1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   case 5:
103     return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
104   default:
105     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
106                        Twine(AmdhsaCodeObjectVersion));
107   }
108 }
109 
110 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
111   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
112     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
113   return false;
114 }
115 
116 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
117   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
118     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
119   return false;
120 }
121 
122 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
123   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
124     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
125   return false;
126 }
127 
128 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) {
129   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
130     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5;
131   return false;
132 }
133 
134 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) {
135   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) ||
136          isHsaAbiVersion5(STI);
137 }
138 
139 unsigned getAmdhsaCodeObjectVersion() {
140   return AmdhsaCodeObjectVersion;
141 }
142 
143 // FIXME: All such magic numbers about the ABI should be in a
144 // central TD file.
145 unsigned getHostcallImplicitArgPosition() {
146   switch (AmdhsaCodeObjectVersion) {
147   case 2:
148   case 3:
149   case 4:
150     return 24;
151   case 5:
152     return 80;
153   default:
154     llvm_unreachable("Unexpected code object version");
155     return 0;
156   }
157 }
158 
159 unsigned getHeapPtrImplicitArgPosition() {
160   if (AmdhsaCodeObjectVersion == 5)
161     return 96;
162   llvm_unreachable("hidden_heap is supported only by code object version 5");
163   return 0;
164 }
165 
166 #define GET_MIMGBaseOpcodesTable_IMPL
167 #define GET_MIMGDimInfoTable_IMPL
168 #define GET_MIMGInfoTable_IMPL
169 #define GET_MIMGLZMappingTable_IMPL
170 #define GET_MIMGMIPMappingTable_IMPL
171 #define GET_MIMGBiasMappingTable_IMPL
172 #define GET_MIMGOffsetMappingTable_IMPL
173 #define GET_MIMGG16MappingTable_IMPL
174 #include "AMDGPUGenSearchableTables.inc"
175 
176 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
177                   unsigned VDataDwords, unsigned VAddrDwords) {
178   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
179                                              VDataDwords, VAddrDwords);
180   return Info ? Info->Opcode : -1;
181 }
182 
183 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
184   const MIMGInfo *Info = getMIMGInfo(Opc);
185   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
186 }
187 
188 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
189   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
190   const MIMGInfo *NewInfo =
191       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
192                           NewChannels, OrigInfo->VAddrDwords);
193   return NewInfo ? NewInfo->Opcode : -1;
194 }
195 
196 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
197                            const MIMGDimInfo *Dim, bool IsA16,
198                            bool IsG16Supported) {
199   unsigned AddrWords = BaseOpcode->NumExtraArgs;
200   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
201                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
202   if (IsA16)
203     AddrWords += divideCeil(AddrComponents, 2);
204   else
205     AddrWords += AddrComponents;
206 
207   // Note: For subtargets that support A16 but not G16, enabling A16 also
208   // enables 16 bit gradients.
209   // For subtargets that support A16 (operand) and G16 (done with a different
210   // instruction encoding), they are independent.
211 
212   if (BaseOpcode->Gradients) {
213     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
214       // There are two gradients per coordinate, we pack them separately.
215       // For the 3d case,
216       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
217       AddrWords += alignTo<2>(Dim->NumGradients / 2);
218     else
219       AddrWords += Dim->NumGradients;
220   }
221   return AddrWords;
222 }
223 
224 struct MUBUFInfo {
225   uint16_t Opcode;
226   uint16_t BaseOpcode;
227   uint8_t elements;
228   bool has_vaddr;
229   bool has_srsrc;
230   bool has_soffset;
231   bool IsBufferInv;
232 };
233 
234 struct MTBUFInfo {
235   uint16_t Opcode;
236   uint16_t BaseOpcode;
237   uint8_t elements;
238   bool has_vaddr;
239   bool has_srsrc;
240   bool has_soffset;
241 };
242 
243 struct SMInfo {
244   uint16_t Opcode;
245   bool IsBuffer;
246 };
247 
248 struct VOPInfo {
249   uint16_t Opcode;
250   bool IsSingle;
251 };
252 
253 #define GET_MTBUFInfoTable_DECL
254 #define GET_MTBUFInfoTable_IMPL
255 #define GET_MUBUFInfoTable_DECL
256 #define GET_MUBUFInfoTable_IMPL
257 #define GET_SMInfoTable_DECL
258 #define GET_SMInfoTable_IMPL
259 #define GET_VOP1InfoTable_DECL
260 #define GET_VOP1InfoTable_IMPL
261 #define GET_VOP2InfoTable_DECL
262 #define GET_VOP2InfoTable_IMPL
263 #define GET_VOP3InfoTable_DECL
264 #define GET_VOP3InfoTable_IMPL
265 #include "AMDGPUGenSearchableTables.inc"
266 
267 int getMTBUFBaseOpcode(unsigned Opc) {
268   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
269   return Info ? Info->BaseOpcode : -1;
270 }
271 
272 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
273   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
274   return Info ? Info->Opcode : -1;
275 }
276 
277 int getMTBUFElements(unsigned Opc) {
278   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
279   return Info ? Info->elements : 0;
280 }
281 
282 bool getMTBUFHasVAddr(unsigned Opc) {
283   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
284   return Info ? Info->has_vaddr : false;
285 }
286 
287 bool getMTBUFHasSrsrc(unsigned Opc) {
288   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
289   return Info ? Info->has_srsrc : false;
290 }
291 
292 bool getMTBUFHasSoffset(unsigned Opc) {
293   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
294   return Info ? Info->has_soffset : false;
295 }
296 
297 int getMUBUFBaseOpcode(unsigned Opc) {
298   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
299   return Info ? Info->BaseOpcode : -1;
300 }
301 
302 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
303   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
304   return Info ? Info->Opcode : -1;
305 }
306 
307 int getMUBUFElements(unsigned Opc) {
308   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
309   return Info ? Info->elements : 0;
310 }
311 
312 bool getMUBUFHasVAddr(unsigned Opc) {
313   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
314   return Info ? Info->has_vaddr : false;
315 }
316 
317 bool getMUBUFHasSrsrc(unsigned Opc) {
318   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
319   return Info ? Info->has_srsrc : false;
320 }
321 
322 bool getMUBUFHasSoffset(unsigned Opc) {
323   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
324   return Info ? Info->has_soffset : false;
325 }
326 
327 bool getMUBUFIsBufferInv(unsigned Opc) {
328   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
329   return Info ? Info->IsBufferInv : false;
330 }
331 
332 bool getSMEMIsBuffer(unsigned Opc) {
333   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
334   return Info ? Info->IsBuffer : false;
335 }
336 
337 bool getVOP1IsSingle(unsigned Opc) {
338   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
339   return Info ? Info->IsSingle : false;
340 }
341 
342 bool getVOP2IsSingle(unsigned Opc) {
343   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
344   return Info ? Info->IsSingle : false;
345 }
346 
347 bool getVOP3IsSingle(unsigned Opc) {
348   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
349   return Info ? Info->IsSingle : false;
350 }
351 
352 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
353 // header files, so we need to wrap it in a function that takes unsigned
354 // instead.
355 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
356   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
357 }
358 
359 namespace IsaInfo {
360 
361 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
362     : STI(STI), XnackSetting(TargetIDSetting::Any),
363       SramEccSetting(TargetIDSetting::Any) {
364   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
365     XnackSetting = TargetIDSetting::Unsupported;
366   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
367     SramEccSetting = TargetIDSetting::Unsupported;
368 }
369 
370 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
371   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
372   // absence of the target features we assume we must generate code that can run
373   // in any environment.
374   SubtargetFeatures Features(FS);
375   Optional<bool> XnackRequested;
376   Optional<bool> SramEccRequested;
377 
378   for (const std::string &Feature : Features.getFeatures()) {
379     if (Feature == "+xnack")
380       XnackRequested = true;
381     else if (Feature == "-xnack")
382       XnackRequested = false;
383     else if (Feature == "+sramecc")
384       SramEccRequested = true;
385     else if (Feature == "-sramecc")
386       SramEccRequested = false;
387   }
388 
389   bool XnackSupported = isXnackSupported();
390   bool SramEccSupported = isSramEccSupported();
391 
392   if (XnackRequested) {
393     if (XnackSupported) {
394       XnackSetting =
395           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
396     } else {
397       // If a specific xnack setting was requested and this GPU does not support
398       // xnack emit a warning. Setting will remain set to "Unsupported".
399       if (*XnackRequested) {
400         errs() << "warning: xnack 'On' was requested for a processor that does "
401                   "not support it!\n";
402       } else {
403         errs() << "warning: xnack 'Off' was requested for a processor that "
404                   "does not support it!\n";
405       }
406     }
407   }
408 
409   if (SramEccRequested) {
410     if (SramEccSupported) {
411       SramEccSetting =
412           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
413     } else {
414       // If a specific sramecc setting was requested and this GPU does not
415       // support sramecc emit a warning. Setting will remain set to
416       // "Unsupported".
417       if (*SramEccRequested) {
418         errs() << "warning: sramecc 'On' was requested for a processor that "
419                   "does not support it!\n";
420       } else {
421         errs() << "warning: sramecc 'Off' was requested for a processor that "
422                   "does not support it!\n";
423       }
424     }
425   }
426 }
427 
428 static TargetIDSetting
429 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
430   if (FeatureString.endswith("-"))
431     return TargetIDSetting::Off;
432   if (FeatureString.endswith("+"))
433     return TargetIDSetting::On;
434 
435   llvm_unreachable("Malformed feature string");
436 }
437 
438 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
439   SmallVector<StringRef, 3> TargetIDSplit;
440   TargetID.split(TargetIDSplit, ':');
441 
442   for (const auto &FeatureString : TargetIDSplit) {
443     if (FeatureString.startswith("xnack"))
444       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
445     if (FeatureString.startswith("sramecc"))
446       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
447   }
448 }
449 
450 std::string AMDGPUTargetID::toString() const {
451   std::string StringRep;
452   raw_string_ostream StreamRep(StringRep);
453 
454   auto TargetTriple = STI.getTargetTriple();
455   auto Version = getIsaVersion(STI.getCPU());
456 
457   StreamRep << TargetTriple.getArchName() << '-'
458             << TargetTriple.getVendorName() << '-'
459             << TargetTriple.getOSName() << '-'
460             << TargetTriple.getEnvironmentName() << '-';
461 
462   std::string Processor;
463   // TODO: Following else statement is present here because we used various
464   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
465   // Remove once all aliases are removed from GCNProcessors.td.
466   if (Version.Major >= 9)
467     Processor = STI.getCPU().str();
468   else
469     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
470                  Twine(Version.Stepping))
471                     .str();
472 
473   std::string Features;
474   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
475     switch (*HsaAbiVersion) {
476     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
477       // Code object V2 only supported specific processors and had fixed
478       // settings for the XNACK.
479       if (Processor == "gfx600") {
480       } else if (Processor == "gfx601") {
481       } else if (Processor == "gfx602") {
482       } else if (Processor == "gfx700") {
483       } else if (Processor == "gfx701") {
484       } else if (Processor == "gfx702") {
485       } else if (Processor == "gfx703") {
486       } else if (Processor == "gfx704") {
487       } else if (Processor == "gfx705") {
488       } else if (Processor == "gfx801") {
489         if (!isXnackOnOrAny())
490           report_fatal_error(
491               "AMD GPU code object V2 does not support processor " +
492               Twine(Processor) + " without XNACK");
493       } else if (Processor == "gfx802") {
494       } else if (Processor == "gfx803") {
495       } else if (Processor == "gfx805") {
496       } else if (Processor == "gfx810") {
497         if (!isXnackOnOrAny())
498           report_fatal_error(
499               "AMD GPU code object V2 does not support processor " +
500               Twine(Processor) + " without XNACK");
501       } else if (Processor == "gfx900") {
502         if (isXnackOnOrAny())
503           Processor = "gfx901";
504       } else if (Processor == "gfx902") {
505         if (isXnackOnOrAny())
506           Processor = "gfx903";
507       } else if (Processor == "gfx904") {
508         if (isXnackOnOrAny())
509           Processor = "gfx905";
510       } else if (Processor == "gfx906") {
511         if (isXnackOnOrAny())
512           Processor = "gfx907";
513       } else if (Processor == "gfx90c") {
514         if (isXnackOnOrAny())
515           report_fatal_error(
516               "AMD GPU code object V2 does not support processor " +
517               Twine(Processor) + " with XNACK being ON or ANY");
518       } else {
519         report_fatal_error(
520             "AMD GPU code object V2 does not support processor " +
521             Twine(Processor));
522       }
523       break;
524     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
525       // xnack.
526       if (isXnackOnOrAny())
527         Features += "+xnack";
528       // In code object v2 and v3, "sramecc" feature was spelled with a
529       // hyphen ("sram-ecc").
530       if (isSramEccOnOrAny())
531         Features += "+sram-ecc";
532       break;
533     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
534     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
535       // sramecc.
536       if (getSramEccSetting() == TargetIDSetting::Off)
537         Features += ":sramecc-";
538       else if (getSramEccSetting() == TargetIDSetting::On)
539         Features += ":sramecc+";
540       // xnack.
541       if (getXnackSetting() == TargetIDSetting::Off)
542         Features += ":xnack-";
543       else if (getXnackSetting() == TargetIDSetting::On)
544         Features += ":xnack+";
545       break;
546     default:
547       break;
548     }
549   }
550 
551   StreamRep << Processor << Features;
552 
553   StreamRep.flush();
554   return StringRep;
555 }
556 
557 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
558   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
559     return 16;
560   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
561     return 32;
562 
563   return 64;
564 }
565 
566 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
567   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
568     return 32768;
569   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
570     return 65536;
571 
572   return 0;
573 }
574 
575 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
576   // "Per CU" really means "per whatever functional block the waves of a
577   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
578   // two SIMDs.
579   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
580     return 2;
581   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
582   // two CUs, so a total of four SIMDs.
583   return 4;
584 }
585 
586 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
587                                unsigned FlatWorkGroupSize) {
588   assert(FlatWorkGroupSize != 0);
589   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
590     return 8;
591   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
592   if (N == 1)
593     return 40;
594   N = 40 / N;
595   return std::min(N, 16u);
596 }
597 
598 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
599   return 1;
600 }
601 
602 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
603   // FIXME: Need to take scratch memory into account.
604   if (isGFX90A(*STI))
605     return 8;
606   if (!isGFX10Plus(*STI))
607     return 10;
608   return hasGFX10_3Insts(*STI) ? 16 : 20;
609 }
610 
611 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
612                                    unsigned FlatWorkGroupSize) {
613   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
614                     getEUsPerCU(STI));
615 }
616 
617 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
618   return 1;
619 }
620 
621 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
622   // Some subtargets allow encoding 2048, but this isn't tested or supported.
623   return 1024;
624 }
625 
626 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
627                               unsigned FlatWorkGroupSize) {
628   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
629 }
630 
631 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
632   IsaVersion Version = getIsaVersion(STI->getCPU());
633   if (Version.Major >= 10)
634     return getAddressableNumSGPRs(STI);
635   if (Version.Major >= 8)
636     return 16;
637   return 8;
638 }
639 
640 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
641   return 8;
642 }
643 
644 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
645   IsaVersion Version = getIsaVersion(STI->getCPU());
646   if (Version.Major >= 8)
647     return 800;
648   return 512;
649 }
650 
651 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
652   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
653     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
654 
655   IsaVersion Version = getIsaVersion(STI->getCPU());
656   if (Version.Major >= 10)
657     return 106;
658   if (Version.Major >= 8)
659     return 102;
660   return 104;
661 }
662 
663 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
664   assert(WavesPerEU != 0);
665 
666   IsaVersion Version = getIsaVersion(STI->getCPU());
667   if (Version.Major >= 10)
668     return 0;
669 
670   if (WavesPerEU >= getMaxWavesPerEU(STI))
671     return 0;
672 
673   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
674   if (STI->getFeatureBits().test(FeatureTrapHandler))
675     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
676   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
677   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
678 }
679 
680 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
681                         bool Addressable) {
682   assert(WavesPerEU != 0);
683 
684   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
685   IsaVersion Version = getIsaVersion(STI->getCPU());
686   if (Version.Major >= 10)
687     return Addressable ? AddressableNumSGPRs : 108;
688   if (Version.Major >= 8 && !Addressable)
689     AddressableNumSGPRs = 112;
690   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
691   if (STI->getFeatureBits().test(FeatureTrapHandler))
692     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
693   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
694   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
695 }
696 
697 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
698                           bool FlatScrUsed, bool XNACKUsed) {
699   unsigned ExtraSGPRs = 0;
700   if (VCCUsed)
701     ExtraSGPRs = 2;
702 
703   IsaVersion Version = getIsaVersion(STI->getCPU());
704   if (Version.Major >= 10)
705     return ExtraSGPRs;
706 
707   if (Version.Major < 8) {
708     if (FlatScrUsed)
709       ExtraSGPRs = 4;
710   } else {
711     if (XNACKUsed)
712       ExtraSGPRs = 4;
713 
714     if (FlatScrUsed ||
715         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
716       ExtraSGPRs = 6;
717   }
718 
719   return ExtraSGPRs;
720 }
721 
722 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
723                           bool FlatScrUsed) {
724   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
725                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
726 }
727 
728 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
729   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
730   // SGPRBlocks is actual number of SGPR blocks minus 1.
731   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
732 }
733 
734 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
735                              Optional<bool> EnableWavefrontSize32) {
736   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
737     return 8;
738 
739   bool IsWave32 = EnableWavefrontSize32 ?
740       *EnableWavefrontSize32 :
741       STI->getFeatureBits().test(FeatureWavefrontSize32);
742 
743   if (hasGFX10_3Insts(*STI))
744     return IsWave32 ? 16 : 8;
745 
746   return IsWave32 ? 8 : 4;
747 }
748 
749 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
750                                 Optional<bool> EnableWavefrontSize32) {
751   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
752     return 8;
753 
754   bool IsWave32 = EnableWavefrontSize32 ?
755       *EnableWavefrontSize32 :
756       STI->getFeatureBits().test(FeatureWavefrontSize32);
757 
758   return IsWave32 ? 8 : 4;
759 }
760 
761 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
762   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
763     return 512;
764   if (!isGFX10Plus(*STI))
765     return 256;
766   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
767 }
768 
769 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
770   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
771     return 512;
772   return 256;
773 }
774 
775 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
776   assert(WavesPerEU != 0);
777 
778   if (WavesPerEU >= getMaxWavesPerEU(STI))
779     return 0;
780   unsigned MinNumVGPRs =
781       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
782                 getVGPRAllocGranule(STI)) + 1;
783   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
784 }
785 
786 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
787   assert(WavesPerEU != 0);
788 
789   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
790                                    getVGPRAllocGranule(STI));
791   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
792   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
793 }
794 
795 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
796                           Optional<bool> EnableWavefrontSize32) {
797   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
798                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
799   // VGPRBlocks is actual number of VGPR blocks minus 1.
800   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
801 }
802 
803 } // end namespace IsaInfo
804 
805 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
806                                const MCSubtargetInfo *STI) {
807   IsaVersion Version = getIsaVersion(STI->getCPU());
808 
809   memset(&Header, 0, sizeof(Header));
810 
811   Header.amd_kernel_code_version_major = 1;
812   Header.amd_kernel_code_version_minor = 2;
813   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
814   Header.amd_machine_version_major = Version.Major;
815   Header.amd_machine_version_minor = Version.Minor;
816   Header.amd_machine_version_stepping = Version.Stepping;
817   Header.kernel_code_entry_byte_offset = sizeof(Header);
818   Header.wavefront_size = 6;
819 
820   // If the code object does not support indirect functions, then the value must
821   // be 0xffffffff.
822   Header.call_convention = -1;
823 
824   // These alignment values are specified in powers of two, so alignment =
825   // 2^n.  The minimum alignment is 2^4 = 16.
826   Header.kernarg_segment_alignment = 4;
827   Header.group_segment_alignment = 4;
828   Header.private_segment_alignment = 4;
829 
830   if (Version.Major >= 10) {
831     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
832       Header.wavefront_size = 5;
833       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
834     }
835     Header.compute_pgm_resource_registers |=
836       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
837       S_00B848_MEM_ORDERED(1);
838   }
839 }
840 
841 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
842     const MCSubtargetInfo *STI) {
843   IsaVersion Version = getIsaVersion(STI->getCPU());
844 
845   amdhsa::kernel_descriptor_t KD;
846   memset(&KD, 0, sizeof(KD));
847 
848   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
849                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
850                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
851   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
852                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
853   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
854                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
855   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
856                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
857   if (Version.Major >= 10) {
858     AMDHSA_BITS_SET(KD.kernel_code_properties,
859                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
860                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
861     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
862                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
863                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
864     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
865                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
866   }
867   if (AMDGPU::isGFX90A(*STI)) {
868     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
869                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
870                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
871   }
872   return KD;
873 }
874 
875 bool isGroupSegment(const GlobalValue *GV) {
876   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
877 }
878 
879 bool isGlobalSegment(const GlobalValue *GV) {
880   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
881 }
882 
883 bool isReadOnlySegment(const GlobalValue *GV) {
884   unsigned AS = GV->getAddressSpace();
885   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
886          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
887 }
888 
889 bool shouldEmitConstantsToTextSection(const Triple &TT) {
890   return TT.getArch() == Triple::r600;
891 }
892 
893 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
894   Attribute A = F.getFnAttribute(Name);
895   int Result = Default;
896 
897   if (A.isStringAttribute()) {
898     StringRef Str = A.getValueAsString();
899     if (Str.getAsInteger(0, Result)) {
900       LLVMContext &Ctx = F.getContext();
901       Ctx.emitError("can't parse integer attribute " + Name);
902     }
903   }
904 
905   return Result;
906 }
907 
908 std::pair<int, int> getIntegerPairAttribute(const Function &F,
909                                             StringRef Name,
910                                             std::pair<int, int> Default,
911                                             bool OnlyFirstRequired) {
912   Attribute A = F.getFnAttribute(Name);
913   if (!A.isStringAttribute())
914     return Default;
915 
916   LLVMContext &Ctx = F.getContext();
917   std::pair<int, int> Ints = Default;
918   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
919   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
920     Ctx.emitError("can't parse first integer attribute " + Name);
921     return Default;
922   }
923   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
924     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
925       Ctx.emitError("can't parse second integer attribute " + Name);
926       return Default;
927     }
928   }
929 
930   return Ints;
931 }
932 
933 unsigned getVmcntBitMask(const IsaVersion &Version) {
934   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
935   if (Version.Major < 9)
936     return VmcntLo;
937 
938   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
939   return VmcntLo | VmcntHi;
940 }
941 
942 unsigned getExpcntBitMask(const IsaVersion &Version) {
943   return (1 << getExpcntBitWidth()) - 1;
944 }
945 
946 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
947   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
948 }
949 
950 unsigned getWaitcntBitMask(const IsaVersion &Version) {
951   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
952   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
953   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
954                                 getLgkmcntBitWidth(Version.Major));
955   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
956   if (Version.Major < 9)
957     return Waitcnt;
958 
959   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
960   return Waitcnt | VmcntHi;
961 }
962 
963 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
964   unsigned VmcntLo =
965       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
966   if (Version.Major < 9)
967     return VmcntLo;
968 
969   unsigned VmcntHi =
970       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
971   VmcntHi <<= getVmcntBitWidthLo();
972   return VmcntLo | VmcntHi;
973 }
974 
975 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
976   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
977 }
978 
979 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
980   return unpackBits(Waitcnt, getLgkmcntBitShift(),
981                     getLgkmcntBitWidth(Version.Major));
982 }
983 
984 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
985                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
986   Vmcnt = decodeVmcnt(Version, Waitcnt);
987   Expcnt = decodeExpcnt(Version, Waitcnt);
988   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
989 }
990 
991 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
992   Waitcnt Decoded;
993   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
994   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
995   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
996   return Decoded;
997 }
998 
999 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
1000                      unsigned Vmcnt) {
1001   Waitcnt =
1002       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
1003   if (Version.Major < 9)
1004     return Waitcnt;
1005 
1006   Vmcnt >>= getVmcntBitWidthLo();
1007   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
1008 }
1009 
1010 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1011                       unsigned Expcnt) {
1012   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
1013 }
1014 
1015 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1016                        unsigned Lgkmcnt) {
1017   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
1018                                     getLgkmcntBitWidth(Version.Major));
1019 }
1020 
1021 unsigned encodeWaitcnt(const IsaVersion &Version,
1022                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
1023   unsigned Waitcnt = getWaitcntBitMask(Version);
1024   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
1025   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1026   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1027   return Waitcnt;
1028 }
1029 
1030 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1031   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
1032 }
1033 
1034 //===----------------------------------------------------------------------===//
1035 // hwreg
1036 //===----------------------------------------------------------------------===//
1037 
1038 namespace Hwreg {
1039 
1040 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) {
1041   if (isGFX10(STI) && Name == "HW_REG_HW_ID") // An alias
1042     return ID_HW_ID1;
1043   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
1044     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
1045       return Id;
1046   }
1047   return ID_UNKNOWN_;
1048 }
1049 
1050 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
1051   if (isSI(STI) || isCI(STI) || isVI(STI))
1052     return ID_SYMBOLIC_FIRST_GFX9_;
1053   else if (isGFX9(STI))
1054     return ID_SYMBOLIC_FIRST_GFX10_;
1055   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
1056     return ID_SYMBOLIC_FIRST_GFX1030_;
1057   else
1058     return ID_SYMBOLIC_LAST_;
1059 }
1060 
1061 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
1062   switch (Id) {
1063   case ID_HW_ID:
1064     return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1065   case ID_HW_ID1:
1066   case ID_HW_ID2:
1067     return isGFX10Plus(STI);
1068   case ID_XNACK_MASK:
1069     return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1070   default:
1071     return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
1072            IdSymbolic[Id];
1073   }
1074 }
1075 
1076 bool isValidHwreg(int64_t Id) {
1077   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1078 }
1079 
1080 bool isValidHwregOffset(int64_t Offset) {
1081   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1082 }
1083 
1084 bool isValidHwregWidth(int64_t Width) {
1085   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1086 }
1087 
1088 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1089   return (Id << ID_SHIFT_) |
1090          (Offset << OFFSET_SHIFT_) |
1091          ((Width - 1) << WIDTH_M1_SHIFT_);
1092 }
1093 
1094 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1095   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
1096 }
1097 
1098 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1099   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1100   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1101   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1102 }
1103 
1104 } // namespace Hwreg
1105 
1106 //===----------------------------------------------------------------------===//
1107 // exp tgt
1108 //===----------------------------------------------------------------------===//
1109 
1110 namespace Exp {
1111 
1112 struct ExpTgt {
1113   StringLiteral Name;
1114   unsigned Tgt;
1115   unsigned MaxIndex;
1116 };
1117 
1118 static constexpr ExpTgt ExpTgtInfo[] = {
1119   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1120   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1121   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1122   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1123   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1124   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1125 };
1126 
1127 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1128   for (const ExpTgt &Val : ExpTgtInfo) {
1129     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1130       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1131       Name = Val.Name;
1132       return true;
1133     }
1134   }
1135   return false;
1136 }
1137 
1138 unsigned getTgtId(const StringRef Name) {
1139 
1140   for (const ExpTgt &Val : ExpTgtInfo) {
1141     if (Val.MaxIndex == 0 && Name == Val.Name)
1142       return Val.Tgt;
1143 
1144     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1145       StringRef Suffix = Name.drop_front(Val.Name.size());
1146 
1147       unsigned Id;
1148       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1149         return ET_INVALID;
1150 
1151       // Disable leading zeroes
1152       if (Suffix.size() > 1 && Suffix[0] == '0')
1153         return ET_INVALID;
1154 
1155       return Val.Tgt + Id;
1156     }
1157   }
1158   return ET_INVALID;
1159 }
1160 
1161 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1162   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1163 }
1164 
1165 } // namespace Exp
1166 
1167 //===----------------------------------------------------------------------===//
1168 // MTBUF Format
1169 //===----------------------------------------------------------------------===//
1170 
1171 namespace MTBUFFormat {
1172 
1173 int64_t getDfmt(const StringRef Name) {
1174   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1175     if (Name == DfmtSymbolic[Id])
1176       return Id;
1177   }
1178   return DFMT_UNDEF;
1179 }
1180 
1181 StringRef getDfmtName(unsigned Id) {
1182   assert(Id <= DFMT_MAX);
1183   return DfmtSymbolic[Id];
1184 }
1185 
1186 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1187   if (isSI(STI) || isCI(STI))
1188     return NfmtSymbolicSICI;
1189   if (isVI(STI) || isGFX9(STI))
1190     return NfmtSymbolicVI;
1191   return NfmtSymbolicGFX10;
1192 }
1193 
1194 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1195   auto lookupTable = getNfmtLookupTable(STI);
1196   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1197     if (Name == lookupTable[Id])
1198       return Id;
1199   }
1200   return NFMT_UNDEF;
1201 }
1202 
1203 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1204   assert(Id <= NFMT_MAX);
1205   return getNfmtLookupTable(STI)[Id];
1206 }
1207 
1208 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1209   unsigned Dfmt;
1210   unsigned Nfmt;
1211   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1212   return isValidNfmt(Nfmt, STI);
1213 }
1214 
1215 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1216   return !getNfmtName(Id, STI).empty();
1217 }
1218 
1219 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1220   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1221 }
1222 
1223 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1224   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1225   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1226 }
1227 
1228 int64_t getUnifiedFormat(const StringRef Name) {
1229   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1230     if (Name == UfmtSymbolic[Id])
1231       return Id;
1232   }
1233   return UFMT_UNDEF;
1234 }
1235 
1236 StringRef getUnifiedFormatName(unsigned Id) {
1237   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1238 }
1239 
1240 bool isValidUnifiedFormat(unsigned Id) {
1241   return Id <= UFMT_LAST;
1242 }
1243 
1244 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1245   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1246   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1247     if (Fmt == DfmtNfmt2UFmt[Id])
1248       return Id;
1249   }
1250   return UFMT_UNDEF;
1251 }
1252 
1253 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1254   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1255 }
1256 
1257 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1258   if (isGFX10Plus(STI))
1259     return UFMT_DEFAULT;
1260   return DFMT_NFMT_DEFAULT;
1261 }
1262 
1263 } // namespace MTBUFFormat
1264 
1265 //===----------------------------------------------------------------------===//
1266 // SendMsg
1267 //===----------------------------------------------------------------------===//
1268 
1269 namespace SendMsg {
1270 
1271 int64_t getMsgId(const StringRef Name) {
1272   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1273     if (IdSymbolic[i] && Name == IdSymbolic[i])
1274       return i;
1275   }
1276   return ID_UNKNOWN_;
1277 }
1278 
1279 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1280   if (Strict) {
1281     switch (MsgId) {
1282     case ID_SAVEWAVE:
1283       return isVI(STI) || isGFX9Plus(STI);
1284     case ID_STALL_WAVE_GEN:
1285     case ID_HALT_WAVES:
1286     case ID_ORDERED_PS_DONE:
1287     case ID_GS_ALLOC_REQ:
1288     case ID_GET_DOORBELL:
1289       return isGFX9Plus(STI);
1290     case ID_EARLY_PRIM_DEALLOC:
1291       return isGFX9(STI);
1292     case ID_GET_DDID:
1293       return isGFX10Plus(STI);
1294     default:
1295       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1296     }
1297   } else {
1298     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1299   }
1300 }
1301 
1302 StringRef getMsgName(int64_t MsgId) {
1303   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1304   return IdSymbolic[MsgId];
1305 }
1306 
1307 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1308   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1309   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1310   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1311   for (int i = F; i < L; ++i) {
1312     if (Name == S[i]) {
1313       return i;
1314     }
1315   }
1316   return OP_UNKNOWN_;
1317 }
1318 
1319 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1320                   bool Strict) {
1321   assert(isValidMsgId(MsgId, STI, Strict));
1322 
1323   if (!Strict)
1324     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1325 
1326   switch(MsgId)
1327   {
1328   case ID_GS:
1329     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1330   case ID_GS_DONE:
1331     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1332   case ID_SYSMSG:
1333     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1334   default:
1335     return OpId == OP_NONE_;
1336   }
1337 }
1338 
1339 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1340   assert(msgRequiresOp(MsgId));
1341   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1342 }
1343 
1344 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1345                       const MCSubtargetInfo &STI, bool Strict) {
1346   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1347 
1348   if (!Strict)
1349     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1350 
1351   switch(MsgId)
1352   {
1353   case ID_GS:
1354     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1355   case ID_GS_DONE:
1356     return (OpId == OP_GS_NOP)?
1357            (StreamId == STREAM_ID_NONE_) :
1358            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1359   default:
1360     return StreamId == STREAM_ID_NONE_;
1361   }
1362 }
1363 
1364 bool msgRequiresOp(int64_t MsgId) {
1365   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1366 }
1367 
1368 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1369   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1370 }
1371 
1372 void decodeMsg(unsigned Val,
1373                uint16_t &MsgId,
1374                uint16_t &OpId,
1375                uint16_t &StreamId) {
1376   MsgId = Val & ID_MASK_;
1377   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1378   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1379 }
1380 
1381 uint64_t encodeMsg(uint64_t MsgId,
1382                    uint64_t OpId,
1383                    uint64_t StreamId) {
1384   return (MsgId << ID_SHIFT_) |
1385          (OpId << OP_SHIFT_) |
1386          (StreamId << STREAM_ID_SHIFT_);
1387 }
1388 
1389 } // namespace SendMsg
1390 
1391 //===----------------------------------------------------------------------===//
1392 //
1393 //===----------------------------------------------------------------------===//
1394 
1395 unsigned getInitialPSInputAddr(const Function &F) {
1396   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1397 }
1398 
1399 bool getHasColorExport(const Function &F) {
1400   // As a safe default always respond as if PS has color exports.
1401   return getIntegerAttribute(
1402              F, "amdgpu-color-export",
1403              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1404 }
1405 
1406 bool getHasDepthExport(const Function &F) {
1407   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1408 }
1409 
1410 bool isShader(CallingConv::ID cc) {
1411   switch(cc) {
1412     case CallingConv::AMDGPU_VS:
1413     case CallingConv::AMDGPU_LS:
1414     case CallingConv::AMDGPU_HS:
1415     case CallingConv::AMDGPU_ES:
1416     case CallingConv::AMDGPU_GS:
1417     case CallingConv::AMDGPU_PS:
1418     case CallingConv::AMDGPU_CS:
1419       return true;
1420     default:
1421       return false;
1422   }
1423 }
1424 
1425 bool isGraphics(CallingConv::ID cc) {
1426   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1427 }
1428 
1429 bool isCompute(CallingConv::ID cc) {
1430   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1431 }
1432 
1433 bool isEntryFunctionCC(CallingConv::ID CC) {
1434   switch (CC) {
1435   case CallingConv::AMDGPU_KERNEL:
1436   case CallingConv::SPIR_KERNEL:
1437   case CallingConv::AMDGPU_VS:
1438   case CallingConv::AMDGPU_GS:
1439   case CallingConv::AMDGPU_PS:
1440   case CallingConv::AMDGPU_CS:
1441   case CallingConv::AMDGPU_ES:
1442   case CallingConv::AMDGPU_HS:
1443   case CallingConv::AMDGPU_LS:
1444     return true;
1445   default:
1446     return false;
1447   }
1448 }
1449 
1450 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1451   switch (CC) {
1452   case CallingConv::AMDGPU_Gfx:
1453     return true;
1454   default:
1455     return isEntryFunctionCC(CC);
1456   }
1457 }
1458 
1459 bool isKernelCC(const Function *Func) {
1460   return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
1461 }
1462 
1463 bool hasXNACK(const MCSubtargetInfo &STI) {
1464   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1465 }
1466 
1467 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1468   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1469 }
1470 
1471 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1472   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1473 }
1474 
1475 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1476   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1477 }
1478 
1479 bool hasG16(const MCSubtargetInfo &STI) {
1480   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1481 }
1482 
1483 bool hasPackedD16(const MCSubtargetInfo &STI) {
1484   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1485 }
1486 
1487 bool isSI(const MCSubtargetInfo &STI) {
1488   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1489 }
1490 
1491 bool isCI(const MCSubtargetInfo &STI) {
1492   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1493 }
1494 
1495 bool isVI(const MCSubtargetInfo &STI) {
1496   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1497 }
1498 
1499 bool isGFX9(const MCSubtargetInfo &STI) {
1500   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1501 }
1502 
1503 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1504   return isGFX9(STI) || isGFX10Plus(STI);
1505 }
1506 
1507 bool isGFX10(const MCSubtargetInfo &STI) {
1508   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1509 }
1510 
1511 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1512 
1513 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1514   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1515 }
1516 
1517 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1518   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1519 }
1520 
1521 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1522   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1523 }
1524 
1525 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1526   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1527 }
1528 
1529 bool isGFX90A(const MCSubtargetInfo &STI) {
1530   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1531 }
1532 
1533 bool isGFX940(const MCSubtargetInfo &STI) {
1534   return STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts];
1535 }
1536 
1537 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1538   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1539 }
1540 
1541 bool hasMAIInsts(const MCSubtargetInfo &STI) {
1542   return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts];
1543 }
1544 
1545 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
1546                          int32_t ArgNumVGPR) {
1547   if (has90AInsts && ArgNumAGPR)
1548     return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
1549   return std::max(ArgNumVGPR, ArgNumAGPR);
1550 }
1551 
1552 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1553   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1554   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1555   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1556     Reg == AMDGPU::SCC;
1557 }
1558 
1559 #define MAP_REG2REG \
1560   using namespace AMDGPU; \
1561   switch(Reg) { \
1562   default: return Reg; \
1563   CASE_CI_VI(FLAT_SCR) \
1564   CASE_CI_VI(FLAT_SCR_LO) \
1565   CASE_CI_VI(FLAT_SCR_HI) \
1566   CASE_VI_GFX9PLUS(TTMP0) \
1567   CASE_VI_GFX9PLUS(TTMP1) \
1568   CASE_VI_GFX9PLUS(TTMP2) \
1569   CASE_VI_GFX9PLUS(TTMP3) \
1570   CASE_VI_GFX9PLUS(TTMP4) \
1571   CASE_VI_GFX9PLUS(TTMP5) \
1572   CASE_VI_GFX9PLUS(TTMP6) \
1573   CASE_VI_GFX9PLUS(TTMP7) \
1574   CASE_VI_GFX9PLUS(TTMP8) \
1575   CASE_VI_GFX9PLUS(TTMP9) \
1576   CASE_VI_GFX9PLUS(TTMP10) \
1577   CASE_VI_GFX9PLUS(TTMP11) \
1578   CASE_VI_GFX9PLUS(TTMP12) \
1579   CASE_VI_GFX9PLUS(TTMP13) \
1580   CASE_VI_GFX9PLUS(TTMP14) \
1581   CASE_VI_GFX9PLUS(TTMP15) \
1582   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1583   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1584   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1585   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1586   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1587   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1588   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1589   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1590   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1591   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1592   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1593   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1594   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1595   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1596   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1597   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1598   }
1599 
1600 #define CASE_CI_VI(node) \
1601   assert(!isSI(STI)); \
1602   case node: return isCI(STI) ? node##_ci : node##_vi;
1603 
1604 #define CASE_VI_GFX9PLUS(node) \
1605   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1606 
1607 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1608   if (STI.getTargetTriple().getArch() == Triple::r600)
1609     return Reg;
1610   MAP_REG2REG
1611 }
1612 
1613 #undef CASE_CI_VI
1614 #undef CASE_VI_GFX9PLUS
1615 
1616 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1617 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1618 
1619 unsigned mc2PseudoReg(unsigned Reg) {
1620   MAP_REG2REG
1621 }
1622 
1623 #undef CASE_CI_VI
1624 #undef CASE_VI_GFX9PLUS
1625 #undef MAP_REG2REG
1626 
1627 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1628   assert(OpNo < Desc.NumOperands);
1629   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1630   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1631          OpType <= AMDGPU::OPERAND_SRC_LAST;
1632 }
1633 
1634 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1635   assert(OpNo < Desc.NumOperands);
1636   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1637   switch (OpType) {
1638   case AMDGPU::OPERAND_REG_IMM_FP32:
1639   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1640   case AMDGPU::OPERAND_REG_IMM_FP64:
1641   case AMDGPU::OPERAND_REG_IMM_FP16:
1642   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1643   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1644   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1645   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1646   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1647   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1648   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1649   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1650   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1651   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1652   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1653   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1654   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1655   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1656   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1657     return true;
1658   default:
1659     return false;
1660   }
1661 }
1662 
1663 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1664   assert(OpNo < Desc.NumOperands);
1665   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1666   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1667          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1668 }
1669 
1670 // Avoid using MCRegisterClass::getSize, since that function will go away
1671 // (move from MC* level to Target* level). Return size in bits.
1672 unsigned getRegBitWidth(unsigned RCID) {
1673   switch (RCID) {
1674   case AMDGPU::VGPR_LO16RegClassID:
1675   case AMDGPU::VGPR_HI16RegClassID:
1676   case AMDGPU::SGPR_LO16RegClassID:
1677   case AMDGPU::AGPR_LO16RegClassID:
1678     return 16;
1679   case AMDGPU::SGPR_32RegClassID:
1680   case AMDGPU::VGPR_32RegClassID:
1681   case AMDGPU::VRegOrLds_32RegClassID:
1682   case AMDGPU::AGPR_32RegClassID:
1683   case AMDGPU::VS_32RegClassID:
1684   case AMDGPU::AV_32RegClassID:
1685   case AMDGPU::SReg_32RegClassID:
1686   case AMDGPU::SReg_32_XM0RegClassID:
1687   case AMDGPU::SRegOrLds_32RegClassID:
1688     return 32;
1689   case AMDGPU::SGPR_64RegClassID:
1690   case AMDGPU::VS_64RegClassID:
1691   case AMDGPU::SReg_64RegClassID:
1692   case AMDGPU::VReg_64RegClassID:
1693   case AMDGPU::AReg_64RegClassID:
1694   case AMDGPU::SReg_64_XEXECRegClassID:
1695   case AMDGPU::VReg_64_Align2RegClassID:
1696   case AMDGPU::AReg_64_Align2RegClassID:
1697   case AMDGPU::AV_64RegClassID:
1698   case AMDGPU::AV_64_Align2RegClassID:
1699     return 64;
1700   case AMDGPU::SGPR_96RegClassID:
1701   case AMDGPU::SReg_96RegClassID:
1702   case AMDGPU::VReg_96RegClassID:
1703   case AMDGPU::AReg_96RegClassID:
1704   case AMDGPU::VReg_96_Align2RegClassID:
1705   case AMDGPU::AReg_96_Align2RegClassID:
1706   case AMDGPU::AV_96RegClassID:
1707   case AMDGPU::AV_96_Align2RegClassID:
1708     return 96;
1709   case AMDGPU::SGPR_128RegClassID:
1710   case AMDGPU::SReg_128RegClassID:
1711   case AMDGPU::VReg_128RegClassID:
1712   case AMDGPU::AReg_128RegClassID:
1713   case AMDGPU::VReg_128_Align2RegClassID:
1714   case AMDGPU::AReg_128_Align2RegClassID:
1715   case AMDGPU::AV_128RegClassID:
1716   case AMDGPU::AV_128_Align2RegClassID:
1717     return 128;
1718   case AMDGPU::SGPR_160RegClassID:
1719   case AMDGPU::SReg_160RegClassID:
1720   case AMDGPU::VReg_160RegClassID:
1721   case AMDGPU::AReg_160RegClassID:
1722   case AMDGPU::VReg_160_Align2RegClassID:
1723   case AMDGPU::AReg_160_Align2RegClassID:
1724   case AMDGPU::AV_160RegClassID:
1725   case AMDGPU::AV_160_Align2RegClassID:
1726     return 160;
1727   case AMDGPU::SGPR_192RegClassID:
1728   case AMDGPU::SReg_192RegClassID:
1729   case AMDGPU::VReg_192RegClassID:
1730   case AMDGPU::AReg_192RegClassID:
1731   case AMDGPU::VReg_192_Align2RegClassID:
1732   case AMDGPU::AReg_192_Align2RegClassID:
1733   case AMDGPU::AV_192RegClassID:
1734   case AMDGPU::AV_192_Align2RegClassID:
1735     return 192;
1736   case AMDGPU::SGPR_224RegClassID:
1737   case AMDGPU::SReg_224RegClassID:
1738   case AMDGPU::VReg_224RegClassID:
1739   case AMDGPU::AReg_224RegClassID:
1740   case AMDGPU::VReg_224_Align2RegClassID:
1741   case AMDGPU::AReg_224_Align2RegClassID:
1742   case AMDGPU::AV_224RegClassID:
1743   case AMDGPU::AV_224_Align2RegClassID:
1744     return 224;
1745   case AMDGPU::SGPR_256RegClassID:
1746   case AMDGPU::SReg_256RegClassID:
1747   case AMDGPU::VReg_256RegClassID:
1748   case AMDGPU::AReg_256RegClassID:
1749   case AMDGPU::VReg_256_Align2RegClassID:
1750   case AMDGPU::AReg_256_Align2RegClassID:
1751   case AMDGPU::AV_256RegClassID:
1752   case AMDGPU::AV_256_Align2RegClassID:
1753     return 256;
1754   case AMDGPU::SGPR_512RegClassID:
1755   case AMDGPU::SReg_512RegClassID:
1756   case AMDGPU::VReg_512RegClassID:
1757   case AMDGPU::AReg_512RegClassID:
1758   case AMDGPU::VReg_512_Align2RegClassID:
1759   case AMDGPU::AReg_512_Align2RegClassID:
1760   case AMDGPU::AV_512RegClassID:
1761   case AMDGPU::AV_512_Align2RegClassID:
1762     return 512;
1763   case AMDGPU::SGPR_1024RegClassID:
1764   case AMDGPU::SReg_1024RegClassID:
1765   case AMDGPU::VReg_1024RegClassID:
1766   case AMDGPU::AReg_1024RegClassID:
1767   case AMDGPU::VReg_1024_Align2RegClassID:
1768   case AMDGPU::AReg_1024_Align2RegClassID:
1769   case AMDGPU::AV_1024RegClassID:
1770   case AMDGPU::AV_1024_Align2RegClassID:
1771     return 1024;
1772   default:
1773     llvm_unreachable("Unexpected register class");
1774   }
1775 }
1776 
1777 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1778   return getRegBitWidth(RC.getID());
1779 }
1780 
1781 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1782                            unsigned OpNo) {
1783   assert(OpNo < Desc.NumOperands);
1784   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1785   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1786 }
1787 
1788 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1789   if (isInlinableIntLiteral(Literal))
1790     return true;
1791 
1792   uint64_t Val = static_cast<uint64_t>(Literal);
1793   return (Val == DoubleToBits(0.0)) ||
1794          (Val == DoubleToBits(1.0)) ||
1795          (Val == DoubleToBits(-1.0)) ||
1796          (Val == DoubleToBits(0.5)) ||
1797          (Val == DoubleToBits(-0.5)) ||
1798          (Val == DoubleToBits(2.0)) ||
1799          (Val == DoubleToBits(-2.0)) ||
1800          (Val == DoubleToBits(4.0)) ||
1801          (Val == DoubleToBits(-4.0)) ||
1802          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1803 }
1804 
1805 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1806   if (isInlinableIntLiteral(Literal))
1807     return true;
1808 
1809   // The actual type of the operand does not seem to matter as long
1810   // as the bits match one of the inline immediate values.  For example:
1811   //
1812   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1813   // so it is a legal inline immediate.
1814   //
1815   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1816   // floating-point, so it is a legal inline immediate.
1817 
1818   uint32_t Val = static_cast<uint32_t>(Literal);
1819   return (Val == FloatToBits(0.0f)) ||
1820          (Val == FloatToBits(1.0f)) ||
1821          (Val == FloatToBits(-1.0f)) ||
1822          (Val == FloatToBits(0.5f)) ||
1823          (Val == FloatToBits(-0.5f)) ||
1824          (Val == FloatToBits(2.0f)) ||
1825          (Val == FloatToBits(-2.0f)) ||
1826          (Val == FloatToBits(4.0f)) ||
1827          (Val == FloatToBits(-4.0f)) ||
1828          (Val == 0x3e22f983 && HasInv2Pi);
1829 }
1830 
1831 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1832   if (!HasInv2Pi)
1833     return false;
1834 
1835   if (isInlinableIntLiteral(Literal))
1836     return true;
1837 
1838   uint16_t Val = static_cast<uint16_t>(Literal);
1839   return Val == 0x3C00 || // 1.0
1840          Val == 0xBC00 || // -1.0
1841          Val == 0x3800 || // 0.5
1842          Val == 0xB800 || // -0.5
1843          Val == 0x4000 || // 2.0
1844          Val == 0xC000 || // -2.0
1845          Val == 0x4400 || // 4.0
1846          Val == 0xC400 || // -4.0
1847          Val == 0x3118;   // 1/2pi
1848 }
1849 
1850 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1851   assert(HasInv2Pi);
1852 
1853   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1854     int16_t Trunc = static_cast<int16_t>(Literal);
1855     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1856   }
1857   if (!(Literal & 0xffff))
1858     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1859 
1860   int16_t Lo16 = static_cast<int16_t>(Literal);
1861   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1862   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1863 }
1864 
1865 bool isInlinableIntLiteralV216(int32_t Literal) {
1866   int16_t Lo16 = static_cast<int16_t>(Literal);
1867   if (isInt<16>(Literal) || isUInt<16>(Literal))
1868     return isInlinableIntLiteral(Lo16);
1869 
1870   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1871   if (!(Literal & 0xffff))
1872     return isInlinableIntLiteral(Hi16);
1873   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1874 }
1875 
1876 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1877   assert(HasInv2Pi);
1878 
1879   int16_t Lo16 = static_cast<int16_t>(Literal);
1880   if (isInt<16>(Literal) || isUInt<16>(Literal))
1881     return true;
1882 
1883   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1884   if (!(Literal & 0xffff))
1885     return true;
1886   return Lo16 == Hi16;
1887 }
1888 
1889 bool isArgPassedInSGPR(const Argument *A) {
1890   const Function *F = A->getParent();
1891 
1892   // Arguments to compute shaders are never a source of divergence.
1893   CallingConv::ID CC = F->getCallingConv();
1894   switch (CC) {
1895   case CallingConv::AMDGPU_KERNEL:
1896   case CallingConv::SPIR_KERNEL:
1897     return true;
1898   case CallingConv::AMDGPU_VS:
1899   case CallingConv::AMDGPU_LS:
1900   case CallingConv::AMDGPU_HS:
1901   case CallingConv::AMDGPU_ES:
1902   case CallingConv::AMDGPU_GS:
1903   case CallingConv::AMDGPU_PS:
1904   case CallingConv::AMDGPU_CS:
1905   case CallingConv::AMDGPU_Gfx:
1906     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1907     // Everything else is in VGPRs.
1908     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
1909            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
1910   default:
1911     // TODO: Should calls support inreg for SGPR inputs?
1912     return false;
1913   }
1914 }
1915 
1916 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1917   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1918 }
1919 
1920 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1921   return isGFX9Plus(ST);
1922 }
1923 
1924 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1925                                       int64_t EncodedOffset) {
1926   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1927                                : isUInt<8>(EncodedOffset);
1928 }
1929 
1930 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1931                                     int64_t EncodedOffset,
1932                                     bool IsBuffer) {
1933   return !IsBuffer &&
1934          hasSMRDSignedImmOffset(ST) &&
1935          isInt<21>(EncodedOffset);
1936 }
1937 
1938 static bool isDwordAligned(uint64_t ByteOffset) {
1939   return (ByteOffset & 3) == 0;
1940 }
1941 
1942 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1943                                 uint64_t ByteOffset) {
1944   if (hasSMEMByteOffset(ST))
1945     return ByteOffset;
1946 
1947   assert(isDwordAligned(ByteOffset));
1948   return ByteOffset >> 2;
1949 }
1950 
1951 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1952                                        int64_t ByteOffset, bool IsBuffer) {
1953   // The signed version is always a byte offset.
1954   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1955     assert(hasSMEMByteOffset(ST));
1956     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1957   }
1958 
1959   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1960     return None;
1961 
1962   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1963   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1964              ? Optional<int64_t>(EncodedOffset)
1965              : None;
1966 }
1967 
1968 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1969                                                 int64_t ByteOffset) {
1970   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1971     return None;
1972 
1973   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1974   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1975 }
1976 
1977 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1978   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1979   if (AMDGPU::isGFX10(ST))
1980     return Signed ? 12 : 11;
1981 
1982   return Signed ? 13 : 12;
1983 }
1984 
1985 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1986 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1987 // hardware bug needing a workaround).
1988 //
1989 // The required alignment ensures that individual address components remain
1990 // aligned if they are aligned to begin with. It also ensures that additional
1991 // offsets within the given alignment can be added to the resulting ImmOffset.
1992 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1993                       const GCNSubtarget *Subtarget, Align Alignment) {
1994   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1995   uint32_t Overflow = 0;
1996 
1997   if (Imm > MaxImm) {
1998     if (Imm <= MaxImm + 64) {
1999       // Use an SOffset inline constant for 4..64
2000       Overflow = Imm - MaxImm;
2001       Imm = MaxImm;
2002     } else {
2003       // Try to keep the same value in SOffset for adjacent loads, so that
2004       // the corresponding register contents can be re-used.
2005       //
2006       // Load values with all low-bits (except for alignment bits) set into
2007       // SOffset, so that a larger range of values can be covered using
2008       // s_movk_i32.
2009       //
2010       // Atomic operations fail to work correctly when individual address
2011       // components are unaligned, even if their sum is aligned.
2012       uint32_t High = (Imm + Alignment.value()) & ~4095;
2013       uint32_t Low = (Imm + Alignment.value()) & 4095;
2014       Imm = Low;
2015       Overflow = High - Alignment.value();
2016     }
2017   }
2018 
2019   // There is a hardware bug in SI and CI which prevents address clamping in
2020   // MUBUF instructions from working correctly with SOffsets. The immediate
2021   // offset is unaffected.
2022   if (Overflow > 0 &&
2023       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
2024     return false;
2025 
2026   ImmOffset = Imm;
2027   SOffset = Overflow;
2028   return true;
2029 }
2030 
2031 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
2032   *this = getDefaultForCallingConv(F.getCallingConv());
2033 
2034   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
2035   if (!IEEEAttr.empty())
2036     IEEE = IEEEAttr == "true";
2037 
2038   StringRef DX10ClampAttr
2039     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
2040   if (!DX10ClampAttr.empty())
2041     DX10Clamp = DX10ClampAttr == "true";
2042 
2043   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
2044   if (!DenormF32Attr.empty()) {
2045     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
2046     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2047     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2048   }
2049 
2050   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
2051   if (!DenormAttr.empty()) {
2052     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2053 
2054     if (DenormF32Attr.empty()) {
2055       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2056       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2057     }
2058 
2059     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2060     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2061   }
2062 }
2063 
2064 namespace {
2065 
2066 struct SourceOfDivergence {
2067   unsigned Intr;
2068 };
2069 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2070 
2071 #define GET_SourcesOfDivergence_IMPL
2072 #define GET_Gfx9BufferFormat_IMPL
2073 #define GET_Gfx10PlusBufferFormat_IMPL
2074 #include "AMDGPUGenSearchableTables.inc"
2075 
2076 } // end anonymous namespace
2077 
2078 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2079   return lookupSourceOfDivergence(IntrID);
2080 }
2081 
2082 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2083                                                   uint8_t NumComponents,
2084                                                   uint8_t NumFormat,
2085                                                   const MCSubtargetInfo &STI) {
2086   return isGFX10Plus(STI)
2087              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
2088                                             NumFormat)
2089              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
2090 }
2091 
2092 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2093                                                   const MCSubtargetInfo &STI) {
2094   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
2095                           : getGfx9BufferFormatInfo(Format);
2096 }
2097 
2098 } // namespace AMDGPU
2099 
2100 raw_ostream &operator<<(raw_ostream &OS,
2101                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2102   switch (S) {
2103   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2104     OS << "Unsupported";
2105     break;
2106   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2107     OS << "Any";
2108     break;
2109   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2110     OS << "Off";
2111     break;
2112   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2113     OS << "On";
2114     break;
2115   }
2116   return OS;
2117 }
2118 
2119 } // namespace llvm
2120