1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDGPUTargetTransformInfo.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/IntrinsicsR600.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/MC/MCSectionELF.h" 32 #include "llvm/MC/MCSubtargetInfo.h" 33 #include "llvm/MC/SubtargetFeature.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <algorithm> 39 #include <cassert> 40 #include <cstdint> 41 #include <cstring> 42 #include <utility> 43 44 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 45 46 #define GET_INSTRINFO_NAMED_OPS 47 #define GET_INSTRMAP_INFO 48 #include "AMDGPUGenInstrInfo.inc" 49 #undef GET_INSTRMAP_INFO 50 #undef GET_INSTRINFO_NAMED_OPS 51 52 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion( 53 "amdhsa-code-object-version", llvm::cl::Hidden, 54 llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3)); 55 56 namespace { 57 58 /// \returns Bit mask for given bit \p Shift and bit \p Width. 59 unsigned getBitMask(unsigned Shift, unsigned Width) { 60 return ((1 << Width) - 1) << Shift; 61 } 62 63 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 64 /// 65 /// \returns Packed \p Dst. 66 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 67 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 68 Dst |= (Src << Shift) & getBitMask(Shift, Width); 69 return Dst; 70 } 71 72 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 73 /// 74 /// \returns Unpacked bits. 75 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 76 return (Src & getBitMask(Shift, Width)) >> Shift; 77 } 78 79 /// \returns Vmcnt bit shift (lower bits). 80 unsigned getVmcntBitShiftLo() { return 0; } 81 82 /// \returns Vmcnt bit width (lower bits). 83 unsigned getVmcntBitWidthLo() { return 4; } 84 85 /// \returns Expcnt bit shift. 86 unsigned getExpcntBitShift() { return 4; } 87 88 /// \returns Expcnt bit width. 89 unsigned getExpcntBitWidth() { return 3; } 90 91 /// \returns Lgkmcnt bit shift. 92 unsigned getLgkmcntBitShift() { return 8; } 93 94 /// \returns Lgkmcnt bit width. 95 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 96 return (VersionMajor >= 10) ? 6 : 4; 97 } 98 99 /// \returns Vmcnt bit shift (higher bits). 100 unsigned getVmcntBitShiftHi() { return 14; } 101 102 /// \returns Vmcnt bit width (higher bits). 103 unsigned getVmcntBitWidthHi() { return 2; } 104 105 } // end namespace anonymous 106 107 namespace llvm { 108 109 namespace AMDGPU { 110 111 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) { 112 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) 113 return None; 114 115 switch (AmdhsaCodeObjectVersion) { 116 case 2: 117 return ELF::ELFABIVERSION_AMDGPU_HSA_V2; 118 case 3: 119 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 120 default: 121 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 122 } 123 } 124 125 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { 126 if (const auto &&HsaAbiVer = getHsaAbiVersion(STI)) 127 return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2; 128 return false; 129 } 130 131 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { 132 if (const auto &&HsaAbiVer = getHsaAbiVersion(STI)) 133 return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3; 134 return false; 135 } 136 137 #define GET_MIMGBaseOpcodesTable_IMPL 138 #define GET_MIMGDimInfoTable_IMPL 139 #define GET_MIMGInfoTable_IMPL 140 #define GET_MIMGLZMappingTable_IMPL 141 #define GET_MIMGMIPMappingTable_IMPL 142 #define GET_MIMGG16MappingTable_IMPL 143 #include "AMDGPUGenSearchableTables.inc" 144 145 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 146 unsigned VDataDwords, unsigned VAddrDwords) { 147 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 148 VDataDwords, VAddrDwords); 149 return Info ? Info->Opcode : -1; 150 } 151 152 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 153 const MIMGInfo *Info = getMIMGInfo(Opc); 154 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 155 } 156 157 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 158 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 159 const MIMGInfo *NewInfo = 160 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 161 NewChannels, OrigInfo->VAddrDwords); 162 return NewInfo ? NewInfo->Opcode : -1; 163 } 164 165 struct MUBUFInfo { 166 uint16_t Opcode; 167 uint16_t BaseOpcode; 168 uint8_t elements; 169 bool has_vaddr; 170 bool has_srsrc; 171 bool has_soffset; 172 }; 173 174 struct MTBUFInfo { 175 uint16_t Opcode; 176 uint16_t BaseOpcode; 177 uint8_t elements; 178 bool has_vaddr; 179 bool has_srsrc; 180 bool has_soffset; 181 }; 182 183 struct SMInfo { 184 uint16_t Opcode; 185 bool IsBuffer; 186 }; 187 188 #define GET_MTBUFInfoTable_DECL 189 #define GET_MTBUFInfoTable_IMPL 190 #define GET_MUBUFInfoTable_DECL 191 #define GET_MUBUFInfoTable_IMPL 192 #define GET_SMInfoTable_DECL 193 #define GET_SMInfoTable_IMPL 194 #include "AMDGPUGenSearchableTables.inc" 195 196 int getMTBUFBaseOpcode(unsigned Opc) { 197 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 198 return Info ? Info->BaseOpcode : -1; 199 } 200 201 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 202 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 203 return Info ? Info->Opcode : -1; 204 } 205 206 int getMTBUFElements(unsigned Opc) { 207 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 208 return Info ? Info->elements : 0; 209 } 210 211 bool getMTBUFHasVAddr(unsigned Opc) { 212 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 213 return Info ? Info->has_vaddr : false; 214 } 215 216 bool getMTBUFHasSrsrc(unsigned Opc) { 217 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 218 return Info ? Info->has_srsrc : false; 219 } 220 221 bool getMTBUFHasSoffset(unsigned Opc) { 222 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 223 return Info ? Info->has_soffset : false; 224 } 225 226 int getMUBUFBaseOpcode(unsigned Opc) { 227 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 228 return Info ? Info->BaseOpcode : -1; 229 } 230 231 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 232 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 233 return Info ? Info->Opcode : -1; 234 } 235 236 int getMUBUFElements(unsigned Opc) { 237 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 238 return Info ? Info->elements : 0; 239 } 240 241 bool getMUBUFHasVAddr(unsigned Opc) { 242 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 243 return Info ? Info->has_vaddr : false; 244 } 245 246 bool getMUBUFHasSrsrc(unsigned Opc) { 247 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 248 return Info ? Info->has_srsrc : false; 249 } 250 251 bool getMUBUFHasSoffset(unsigned Opc) { 252 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 253 return Info ? Info->has_soffset : false; 254 } 255 256 bool getSMEMIsBuffer(unsigned Opc) { 257 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 258 return Info ? Info->IsBuffer : false; 259 } 260 261 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 262 // header files, so we need to wrap it in a function that takes unsigned 263 // instead. 264 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 265 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 266 } 267 268 namespace IsaInfo { 269 270 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 271 auto TargetTriple = STI->getTargetTriple(); 272 auto Version = getIsaVersion(STI->getCPU()); 273 274 Stream << TargetTriple.getArchName() << '-' 275 << TargetTriple.getVendorName() << '-' 276 << TargetTriple.getOSName() << '-' 277 << TargetTriple.getEnvironmentName() << '-' 278 << "gfx" 279 << Version.Major 280 << Version.Minor 281 << Version.Stepping; 282 283 if (hasXNACK(*STI)) 284 Stream << "+xnack"; 285 if (hasSRAMECC(*STI)) 286 Stream << "+sram-ecc"; 287 288 Stream.flush(); 289 } 290 291 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 292 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 293 return 16; 294 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 295 return 32; 296 297 return 64; 298 } 299 300 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 301 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 302 return 32768; 303 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 304 return 65536; 305 306 return 0; 307 } 308 309 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 310 // "Per CU" really means "per whatever functional block the waves of a 311 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 312 // two SIMDs. 313 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 314 return 2; 315 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 316 // two CUs, so a total of four SIMDs. 317 return 4; 318 } 319 320 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 321 unsigned FlatWorkGroupSize) { 322 assert(FlatWorkGroupSize != 0); 323 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 324 return 8; 325 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 326 if (N == 1) 327 return 40; 328 N = 40 / N; 329 return std::min(N, 16u); 330 } 331 332 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 333 return 1; 334 } 335 336 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 337 // FIXME: Need to take scratch memory into account. 338 if (!isGFX10Plus(*STI)) 339 return 10; 340 return hasGFX10_3Insts(*STI) ? 16 : 20; 341 } 342 343 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 344 unsigned FlatWorkGroupSize) { 345 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 346 getEUsPerCU(STI)); 347 } 348 349 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 350 return 1; 351 } 352 353 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 354 // Some subtargets allow encoding 2048, but this isn't tested or supported. 355 return 1024; 356 } 357 358 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 359 unsigned FlatWorkGroupSize) { 360 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 361 } 362 363 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 364 IsaVersion Version = getIsaVersion(STI->getCPU()); 365 if (Version.Major >= 10) 366 return getAddressableNumSGPRs(STI); 367 if (Version.Major >= 8) 368 return 16; 369 return 8; 370 } 371 372 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 373 return 8; 374 } 375 376 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 377 IsaVersion Version = getIsaVersion(STI->getCPU()); 378 if (Version.Major >= 8) 379 return 800; 380 return 512; 381 } 382 383 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 384 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 385 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 386 387 IsaVersion Version = getIsaVersion(STI->getCPU()); 388 if (Version.Major >= 10) 389 return 106; 390 if (Version.Major >= 8) 391 return 102; 392 return 104; 393 } 394 395 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 396 assert(WavesPerEU != 0); 397 398 IsaVersion Version = getIsaVersion(STI->getCPU()); 399 if (Version.Major >= 10) 400 return 0; 401 402 if (WavesPerEU >= getMaxWavesPerEU(STI)) 403 return 0; 404 405 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 406 if (STI->getFeatureBits().test(FeatureTrapHandler)) 407 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 408 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 409 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 410 } 411 412 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 413 bool Addressable) { 414 assert(WavesPerEU != 0); 415 416 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 417 IsaVersion Version = getIsaVersion(STI->getCPU()); 418 if (Version.Major >= 10) 419 return Addressable ? AddressableNumSGPRs : 108; 420 if (Version.Major >= 8 && !Addressable) 421 AddressableNumSGPRs = 112; 422 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 423 if (STI->getFeatureBits().test(FeatureTrapHandler)) 424 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 425 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 426 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 427 } 428 429 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 430 bool FlatScrUsed, bool XNACKUsed) { 431 unsigned ExtraSGPRs = 0; 432 if (VCCUsed) 433 ExtraSGPRs = 2; 434 435 IsaVersion Version = getIsaVersion(STI->getCPU()); 436 if (Version.Major >= 10) 437 return ExtraSGPRs; 438 439 if (Version.Major < 8) { 440 if (FlatScrUsed) 441 ExtraSGPRs = 4; 442 } else { 443 if (XNACKUsed) 444 ExtraSGPRs = 4; 445 446 if (FlatScrUsed) 447 ExtraSGPRs = 6; 448 } 449 450 return ExtraSGPRs; 451 } 452 453 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 454 bool FlatScrUsed) { 455 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 456 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 457 } 458 459 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 460 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 461 // SGPRBlocks is actual number of SGPR blocks minus 1. 462 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 463 } 464 465 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 466 Optional<bool> EnableWavefrontSize32) { 467 bool IsWave32 = EnableWavefrontSize32 ? 468 *EnableWavefrontSize32 : 469 STI->getFeatureBits().test(FeatureWavefrontSize32); 470 471 if (hasGFX10_3Insts(*STI)) 472 return IsWave32 ? 16 : 8; 473 474 return IsWave32 ? 8 : 4; 475 } 476 477 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 478 Optional<bool> EnableWavefrontSize32) { 479 480 bool IsWave32 = EnableWavefrontSize32 ? 481 *EnableWavefrontSize32 : 482 STI->getFeatureBits().test(FeatureWavefrontSize32); 483 484 return IsWave32 ? 8 : 4; 485 } 486 487 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 488 if (!isGFX10Plus(*STI)) 489 return 256; 490 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 491 } 492 493 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 494 return 256; 495 } 496 497 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 498 assert(WavesPerEU != 0); 499 500 if (WavesPerEU >= getMaxWavesPerEU(STI)) 501 return 0; 502 unsigned MinNumVGPRs = 503 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 504 getVGPRAllocGranule(STI)) + 1; 505 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 506 } 507 508 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 509 assert(WavesPerEU != 0); 510 511 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 512 getVGPRAllocGranule(STI)); 513 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 514 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 515 } 516 517 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 518 Optional<bool> EnableWavefrontSize32) { 519 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 520 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 521 // VGPRBlocks is actual number of VGPR blocks minus 1. 522 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 523 } 524 525 } // end namespace IsaInfo 526 527 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 528 const MCSubtargetInfo *STI) { 529 IsaVersion Version = getIsaVersion(STI->getCPU()); 530 531 memset(&Header, 0, sizeof(Header)); 532 533 Header.amd_kernel_code_version_major = 1; 534 Header.amd_kernel_code_version_minor = 2; 535 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 536 Header.amd_machine_version_major = Version.Major; 537 Header.amd_machine_version_minor = Version.Minor; 538 Header.amd_machine_version_stepping = Version.Stepping; 539 Header.kernel_code_entry_byte_offset = sizeof(Header); 540 Header.wavefront_size = 6; 541 542 // If the code object does not support indirect functions, then the value must 543 // be 0xffffffff. 544 Header.call_convention = -1; 545 546 // These alignment values are specified in powers of two, so alignment = 547 // 2^n. The minimum alignment is 2^4 = 16. 548 Header.kernarg_segment_alignment = 4; 549 Header.group_segment_alignment = 4; 550 Header.private_segment_alignment = 4; 551 552 if (Version.Major >= 10) { 553 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 554 Header.wavefront_size = 5; 555 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 556 } 557 Header.compute_pgm_resource_registers |= 558 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 559 S_00B848_MEM_ORDERED(1); 560 } 561 } 562 563 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 564 const MCSubtargetInfo *STI) { 565 IsaVersion Version = getIsaVersion(STI->getCPU()); 566 567 amdhsa::kernel_descriptor_t KD; 568 memset(&KD, 0, sizeof(KD)); 569 570 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 571 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 572 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 573 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 574 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 575 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 576 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 577 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 578 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 579 if (Version.Major >= 10) { 580 AMDHSA_BITS_SET(KD.kernel_code_properties, 581 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 582 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 583 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 584 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 585 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 586 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 587 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 588 } 589 return KD; 590 } 591 592 bool isGroupSegment(const GlobalValue *GV) { 593 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 594 } 595 596 bool isGlobalSegment(const GlobalValue *GV) { 597 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 598 } 599 600 bool isReadOnlySegment(const GlobalValue *GV) { 601 unsigned AS = GV->getAddressSpace(); 602 return AS == AMDGPUAS::CONSTANT_ADDRESS || 603 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 604 } 605 606 bool shouldEmitConstantsToTextSection(const Triple &TT) { 607 return TT.getArch() == Triple::r600; 608 } 609 610 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 611 Attribute A = F.getFnAttribute(Name); 612 int Result = Default; 613 614 if (A.isStringAttribute()) { 615 StringRef Str = A.getValueAsString(); 616 if (Str.getAsInteger(0, Result)) { 617 LLVMContext &Ctx = F.getContext(); 618 Ctx.emitError("can't parse integer attribute " + Name); 619 } 620 } 621 622 return Result; 623 } 624 625 std::pair<int, int> getIntegerPairAttribute(const Function &F, 626 StringRef Name, 627 std::pair<int, int> Default, 628 bool OnlyFirstRequired) { 629 Attribute A = F.getFnAttribute(Name); 630 if (!A.isStringAttribute()) 631 return Default; 632 633 LLVMContext &Ctx = F.getContext(); 634 std::pair<int, int> Ints = Default; 635 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 636 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 637 Ctx.emitError("can't parse first integer attribute " + Name); 638 return Default; 639 } 640 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 641 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 642 Ctx.emitError("can't parse second integer attribute " + Name); 643 return Default; 644 } 645 } 646 647 return Ints; 648 } 649 650 unsigned getVmcntBitMask(const IsaVersion &Version) { 651 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 652 if (Version.Major < 9) 653 return VmcntLo; 654 655 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 656 return VmcntLo | VmcntHi; 657 } 658 659 unsigned getExpcntBitMask(const IsaVersion &Version) { 660 return (1 << getExpcntBitWidth()) - 1; 661 } 662 663 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 664 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 665 } 666 667 unsigned getWaitcntBitMask(const IsaVersion &Version) { 668 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 669 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 670 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 671 getLgkmcntBitWidth(Version.Major)); 672 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 673 if (Version.Major < 9) 674 return Waitcnt; 675 676 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 677 return Waitcnt | VmcntHi; 678 } 679 680 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 681 unsigned VmcntLo = 682 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 683 if (Version.Major < 9) 684 return VmcntLo; 685 686 unsigned VmcntHi = 687 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 688 VmcntHi <<= getVmcntBitWidthLo(); 689 return VmcntLo | VmcntHi; 690 } 691 692 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 693 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 694 } 695 696 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 697 return unpackBits(Waitcnt, getLgkmcntBitShift(), 698 getLgkmcntBitWidth(Version.Major)); 699 } 700 701 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 702 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 703 Vmcnt = decodeVmcnt(Version, Waitcnt); 704 Expcnt = decodeExpcnt(Version, Waitcnt); 705 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 706 } 707 708 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 709 Waitcnt Decoded; 710 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 711 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 712 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 713 return Decoded; 714 } 715 716 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 717 unsigned Vmcnt) { 718 Waitcnt = 719 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 720 if (Version.Major < 9) 721 return Waitcnt; 722 723 Vmcnt >>= getVmcntBitWidthLo(); 724 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 725 } 726 727 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 728 unsigned Expcnt) { 729 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 730 } 731 732 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 733 unsigned Lgkmcnt) { 734 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 735 getLgkmcntBitWidth(Version.Major)); 736 } 737 738 unsigned encodeWaitcnt(const IsaVersion &Version, 739 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 740 unsigned Waitcnt = getWaitcntBitMask(Version); 741 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 742 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 743 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 744 return Waitcnt; 745 } 746 747 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 748 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 749 } 750 751 //===----------------------------------------------------------------------===// 752 // hwreg 753 //===----------------------------------------------------------------------===// 754 755 namespace Hwreg { 756 757 int64_t getHwregId(const StringRef Name) { 758 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 759 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 760 return Id; 761 } 762 return ID_UNKNOWN_; 763 } 764 765 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 766 if (isSI(STI) || isCI(STI) || isVI(STI)) 767 return ID_SYMBOLIC_FIRST_GFX9_; 768 else if (isGFX9(STI)) 769 return ID_SYMBOLIC_FIRST_GFX10_; 770 else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) 771 return ID_SYMBOLIC_FIRST_GFX1030_; 772 else 773 return ID_SYMBOLIC_LAST_; 774 } 775 776 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 777 return 778 ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 779 IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI)); 780 } 781 782 bool isValidHwreg(int64_t Id) { 783 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 784 } 785 786 bool isValidHwregOffset(int64_t Offset) { 787 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 788 } 789 790 bool isValidHwregWidth(int64_t Width) { 791 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 792 } 793 794 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 795 return (Id << ID_SHIFT_) | 796 (Offset << OFFSET_SHIFT_) | 797 ((Width - 1) << WIDTH_M1_SHIFT_); 798 } 799 800 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 801 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 802 } 803 804 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 805 Id = (Val & ID_MASK_) >> ID_SHIFT_; 806 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 807 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 808 } 809 810 } // namespace Hwreg 811 812 //===----------------------------------------------------------------------===// 813 // MTBUF Format 814 //===----------------------------------------------------------------------===// 815 816 namespace MTBUFFormat { 817 818 int64_t getDfmt(const StringRef Name) { 819 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 820 if (Name == DfmtSymbolic[Id]) 821 return Id; 822 } 823 return DFMT_UNDEF; 824 } 825 826 StringRef getDfmtName(unsigned Id) { 827 assert(Id <= DFMT_MAX); 828 return DfmtSymbolic[Id]; 829 } 830 831 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 832 if (isSI(STI) || isCI(STI)) 833 return NfmtSymbolicSICI; 834 if (isVI(STI) || isGFX9(STI)) 835 return NfmtSymbolicVI; 836 return NfmtSymbolicGFX10; 837 } 838 839 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 840 auto lookupTable = getNfmtLookupTable(STI); 841 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 842 if (Name == lookupTable[Id]) 843 return Id; 844 } 845 return NFMT_UNDEF; 846 } 847 848 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 849 assert(Id <= NFMT_MAX); 850 return getNfmtLookupTable(STI)[Id]; 851 } 852 853 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 854 unsigned Dfmt; 855 unsigned Nfmt; 856 decodeDfmtNfmt(Id, Dfmt, Nfmt); 857 return isValidNfmt(Nfmt, STI); 858 } 859 860 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 861 return !getNfmtName(Id, STI).empty(); 862 } 863 864 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 865 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 866 } 867 868 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 869 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 870 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 871 } 872 873 int64_t getUnifiedFormat(const StringRef Name) { 874 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 875 if (Name == UfmtSymbolic[Id]) 876 return Id; 877 } 878 return UFMT_UNDEF; 879 } 880 881 StringRef getUnifiedFormatName(unsigned Id) { 882 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 883 } 884 885 bool isValidUnifiedFormat(unsigned Id) { 886 return Id <= UFMT_LAST; 887 } 888 889 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 890 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 891 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 892 if (Fmt == DfmtNfmt2UFmt[Id]) 893 return Id; 894 } 895 return UFMT_UNDEF; 896 } 897 898 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 899 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 900 } 901 902 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 903 if (isGFX10Plus(STI)) 904 return UFMT_DEFAULT; 905 return DFMT_NFMT_DEFAULT; 906 } 907 908 } // namespace MTBUFFormat 909 910 //===----------------------------------------------------------------------===// 911 // SendMsg 912 //===----------------------------------------------------------------------===// 913 914 namespace SendMsg { 915 916 int64_t getMsgId(const StringRef Name) { 917 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 918 if (IdSymbolic[i] && Name == IdSymbolic[i]) 919 return i; 920 } 921 return ID_UNKNOWN_; 922 } 923 924 static bool isValidMsgId(int64_t MsgId) { 925 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 926 } 927 928 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 929 if (Strict) { 930 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 931 return isGFX9Plus(STI); 932 else 933 return isValidMsgId(MsgId); 934 } else { 935 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 936 } 937 } 938 939 StringRef getMsgName(int64_t MsgId) { 940 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 941 } 942 943 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 944 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 945 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 946 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 947 for (int i = F; i < L; ++i) { 948 if (Name == S[i]) { 949 return i; 950 } 951 } 952 return OP_UNKNOWN_; 953 } 954 955 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 956 957 if (!Strict) 958 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 959 960 switch(MsgId) 961 { 962 case ID_GS: 963 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 964 case ID_GS_DONE: 965 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 966 case ID_SYSMSG: 967 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 968 default: 969 return OpId == OP_NONE_; 970 } 971 } 972 973 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 974 assert(msgRequiresOp(MsgId)); 975 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 976 } 977 978 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 979 980 if (!Strict) 981 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 982 983 switch(MsgId) 984 { 985 case ID_GS: 986 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 987 case ID_GS_DONE: 988 return (OpId == OP_GS_NOP)? 989 (StreamId == STREAM_ID_NONE_) : 990 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 991 default: 992 return StreamId == STREAM_ID_NONE_; 993 } 994 } 995 996 bool msgRequiresOp(int64_t MsgId) { 997 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 998 } 999 1000 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 1001 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 1002 } 1003 1004 void decodeMsg(unsigned Val, 1005 uint16_t &MsgId, 1006 uint16_t &OpId, 1007 uint16_t &StreamId) { 1008 MsgId = Val & ID_MASK_; 1009 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 1010 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 1011 } 1012 1013 uint64_t encodeMsg(uint64_t MsgId, 1014 uint64_t OpId, 1015 uint64_t StreamId) { 1016 return (MsgId << ID_SHIFT_) | 1017 (OpId << OP_SHIFT_) | 1018 (StreamId << STREAM_ID_SHIFT_); 1019 } 1020 1021 } // namespace SendMsg 1022 1023 //===----------------------------------------------------------------------===// 1024 // 1025 //===----------------------------------------------------------------------===// 1026 1027 unsigned getInitialPSInputAddr(const Function &F) { 1028 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1029 } 1030 1031 bool isShader(CallingConv::ID cc) { 1032 switch(cc) { 1033 case CallingConv::AMDGPU_VS: 1034 case CallingConv::AMDGPU_LS: 1035 case CallingConv::AMDGPU_HS: 1036 case CallingConv::AMDGPU_ES: 1037 case CallingConv::AMDGPU_GS: 1038 case CallingConv::AMDGPU_PS: 1039 case CallingConv::AMDGPU_CS: 1040 return true; 1041 default: 1042 return false; 1043 } 1044 } 1045 1046 bool isGraphics(CallingConv::ID cc) { 1047 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; 1048 } 1049 1050 bool isCompute(CallingConv::ID cc) { 1051 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; 1052 } 1053 1054 bool isEntryFunctionCC(CallingConv::ID CC) { 1055 switch (CC) { 1056 case CallingConv::AMDGPU_KERNEL: 1057 case CallingConv::SPIR_KERNEL: 1058 case CallingConv::AMDGPU_VS: 1059 case CallingConv::AMDGPU_GS: 1060 case CallingConv::AMDGPU_PS: 1061 case CallingConv::AMDGPU_CS: 1062 case CallingConv::AMDGPU_ES: 1063 case CallingConv::AMDGPU_HS: 1064 case CallingConv::AMDGPU_LS: 1065 return true; 1066 default: 1067 return false; 1068 } 1069 } 1070 1071 bool isModuleEntryFunctionCC(CallingConv::ID CC) { 1072 switch (CC) { 1073 case CallingConv::AMDGPU_Gfx: 1074 return true; 1075 default: 1076 return isEntryFunctionCC(CC); 1077 } 1078 } 1079 1080 bool hasXNACK(const MCSubtargetInfo &STI) { 1081 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1082 } 1083 1084 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1085 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1086 } 1087 1088 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1089 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1090 } 1091 1092 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1093 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1094 } 1095 1096 bool hasG16(const MCSubtargetInfo &STI) { 1097 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1098 } 1099 1100 bool hasPackedD16(const MCSubtargetInfo &STI) { 1101 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1102 } 1103 1104 bool isSI(const MCSubtargetInfo &STI) { 1105 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1106 } 1107 1108 bool isCI(const MCSubtargetInfo &STI) { 1109 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1110 } 1111 1112 bool isVI(const MCSubtargetInfo &STI) { 1113 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1114 } 1115 1116 bool isGFX9(const MCSubtargetInfo &STI) { 1117 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1118 } 1119 1120 bool isGFX9Plus(const MCSubtargetInfo &STI) { 1121 return isGFX9(STI) || isGFX10Plus(STI); 1122 } 1123 1124 bool isGFX10(const MCSubtargetInfo &STI) { 1125 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1126 } 1127 1128 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } 1129 1130 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1131 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1132 } 1133 1134 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1135 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1136 } 1137 1138 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1139 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1140 } 1141 1142 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1143 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1144 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1145 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1146 Reg == AMDGPU::SCC; 1147 } 1148 1149 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 1150 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 1151 if (*R == Reg1) return true; 1152 } 1153 return false; 1154 } 1155 1156 #define MAP_REG2REG \ 1157 using namespace AMDGPU; \ 1158 switch(Reg) { \ 1159 default: return Reg; \ 1160 CASE_CI_VI(FLAT_SCR) \ 1161 CASE_CI_VI(FLAT_SCR_LO) \ 1162 CASE_CI_VI(FLAT_SCR_HI) \ 1163 CASE_VI_GFX9_GFX10(TTMP0) \ 1164 CASE_VI_GFX9_GFX10(TTMP1) \ 1165 CASE_VI_GFX9_GFX10(TTMP2) \ 1166 CASE_VI_GFX9_GFX10(TTMP3) \ 1167 CASE_VI_GFX9_GFX10(TTMP4) \ 1168 CASE_VI_GFX9_GFX10(TTMP5) \ 1169 CASE_VI_GFX9_GFX10(TTMP6) \ 1170 CASE_VI_GFX9_GFX10(TTMP7) \ 1171 CASE_VI_GFX9_GFX10(TTMP8) \ 1172 CASE_VI_GFX9_GFX10(TTMP9) \ 1173 CASE_VI_GFX9_GFX10(TTMP10) \ 1174 CASE_VI_GFX9_GFX10(TTMP11) \ 1175 CASE_VI_GFX9_GFX10(TTMP12) \ 1176 CASE_VI_GFX9_GFX10(TTMP13) \ 1177 CASE_VI_GFX9_GFX10(TTMP14) \ 1178 CASE_VI_GFX9_GFX10(TTMP15) \ 1179 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 1180 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 1181 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 1182 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 1183 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 1184 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 1185 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 1186 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 1187 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 1188 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 1189 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 1190 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 1191 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1192 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1193 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1194 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1195 } 1196 1197 #define CASE_CI_VI(node) \ 1198 assert(!isSI(STI)); \ 1199 case node: return isCI(STI) ? node##_ci : node##_vi; 1200 1201 #define CASE_VI_GFX9_GFX10(node) \ 1202 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 1203 1204 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1205 if (STI.getTargetTriple().getArch() == Triple::r600) 1206 return Reg; 1207 MAP_REG2REG 1208 } 1209 1210 #undef CASE_CI_VI 1211 #undef CASE_VI_GFX9_GFX10 1212 1213 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1214 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 1215 1216 unsigned mc2PseudoReg(unsigned Reg) { 1217 MAP_REG2REG 1218 } 1219 1220 #undef CASE_CI_VI 1221 #undef CASE_VI_GFX9_GFX10 1222 #undef MAP_REG2REG 1223 1224 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1225 assert(OpNo < Desc.NumOperands); 1226 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1227 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1228 OpType <= AMDGPU::OPERAND_SRC_LAST; 1229 } 1230 1231 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1232 assert(OpNo < Desc.NumOperands); 1233 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1234 switch (OpType) { 1235 case AMDGPU::OPERAND_REG_IMM_FP32: 1236 case AMDGPU::OPERAND_REG_IMM_FP64: 1237 case AMDGPU::OPERAND_REG_IMM_FP16: 1238 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1239 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1240 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1241 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1242 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1243 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1244 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1245 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1246 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1247 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1248 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1249 return true; 1250 default: 1251 return false; 1252 } 1253 } 1254 1255 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1256 assert(OpNo < Desc.NumOperands); 1257 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1258 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1259 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1260 } 1261 1262 // Avoid using MCRegisterClass::getSize, since that function will go away 1263 // (move from MC* level to Target* level). Return size in bits. 1264 unsigned getRegBitWidth(unsigned RCID) { 1265 switch (RCID) { 1266 case AMDGPU::VGPR_LO16RegClassID: 1267 case AMDGPU::VGPR_HI16RegClassID: 1268 case AMDGPU::SGPR_LO16RegClassID: 1269 case AMDGPU::AGPR_LO16RegClassID: 1270 return 16; 1271 case AMDGPU::SGPR_32RegClassID: 1272 case AMDGPU::VGPR_32RegClassID: 1273 case AMDGPU::VRegOrLds_32RegClassID: 1274 case AMDGPU::AGPR_32RegClassID: 1275 case AMDGPU::VS_32RegClassID: 1276 case AMDGPU::AV_32RegClassID: 1277 case AMDGPU::SReg_32RegClassID: 1278 case AMDGPU::SReg_32_XM0RegClassID: 1279 case AMDGPU::SRegOrLds_32RegClassID: 1280 return 32; 1281 case AMDGPU::SGPR_64RegClassID: 1282 case AMDGPU::VS_64RegClassID: 1283 case AMDGPU::AV_64RegClassID: 1284 case AMDGPU::SReg_64RegClassID: 1285 case AMDGPU::VReg_64RegClassID: 1286 case AMDGPU::AReg_64RegClassID: 1287 case AMDGPU::SReg_64_XEXECRegClassID: 1288 return 64; 1289 case AMDGPU::SGPR_96RegClassID: 1290 case AMDGPU::SReg_96RegClassID: 1291 case AMDGPU::VReg_96RegClassID: 1292 case AMDGPU::AReg_96RegClassID: 1293 return 96; 1294 case AMDGPU::SGPR_128RegClassID: 1295 case AMDGPU::SReg_128RegClassID: 1296 case AMDGPU::VReg_128RegClassID: 1297 case AMDGPU::AReg_128RegClassID: 1298 return 128; 1299 case AMDGPU::SGPR_160RegClassID: 1300 case AMDGPU::SReg_160RegClassID: 1301 case AMDGPU::VReg_160RegClassID: 1302 case AMDGPU::AReg_160RegClassID: 1303 return 160; 1304 case AMDGPU::SGPR_192RegClassID: 1305 case AMDGPU::SReg_192RegClassID: 1306 case AMDGPU::VReg_192RegClassID: 1307 case AMDGPU::AReg_192RegClassID: 1308 return 192; 1309 case AMDGPU::SGPR_256RegClassID: 1310 case AMDGPU::SReg_256RegClassID: 1311 case AMDGPU::VReg_256RegClassID: 1312 case AMDGPU::AReg_256RegClassID: 1313 return 256; 1314 case AMDGPU::SGPR_512RegClassID: 1315 case AMDGPU::SReg_512RegClassID: 1316 case AMDGPU::VReg_512RegClassID: 1317 case AMDGPU::AReg_512RegClassID: 1318 return 512; 1319 case AMDGPU::SGPR_1024RegClassID: 1320 case AMDGPU::SReg_1024RegClassID: 1321 case AMDGPU::VReg_1024RegClassID: 1322 case AMDGPU::AReg_1024RegClassID: 1323 return 1024; 1324 default: 1325 llvm_unreachable("Unexpected register class"); 1326 } 1327 } 1328 1329 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1330 return getRegBitWidth(RC.getID()); 1331 } 1332 1333 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1334 unsigned OpNo) { 1335 assert(OpNo < Desc.NumOperands); 1336 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1337 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1338 } 1339 1340 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1341 if (isInlinableIntLiteral(Literal)) 1342 return true; 1343 1344 uint64_t Val = static_cast<uint64_t>(Literal); 1345 return (Val == DoubleToBits(0.0)) || 1346 (Val == DoubleToBits(1.0)) || 1347 (Val == DoubleToBits(-1.0)) || 1348 (Val == DoubleToBits(0.5)) || 1349 (Val == DoubleToBits(-0.5)) || 1350 (Val == DoubleToBits(2.0)) || 1351 (Val == DoubleToBits(-2.0)) || 1352 (Val == DoubleToBits(4.0)) || 1353 (Val == DoubleToBits(-4.0)) || 1354 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1355 } 1356 1357 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1358 if (isInlinableIntLiteral(Literal)) 1359 return true; 1360 1361 // The actual type of the operand does not seem to matter as long 1362 // as the bits match one of the inline immediate values. For example: 1363 // 1364 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1365 // so it is a legal inline immediate. 1366 // 1367 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1368 // floating-point, so it is a legal inline immediate. 1369 1370 uint32_t Val = static_cast<uint32_t>(Literal); 1371 return (Val == FloatToBits(0.0f)) || 1372 (Val == FloatToBits(1.0f)) || 1373 (Val == FloatToBits(-1.0f)) || 1374 (Val == FloatToBits(0.5f)) || 1375 (Val == FloatToBits(-0.5f)) || 1376 (Val == FloatToBits(2.0f)) || 1377 (Val == FloatToBits(-2.0f)) || 1378 (Val == FloatToBits(4.0f)) || 1379 (Val == FloatToBits(-4.0f)) || 1380 (Val == 0x3e22f983 && HasInv2Pi); 1381 } 1382 1383 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1384 if (!HasInv2Pi) 1385 return false; 1386 1387 if (isInlinableIntLiteral(Literal)) 1388 return true; 1389 1390 uint16_t Val = static_cast<uint16_t>(Literal); 1391 return Val == 0x3C00 || // 1.0 1392 Val == 0xBC00 || // -1.0 1393 Val == 0x3800 || // 0.5 1394 Val == 0xB800 || // -0.5 1395 Val == 0x4000 || // 2.0 1396 Val == 0xC000 || // -2.0 1397 Val == 0x4400 || // 4.0 1398 Val == 0xC400 || // -4.0 1399 Val == 0x3118; // 1/2pi 1400 } 1401 1402 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1403 assert(HasInv2Pi); 1404 1405 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1406 int16_t Trunc = static_cast<int16_t>(Literal); 1407 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1408 } 1409 if (!(Literal & 0xffff)) 1410 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1411 1412 int16_t Lo16 = static_cast<int16_t>(Literal); 1413 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1414 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1415 } 1416 1417 bool isInlinableIntLiteralV216(int32_t Literal) { 1418 int16_t Lo16 = static_cast<int16_t>(Literal); 1419 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1420 return isInlinableIntLiteral(Lo16); 1421 1422 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1423 if (!(Literal & 0xffff)) 1424 return isInlinableIntLiteral(Hi16); 1425 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1426 } 1427 1428 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1429 assert(HasInv2Pi); 1430 1431 int16_t Lo16 = static_cast<int16_t>(Literal); 1432 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1433 return true; 1434 1435 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1436 if (!(Literal & 0xffff)) 1437 return true; 1438 return Lo16 == Hi16; 1439 } 1440 1441 bool isArgPassedInSGPR(const Argument *A) { 1442 const Function *F = A->getParent(); 1443 1444 // Arguments to compute shaders are never a source of divergence. 1445 CallingConv::ID CC = F->getCallingConv(); 1446 switch (CC) { 1447 case CallingConv::AMDGPU_KERNEL: 1448 case CallingConv::SPIR_KERNEL: 1449 return true; 1450 case CallingConv::AMDGPU_VS: 1451 case CallingConv::AMDGPU_LS: 1452 case CallingConv::AMDGPU_HS: 1453 case CallingConv::AMDGPU_ES: 1454 case CallingConv::AMDGPU_GS: 1455 case CallingConv::AMDGPU_PS: 1456 case CallingConv::AMDGPU_CS: 1457 case CallingConv::AMDGPU_Gfx: 1458 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1459 // Everything else is in VGPRs. 1460 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1461 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1462 default: 1463 // TODO: Should calls support inreg for SGPR inputs? 1464 return false; 1465 } 1466 } 1467 1468 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1469 return isGCN3Encoding(ST) || isGFX10Plus(ST); 1470 } 1471 1472 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1473 return isGFX9Plus(ST); 1474 } 1475 1476 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1477 int64_t EncodedOffset) { 1478 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1479 : isUInt<8>(EncodedOffset); 1480 } 1481 1482 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1483 int64_t EncodedOffset, 1484 bool IsBuffer) { 1485 return !IsBuffer && 1486 hasSMRDSignedImmOffset(ST) && 1487 isInt<21>(EncodedOffset); 1488 } 1489 1490 static bool isDwordAligned(uint64_t ByteOffset) { 1491 return (ByteOffset & 3) == 0; 1492 } 1493 1494 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1495 uint64_t ByteOffset) { 1496 if (hasSMEMByteOffset(ST)) 1497 return ByteOffset; 1498 1499 assert(isDwordAligned(ByteOffset)); 1500 return ByteOffset >> 2; 1501 } 1502 1503 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1504 int64_t ByteOffset, bool IsBuffer) { 1505 // The signed version is always a byte offset. 1506 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1507 assert(hasSMEMByteOffset(ST)); 1508 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1509 } 1510 1511 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1512 return None; 1513 1514 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1515 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1516 ? Optional<int64_t>(EncodedOffset) 1517 : None; 1518 } 1519 1520 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1521 int64_t ByteOffset) { 1522 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1523 return None; 1524 1525 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1526 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1527 } 1528 1529 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { 1530 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. 1531 if (AMDGPU::isGFX10(ST)) 1532 return Signed ? 12 : 11; 1533 1534 return Signed ? 13 : 12; 1535 } 1536 1537 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1538 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1539 // hardware bug needing a workaround). 1540 // 1541 // The required alignment ensures that individual address components remain 1542 // aligned if they are aligned to begin with. It also ensures that additional 1543 // offsets within the given alignment can be added to the resulting ImmOffset. 1544 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1545 const GCNSubtarget *Subtarget, Align Alignment) { 1546 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 1547 uint32_t Overflow = 0; 1548 1549 if (Imm > MaxImm) { 1550 if (Imm <= MaxImm + 64) { 1551 // Use an SOffset inline constant for 4..64 1552 Overflow = Imm - MaxImm; 1553 Imm = MaxImm; 1554 } else { 1555 // Try to keep the same value in SOffset for adjacent loads, so that 1556 // the corresponding register contents can be re-used. 1557 // 1558 // Load values with all low-bits (except for alignment bits) set into 1559 // SOffset, so that a larger range of values can be covered using 1560 // s_movk_i32. 1561 // 1562 // Atomic operations fail to work correctly when individual address 1563 // components are unaligned, even if their sum is aligned. 1564 uint32_t High = (Imm + Alignment.value()) & ~4095; 1565 uint32_t Low = (Imm + Alignment.value()) & 4095; 1566 Imm = Low; 1567 Overflow = High - Alignment.value(); 1568 } 1569 } 1570 1571 // There is a hardware bug in SI and CI which prevents address clamping in 1572 // MUBUF instructions from working correctly with SOffsets. The immediate 1573 // offset is unaffected. 1574 if (Overflow > 0 && 1575 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1576 return false; 1577 1578 ImmOffset = Imm; 1579 SOffset = Overflow; 1580 return true; 1581 } 1582 1583 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1584 *this = getDefaultForCallingConv(F.getCallingConv()); 1585 1586 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1587 if (!IEEEAttr.empty()) 1588 IEEE = IEEEAttr == "true"; 1589 1590 StringRef DX10ClampAttr 1591 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1592 if (!DX10ClampAttr.empty()) 1593 DX10Clamp = DX10ClampAttr == "true"; 1594 1595 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1596 if (!DenormF32Attr.empty()) { 1597 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1598 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1599 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1600 } 1601 1602 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1603 if (!DenormAttr.empty()) { 1604 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1605 1606 if (DenormF32Attr.empty()) { 1607 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1608 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1609 } 1610 1611 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1612 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1613 } 1614 } 1615 1616 namespace { 1617 1618 struct SourceOfDivergence { 1619 unsigned Intr; 1620 }; 1621 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1622 1623 #define GET_SourcesOfDivergence_IMPL 1624 #define GET_Gfx9BufferFormat_IMPL 1625 #define GET_Gfx10PlusBufferFormat_IMPL 1626 #include "AMDGPUGenSearchableTables.inc" 1627 1628 } // end anonymous namespace 1629 1630 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1631 return lookupSourceOfDivergence(IntrID); 1632 } 1633 1634 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 1635 uint8_t NumComponents, 1636 uint8_t NumFormat, 1637 const MCSubtargetInfo &STI) { 1638 return isGFX10Plus(STI) 1639 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 1640 NumFormat) 1641 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 1642 } 1643 1644 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 1645 const MCSubtargetInfo &STI) { 1646 return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) 1647 : getGfx9BufferFormatInfo(Format); 1648 } 1649 1650 } // namespace AMDGPU 1651 } // namespace llvm 1652