1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDGPUTargetTransformInfo.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/IntrinsicsR600.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/MC/MCSectionELF.h" 32 #include "llvm/MC/MCSubtargetInfo.h" 33 #include "llvm/MC/SubtargetFeature.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <cstring> 41 #include <utility> 42 43 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 44 45 #define GET_INSTRINFO_NAMED_OPS 46 #define GET_INSTRMAP_INFO 47 #include "AMDGPUGenInstrInfo.inc" 48 #undef GET_INSTRMAP_INFO 49 #undef GET_INSTRINFO_NAMED_OPS 50 51 namespace { 52 53 /// \returns Bit mask for given bit \p Shift and bit \p Width. 54 unsigned getBitMask(unsigned Shift, unsigned Width) { 55 return ((1 << Width) - 1) << Shift; 56 } 57 58 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 59 /// 60 /// \returns Packed \p Dst. 61 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 62 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 63 Dst |= (Src << Shift) & getBitMask(Shift, Width); 64 return Dst; 65 } 66 67 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 68 /// 69 /// \returns Unpacked bits. 70 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 71 return (Src & getBitMask(Shift, Width)) >> Shift; 72 } 73 74 /// \returns Vmcnt bit shift (lower bits). 75 unsigned getVmcntBitShiftLo() { return 0; } 76 77 /// \returns Vmcnt bit width (lower bits). 78 unsigned getVmcntBitWidthLo() { return 4; } 79 80 /// \returns Expcnt bit shift. 81 unsigned getExpcntBitShift() { return 4; } 82 83 /// \returns Expcnt bit width. 84 unsigned getExpcntBitWidth() { return 3; } 85 86 /// \returns Lgkmcnt bit shift. 87 unsigned getLgkmcntBitShift() { return 8; } 88 89 /// \returns Lgkmcnt bit width. 90 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 91 return (VersionMajor >= 10) ? 6 : 4; 92 } 93 94 /// \returns Vmcnt bit shift (higher bits). 95 unsigned getVmcntBitShiftHi() { return 14; } 96 97 /// \returns Vmcnt bit width (higher bits). 98 unsigned getVmcntBitWidthHi() { return 2; } 99 100 } // end namespace anonymous 101 102 namespace llvm { 103 104 namespace AMDGPU { 105 106 #define GET_MIMGBaseOpcodesTable_IMPL 107 #define GET_MIMGDimInfoTable_IMPL 108 #define GET_MIMGInfoTable_IMPL 109 #define GET_MIMGLZMappingTable_IMPL 110 #define GET_MIMGMIPMappingTable_IMPL 111 #define GET_MIMGG16MappingTable_IMPL 112 #include "AMDGPUGenSearchableTables.inc" 113 114 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 115 unsigned VDataDwords, unsigned VAddrDwords) { 116 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 117 VDataDwords, VAddrDwords); 118 return Info ? Info->Opcode : -1; 119 } 120 121 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 122 const MIMGInfo *Info = getMIMGInfo(Opc); 123 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 124 } 125 126 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 127 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 128 const MIMGInfo *NewInfo = 129 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 130 NewChannels, OrigInfo->VAddrDwords); 131 return NewInfo ? NewInfo->Opcode : -1; 132 } 133 134 struct MUBUFInfo { 135 uint16_t Opcode; 136 uint16_t BaseOpcode; 137 uint8_t elements; 138 bool has_vaddr; 139 bool has_srsrc; 140 bool has_soffset; 141 }; 142 143 struct MTBUFInfo { 144 uint16_t Opcode; 145 uint16_t BaseOpcode; 146 uint8_t elements; 147 bool has_vaddr; 148 bool has_srsrc; 149 bool has_soffset; 150 }; 151 152 struct SMInfo { 153 uint16_t Opcode; 154 bool IsBuffer; 155 }; 156 157 #define GET_MTBUFInfoTable_DECL 158 #define GET_MTBUFInfoTable_IMPL 159 #define GET_MUBUFInfoTable_DECL 160 #define GET_MUBUFInfoTable_IMPL 161 #define GET_SMInfoTable_DECL 162 #define GET_SMInfoTable_IMPL 163 #include "AMDGPUGenSearchableTables.inc" 164 165 int getMTBUFBaseOpcode(unsigned Opc) { 166 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 167 return Info ? Info->BaseOpcode : -1; 168 } 169 170 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 171 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 172 return Info ? Info->Opcode : -1; 173 } 174 175 int getMTBUFElements(unsigned Opc) { 176 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 177 return Info ? Info->elements : 0; 178 } 179 180 bool getMTBUFHasVAddr(unsigned Opc) { 181 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 182 return Info ? Info->has_vaddr : false; 183 } 184 185 bool getMTBUFHasSrsrc(unsigned Opc) { 186 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 187 return Info ? Info->has_srsrc : false; 188 } 189 190 bool getMTBUFHasSoffset(unsigned Opc) { 191 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 192 return Info ? Info->has_soffset : false; 193 } 194 195 int getMUBUFBaseOpcode(unsigned Opc) { 196 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 197 return Info ? Info->BaseOpcode : -1; 198 } 199 200 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 201 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 202 return Info ? Info->Opcode : -1; 203 } 204 205 int getMUBUFElements(unsigned Opc) { 206 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 207 return Info ? Info->elements : 0; 208 } 209 210 bool getMUBUFHasVAddr(unsigned Opc) { 211 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 212 return Info ? Info->has_vaddr : false; 213 } 214 215 bool getMUBUFHasSrsrc(unsigned Opc) { 216 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 217 return Info ? Info->has_srsrc : false; 218 } 219 220 bool getMUBUFHasSoffset(unsigned Opc) { 221 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 222 return Info ? Info->has_soffset : false; 223 } 224 225 bool getSMEMIsBuffer(unsigned Opc) { 226 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 227 return Info ? Info->IsBuffer : false; 228 } 229 230 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 231 // header files, so we need to wrap it in a function that takes unsigned 232 // instead. 233 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 234 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 235 } 236 237 namespace IsaInfo { 238 239 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 240 auto TargetTriple = STI->getTargetTriple(); 241 auto Version = getIsaVersion(STI->getCPU()); 242 243 Stream << TargetTriple.getArchName() << '-' 244 << TargetTriple.getVendorName() << '-' 245 << TargetTriple.getOSName() << '-' 246 << TargetTriple.getEnvironmentName() << '-' 247 << "gfx" 248 << Version.Major 249 << Version.Minor 250 << Version.Stepping; 251 252 if (hasXNACK(*STI)) 253 Stream << "+xnack"; 254 if (hasSRAMECC(*STI)) 255 Stream << "+sram-ecc"; 256 257 Stream.flush(); 258 } 259 260 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 261 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 262 STI->getFeatureBits().test(FeatureCodeObjectV3); 263 } 264 265 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 266 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 267 return 16; 268 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 269 return 32; 270 271 return 64; 272 } 273 274 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 275 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 276 return 32768; 277 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 278 return 65536; 279 280 return 0; 281 } 282 283 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 284 // "Per CU" really means "per whatever functional block the waves of a 285 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 286 // two SIMDs. 287 if (isGFX10(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 288 return 2; 289 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 290 // two CUs, so a total of four SIMDs. 291 return 4; 292 } 293 294 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 295 unsigned FlatWorkGroupSize) { 296 assert(FlatWorkGroupSize != 0); 297 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 298 return 8; 299 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 300 if (N == 1) 301 return 40; 302 N = 40 / N; 303 return std::min(N, 16u); 304 } 305 306 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 307 return 1; 308 } 309 310 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 311 // FIXME: Need to take scratch memory into account. 312 if (!isGFX10(*STI)) 313 return 10; 314 return hasGFX10_3Insts(*STI) ? 16 : 20; 315 } 316 317 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 318 unsigned FlatWorkGroupSize) { 319 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 320 getEUsPerCU(STI)); 321 } 322 323 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 324 return 1; 325 } 326 327 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 328 // Some subtargets allow encoding 2048, but this isn't tested or supported. 329 return 1024; 330 } 331 332 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 333 unsigned FlatWorkGroupSize) { 334 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 335 } 336 337 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 338 IsaVersion Version = getIsaVersion(STI->getCPU()); 339 if (Version.Major >= 10) 340 return getAddressableNumSGPRs(STI); 341 if (Version.Major >= 8) 342 return 16; 343 return 8; 344 } 345 346 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 347 return 8; 348 } 349 350 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 351 IsaVersion Version = getIsaVersion(STI->getCPU()); 352 if (Version.Major >= 8) 353 return 800; 354 return 512; 355 } 356 357 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 358 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 359 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 360 361 IsaVersion Version = getIsaVersion(STI->getCPU()); 362 if (Version.Major >= 10) 363 return 106; 364 if (Version.Major >= 8) 365 return 102; 366 return 104; 367 } 368 369 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 370 assert(WavesPerEU != 0); 371 372 IsaVersion Version = getIsaVersion(STI->getCPU()); 373 if (Version.Major >= 10) 374 return 0; 375 376 if (WavesPerEU >= getMaxWavesPerEU(STI)) 377 return 0; 378 379 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 380 if (STI->getFeatureBits().test(FeatureTrapHandler)) 381 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 382 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 383 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 384 } 385 386 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 387 bool Addressable) { 388 assert(WavesPerEU != 0); 389 390 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 391 IsaVersion Version = getIsaVersion(STI->getCPU()); 392 if (Version.Major >= 10) 393 return Addressable ? AddressableNumSGPRs : 108; 394 if (Version.Major >= 8 && !Addressable) 395 AddressableNumSGPRs = 112; 396 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 397 if (STI->getFeatureBits().test(FeatureTrapHandler)) 398 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 399 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 400 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 401 } 402 403 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 404 bool FlatScrUsed, bool XNACKUsed) { 405 unsigned ExtraSGPRs = 0; 406 if (VCCUsed) 407 ExtraSGPRs = 2; 408 409 IsaVersion Version = getIsaVersion(STI->getCPU()); 410 if (Version.Major >= 10) 411 return ExtraSGPRs; 412 413 if (Version.Major < 8) { 414 if (FlatScrUsed) 415 ExtraSGPRs = 4; 416 } else { 417 if (XNACKUsed) 418 ExtraSGPRs = 4; 419 420 if (FlatScrUsed) 421 ExtraSGPRs = 6; 422 } 423 424 return ExtraSGPRs; 425 } 426 427 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 428 bool FlatScrUsed) { 429 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 430 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 431 } 432 433 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 434 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 435 // SGPRBlocks is actual number of SGPR blocks minus 1. 436 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 437 } 438 439 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 440 Optional<bool> EnableWavefrontSize32) { 441 bool IsWave32 = EnableWavefrontSize32 ? 442 *EnableWavefrontSize32 : 443 STI->getFeatureBits().test(FeatureWavefrontSize32); 444 445 if (hasGFX10_3Insts(*STI)) 446 return IsWave32 ? 16 : 8; 447 448 return IsWave32 ? 8 : 4; 449 } 450 451 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 452 Optional<bool> EnableWavefrontSize32) { 453 454 bool IsWave32 = EnableWavefrontSize32 ? 455 *EnableWavefrontSize32 : 456 STI->getFeatureBits().test(FeatureWavefrontSize32); 457 458 return IsWave32 ? 8 : 4; 459 } 460 461 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 462 if (!isGFX10(*STI)) 463 return 256; 464 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 465 } 466 467 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 468 return 256; 469 } 470 471 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 472 assert(WavesPerEU != 0); 473 474 if (WavesPerEU >= getMaxWavesPerEU(STI)) 475 return 0; 476 unsigned MinNumVGPRs = 477 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 478 getVGPRAllocGranule(STI)) + 1; 479 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 480 } 481 482 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 483 assert(WavesPerEU != 0); 484 485 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 486 getVGPRAllocGranule(STI)); 487 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 488 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 489 } 490 491 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 492 Optional<bool> EnableWavefrontSize32) { 493 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 494 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 495 // VGPRBlocks is actual number of VGPR blocks minus 1. 496 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 497 } 498 499 } // end namespace IsaInfo 500 501 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 502 const MCSubtargetInfo *STI) { 503 IsaVersion Version = getIsaVersion(STI->getCPU()); 504 505 memset(&Header, 0, sizeof(Header)); 506 507 Header.amd_kernel_code_version_major = 1; 508 Header.amd_kernel_code_version_minor = 2; 509 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 510 Header.amd_machine_version_major = Version.Major; 511 Header.amd_machine_version_minor = Version.Minor; 512 Header.amd_machine_version_stepping = Version.Stepping; 513 Header.kernel_code_entry_byte_offset = sizeof(Header); 514 Header.wavefront_size = 6; 515 516 // If the code object does not support indirect functions, then the value must 517 // be 0xffffffff. 518 Header.call_convention = -1; 519 520 // These alignment values are specified in powers of two, so alignment = 521 // 2^n. The minimum alignment is 2^4 = 16. 522 Header.kernarg_segment_alignment = 4; 523 Header.group_segment_alignment = 4; 524 Header.private_segment_alignment = 4; 525 526 if (Version.Major >= 10) { 527 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 528 Header.wavefront_size = 5; 529 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 530 } 531 Header.compute_pgm_resource_registers |= 532 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 533 S_00B848_MEM_ORDERED(1); 534 } 535 } 536 537 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 538 const MCSubtargetInfo *STI) { 539 IsaVersion Version = getIsaVersion(STI->getCPU()); 540 541 amdhsa::kernel_descriptor_t KD; 542 memset(&KD, 0, sizeof(KD)); 543 544 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 545 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 546 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 547 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 548 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 549 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 550 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 551 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 552 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 553 if (Version.Major >= 10) { 554 AMDHSA_BITS_SET(KD.kernel_code_properties, 555 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 556 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 557 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 558 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 559 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 560 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 561 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 562 } 563 return KD; 564 } 565 566 bool isGroupSegment(const GlobalValue *GV) { 567 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 568 } 569 570 bool isGlobalSegment(const GlobalValue *GV) { 571 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 572 } 573 574 bool isReadOnlySegment(const GlobalValue *GV) { 575 unsigned AS = GV->getAddressSpace(); 576 return AS == AMDGPUAS::CONSTANT_ADDRESS || 577 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 578 } 579 580 bool shouldEmitConstantsToTextSection(const Triple &TT) { 581 return TT.getArch() == Triple::r600; 582 } 583 584 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 585 Attribute A = F.getFnAttribute(Name); 586 int Result = Default; 587 588 if (A.isStringAttribute()) { 589 StringRef Str = A.getValueAsString(); 590 if (Str.getAsInteger(0, Result)) { 591 LLVMContext &Ctx = F.getContext(); 592 Ctx.emitError("can't parse integer attribute " + Name); 593 } 594 } 595 596 return Result; 597 } 598 599 std::pair<int, int> getIntegerPairAttribute(const Function &F, 600 StringRef Name, 601 std::pair<int, int> Default, 602 bool OnlyFirstRequired) { 603 Attribute A = F.getFnAttribute(Name); 604 if (!A.isStringAttribute()) 605 return Default; 606 607 LLVMContext &Ctx = F.getContext(); 608 std::pair<int, int> Ints = Default; 609 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 610 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 611 Ctx.emitError("can't parse first integer attribute " + Name); 612 return Default; 613 } 614 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 615 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 616 Ctx.emitError("can't parse second integer attribute " + Name); 617 return Default; 618 } 619 } 620 621 return Ints; 622 } 623 624 unsigned getVmcntBitMask(const IsaVersion &Version) { 625 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 626 if (Version.Major < 9) 627 return VmcntLo; 628 629 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 630 return VmcntLo | VmcntHi; 631 } 632 633 unsigned getExpcntBitMask(const IsaVersion &Version) { 634 return (1 << getExpcntBitWidth()) - 1; 635 } 636 637 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 638 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 639 } 640 641 unsigned getWaitcntBitMask(const IsaVersion &Version) { 642 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 643 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 644 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 645 getLgkmcntBitWidth(Version.Major)); 646 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 647 if (Version.Major < 9) 648 return Waitcnt; 649 650 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 651 return Waitcnt | VmcntHi; 652 } 653 654 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 655 unsigned VmcntLo = 656 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 657 if (Version.Major < 9) 658 return VmcntLo; 659 660 unsigned VmcntHi = 661 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 662 VmcntHi <<= getVmcntBitWidthLo(); 663 return VmcntLo | VmcntHi; 664 } 665 666 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 667 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 668 } 669 670 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 671 return unpackBits(Waitcnt, getLgkmcntBitShift(), 672 getLgkmcntBitWidth(Version.Major)); 673 } 674 675 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 676 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 677 Vmcnt = decodeVmcnt(Version, Waitcnt); 678 Expcnt = decodeExpcnt(Version, Waitcnt); 679 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 680 } 681 682 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 683 Waitcnt Decoded; 684 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 685 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 686 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 687 return Decoded; 688 } 689 690 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 691 unsigned Vmcnt) { 692 Waitcnt = 693 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 694 if (Version.Major < 9) 695 return Waitcnt; 696 697 Vmcnt >>= getVmcntBitWidthLo(); 698 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 699 } 700 701 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 702 unsigned Expcnt) { 703 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 704 } 705 706 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 707 unsigned Lgkmcnt) { 708 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 709 getLgkmcntBitWidth(Version.Major)); 710 } 711 712 unsigned encodeWaitcnt(const IsaVersion &Version, 713 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 714 unsigned Waitcnt = getWaitcntBitMask(Version); 715 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 716 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 717 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 718 return Waitcnt; 719 } 720 721 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 722 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 723 } 724 725 //===----------------------------------------------------------------------===// 726 // hwreg 727 //===----------------------------------------------------------------------===// 728 729 namespace Hwreg { 730 731 int64_t getHwregId(const StringRef Name) { 732 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 733 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 734 return Id; 735 } 736 return ID_UNKNOWN_; 737 } 738 739 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 740 if (isSI(STI) || isCI(STI) || isVI(STI)) 741 return ID_SYMBOLIC_FIRST_GFX9_; 742 else if (isGFX9(STI)) 743 return ID_SYMBOLIC_FIRST_GFX10_; 744 else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) 745 return ID_SYMBOLIC_FIRST_GFX1030_; 746 else 747 return ID_SYMBOLIC_LAST_; 748 } 749 750 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 751 return 752 ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 753 IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI)); 754 } 755 756 bool isValidHwreg(int64_t Id) { 757 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 758 } 759 760 bool isValidHwregOffset(int64_t Offset) { 761 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 762 } 763 764 bool isValidHwregWidth(int64_t Width) { 765 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 766 } 767 768 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 769 return (Id << ID_SHIFT_) | 770 (Offset << OFFSET_SHIFT_) | 771 ((Width - 1) << WIDTH_M1_SHIFT_); 772 } 773 774 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 775 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 776 } 777 778 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 779 Id = (Val & ID_MASK_) >> ID_SHIFT_; 780 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 781 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 782 } 783 784 } // namespace Hwreg 785 786 //===----------------------------------------------------------------------===// 787 // MTBUF Format 788 //===----------------------------------------------------------------------===// 789 790 namespace MTBUFFormat { 791 792 int64_t getDfmt(const StringRef Name) { 793 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 794 if (Name == DfmtSymbolic[Id]) 795 return Id; 796 } 797 return DFMT_UNDEF; 798 } 799 800 StringRef getDfmtName(unsigned Id) { 801 assert(Id <= DFMT_MAX); 802 return DfmtSymbolic[Id]; 803 } 804 805 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 806 if (isSI(STI) || isCI(STI)) 807 return NfmtSymbolicSICI; 808 if (isVI(STI) || isGFX9(STI)) 809 return NfmtSymbolicVI; 810 return NfmtSymbolicGFX10; 811 } 812 813 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 814 auto lookupTable = getNfmtLookupTable(STI); 815 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 816 if (Name == lookupTable[Id]) 817 return Id; 818 } 819 return NFMT_UNDEF; 820 } 821 822 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 823 assert(Id <= NFMT_MAX); 824 return getNfmtLookupTable(STI)[Id]; 825 } 826 827 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 828 unsigned Dfmt; 829 unsigned Nfmt; 830 decodeDfmtNfmt(Id, Dfmt, Nfmt); 831 return isValidNfmt(Nfmt, STI); 832 } 833 834 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 835 return !getNfmtName(Id, STI).empty(); 836 } 837 838 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 839 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 840 } 841 842 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 843 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 844 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 845 } 846 847 int64_t getUnifiedFormat(const StringRef Name) { 848 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 849 if (Name == UfmtSymbolic[Id]) 850 return Id; 851 } 852 return UFMT_UNDEF; 853 } 854 855 StringRef getUnifiedFormatName(unsigned Id) { 856 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 857 } 858 859 bool isValidUnifiedFormat(unsigned Id) { 860 return Id <= UFMT_LAST; 861 } 862 863 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 864 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 865 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 866 if (Fmt == DfmtNfmt2UFmt[Id]) 867 return Id; 868 } 869 return UFMT_UNDEF; 870 } 871 872 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 873 return isGFX10(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 874 } 875 876 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 877 if (isGFX10(STI)) 878 return UFMT_DEFAULT; 879 return DFMT_NFMT_DEFAULT; 880 } 881 882 } // namespace MTBUFFormat 883 884 //===----------------------------------------------------------------------===// 885 // SendMsg 886 //===----------------------------------------------------------------------===// 887 888 namespace SendMsg { 889 890 int64_t getMsgId(const StringRef Name) { 891 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 892 if (IdSymbolic[i] && Name == IdSymbolic[i]) 893 return i; 894 } 895 return ID_UNKNOWN_; 896 } 897 898 static bool isValidMsgId(int64_t MsgId) { 899 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 900 } 901 902 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 903 if (Strict) { 904 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 905 return isGFX9(STI) || isGFX10(STI); 906 else 907 return isValidMsgId(MsgId); 908 } else { 909 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 910 } 911 } 912 913 StringRef getMsgName(int64_t MsgId) { 914 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 915 } 916 917 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 918 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 919 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 920 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 921 for (int i = F; i < L; ++i) { 922 if (Name == S[i]) { 923 return i; 924 } 925 } 926 return OP_UNKNOWN_; 927 } 928 929 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 930 931 if (!Strict) 932 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 933 934 switch(MsgId) 935 { 936 case ID_GS: 937 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 938 case ID_GS_DONE: 939 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 940 case ID_SYSMSG: 941 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 942 default: 943 return OpId == OP_NONE_; 944 } 945 } 946 947 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 948 assert(msgRequiresOp(MsgId)); 949 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 950 } 951 952 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 953 954 if (!Strict) 955 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 956 957 switch(MsgId) 958 { 959 case ID_GS: 960 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 961 case ID_GS_DONE: 962 return (OpId == OP_GS_NOP)? 963 (StreamId == STREAM_ID_NONE_) : 964 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 965 default: 966 return StreamId == STREAM_ID_NONE_; 967 } 968 } 969 970 bool msgRequiresOp(int64_t MsgId) { 971 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 972 } 973 974 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 975 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 976 } 977 978 void decodeMsg(unsigned Val, 979 uint16_t &MsgId, 980 uint16_t &OpId, 981 uint16_t &StreamId) { 982 MsgId = Val & ID_MASK_; 983 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 984 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 985 } 986 987 uint64_t encodeMsg(uint64_t MsgId, 988 uint64_t OpId, 989 uint64_t StreamId) { 990 return (MsgId << ID_SHIFT_) | 991 (OpId << OP_SHIFT_) | 992 (StreamId << STREAM_ID_SHIFT_); 993 } 994 995 } // namespace SendMsg 996 997 //===----------------------------------------------------------------------===// 998 // 999 //===----------------------------------------------------------------------===// 1000 1001 unsigned getInitialPSInputAddr(const Function &F) { 1002 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1003 } 1004 1005 bool isShader(CallingConv::ID cc) { 1006 switch(cc) { 1007 case CallingConv::AMDGPU_VS: 1008 case CallingConv::AMDGPU_LS: 1009 case CallingConv::AMDGPU_HS: 1010 case CallingConv::AMDGPU_ES: 1011 case CallingConv::AMDGPU_GS: 1012 case CallingConv::AMDGPU_PS: 1013 case CallingConv::AMDGPU_CS: 1014 return true; 1015 default: 1016 return false; 1017 } 1018 } 1019 1020 bool isCompute(CallingConv::ID cc) { 1021 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 1022 } 1023 1024 bool isEntryFunctionCC(CallingConv::ID CC) { 1025 switch (CC) { 1026 case CallingConv::AMDGPU_KERNEL: 1027 case CallingConv::SPIR_KERNEL: 1028 case CallingConv::AMDGPU_VS: 1029 case CallingConv::AMDGPU_GS: 1030 case CallingConv::AMDGPU_PS: 1031 case CallingConv::AMDGPU_CS: 1032 case CallingConv::AMDGPU_ES: 1033 case CallingConv::AMDGPU_HS: 1034 case CallingConv::AMDGPU_LS: 1035 return true; 1036 default: 1037 return false; 1038 } 1039 } 1040 1041 bool hasXNACK(const MCSubtargetInfo &STI) { 1042 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1043 } 1044 1045 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1046 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1047 } 1048 1049 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1050 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1051 } 1052 1053 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1054 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1055 } 1056 1057 bool hasG16(const MCSubtargetInfo &STI) { 1058 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1059 } 1060 1061 bool hasPackedD16(const MCSubtargetInfo &STI) { 1062 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1063 } 1064 1065 bool isSI(const MCSubtargetInfo &STI) { 1066 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1067 } 1068 1069 bool isCI(const MCSubtargetInfo &STI) { 1070 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1071 } 1072 1073 bool isVI(const MCSubtargetInfo &STI) { 1074 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1075 } 1076 1077 bool isGFX9(const MCSubtargetInfo &STI) { 1078 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1079 } 1080 1081 bool isGFX10(const MCSubtargetInfo &STI) { 1082 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1083 } 1084 1085 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1086 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1087 } 1088 1089 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1090 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1091 } 1092 1093 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1094 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1095 } 1096 1097 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1098 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1099 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1100 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1101 Reg == AMDGPU::SCC; 1102 } 1103 1104 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 1105 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 1106 if (*R == Reg1) return true; 1107 } 1108 return false; 1109 } 1110 1111 #define MAP_REG2REG \ 1112 using namespace AMDGPU; \ 1113 switch(Reg) { \ 1114 default: return Reg; \ 1115 CASE_CI_VI(FLAT_SCR) \ 1116 CASE_CI_VI(FLAT_SCR_LO) \ 1117 CASE_CI_VI(FLAT_SCR_HI) \ 1118 CASE_VI_GFX9_GFX10(TTMP0) \ 1119 CASE_VI_GFX9_GFX10(TTMP1) \ 1120 CASE_VI_GFX9_GFX10(TTMP2) \ 1121 CASE_VI_GFX9_GFX10(TTMP3) \ 1122 CASE_VI_GFX9_GFX10(TTMP4) \ 1123 CASE_VI_GFX9_GFX10(TTMP5) \ 1124 CASE_VI_GFX9_GFX10(TTMP6) \ 1125 CASE_VI_GFX9_GFX10(TTMP7) \ 1126 CASE_VI_GFX9_GFX10(TTMP8) \ 1127 CASE_VI_GFX9_GFX10(TTMP9) \ 1128 CASE_VI_GFX9_GFX10(TTMP10) \ 1129 CASE_VI_GFX9_GFX10(TTMP11) \ 1130 CASE_VI_GFX9_GFX10(TTMP12) \ 1131 CASE_VI_GFX9_GFX10(TTMP13) \ 1132 CASE_VI_GFX9_GFX10(TTMP14) \ 1133 CASE_VI_GFX9_GFX10(TTMP15) \ 1134 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 1135 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 1136 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 1137 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 1138 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 1139 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 1140 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 1141 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 1142 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 1143 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 1144 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 1145 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 1146 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1147 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1148 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1149 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1150 } 1151 1152 #define CASE_CI_VI(node) \ 1153 assert(!isSI(STI)); \ 1154 case node: return isCI(STI) ? node##_ci : node##_vi; 1155 1156 #define CASE_VI_GFX9_GFX10(node) \ 1157 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 1158 1159 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1160 if (STI.getTargetTriple().getArch() == Triple::r600) 1161 return Reg; 1162 MAP_REG2REG 1163 } 1164 1165 #undef CASE_CI_VI 1166 #undef CASE_VI_GFX9_GFX10 1167 1168 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1169 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 1170 1171 unsigned mc2PseudoReg(unsigned Reg) { 1172 MAP_REG2REG 1173 } 1174 1175 #undef CASE_CI_VI 1176 #undef CASE_VI_GFX9_GFX10 1177 #undef MAP_REG2REG 1178 1179 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1180 assert(OpNo < Desc.NumOperands); 1181 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1182 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1183 OpType <= AMDGPU::OPERAND_SRC_LAST; 1184 } 1185 1186 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1187 assert(OpNo < Desc.NumOperands); 1188 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1189 switch (OpType) { 1190 case AMDGPU::OPERAND_REG_IMM_FP32: 1191 case AMDGPU::OPERAND_REG_IMM_FP64: 1192 case AMDGPU::OPERAND_REG_IMM_FP16: 1193 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1194 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1195 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1196 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1197 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1198 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1199 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1200 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1201 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1202 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1203 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1204 return true; 1205 default: 1206 return false; 1207 } 1208 } 1209 1210 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1211 assert(OpNo < Desc.NumOperands); 1212 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1213 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1214 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1215 } 1216 1217 // Avoid using MCRegisterClass::getSize, since that function will go away 1218 // (move from MC* level to Target* level). Return size in bits. 1219 unsigned getRegBitWidth(unsigned RCID) { 1220 switch (RCID) { 1221 case AMDGPU::VGPR_LO16RegClassID: 1222 case AMDGPU::VGPR_HI16RegClassID: 1223 case AMDGPU::SGPR_LO16RegClassID: 1224 case AMDGPU::AGPR_LO16RegClassID: 1225 return 16; 1226 case AMDGPU::SGPR_32RegClassID: 1227 case AMDGPU::VGPR_32RegClassID: 1228 case AMDGPU::VRegOrLds_32RegClassID: 1229 case AMDGPU::AGPR_32RegClassID: 1230 case AMDGPU::VS_32RegClassID: 1231 case AMDGPU::AV_32RegClassID: 1232 case AMDGPU::SReg_32RegClassID: 1233 case AMDGPU::SReg_32_XM0RegClassID: 1234 case AMDGPU::SRegOrLds_32RegClassID: 1235 return 32; 1236 case AMDGPU::SGPR_64RegClassID: 1237 case AMDGPU::VS_64RegClassID: 1238 case AMDGPU::AV_64RegClassID: 1239 case AMDGPU::SReg_64RegClassID: 1240 case AMDGPU::VReg_64RegClassID: 1241 case AMDGPU::AReg_64RegClassID: 1242 case AMDGPU::SReg_64_XEXECRegClassID: 1243 return 64; 1244 case AMDGPU::SGPR_96RegClassID: 1245 case AMDGPU::SReg_96RegClassID: 1246 case AMDGPU::VReg_96RegClassID: 1247 case AMDGPU::AReg_96RegClassID: 1248 return 96; 1249 case AMDGPU::SGPR_128RegClassID: 1250 case AMDGPU::SReg_128RegClassID: 1251 case AMDGPU::VReg_128RegClassID: 1252 case AMDGPU::AReg_128RegClassID: 1253 return 128; 1254 case AMDGPU::SGPR_160RegClassID: 1255 case AMDGPU::SReg_160RegClassID: 1256 case AMDGPU::VReg_160RegClassID: 1257 case AMDGPU::AReg_160RegClassID: 1258 return 160; 1259 case AMDGPU::SGPR_192RegClassID: 1260 case AMDGPU::SReg_192RegClassID: 1261 case AMDGPU::VReg_192RegClassID: 1262 case AMDGPU::AReg_192RegClassID: 1263 return 192; 1264 case AMDGPU::SGPR_256RegClassID: 1265 case AMDGPU::SReg_256RegClassID: 1266 case AMDGPU::VReg_256RegClassID: 1267 case AMDGPU::AReg_256RegClassID: 1268 return 256; 1269 case AMDGPU::SGPR_512RegClassID: 1270 case AMDGPU::SReg_512RegClassID: 1271 case AMDGPU::VReg_512RegClassID: 1272 case AMDGPU::AReg_512RegClassID: 1273 return 512; 1274 case AMDGPU::SGPR_1024RegClassID: 1275 case AMDGPU::SReg_1024RegClassID: 1276 case AMDGPU::VReg_1024RegClassID: 1277 case AMDGPU::AReg_1024RegClassID: 1278 return 1024; 1279 default: 1280 llvm_unreachable("Unexpected register class"); 1281 } 1282 } 1283 1284 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1285 return getRegBitWidth(RC.getID()); 1286 } 1287 1288 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1289 unsigned OpNo) { 1290 assert(OpNo < Desc.NumOperands); 1291 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1292 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1293 } 1294 1295 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1296 if (isInlinableIntLiteral(Literal)) 1297 return true; 1298 1299 uint64_t Val = static_cast<uint64_t>(Literal); 1300 return (Val == DoubleToBits(0.0)) || 1301 (Val == DoubleToBits(1.0)) || 1302 (Val == DoubleToBits(-1.0)) || 1303 (Val == DoubleToBits(0.5)) || 1304 (Val == DoubleToBits(-0.5)) || 1305 (Val == DoubleToBits(2.0)) || 1306 (Val == DoubleToBits(-2.0)) || 1307 (Val == DoubleToBits(4.0)) || 1308 (Val == DoubleToBits(-4.0)) || 1309 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1310 } 1311 1312 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1313 if (isInlinableIntLiteral(Literal)) 1314 return true; 1315 1316 // The actual type of the operand does not seem to matter as long 1317 // as the bits match one of the inline immediate values. For example: 1318 // 1319 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1320 // so it is a legal inline immediate. 1321 // 1322 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1323 // floating-point, so it is a legal inline immediate. 1324 1325 uint32_t Val = static_cast<uint32_t>(Literal); 1326 return (Val == FloatToBits(0.0f)) || 1327 (Val == FloatToBits(1.0f)) || 1328 (Val == FloatToBits(-1.0f)) || 1329 (Val == FloatToBits(0.5f)) || 1330 (Val == FloatToBits(-0.5f)) || 1331 (Val == FloatToBits(2.0f)) || 1332 (Val == FloatToBits(-2.0f)) || 1333 (Val == FloatToBits(4.0f)) || 1334 (Val == FloatToBits(-4.0f)) || 1335 (Val == 0x3e22f983 && HasInv2Pi); 1336 } 1337 1338 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1339 if (!HasInv2Pi) 1340 return false; 1341 1342 if (isInlinableIntLiteral(Literal)) 1343 return true; 1344 1345 uint16_t Val = static_cast<uint16_t>(Literal); 1346 return Val == 0x3C00 || // 1.0 1347 Val == 0xBC00 || // -1.0 1348 Val == 0x3800 || // 0.5 1349 Val == 0xB800 || // -0.5 1350 Val == 0x4000 || // 2.0 1351 Val == 0xC000 || // -2.0 1352 Val == 0x4400 || // 4.0 1353 Val == 0xC400 || // -4.0 1354 Val == 0x3118; // 1/2pi 1355 } 1356 1357 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1358 assert(HasInv2Pi); 1359 1360 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1361 int16_t Trunc = static_cast<int16_t>(Literal); 1362 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1363 } 1364 if (!(Literal & 0xffff)) 1365 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1366 1367 int16_t Lo16 = static_cast<int16_t>(Literal); 1368 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1369 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1370 } 1371 1372 bool isInlinableIntLiteralV216(int32_t Literal) { 1373 int16_t Lo16 = static_cast<int16_t>(Literal); 1374 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1375 return isInlinableIntLiteral(Lo16); 1376 1377 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1378 if (!(Literal & 0xffff)) 1379 return isInlinableIntLiteral(Hi16); 1380 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1381 } 1382 1383 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1384 assert(HasInv2Pi); 1385 1386 int16_t Lo16 = static_cast<int16_t>(Literal); 1387 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1388 return true; 1389 1390 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1391 if (!(Literal & 0xffff)) 1392 return true; 1393 return Lo16 == Hi16; 1394 } 1395 1396 bool isArgPassedInSGPR(const Argument *A) { 1397 const Function *F = A->getParent(); 1398 1399 // Arguments to compute shaders are never a source of divergence. 1400 CallingConv::ID CC = F->getCallingConv(); 1401 switch (CC) { 1402 case CallingConv::AMDGPU_KERNEL: 1403 case CallingConv::SPIR_KERNEL: 1404 return true; 1405 case CallingConv::AMDGPU_VS: 1406 case CallingConv::AMDGPU_LS: 1407 case CallingConv::AMDGPU_HS: 1408 case CallingConv::AMDGPU_ES: 1409 case CallingConv::AMDGPU_GS: 1410 case CallingConv::AMDGPU_PS: 1411 case CallingConv::AMDGPU_CS: 1412 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1413 // Everything else is in VGPRs. 1414 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1415 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1416 default: 1417 // TODO: Should calls support inreg for SGPR inputs? 1418 return false; 1419 } 1420 } 1421 1422 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1423 return isGCN3Encoding(ST) || isGFX10(ST); 1424 } 1425 1426 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1427 return isGFX9(ST) || isGFX10(ST); 1428 } 1429 1430 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1431 int64_t EncodedOffset) { 1432 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1433 : isUInt<8>(EncodedOffset); 1434 } 1435 1436 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1437 int64_t EncodedOffset, 1438 bool IsBuffer) { 1439 return !IsBuffer && 1440 hasSMRDSignedImmOffset(ST) && 1441 isInt<21>(EncodedOffset); 1442 } 1443 1444 static bool isDwordAligned(uint64_t ByteOffset) { 1445 return (ByteOffset & 3) == 0; 1446 } 1447 1448 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1449 uint64_t ByteOffset) { 1450 if (hasSMEMByteOffset(ST)) 1451 return ByteOffset; 1452 1453 assert(isDwordAligned(ByteOffset)); 1454 return ByteOffset >> 2; 1455 } 1456 1457 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1458 int64_t ByteOffset, bool IsBuffer) { 1459 // The signed version is always a byte offset. 1460 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1461 assert(hasSMEMByteOffset(ST)); 1462 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1463 } 1464 1465 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1466 return None; 1467 1468 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1469 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1470 ? Optional<int64_t>(EncodedOffset) 1471 : None; 1472 } 1473 1474 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1475 int64_t ByteOffset) { 1476 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1477 return None; 1478 1479 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1480 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1481 } 1482 1483 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1484 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1485 // hardware bug needing a workaround). 1486 // 1487 // The required alignment ensures that individual address components remain 1488 // aligned if they are aligned to begin with. It also ensures that additional 1489 // offsets within the given alignment can be added to the resulting ImmOffset. 1490 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1491 const GCNSubtarget *Subtarget, Align Alignment) { 1492 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 1493 uint32_t Overflow = 0; 1494 1495 if (Imm > MaxImm) { 1496 if (Imm <= MaxImm + 64) { 1497 // Use an SOffset inline constant for 4..64 1498 Overflow = Imm - MaxImm; 1499 Imm = MaxImm; 1500 } else { 1501 // Try to keep the same value in SOffset for adjacent loads, so that 1502 // the corresponding register contents can be re-used. 1503 // 1504 // Load values with all low-bits (except for alignment bits) set into 1505 // SOffset, so that a larger range of values can be covered using 1506 // s_movk_i32. 1507 // 1508 // Atomic operations fail to work correctly when individual address 1509 // components are unaligned, even if their sum is aligned. 1510 uint32_t High = (Imm + Alignment.value()) & ~4095; 1511 uint32_t Low = (Imm + Alignment.value()) & 4095; 1512 Imm = Low; 1513 Overflow = High - Alignment.value(); 1514 } 1515 } 1516 1517 // There is a hardware bug in SI and CI which prevents address clamping in 1518 // MUBUF instructions from working correctly with SOffsets. The immediate 1519 // offset is unaffected. 1520 if (Overflow > 0 && 1521 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1522 return false; 1523 1524 ImmOffset = Imm; 1525 SOffset = Overflow; 1526 return true; 1527 } 1528 1529 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1530 *this = getDefaultForCallingConv(F.getCallingConv()); 1531 1532 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1533 if (!IEEEAttr.empty()) 1534 IEEE = IEEEAttr == "true"; 1535 1536 StringRef DX10ClampAttr 1537 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1538 if (!DX10ClampAttr.empty()) 1539 DX10Clamp = DX10ClampAttr == "true"; 1540 1541 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1542 if (!DenormF32Attr.empty()) { 1543 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1544 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1545 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1546 } 1547 1548 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1549 if (!DenormAttr.empty()) { 1550 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1551 1552 if (DenormF32Attr.empty()) { 1553 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1554 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1555 } 1556 1557 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1558 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1559 } 1560 } 1561 1562 namespace { 1563 1564 struct SourceOfDivergence { 1565 unsigned Intr; 1566 }; 1567 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1568 1569 #define GET_SourcesOfDivergence_IMPL 1570 #define GET_Gfx9BufferFormat_IMPL 1571 #define GET_Gfx10PlusBufferFormat_IMPL 1572 #include "AMDGPUGenSearchableTables.inc" 1573 1574 } // end anonymous namespace 1575 1576 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1577 return lookupSourceOfDivergence(IntrID); 1578 } 1579 1580 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 1581 uint8_t NumComponents, 1582 uint8_t NumFormat, 1583 const MCSubtargetInfo &STI) { 1584 return isGFX10(STI) 1585 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 1586 NumFormat) 1587 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 1588 } 1589 1590 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 1591 const MCSubtargetInfo &STI) { 1592 return isGFX10(STI) ? getGfx10PlusBufferFormatInfo(Format) 1593 : getGfx9BufferFormatInfo(Format); 1594 } 1595 1596 } // namespace AMDGPU 1597 } // namespace llvm 1598