NFMT_MAX);
850   return getNfmtLookupTable(STI)[Id];
851 }
852 
853 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
854   unsigned Dfmt;
855   unsigned Nfmt;
856   decodeDfmtNfmt(Id, Dfmt, Nfmt);
857   return isValidNfmt(Nfmt, STI);
858 }
859 
860 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
861   return !getNfmtName(Id, STI).empty();
862 }
863 
864 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
865   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
866 }
867 
868 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
869   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
870   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
871 }
872 
873 int64_t getUnifiedFormat(const StringRef Name) {
874   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
875     if (Name == UfmtSymbolic[Id])
876       return Id;
877   }
878   return UFMT_UNDEF;
879 }
880 
881 StringRef getUnifiedFormatName(unsigned Id) {
882   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
883 }
884 
885 bool isValidUnifiedFormat(unsigned Id) {
886   return Id <= UFMT_LAST;
887 }
888 
889 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
890   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
891   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
892     if (Fmt == DfmtNfmt2UFmt[Id])
893       return Id;
894   }
895   return UFMT_UNDEF;
896 }
897 
898 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
899   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
900 }
901 
902 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
903   if (isGFX10Plus(STI))
904     return UFMT_DEFAULT;
905   return DFMT_NFMT_DEFAULT;
906 }
907 
908 } // namespace MTBUFFormat
909 
910 //===----------------------------------------------------------------------===//
911 // SendMsg
912 //===----------------------------------------------------------------------===//
913 
914 namespace SendMsg {
915 
916 int64_t getMsgId(const StringRef Name) {
917   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
918     if (IdSymbolic[i] && Name == IdSymbolic[i])
919       return i;
920   }
921   return ID_UNKNOWN_;
922 }
923 
924 static bool isValidMsgId(int64_t MsgId) {
925   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
926 }
927 
928 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
929   if (Strict) {
930     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
931       return isGFX9Plus(STI);
932     else
933       return isValidMsgId(MsgId);
934   } else {
935     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
936   }
937 }
938 
939 StringRef getMsgName(int64_t MsgId) {
940   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
941 }
942 
943 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
944   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
945   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
946   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
947   for (int i = F; i < L; ++i) {
948     if (Name == S[i]) {
949       return i;
950     }
951   }
952   return OP_UNKNOWN_;
953 }
954 
955 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
956 
957   if (!Strict)
958     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
959 
960   switch(MsgId)
961   {
962   case ID_GS:
963     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
964   case ID_GS_DONE:
965     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
966   case ID_SYSMSG:
967     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
968   default:
969     return OpId == OP_NONE_;
970   }
971 }
972 
973 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
974   assert(msgRequiresOp(MsgId));
975   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
976 }
977 
978 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
979 
980   if (!Strict)
981     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
982 
983   switch(MsgId)
984   {
985   case ID_GS:
986     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
987   case ID_GS_DONE:
988     return (OpId == OP_GS_NOP)?
989            (StreamId == STREAM_ID_NONE_) :
990            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
991   default:
992     return StreamId == STREAM_ID_NONE_;
993   }
994 }
995 
996 bool msgRequiresOp(int64_t MsgId) {
997   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
998 }
999 
1000 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1001   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1002 }
1003 
1004 void decodeMsg(unsigned Val,
1005                uint16_t &MsgId,
1006                uint16_t &OpId,
1007                uint16_t &StreamId) {
1008   MsgId = Val & ID_MASK_;
1009   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1010   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1011 }
1012 
1013 uint64_t encodeMsg(uint64_t MsgId,
1014                    uint64_t OpId,
1015                    uint64_t StreamId) {
1016   return (MsgId << ID_SHIFT_) |
1017          (OpId << OP_SHIFT_) |
1018          (StreamId << STREAM_ID_SHIFT_);
1019 }
1020 
1021 } // namespace SendMsg
1022 
1023 //===----------------------------------------------------------------------===//
1024 //
1025 //===----------------------------------------------------------------------===//
1026 
1027 unsigned getInitialPSInputAddr(const Function &F) {
1028   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1029 }
1030 
1031 bool isShader(CallingConv::ID cc) {
1032   switch(cc) {
1033     case CallingConv::AMDGPU_VS:
1034     case CallingConv::AMDGPU_LS:
1035     case CallingConv::AMDGPU_HS:
1036     case CallingConv::AMDGPU_ES:
1037     case CallingConv::AMDGPU_GS:
1038     case CallingConv::AMDGPU_PS:
1039     case CallingConv::AMDGPU_CS:
1040       return true;
1041     default:
1042       return false;
1043   }
1044 }
1045 
1046 bool isGraphics(CallingConv::ID cc) {
1047   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1048 }
1049 
1050 bool isCompute(CallingConv::ID cc) {
1051   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1052 }
1053 
1054 bool isEntryFunctionCC(CallingConv::ID CC) {
1055   switch (CC) {
1056   case CallingConv::AMDGPU_KERNEL:
1057   case CallingConv::SPIR_KERNEL:
1058   case CallingConv::AMDGPU_VS:
1059   case CallingConv::AMDGPU_GS:
1060   case CallingConv::AMDGPU_PS:
1061   case CallingConv::AMDGPU_CS:
1062   case CallingConv::AMDGPU_ES:
1063   case CallingConv::AMDGPU_HS:
1064   case CallingConv::AMDGPU_LS:
1065     return true;
1066   default:
1067     return false;
1068   }
1069 }
1070 
1071 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1072   switch (CC) {
1073   case CallingConv::AMDGPU_Gfx:
1074     return true;
1075   default:
1076     return isEntryFunctionCC(CC);
1077   }
1078 }
1079 
1080 bool hasXNACK(const MCSubtargetInfo &STI) {
1081   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1082 }
1083 
1084 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1085   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1086 }
1087 
1088 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1089   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1090 }
1091 
1092 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1093   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1094 }
1095 
1096 bool hasG16(const MCSubtargetInfo &STI) {
1097   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1098 }
1099 
1100 bool hasPackedD16(const MCSubtargetInfo &STI) {
1101   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1102 }
1103 
1104 bool isSI(const MCSubtargetInfo &STI) {
1105   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1106 }
1107 
1108 bool isCI(const MCSubtargetInfo &STI) {
1109   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1110 }
1111 
1112 bool isVI(const MCSubtargetInfo &STI) {
1113   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1114 }
1115 
1116 bool isGFX9(const MCSubtargetInfo &STI) {
1117   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1118 }
1119 
1120 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1121   return isGFX9(STI) || isGFX10Plus(STI);
1122 }
1123 
1124 bool isGFX10(const MCSubtargetInfo &STI) {
1125   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1126 }
1127 
1128 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1129 
1130 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1131   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1132 }
1133 
1134 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1135   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1136 }
1137 
1138 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1139   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1140 }
1141 
1142 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1143   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1144   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1145   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1146     Reg == AMDGPU::SCC;
1147 }
1148 
1149 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1150   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1151     if (*R == Reg1) return true;
1152   }
1153   return false;
1154 }
1155 
1156 #define MAP_REG2REG \
1157   using namespace AMDGPU; \
1158   switch(Reg) { \
1159   default: return Reg; \
1160   CASE_CI_VI(FLAT_SCR) \
1161   CASE_CI_VI(FLAT_SCR_LO) \
1162   CASE_CI_VI(FLAT_SCR_HI) \
1163   CASE_VI_GFX9_GFX10(TTMP0) \
1164   CASE_VI_GFX9_GFX10(TTMP1) \
1165   CASE_VI_GFX9_GFX10(TTMP2) \
1166   CASE_VI_GFX9_GFX10(TTMP3) \
1167   CASE_VI_GFX9_GFX10(TTMP4) \
1168   CASE_VI_GFX9_GFX10(TTMP5) \
1169   CASE_VI_GFX9_GFX10(TTMP6) \
1170   CASE_VI_GFX9_GFX10(TTMP7) \
1171   CASE_VI_GFX9_GFX10(TTMP8) \
1172   CASE_VI_GFX9_GFX10(TTMP9) \
1173   CASE_VI_GFX9_GFX10(TTMP10) \
1174   CASE_VI_GFX9_GFX10(TTMP11) \
1175   CASE_VI_GFX9_GFX10(TTMP12) \
1176   CASE_VI_GFX9_GFX10(TTMP13) \
1177   CASE_VI_GFX9_GFX10(TTMP14) \
1178   CASE_VI_GFX9_GFX10(TTMP15) \
1179   CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
1180   CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
1181   CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
1182   CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
1183   CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
1184   CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
1185   CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
1186   CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
1187   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
1188   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
1189   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
1190   CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
1191   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1192   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1193   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1194   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1195   }
1196 
1197 #define CASE_CI_VI(node) \
1198   assert(!isSI(STI)); \
1199   case node: return isCI(STI) ? node##_ci : node##_vi;
1200 
1201 #define CASE_VI_GFX9_GFX10(node) \
1202   case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
1203 
1204 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1205   if (STI.getTargetTriple().getArch() == Triple::r600)
1206     return Reg;
1207   MAP_REG2REG
1208 }
1209 
1210 #undef CASE_CI_VI
1211 #undef CASE_VI_GFX9_GFX10
1212 
1213 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1214 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
1215 
1216 unsigned mc2PseudoReg(unsigned Reg) {
1217   MAP_REG2REG
1218 }
1219 
1220 #undef CASE_CI_VI
1221 #undef CASE_VI_GFX9_GFX10
1222 #undef MAP_REG2REG
1223 
1224 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1225   assert(OpNo < Desc.NumOperands);
1226   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1227   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1228          OpType <= AMDGPU::OPERAND_SRC_LAST;
1229 }
1230 
1231 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1232   assert(OpNo < Desc.NumOperands);
1233   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1234   switch (OpType) {
1235   case AMDGPU::OPERAND_REG_IMM_FP32:
1236   case AMDGPU::OPERAND_REG_IMM_FP64:
1237   case AMDGPU::OPERAND_REG_IMM_FP16:
1238   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1239   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1240   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1241   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1242   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1243   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1244   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1245   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1246   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1247   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1248   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1249     return true;
1250   default:
1251     return false;
1252   }
1253 }
1254 
1255 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1256   assert(OpNo < Desc.NumOperands);
1257   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1258   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1259          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1260 }
1261 
1262 // Avoid using MCRegisterClass::getSize, since that function will go away
1263 // (move from MC* level to Target* level). Return size in bits.
1264 unsigned getRegBitWidth(unsigned RCID) {
1265   switch (RCID) {
1266   case AMDGPU::VGPR_LO16RegClassID:
1267   case AMDGPU::VGPR_HI16RegClassID:
1268   case AMDGPU::SGPR_LO16RegClassID:
1269   case AMDGPU::AGPR_LO16RegClassID:
1270     return 16;
1271   case AMDGPU::SGPR_32RegClassID:
1272   case AMDGPU::VGPR_32RegClassID:
1273   case AMDGPU::VRegOrLds_32RegClassID:
1274   case AMDGPU::AGPR_32RegClassID:
1275   case AMDGPU::VS_32RegClassID:
1276   case AMDGPU::AV_32RegClassID:
1277   case AMDGPU::SReg_32RegClassID:
1278   case AMDGPU::SReg_32_XM0RegClassID:
1279   case AMDGPU::SRegOrLds_32RegClassID:
1280     return 32;
1281   case AMDGPU::SGPR_64RegClassID:
1282   case AMDGPU::VS_64RegClassID:
1283   case AMDGPU::AV_64RegClassID:
1284   case AMDGPU::SReg_64RegClassID:
1285   case AMDGPU::VReg_64RegClassID:
1286   case AMDGPU::AReg_64RegClassID:
1287   case AMDGPU::SReg_64_XEXECRegClassID:
1288     return 64;
1289   case AMDGPU::SGPR_96RegClassID:
1290   case AMDGPU::SReg_96RegClassID:
1291   case AMDGPU::VReg_96RegClassID:
1292   case AMDGPU::AReg_96RegClassID:
1293     return 96;
1294   case AMDGPU::SGPR_128RegClassID:
1295   case AMDGPU::SReg_128RegClassID:
1296   case AMDGPU::VReg_128RegClassID:
1297   case AMDGPU::AReg_128RegClassID:
1298     return 128;
1299   case AMDGPU::SGPR_160RegClassID:
1300   case AMDGPU::SReg_160RegClassID:
1301   case AMDGPU::VReg_160RegClassID:
1302   case AMDGPU::AReg_160RegClassID:
1303     return 160;
1304   case AMDGPU::SGPR_192RegClassID:
1305   case AMDGPU::SReg_192RegClassID:
1306   case AMDGPU::VReg_192RegClassID:
1307   case AMDGPU::AReg_192RegClassID:
1308     return 192;
1309   case AMDGPU::SGPR_256RegClassID:
1310   case AMDGPU::SReg_256RegClassID:
1311   case AMDGPU::VReg_256RegClassID:
1312   case AMDGPU::AReg_256RegClassID:
1313     return 256;
1314   case AMDGPU::SGPR_512RegClassID:
1315   case AMDGPU::SReg_512RegClassID:
1316   case AMDGPU::VReg_512RegClassID:
1317   case AMDGPU::AReg_512RegClassID:
1318     return 512;
1319   case AMDGPU::SGPR_1024RegClassID:
1320   case AMDGPU::SReg_1024RegClassID:
1321   case AMDGPU::VReg_1024RegClassID:
1322   case AMDGPU::AReg_1024RegClassID:
1323     return 1024;
1324   default:
1325     llvm_unreachable("Unexpected register class");
1326   }
1327 }
1328 
1329 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1330   return getRegBitWidth(RC.getID());
1331 }
1332 
1333 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1334                            unsigned OpNo) {
1335   assert(OpNo < Desc.NumOperands);
1336   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1337   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1338 }
1339 
1340 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1341   if (isInlinableIntLiteral(Literal))
1342     return true;
1343 
1344   uint64_t Val = static_cast<uint64_t>(Literal);
1345   return (Val == DoubleToBits(0.0)) ||
1346          (Val == DoubleToBits(1.0)) ||
1347          (Val == DoubleToBits(-1.0)) ||
1348          (Val == DoubleToBits(0.5)) ||
1349          (Val == DoubleToBits(-0.5)) ||
1350          (Val == DoubleToBits(2.0)) ||
1351          (Val == DoubleToBits(-2.0)) ||
1352          (Val == DoubleToBits(4.0)) ||
1353          (Val == DoubleToBits(-4.0)) ||
1354          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1355 }
1356 
1357 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1358   if (isInlinableIntLiteral(Literal))
1359     return true;
1360 
1361   // The actual type of the operand does not seem to matter as long
1362   // as the bits match one of the inline immediate values.  For example:
1363   //
1364   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1365   // so it is a legal inline immediate.
1366   //
1367   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1368   // floating-point, so it is a legal inline immediate.
1369 
1370   uint32_t Val = static_cast<uint32_t>(Literal);
1371   return (Val == FloatToBits(0.0f)) ||
1372          (Val == FloatToBits(1.0f)) ||
1373          (Val == FloatToBits(-1.0f)) ||
1374          (Val == FloatToBits(0.5f)) ||
1375          (Val == FloatToBits(-0.5f)) ||
1376          (Val == FloatToBits(2.0f)) ||
1377          (Val == FloatToBits(-2.0f)) ||
1378          (Val == FloatToBits(4.0f)) ||
1379          (Val == FloatToBits(-4.0f)) ||
1380          (Val == 0x3e22f983 && HasInv2Pi);
1381 }
1382 
1383 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1384   if (!HasInv2Pi)
1385     return false;
1386 
1387   if (isInlinableIntLiteral(Literal))
1388     return true;
1389 
1390   uint16_t Val = static_cast<uint16_t>(Literal);
1391   return Val == 0x3C00 || // 1.0
1392          Val == 0xBC00 || // -1.0
1393          Val == 0x3800 || // 0.5
1394          Val == 0xB800 || // -0.5
1395          Val == 0x4000 || // 2.0
1396          Val == 0xC000 || // -2.0
1397          Val == 0x4400 || // 4.0
1398          Val == 0xC400 || // -4.0
1399          Val == 0x3118;   // 1/2pi
1400 }
1401 
1402 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1403   assert(HasInv2Pi);
1404 
1405   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1406     int16_t Trunc = static_cast<int16_t>(Literal);
1407     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1408   }
1409   if (!(Literal & 0xffff))
1410     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1411 
1412   int16_t Lo16 = static_cast<int16_t>(Literal);
1413   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1414   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1415 }
1416 
1417 bool isInlinableIntLiteralV216(int32_t Literal) {
1418   int16_t Lo16 = static_cast<int16_t>(Literal);
1419   if (isInt<16>(Literal) || isUInt<16>(Literal))
1420     return isInlinableIntLiteral(Lo16);
1421 
1422   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1423   if (!(Literal & 0xffff))
1424     return isInlinableIntLiteral(Hi16);
1425   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1426 }
1427 
1428 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1429   assert(HasInv2Pi);
1430 
1431   int16_t Lo16 = static_cast<int16_t>(Literal);
1432   if (isInt<16>(Literal) || isUInt<16>(Literal))
1433     return true;
1434 
1435   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1436   if (!(Literal & 0xffff))
1437     return true;
1438   return Lo16 == Hi16;
1439 }
1440 
1441 bool isArgPassedInSGPR(const Argument *A) {
1442   const Function *F = A->getParent();
1443 
1444   // Arguments to compute shaders are never a source of divergence.
1445   CallingConv::ID CC = F->getCallingConv();
1446   switch (CC) {
1447   case CallingConv::AMDGPU_KERNEL:
1448   case CallingConv::SPIR_KERNEL:
1449     return true;
1450   case CallingConv::AMDGPU_VS:
1451   case CallingConv::AMDGPU_LS:
1452   case CallingConv::AMDGPU_HS:
1453   case CallingConv::AMDGPU_ES:
1454   case CallingConv::AMDGPU_GS:
1455   case CallingConv::AMDGPU_PS:
1456   case CallingConv::AMDGPU_CS:
1457   case CallingConv::AMDGPU_Gfx:
1458     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1459     // Everything else is in VGPRs.
1460     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1461            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1462   default:
1463     // TODO: Should calls support inreg for SGPR inputs?
1464     return false;
1465   }
1466 }
1467 
1468 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1469   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1470 }
1471 
1472 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1473   return isGFX9Plus(ST);
1474 }
1475 
1476 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1477                                       int64_t EncodedOffset) {
1478   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1479                                : isUInt<8>(EncodedOffset);
1480 }
1481 
1482 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1483                                     int64_t EncodedOffset,
1484                                     bool IsBuffer) {
1485   return !IsBuffer &&
1486          hasSMRDSignedImmOffset(ST) &&
1487          isInt<21>(EncodedOffset);
1488 }
1489 
1490 static bool isDwordAligned(uint64_t ByteOffset) {
1491   return (ByteOffset & 3) == 0;
1492 }
1493 
1494 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1495                                 uint64_t ByteOffset) {
1496   if (hasSMEMByteOffset(ST))
1497     return ByteOffset;
1498 
1499   assert(isDwordAligned(ByteOffset));
1500   return ByteOffset >> 2;
1501 }
1502 
1503 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1504                                        int64_t ByteOffset, bool IsBuffer) {
1505   // The signed version is always a byte offset.
1506   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1507     assert(hasSMEMByteOffset(ST));
1508     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1509   }
1510 
1511   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1512     return None;
1513 
1514   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1515   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1516              ? Optional<int64_t>(EncodedOffset)
1517              : None;
1518 }
1519 
1520 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1521                                                 int64_t ByteOffset) {
1522   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1523     return None;
1524 
1525   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1526   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1527 }
1528 
1529 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1530   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1531   if (AMDGPU::isGFX10(ST))
1532     return Signed ? 12 : 11;
1533 
1534   return Signed ? 13 : 12;
1535 }
1536 
1537 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1538 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1539 // hardware bug needing a workaround).
1540 //
1541 // The required alignment ensures that individual address components remain
1542 // aligned if they are aligned to begin with. It also ensures that additional
1543 // offsets within the given alignment can be added to the resulting ImmOffset.
1544 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1545                       const GCNSubtarget *Subtarget, Align Alignment) {
1546   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1547   uint32_t Overflow = 0;
1548 
1549   if (Imm > MaxImm) {
1550     if (Imm <= MaxImm + 64) {
1551       // Use an SOffset inline constant for 4..64
1552       Overflow = Imm - MaxImm;
1553       Imm = MaxImm;
1554     } else {
1555       // Try to keep the same value in SOffset for adjacent loads, so that
1556       // the corresponding register contents can be re-used.
1557       //
1558       // Load values with all low-bits (except for alignment bits) set into
1559       // SOffset, so that a larger range of values can be covered using
1560       // s_movk_i32.
1561       //
1562       // Atomic operations fail to work correctly when individual address
1563       // components are unaligned, even if their sum is aligned.
1564       uint32_t High = (Imm + Alignment.value()) & ~4095;
1565       uint32_t Low = (Imm + Alignment.value()) & 4095;
1566       Imm = Low;
1567       Overflow = High - Alignment.value();
1568     }
1569   }
1570 
1571   // There is a hardware bug in SI and CI which prevents address clamping in
1572   // MUBUF instructions from working correctly with SOffsets. The immediate
1573   // offset is unaffected.
1574   if (Overflow > 0 &&
1575       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1576     return false;
1577 
1578   ImmOffset = Imm;
1579   SOffset = Overflow;
1580   return true;
1581 }
1582 
1583 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1584   *this = getDefaultForCallingConv(F.getCallingConv());
1585 
1586   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1587   if (!IEEEAttr.empty())
1588     IEEE = IEEEAttr == "true";
1589 
1590   StringRef DX10ClampAttr
1591     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1592   if (!DX10ClampAttr.empty())
1593     DX10Clamp = DX10ClampAttr == "true";
1594 
1595   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1596   if (!DenormF32Attr.empty()) {
1597     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1598     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1599     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1600   }
1601 
1602   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1603   if (!DenormAttr.empty()) {
1604     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1605 
1606     if (DenormF32Attr.empty()) {
1607       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1608       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1609     }
1610 
1611     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1612     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1613   }
1614 }
1615 
1616 namespace {
1617 
1618 struct SourceOfDivergence {
1619   unsigned Intr;
1620 };
1621 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1622 
1623 #define GET_SourcesOfDivergence_IMPL
1624 #define GET_Gfx9BufferFormat_IMPL
1625 #define GET_Gfx10PlusBufferFormat_IMPL
1626 #include "AMDGPUGenSearchableTables.inc"
1627 
1628 } // end anonymous namespace
1629 
1630 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1631   return lookupSourceOfDivergence(IntrID);
1632 }
1633 
1634 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1635                                                   uint8_t NumComponents,
1636                                                   uint8_t NumFormat,
1637                                                   const MCSubtargetInfo &STI) {
1638   return isGFX10Plus(STI)
1639              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1640                                             NumFormat)
1641              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1642 }
1643 
1644 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1645                                                   const MCSubtargetInfo &STI) {
1646   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
1647                           : getGfx9BufferFormatInfo(Format);
1648 }
1649 
1650 } // namespace AMDGPU
1651 } // namespace llvm
1652