1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   default:
103     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
104                        Twine(AmdhsaCodeObjectVersion));
105   }
106 }
107 
108 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
109   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
110     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
111   return false;
112 }
113 
114 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
115   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
116     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
117   return false;
118 }
119 
120 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
121   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
122     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
123   return false;
124 }
125 
126 bool isHsaAbiVersion3Or4(const MCSubtargetInfo *STI) {
127   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI);
128 }
129 
130 #define GET_MIMGBaseOpcodesTable_IMPL
131 #define GET_MIMGDimInfoTable_IMPL
132 #define GET_MIMGInfoTable_IMPL
133 #define GET_MIMGLZMappingTable_IMPL
134 #define GET_MIMGMIPMappingTable_IMPL
135 #define GET_MIMGBiasMappingTable_IMPL
136 #define GET_MIMGG16MappingTable_IMPL
137 #include "AMDGPUGenSearchableTables.inc"
138 
139 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
140                   unsigned VDataDwords, unsigned VAddrDwords) {
141   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
142                                              VDataDwords, VAddrDwords);
143   return Info ? Info->Opcode : -1;
144 }
145 
146 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
147   const MIMGInfo *Info = getMIMGInfo(Opc);
148   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
149 }
150 
151 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
152   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
153   const MIMGInfo *NewInfo =
154       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
155                           NewChannels, OrigInfo->VAddrDwords);
156   return NewInfo ? NewInfo->Opcode : -1;
157 }
158 
159 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
160                            const MIMGDimInfo *Dim, bool IsA16,
161                            bool IsG16Supported) {
162   unsigned AddrWords = BaseOpcode->NumExtraArgs;
163   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
164                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
165   if (IsA16)
166     AddrWords += divideCeil(AddrComponents, 2);
167   else
168     AddrWords += AddrComponents;
169 
170   // Note: For subtargets that support A16 but not G16, enabling A16 also
171   // enables 16 bit gradients.
172   // For subtargets that support A16 (operand) and G16 (done with a different
173   // instruction encoding), they are independent.
174 
175   if (BaseOpcode->Gradients) {
176     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
177       // There are two gradients per coordinate, we pack them separately.
178       // For the 3d case,
179       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
180       AddrWords += alignTo<2>(Dim->NumGradients / 2);
181     else
182       AddrWords += Dim->NumGradients;
183   }
184   return AddrWords;
185 }
186 
187 struct MUBUFInfo {
188   uint16_t Opcode;
189   uint16_t BaseOpcode;
190   uint8_t elements;
191   bool has_vaddr;
192   bool has_srsrc;
193   bool has_soffset;
194   bool IsBufferInv;
195 };
196 
197 struct MTBUFInfo {
198   uint16_t Opcode;
199   uint16_t BaseOpcode;
200   uint8_t elements;
201   bool has_vaddr;
202   bool has_srsrc;
203   bool has_soffset;
204 };
205 
206 struct SMInfo {
207   uint16_t Opcode;
208   bool IsBuffer;
209 };
210 
211 struct VOPInfo {
212   uint16_t Opcode;
213   bool IsSingle;
214 };
215 
216 #define GET_MTBUFInfoTable_DECL
217 #define GET_MTBUFInfoTable_IMPL
218 #define GET_MUBUFInfoTable_DECL
219 #define GET_MUBUFInfoTable_IMPL
220 #define GET_SMInfoTable_DECL
221 #define GET_SMInfoTable_IMPL
222 #define GET_VOP1InfoTable_DECL
223 #define GET_VOP1InfoTable_IMPL
224 #define GET_VOP2InfoTable_DECL
225 #define GET_VOP2InfoTable_IMPL
226 #define GET_VOP3InfoTable_DECL
227 #define GET_VOP3InfoTable_IMPL
228 #include "AMDGPUGenSearchableTables.inc"
229 
230 int getMTBUFBaseOpcode(unsigned Opc) {
231   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
232   return Info ? Info->BaseOpcode : -1;
233 }
234 
235 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
236   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
237   return Info ? Info->Opcode : -1;
238 }
239 
240 int getMTBUFElements(unsigned Opc) {
241   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
242   return Info ? Info->elements : 0;
243 }
244 
245 bool getMTBUFHasVAddr(unsigned Opc) {
246   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
247   return Info ? Info->has_vaddr : false;
248 }
249 
250 bool getMTBUFHasSrsrc(unsigned Opc) {
251   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
252   return Info ? Info->has_srsrc : false;
253 }
254 
255 bool getMTBUFHasSoffset(unsigned Opc) {
256   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
257   return Info ? Info->has_soffset : false;
258 }
259 
260 int getMUBUFBaseOpcode(unsigned Opc) {
261   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
262   return Info ? Info->BaseOpcode : -1;
263 }
264 
265 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
266   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
267   return Info ? Info->Opcode : -1;
268 }
269 
270 int getMUBUFElements(unsigned Opc) {
271   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
272   return Info ? Info->elements : 0;
273 }
274 
275 bool getMUBUFHasVAddr(unsigned Opc) {
276   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
277   return Info ? Info->has_vaddr : false;
278 }
279 
280 bool getMUBUFHasSrsrc(unsigned Opc) {
281   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
282   return Info ? Info->has_srsrc : false;
283 }
284 
285 bool getMUBUFHasSoffset(unsigned Opc) {
286   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
287   return Info ? Info->has_soffset : false;
288 }
289 
290 bool getMUBUFIsBufferInv(unsigned Opc) {
291   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
292   return Info ? Info->IsBufferInv : false;
293 }
294 
295 bool getSMEMIsBuffer(unsigned Opc) {
296   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
297   return Info ? Info->IsBuffer : false;
298 }
299 
300 bool getVOP1IsSingle(unsigned Opc) {
301   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
302   return Info ? Info->IsSingle : false;
303 }
304 
305 bool getVOP2IsSingle(unsigned Opc) {
306   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
307   return Info ? Info->IsSingle : false;
308 }
309 
310 bool getVOP3IsSingle(unsigned Opc) {
311   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
312   return Info ? Info->IsSingle : false;
313 }
314 
315 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
316 // header files, so we need to wrap it in a function that takes unsigned
317 // instead.
318 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
319   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
320 }
321 
322 namespace IsaInfo {
323 
324 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
325     : STI(STI), XnackSetting(TargetIDSetting::Any),
326       SramEccSetting(TargetIDSetting::Any) {
327   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
328     XnackSetting = TargetIDSetting::Unsupported;
329   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
330     SramEccSetting = TargetIDSetting::Unsupported;
331 }
332 
333 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
334   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
335   // absence of the target features we assume we must generate code that can run
336   // in any environment.
337   SubtargetFeatures Features(FS);
338   Optional<bool> XnackRequested;
339   Optional<bool> SramEccRequested;
340 
341   for (const std::string &Feature : Features.getFeatures()) {
342     if (Feature == "+xnack")
343       XnackRequested = true;
344     else if (Feature == "-xnack")
345       XnackRequested = false;
346     else if (Feature == "+sramecc")
347       SramEccRequested = true;
348     else if (Feature == "-sramecc")
349       SramEccRequested = false;
350   }
351 
352   bool XnackSupported = isXnackSupported();
353   bool SramEccSupported = isSramEccSupported();
354 
355   if (XnackRequested) {
356     if (XnackSupported) {
357       XnackSetting =
358           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
359     } else {
360       // If a specific xnack setting was requested and this GPU does not support
361       // xnack emit a warning. Setting will remain set to "Unsupported".
362       if (*XnackRequested) {
363         errs() << "warning: xnack 'On' was requested for a processor that does "
364                   "not support it!\n";
365       } else {
366         errs() << "warning: xnack 'Off' was requested for a processor that "
367                   "does not support it!\n";
368       }
369     }
370   }
371 
372   if (SramEccRequested) {
373     if (SramEccSupported) {
374       SramEccSetting =
375           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
376     } else {
377       // If a specific sramecc setting was requested and this GPU does not
378       // support sramecc emit a warning. Setting will remain set to
379       // "Unsupported".
380       if (*SramEccRequested) {
381         errs() << "warning: sramecc 'On' was requested for a processor that "
382                   "does not support it!\n";
383       } else {
384         errs() << "warning: sramecc 'Off' was requested for a processor that "
385                   "does not support it!\n";
386       }
387     }
388   }
389 }
390 
391 static TargetIDSetting
392 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
393   if (FeatureString.endswith("-"))
394     return TargetIDSetting::Off;
395   if (FeatureString.endswith("+"))
396     return TargetIDSetting::On;
397 
398   llvm_unreachable("Malformed feature string");
399 }
400 
401 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
402   SmallVector<StringRef, 3> TargetIDSplit;
403   TargetID.split(TargetIDSplit, ':');
404 
405   for (const auto &FeatureString : TargetIDSplit) {
406     if (FeatureString.startswith("xnack"))
407       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
408     if (FeatureString.startswith("sramecc"))
409       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
410   }
411 }
412 
413 std::string AMDGPUTargetID::toString() const {
414   std::string StringRep;
415   raw_string_ostream StreamRep(StringRep);
416 
417   auto TargetTriple = STI.getTargetTriple();
418   auto Version = getIsaVersion(STI.getCPU());
419 
420   StreamRep << TargetTriple.getArchName() << '-'
421             << TargetTriple.getVendorName() << '-'
422             << TargetTriple.getOSName() << '-'
423             << TargetTriple.getEnvironmentName() << '-';
424 
425   std::string Processor;
426   // TODO: Following else statement is present here because we used various
427   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
428   // Remove once all aliases are removed from GCNProcessors.td.
429   if (Version.Major >= 9)
430     Processor = STI.getCPU().str();
431   else
432     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
433                  Twine(Version.Stepping))
434                     .str();
435 
436   std::string Features;
437   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
438     switch (*HsaAbiVersion) {
439     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
440       // Code object V2 only supported specific processors and had fixed
441       // settings for the XNACK.
442       if (Processor == "gfx600") {
443       } else if (Processor == "gfx601") {
444       } else if (Processor == "gfx602") {
445       } else if (Processor == "gfx700") {
446       } else if (Processor == "gfx701") {
447       } else if (Processor == "gfx702") {
448       } else if (Processor == "gfx703") {
449       } else if (Processor == "gfx704") {
450       } else if (Processor == "gfx705") {
451       } else if (Processor == "gfx801") {
452         if (!isXnackOnOrAny())
453           report_fatal_error(
454               "AMD GPU code object V2 does not support processor " +
455               Twine(Processor) + " without XNACK");
456       } else if (Processor == "gfx802") {
457       } else if (Processor == "gfx803") {
458       } else if (Processor == "gfx805") {
459       } else if (Processor == "gfx810") {
460         if (!isXnackOnOrAny())
461           report_fatal_error(
462               "AMD GPU code object V2 does not support processor " +
463               Twine(Processor) + " without XNACK");
464       } else if (Processor == "gfx900") {
465         if (isXnackOnOrAny())
466           Processor = "gfx901";
467       } else if (Processor == "gfx902") {
468         if (isXnackOnOrAny())
469           Processor = "gfx903";
470       } else if (Processor == "gfx904") {
471         if (isXnackOnOrAny())
472           Processor = "gfx905";
473       } else if (Processor == "gfx906") {
474         if (isXnackOnOrAny())
475           Processor = "gfx907";
476       } else if (Processor == "gfx90c") {
477         if (isXnackOnOrAny())
478           report_fatal_error(
479               "AMD GPU code object V2 does not support processor " +
480               Twine(Processor) + " with XNACK being ON or ANY");
481       } else {
482         report_fatal_error(
483             "AMD GPU code object V2 does not support processor " +
484             Twine(Processor));
485       }
486       break;
487     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
488       // xnack.
489       if (isXnackOnOrAny())
490         Features += "+xnack";
491       // In code object v2 and v3, "sramecc" feature was spelled with a
492       // hyphen ("sram-ecc").
493       if (isSramEccOnOrAny())
494         Features += "+sram-ecc";
495       break;
496     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
497       // sramecc.
498       if (getSramEccSetting() == TargetIDSetting::Off)
499         Features += ":sramecc-";
500       else if (getSramEccSetting() == TargetIDSetting::On)
501         Features += ":sramecc+";
502       // xnack.
503       if (getXnackSetting() == TargetIDSetting::Off)
504         Features += ":xnack-";
505       else if (getXnackSetting() == TargetIDSetting::On)
506         Features += ":xnack+";
507       break;
508     default:
509       break;
510     }
511   }
512 
513   StreamRep << Processor << Features;
514 
515   StreamRep.flush();
516   return StringRep;
517 }
518 
519 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
520   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
521     return 16;
522   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
523     return 32;
524 
525   return 64;
526 }
527 
528 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
529   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
530     return 32768;
531   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
532     return 65536;
533 
534   return 0;
535 }
536 
537 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
538   // "Per CU" really means "per whatever functional block the waves of a
539   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
540   // two SIMDs.
541   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
542     return 2;
543   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
544   // two CUs, so a total of four SIMDs.
545   return 4;
546 }
547 
548 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
549                                unsigned FlatWorkGroupSize) {
550   assert(FlatWorkGroupSize != 0);
551   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
552     return 8;
553   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
554   if (N == 1)
555     return 40;
556   N = 40 / N;
557   return std::min(N, 16u);
558 }
559 
560 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
561   return 1;
562 }
563 
564 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
565   // FIXME: Need to take scratch memory into account.
566   if (isGFX90A(*STI))
567     return 8;
568   if (!isGFX10Plus(*STI))
569     return 10;
570   return hasGFX10_3Insts(*STI) ? 16 : 20;
571 }
572 
573 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
574                                    unsigned FlatWorkGroupSize) {
575   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
576                     getEUsPerCU(STI));
577 }
578 
579 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
580   return 1;
581 }
582 
583 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
584   // Some subtargets allow encoding 2048, but this isn't tested or supported.
585   return 1024;
586 }
587 
588 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
589                               unsigned FlatWorkGroupSize) {
590   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
591 }
592 
593 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
594   IsaVersion Version = getIsaVersion(STI->getCPU());
595   if (Version.Major >= 10)
596     return getAddressableNumSGPRs(STI);
597   if (Version.Major >= 8)
598     return 16;
599   return 8;
600 }
601 
602 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
603   return 8;
604 }
605 
606 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
607   IsaVersion Version = getIsaVersion(STI->getCPU());
608   if (Version.Major >= 8)
609     return 800;
610   return 512;
611 }
612 
613 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
614   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
615     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
616 
617   IsaVersion Version = getIsaVersion(STI->getCPU());
618   if (Version.Major >= 10)
619     return 106;
620   if (Version.Major >= 8)
621     return 102;
622   return 104;
623 }
624 
625 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
626   assert(WavesPerEU != 0);
627 
628   IsaVersion Version = getIsaVersion(STI->getCPU());
629   if (Version.Major >= 10)
630     return 0;
631 
632   if (WavesPerEU >= getMaxWavesPerEU(STI))
633     return 0;
634 
635   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
636   if (STI->getFeatureBits().test(FeatureTrapHandler))
637     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
638   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
639   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
640 }
641 
642 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
643                         bool Addressable) {
644   assert(WavesPerEU != 0);
645 
646   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
647   IsaVersion Version = getIsaVersion(STI->getCPU());
648   if (Version.Major >= 10)
649     return Addressable ? AddressableNumSGPRs : 108;
650   if (Version.Major >= 8 && !Addressable)
651     AddressableNumSGPRs = 112;
652   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
653   if (STI->getFeatureBits().test(FeatureTrapHandler))
654     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
655   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
656   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
657 }
658 
659 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
660                           bool FlatScrUsed, bool XNACKUsed) {
661   unsigned ExtraSGPRs = 0;
662   if (VCCUsed)
663     ExtraSGPRs = 2;
664 
665   IsaVersion Version = getIsaVersion(STI->getCPU());
666   if (Version.Major >= 10)
667     return ExtraSGPRs;
668 
669   if (Version.Major < 8) {
670     if (FlatScrUsed)
671       ExtraSGPRs = 4;
672   } else {
673     if (XNACKUsed)
674       ExtraSGPRs = 4;
675 
676     if (FlatScrUsed ||
677         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
678       ExtraSGPRs = 6;
679   }
680 
681   return ExtraSGPRs;
682 }
683 
684 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
685                           bool FlatScrUsed) {
686   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
687                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
688 }
689 
690 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
691   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
692   // SGPRBlocks is actual number of SGPR blocks minus 1.
693   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
694 }
695 
696 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
697                              Optional<bool> EnableWavefrontSize32) {
698   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
699     return 8;
700 
701   bool IsWave32 = EnableWavefrontSize32 ?
702       *EnableWavefrontSize32 :
703       STI->getFeatureBits().test(FeatureWavefrontSize32);
704 
705   if (hasGFX10_3Insts(*STI))
706     return IsWave32 ? 16 : 8;
707 
708   return IsWave32 ? 8 : 4;
709 }
710 
711 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
712                                 Optional<bool> EnableWavefrontSize32) {
713   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
714     return 8;
715 
716   bool IsWave32 = EnableWavefrontSize32 ?
717       *EnableWavefrontSize32 :
718       STI->getFeatureBits().test(FeatureWavefrontSize32);
719 
720   return IsWave32 ? 8 : 4;
721 }
722 
723 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
724   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
725     return 512;
726   if (!isGFX10Plus(*STI))
727     return 256;
728   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
729 }
730 
731 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
732   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
733     return 512;
734   return 256;
735 }
736 
737 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
738   assert(WavesPerEU != 0);
739 
740   if (WavesPerEU >= getMaxWavesPerEU(STI))
741     return 0;
742   unsigned MinNumVGPRs =
743       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
744                 getVGPRAllocGranule(STI)) + 1;
745   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
746 }
747 
748 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
749   assert(WavesPerEU != 0);
750 
751   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
752                                    getVGPRAllocGranule(STI));
753   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
754   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
755 }
756 
757 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
758                           Optional<bool> EnableWavefrontSize32) {
759   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
760                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
761   // VGPRBlocks is actual number of VGPR blocks minus 1.
762   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
763 }
764 
765 } // end namespace IsaInfo
766 
767 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
768                                const MCSubtargetInfo *STI) {
769   IsaVersion Version = getIsaVersion(STI->getCPU());
770 
771   memset(&Header, 0, sizeof(Header));
772 
773   Header.amd_kernel_code_version_major = 1;
774   Header.amd_kernel_code_version_minor = 2;
775   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
776   Header.amd_machine_version_major = Version.Major;
777   Header.amd_machine_version_minor = Version.Minor;
778   Header.amd_machine_version_stepping = Version.Stepping;
779   Header.kernel_code_entry_byte_offset = sizeof(Header);
780   Header.wavefront_size = 6;
781 
782   // If the code object does not support indirect functions, then the value must
783   // be 0xffffffff.
784   Header.call_convention = -1;
785 
786   // These alignment values are specified in powers of two, so alignment =
787   // 2^n.  The minimum alignment is 2^4 = 16.
788   Header.kernarg_segment_alignment = 4;
789   Header.group_segment_alignment = 4;
790   Header.private_segment_alignment = 4;
791 
792   if (Version.Major >= 10) {
793     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
794       Header.wavefront_size = 5;
795       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
796     }
797     Header.compute_pgm_resource_registers |=
798       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
799       S_00B848_MEM_ORDERED(1);
800   }
801 }
802 
803 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
804     const MCSubtargetInfo *STI) {
805   IsaVersion Version = getIsaVersion(STI->getCPU());
806 
807   amdhsa::kernel_descriptor_t KD;
808   memset(&KD, 0, sizeof(KD));
809 
810   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
811                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
812                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
813   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
814                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
815   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
816                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
817   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
818                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
819   if (Version.Major >= 10) {
820     AMDHSA_BITS_SET(KD.kernel_code_properties,
821                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
822                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
823     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
824                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
825                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
826     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
827                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
828   }
829   if (AMDGPU::isGFX90A(*STI)) {
830     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
831                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
832                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
833   }
834   return KD;
835 }
836 
837 bool isGroupSegment(const GlobalValue *GV) {
838   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
839 }
840 
841 bool isGlobalSegment(const GlobalValue *GV) {
842   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
843 }
844 
845 bool isReadOnlySegment(const GlobalValue *GV) {
846   unsigned AS = GV->getAddressSpace();
847   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
848          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
849 }
850 
851 bool shouldEmitConstantsToTextSection(const Triple &TT) {
852   return TT.getArch() == Triple::r600;
853 }
854 
855 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
856   Attribute A = F.getFnAttribute(Name);
857   int Result = Default;
858 
859   if (A.isStringAttribute()) {
860     StringRef Str = A.getValueAsString();
861     if (Str.getAsInteger(0, Result)) {
862       LLVMContext &Ctx = F.getContext();
863       Ctx.emitError("can't parse integer attribute " + Name);
864     }
865   }
866 
867   return Result;
868 }
869 
870 std::pair<int, int> getIntegerPairAttribute(const Function &F,
871                                             StringRef Name,
872                                             std::pair<int, int> Default,
873                                             bool OnlyFirstRequired) {
874   Attribute A = F.getFnAttribute(Name);
875   if (!A.isStringAttribute())
876     return Default;
877 
878   LLVMContext &Ctx = F.getContext();
879   std::pair<int, int> Ints = Default;
880   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
881   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
882     Ctx.emitError("can't parse first integer attribute " + Name);
883     return Default;
884   }
885   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
886     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
887       Ctx.emitError("can't parse second integer attribute " + Name);
888       return Default;
889     }
890   }
891 
892   return Ints;
893 }
894 
895 unsigned getVmcntBitMask(const IsaVersion &Version) {
896   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
897   if (Version.Major < 9)
898     return VmcntLo;
899 
900   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
901   return VmcntLo | VmcntHi;
902 }
903 
904 unsigned getExpcntBitMask(const IsaVersion &Version) {
905   return (1 << getExpcntBitWidth()) - 1;
906 }
907 
908 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
909   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
910 }
911 
912 unsigned getWaitcntBitMask(const IsaVersion &Version) {
913   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
914   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
915   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
916                                 getLgkmcntBitWidth(Version.Major));
917   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
918   if (Version.Major < 9)
919     return Waitcnt;
920 
921   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
922   return Waitcnt | VmcntHi;
923 }
924 
925 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
926   unsigned VmcntLo =
927       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
928   if (Version.Major < 9)
929     return VmcntLo;
930 
931   unsigned VmcntHi =
932       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
933   VmcntHi <<= getVmcntBitWidthLo();
934   return VmcntLo | VmcntHi;
935 }
936 
937 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
938   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
939 }
940 
941 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
942   return unpackBits(Waitcnt, getLgkmcntBitShift(),
943                     getLgkmcntBitWidth(Version.Major));
944 }
945 
946 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
947                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
948   Vmcnt = decodeVmcnt(Version, Waitcnt);
949   Expcnt = decodeExpcnt(Version, Waitcnt);
950   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
951 }
952 
953 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
954   Waitcnt Decoded;
955   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
956   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
957   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
958   return Decoded;
959 }
960 
961 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
962                      unsigned Vmcnt) {
963   Waitcnt =
964       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
965   if (Version.Major < 9)
966     return Waitcnt;
967 
968   Vmcnt >>= getVmcntBitWidthLo();
969   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
970 }
971 
972 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
973                       unsigned Expcnt) {
974   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
975 }
976 
977 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
978                        unsigned Lgkmcnt) {
979   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
980                                     getLgkmcntBitWidth(Version.Major));
981 }
982 
983 unsigned encodeWaitcnt(const IsaVersion &Version,
984                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
985   unsigned Waitcnt = getWaitcntBitMask(Version);
986   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
987   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
988   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
989   return Waitcnt;
990 }
991 
992 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
993   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
994 }
995 
996 //===----------------------------------------------------------------------===//
997 // hwreg
998 //===----------------------------------------------------------------------===//
999 
1000 namespace Hwreg {
1001 
1002 int64_t getHwregId(const StringRef Name) {
1003   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
1004     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
1005       return Id;
1006   }
1007   return ID_UNKNOWN_;
1008 }
1009 
1010 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
1011   if (isSI(STI) || isCI(STI) || isVI(STI))
1012     return ID_SYMBOLIC_FIRST_GFX9_;
1013   else if (isGFX9(STI))
1014     return ID_SYMBOLIC_FIRST_GFX10_;
1015   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
1016     return ID_SYMBOLIC_FIRST_GFX1030_;
1017   else
1018     return ID_SYMBOLIC_LAST_;
1019 }
1020 
1021 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
1022   switch (Id) {
1023   case ID_HW_ID:
1024     return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1025   case ID_HW_ID1:
1026   case ID_HW_ID2:
1027     return isGFX10Plus(STI);
1028   case ID_XNACK_MASK:
1029     return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1030   default:
1031     return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
1032            IdSymbolic[Id];
1033   }
1034 }
1035 
1036 bool isValidHwreg(int64_t Id) {
1037   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1038 }
1039 
1040 bool isValidHwregOffset(int64_t Offset) {
1041   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1042 }
1043 
1044 bool isValidHwregWidth(int64_t Width) {
1045   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1046 }
1047 
1048 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1049   return (Id << ID_SHIFT_) |
1050          (Offset << OFFSET_SHIFT_) |
1051          ((Width - 1) << WIDTH_M1_SHIFT_);
1052 }
1053 
1054 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1055   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
1056 }
1057 
1058 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1059   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1060   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1061   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1062 }
1063 
1064 } // namespace Hwreg
1065 
1066 //===----------------------------------------------------------------------===//
1067 // exp tgt
1068 //===----------------------------------------------------------------------===//
1069 
1070 namespace Exp {
1071 
1072 struct ExpTgt {
1073   StringLiteral Name;
1074   unsigned Tgt;
1075   unsigned MaxIndex;
1076 };
1077 
1078 static constexpr ExpTgt ExpTgtInfo[] = {
1079   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1080   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1081   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1082   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1083   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1084   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1085 };
1086 
1087 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1088   for (const ExpTgt &Val : ExpTgtInfo) {
1089     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1090       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1091       Name = Val.Name;
1092       return true;
1093     }
1094   }
1095   return false;
1096 }
1097 
1098 unsigned getTgtId(const StringRef Name) {
1099 
1100   for (const ExpTgt &Val : ExpTgtInfo) {
1101     if (Val.MaxIndex == 0 && Name == Val.Name)
1102       return Val.Tgt;
1103 
1104     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1105       StringRef Suffix = Name.drop_front(Val.Name.size());
1106 
1107       unsigned Id;
1108       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1109         return ET_INVALID;
1110 
1111       // Disable leading zeroes
1112       if (Suffix.size() > 1 && Suffix[0] == '0')
1113         return ET_INVALID;
1114 
1115       return Val.Tgt + Id;
1116     }
1117   }
1118   return ET_INVALID;
1119 }
1120 
1121 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1122   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1123 }
1124 
1125 } // namespace Exp
1126 
1127 //===----------------------------------------------------------------------===//
1128 // MTBUF Format
1129 //===----------------------------------------------------------------------===//
1130 
1131 namespace MTBUFFormat {
1132 
1133 int64_t getDfmt(const StringRef Name) {
1134   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1135     if (Name == DfmtSymbolic[Id])
1136       return Id;
1137   }
1138   return DFMT_UNDEF;
1139 }
1140 
1141 StringRef getDfmtName(unsigned Id) {
1142   assert(Id <= DFMT_MAX);
1143   return DfmtSymbolic[Id];
1144 }
1145 
1146 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1147   if (isSI(STI) || isCI(STI))
1148     return NfmtSymbolicSICI;
1149   if (isVI(STI) || isGFX9(STI))
1150     return NfmtSymbolicVI;
1151   return NfmtSymbolicGFX10;
1152 }
1153 
1154 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1155   auto lookupTable = getNfmtLookupTable(STI);
1156   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1157     if (Name == lookupTable[Id])
1158       return Id;
1159   }
1160   return NFMT_UNDEF;
1161 }
1162 
1163 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1164   assert(Id <= NFMT_MAX);
1165   return getNfmtLookupTable(STI)[Id];
1166 }
1167 
1168 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1169   unsigned Dfmt;
1170   unsigned Nfmt;
1171   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1172   return isValidNfmt(Nfmt, STI);
1173 }
1174 
1175 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1176   return !getNfmtName(Id, STI).empty();
1177 }
1178 
1179 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1180   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1181 }
1182 
1183 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1184   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1185   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1186 }
1187 
1188 int64_t getUnifiedFormat(const StringRef Name) {
1189   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1190     if (Name == UfmtSymbolic[Id])
1191       return Id;
1192   }
1193   return UFMT_UNDEF;
1194 }
1195 
1196 StringRef getUnifiedFormatName(unsigned Id) {
1197   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1198 }
1199 
1200 bool isValidUnifiedFormat(unsigned Id) {
1201   return Id <= UFMT_LAST;
1202 }
1203 
1204 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1205   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1206   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1207     if (Fmt == DfmtNfmt2UFmt[Id])
1208       return Id;
1209   }
1210   return UFMT_UNDEF;
1211 }
1212 
1213 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1214   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1215 }
1216 
1217 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1218   if (isGFX10Plus(STI))
1219     return UFMT_DEFAULT;
1220   return DFMT_NFMT_DEFAULT;
1221 }
1222 
1223 } // namespace MTBUFFormat
1224 
1225 //===----------------------------------------------------------------------===//
1226 // SendMsg
1227 //===----------------------------------------------------------------------===//
1228 
1229 namespace SendMsg {
1230 
1231 int64_t getMsgId(const StringRef Name) {
1232   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1233     if (IdSymbolic[i] && Name == IdSymbolic[i])
1234       return i;
1235   }
1236   return ID_UNKNOWN_;
1237 }
1238 
1239 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1240   if (Strict) {
1241     switch (MsgId) {
1242     case ID_SAVEWAVE:
1243       return isVI(STI) || isGFX9Plus(STI);
1244     case ID_STALL_WAVE_GEN:
1245     case ID_HALT_WAVES:
1246     case ID_ORDERED_PS_DONE:
1247     case ID_GS_ALLOC_REQ:
1248     case ID_GET_DOORBELL:
1249       return isGFX9Plus(STI);
1250     case ID_EARLY_PRIM_DEALLOC:
1251       return isGFX9(STI);
1252     case ID_GET_DDID:
1253       return isGFX10Plus(STI);
1254     default:
1255       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1256     }
1257   } else {
1258     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1259   }
1260 }
1261 
1262 StringRef getMsgName(int64_t MsgId) {
1263   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1264   return IdSymbolic[MsgId];
1265 }
1266 
1267 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1268   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1269   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1270   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1271   for (int i = F; i < L; ++i) {
1272     if (Name == S[i]) {
1273       return i;
1274     }
1275   }
1276   return OP_UNKNOWN_;
1277 }
1278 
1279 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1280                   bool Strict) {
1281   assert(isValidMsgId(MsgId, STI, Strict));
1282 
1283   if (!Strict)
1284     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1285 
1286   switch(MsgId)
1287   {
1288   case ID_GS:
1289     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1290   case ID_GS_DONE:
1291     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1292   case ID_SYSMSG:
1293     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1294   default:
1295     return OpId == OP_NONE_;
1296   }
1297 }
1298 
1299 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1300   assert(msgRequiresOp(MsgId));
1301   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1302 }
1303 
1304 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1305                       const MCSubtargetInfo &STI, bool Strict) {
1306   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1307 
1308   if (!Strict)
1309     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1310 
1311   switch(MsgId)
1312   {
1313   case ID_GS:
1314     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1315   case ID_GS_DONE:
1316     return (OpId == OP_GS_NOP)?
1317            (StreamId == STREAM_ID_NONE_) :
1318            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1319   default:
1320     return StreamId == STREAM_ID_NONE_;
1321   }
1322 }
1323 
1324 bool msgRequiresOp(int64_t MsgId) {
1325   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1326 }
1327 
1328 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1329   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1330 }
1331 
1332 void decodeMsg(unsigned Val,
1333                uint16_t &MsgId,
1334                uint16_t &OpId,
1335                uint16_t &StreamId) {
1336   MsgId = Val & ID_MASK_;
1337   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1338   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1339 }
1340 
1341 uint64_t encodeMsg(uint64_t MsgId,
1342                    uint64_t OpId,
1343                    uint64_t StreamId) {
1344   return (MsgId << ID_SHIFT_) |
1345          (OpId << OP_SHIFT_) |
1346          (StreamId << STREAM_ID_SHIFT_);
1347 }
1348 
1349 } // namespace SendMsg
1350 
1351 //===----------------------------------------------------------------------===//
1352 //
1353 //===----------------------------------------------------------------------===//
1354 
1355 unsigned getInitialPSInputAddr(const Function &F) {
1356   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1357 }
1358 
1359 bool getHasColorExport(const Function &F) {
1360   // As a safe default always respond as if PS has color exports.
1361   return getIntegerAttribute(
1362              F, "amdgpu-color-export",
1363              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1364 }
1365 
1366 bool getHasDepthExport(const Function &F) {
1367   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1368 }
1369 
1370 bool isShader(CallingConv::ID cc) {
1371   switch(cc) {
1372     case CallingConv::AMDGPU_VS:
1373     case CallingConv::AMDGPU_LS:
1374     case CallingConv::AMDGPU_HS:
1375     case CallingConv::AMDGPU_ES:
1376     case CallingConv::AMDGPU_GS:
1377     case CallingConv::AMDGPU_PS:
1378     case CallingConv::AMDGPU_CS:
1379       return true;
1380     default:
1381       return false;
1382   }
1383 }
1384 
1385 bool isGraphics(CallingConv::ID cc) {
1386   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1387 }
1388 
1389 bool isCompute(CallingConv::ID cc) {
1390   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1391 }
1392 
1393 bool isEntryFunctionCC(CallingConv::ID CC) {
1394   switch (CC) {
1395   case CallingConv::AMDGPU_KERNEL:
1396   case CallingConv::SPIR_KERNEL:
1397   case CallingConv::AMDGPU_VS:
1398   case CallingConv::AMDGPU_GS:
1399   case CallingConv::AMDGPU_PS:
1400   case CallingConv::AMDGPU_CS:
1401   case CallingConv::AMDGPU_ES:
1402   case CallingConv::AMDGPU_HS:
1403   case CallingConv::AMDGPU_LS:
1404     return true;
1405   default:
1406     return false;
1407   }
1408 }
1409 
1410 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1411   switch (CC) {
1412   case CallingConv::AMDGPU_Gfx:
1413     return true;
1414   default:
1415     return isEntryFunctionCC(CC);
1416   }
1417 }
1418 
1419 bool hasXNACK(const MCSubtargetInfo &STI) {
1420   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1421 }
1422 
1423 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1424   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1425 }
1426 
1427 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1428   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1429 }
1430 
1431 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1432   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1433 }
1434 
1435 bool hasG16(const MCSubtargetInfo &STI) {
1436   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1437 }
1438 
1439 bool hasPackedD16(const MCSubtargetInfo &STI) {
1440   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1441 }
1442 
1443 bool isSI(const MCSubtargetInfo &STI) {
1444   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1445 }
1446 
1447 bool isCI(const MCSubtargetInfo &STI) {
1448   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1449 }
1450 
1451 bool isVI(const MCSubtargetInfo &STI) {
1452   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1453 }
1454 
1455 bool isGFX9(const MCSubtargetInfo &STI) {
1456   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1457 }
1458 
1459 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1460   return isGFX9(STI) || isGFX10Plus(STI);
1461 }
1462 
1463 bool isGFX10(const MCSubtargetInfo &STI) {
1464   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1465 }
1466 
1467 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1468 
1469 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1470   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1471 }
1472 
1473 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1474   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1475 }
1476 
1477 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1478   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1479 }
1480 
1481 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1482   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1483 }
1484 
1485 bool isGFX90A(const MCSubtargetInfo &STI) {
1486   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1487 }
1488 
1489 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1490   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1491 }
1492 
1493 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1494   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1495   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1496   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1497     Reg == AMDGPU::SCC;
1498 }
1499 
1500 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1501   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1502     if (*R == Reg1) return true;
1503   }
1504   return false;
1505 }
1506 
1507 #define MAP_REG2REG \
1508   using namespace AMDGPU; \
1509   switch(Reg) { \
1510   default: return Reg; \
1511   CASE_CI_VI(FLAT_SCR) \
1512   CASE_CI_VI(FLAT_SCR_LO) \
1513   CASE_CI_VI(FLAT_SCR_HI) \
1514   CASE_VI_GFX9PLUS(TTMP0) \
1515   CASE_VI_GFX9PLUS(TTMP1) \
1516   CASE_VI_GFX9PLUS(TTMP2) \
1517   CASE_VI_GFX9PLUS(TTMP3) \
1518   CASE_VI_GFX9PLUS(TTMP4) \
1519   CASE_VI_GFX9PLUS(TTMP5) \
1520   CASE_VI_GFX9PLUS(TTMP6) \
1521   CASE_VI_GFX9PLUS(TTMP7) \
1522   CASE_VI_GFX9PLUS(TTMP8) \
1523   CASE_VI_GFX9PLUS(TTMP9) \
1524   CASE_VI_GFX9PLUS(TTMP10) \
1525   CASE_VI_GFX9PLUS(TTMP11) \
1526   CASE_VI_GFX9PLUS(TTMP12) \
1527   CASE_VI_GFX9PLUS(TTMP13) \
1528   CASE_VI_GFX9PLUS(TTMP14) \
1529   CASE_VI_GFX9PLUS(TTMP15) \
1530   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1531   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1532   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1533   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1534   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1535   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1536   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1537   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1538   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1539   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1540   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1541   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1542   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1543   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1544   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1545   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1546   }
1547 
1548 #define CASE_CI_VI(node) \
1549   assert(!isSI(STI)); \
1550   case node: return isCI(STI) ? node##_ci : node##_vi;
1551 
1552 #define CASE_VI_GFX9PLUS(node) \
1553   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1554 
1555 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1556   if (STI.getTargetTriple().getArch() == Triple::r600)
1557     return Reg;
1558   MAP_REG2REG
1559 }
1560 
1561 #undef CASE_CI_VI
1562 #undef CASE_VI_GFX9PLUS
1563 
1564 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1565 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1566 
1567 unsigned mc2PseudoReg(unsigned Reg) {
1568   MAP_REG2REG
1569 }
1570 
1571 #undef CASE_CI_VI
1572 #undef CASE_VI_GFX9PLUS
1573 #undef MAP_REG2REG
1574 
1575 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1576   assert(OpNo < Desc.NumOperands);
1577   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1578   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1579          OpType <= AMDGPU::OPERAND_SRC_LAST;
1580 }
1581 
1582 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1583   assert(OpNo < Desc.NumOperands);
1584   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1585   switch (OpType) {
1586   case AMDGPU::OPERAND_REG_IMM_FP32:
1587   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1588   case AMDGPU::OPERAND_REG_IMM_FP64:
1589   case AMDGPU::OPERAND_REG_IMM_FP16:
1590   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1591   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1592   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1593   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1594   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1595   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1596   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1597   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1598   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1599   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1600   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1601   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1602   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1603   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1604   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1605     return true;
1606   default:
1607     return false;
1608   }
1609 }
1610 
1611 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1612   assert(OpNo < Desc.NumOperands);
1613   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1614   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1615          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1616 }
1617 
1618 // Avoid using MCRegisterClass::getSize, since that function will go away
1619 // (move from MC* level to Target* level). Return size in bits.
1620 unsigned getRegBitWidth(unsigned RCID) {
1621   switch (RCID) {
1622   case AMDGPU::VGPR_LO16RegClassID:
1623   case AMDGPU::VGPR_HI16RegClassID:
1624   case AMDGPU::SGPR_LO16RegClassID:
1625   case AMDGPU::AGPR_LO16RegClassID:
1626     return 16;
1627   case AMDGPU::SGPR_32RegClassID:
1628   case AMDGPU::VGPR_32RegClassID:
1629   case AMDGPU::VRegOrLds_32RegClassID:
1630   case AMDGPU::AGPR_32RegClassID:
1631   case AMDGPU::VS_32RegClassID:
1632   case AMDGPU::AV_32RegClassID:
1633   case AMDGPU::SReg_32RegClassID:
1634   case AMDGPU::SReg_32_XM0RegClassID:
1635   case AMDGPU::SRegOrLds_32RegClassID:
1636     return 32;
1637   case AMDGPU::SGPR_64RegClassID:
1638   case AMDGPU::VS_64RegClassID:
1639   case AMDGPU::SReg_64RegClassID:
1640   case AMDGPU::VReg_64RegClassID:
1641   case AMDGPU::AReg_64RegClassID:
1642   case AMDGPU::SReg_64_XEXECRegClassID:
1643   case AMDGPU::VReg_64_Align2RegClassID:
1644   case AMDGPU::AReg_64_Align2RegClassID:
1645   case AMDGPU::AV_64RegClassID:
1646   case AMDGPU::AV_64_Align2RegClassID:
1647     return 64;
1648   case AMDGPU::SGPR_96RegClassID:
1649   case AMDGPU::SReg_96RegClassID:
1650   case AMDGPU::VReg_96RegClassID:
1651   case AMDGPU::AReg_96RegClassID:
1652   case AMDGPU::VReg_96_Align2RegClassID:
1653   case AMDGPU::AReg_96_Align2RegClassID:
1654   case AMDGPU::AV_96RegClassID:
1655   case AMDGPU::AV_96_Align2RegClassID:
1656     return 96;
1657   case AMDGPU::SGPR_128RegClassID:
1658   case AMDGPU::SReg_128RegClassID:
1659   case AMDGPU::VReg_128RegClassID:
1660   case AMDGPU::AReg_128RegClassID:
1661   case AMDGPU::VReg_128_Align2RegClassID:
1662   case AMDGPU::AReg_128_Align2RegClassID:
1663   case AMDGPU::AV_128RegClassID:
1664   case AMDGPU::AV_128_Align2RegClassID:
1665     return 128;
1666   case AMDGPU::SGPR_160RegClassID:
1667   case AMDGPU::SReg_160RegClassID:
1668   case AMDGPU::VReg_160RegClassID:
1669   case AMDGPU::AReg_160RegClassID:
1670   case AMDGPU::VReg_160_Align2RegClassID:
1671   case AMDGPU::AReg_160_Align2RegClassID:
1672   case AMDGPU::AV_160RegClassID:
1673   case AMDGPU::AV_160_Align2RegClassID:
1674     return 160;
1675   case AMDGPU::SGPR_192RegClassID:
1676   case AMDGPU::SReg_192RegClassID:
1677   case AMDGPU::VReg_192RegClassID:
1678   case AMDGPU::AReg_192RegClassID:
1679   case AMDGPU::VReg_192_Align2RegClassID:
1680   case AMDGPU::AReg_192_Align2RegClassID:
1681   case AMDGPU::AV_192RegClassID:
1682   case AMDGPU::AV_192_Align2RegClassID:
1683     return 192;
1684   case AMDGPU::SGPR_224RegClassID:
1685   case AMDGPU::SReg_224RegClassID:
1686   case AMDGPU::VReg_224RegClassID:
1687   case AMDGPU::AReg_224RegClassID:
1688   case AMDGPU::VReg_224_Align2RegClassID:
1689   case AMDGPU::AReg_224_Align2RegClassID:
1690   case AMDGPU::AV_224RegClassID:
1691   case AMDGPU::AV_224_Align2RegClassID:
1692     return 224;
1693   case AMDGPU::SGPR_256RegClassID:
1694   case AMDGPU::SReg_256RegClassID:
1695   case AMDGPU::VReg_256RegClassID:
1696   case AMDGPU::AReg_256RegClassID:
1697   case AMDGPU::VReg_256_Align2RegClassID:
1698   case AMDGPU::AReg_256_Align2RegClassID:
1699   case AMDGPU::AV_256RegClassID:
1700   case AMDGPU::AV_256_Align2RegClassID:
1701     return 256;
1702   case AMDGPU::SGPR_512RegClassID:
1703   case AMDGPU::SReg_512RegClassID:
1704   case AMDGPU::VReg_512RegClassID:
1705   case AMDGPU::AReg_512RegClassID:
1706   case AMDGPU::VReg_512_Align2RegClassID:
1707   case AMDGPU::AReg_512_Align2RegClassID:
1708   case AMDGPU::AV_512RegClassID:
1709   case AMDGPU::AV_512_Align2RegClassID:
1710     return 512;
1711   case AMDGPU::SGPR_1024RegClassID:
1712   case AMDGPU::SReg_1024RegClassID:
1713   case AMDGPU::VReg_1024RegClassID:
1714   case AMDGPU::AReg_1024RegClassID:
1715   case AMDGPU::VReg_1024_Align2RegClassID:
1716   case AMDGPU::AReg_1024_Align2RegClassID:
1717   case AMDGPU::AV_1024RegClassID:
1718   case AMDGPU::AV_1024_Align2RegClassID:
1719     return 1024;
1720   default:
1721     llvm_unreachable("Unexpected register class");
1722   }
1723 }
1724 
1725 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1726   return getRegBitWidth(RC.getID());
1727 }
1728 
1729 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1730                            unsigned OpNo) {
1731   assert(OpNo < Desc.NumOperands);
1732   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1733   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1734 }
1735 
1736 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1737   if (isInlinableIntLiteral(Literal))
1738     return true;
1739 
1740   uint64_t Val = static_cast<uint64_t>(Literal);
1741   return (Val == DoubleToBits(0.0)) ||
1742          (Val == DoubleToBits(1.0)) ||
1743          (Val == DoubleToBits(-1.0)) ||
1744          (Val == DoubleToBits(0.5)) ||
1745          (Val == DoubleToBits(-0.5)) ||
1746          (Val == DoubleToBits(2.0)) ||
1747          (Val == DoubleToBits(-2.0)) ||
1748          (Val == DoubleToBits(4.0)) ||
1749          (Val == DoubleToBits(-4.0)) ||
1750          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1751 }
1752 
1753 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1754   if (isInlinableIntLiteral(Literal))
1755     return true;
1756 
1757   // The actual type of the operand does not seem to matter as long
1758   // as the bits match one of the inline immediate values.  For example:
1759   //
1760   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1761   // so it is a legal inline immediate.
1762   //
1763   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1764   // floating-point, so it is a legal inline immediate.
1765 
1766   uint32_t Val = static_cast<uint32_t>(Literal);
1767   return (Val == FloatToBits(0.0f)) ||
1768          (Val == FloatToBits(1.0f)) ||
1769          (Val == FloatToBits(-1.0f)) ||
1770          (Val == FloatToBits(0.5f)) ||
1771          (Val == FloatToBits(-0.5f)) ||
1772          (Val == FloatToBits(2.0f)) ||
1773          (Val == FloatToBits(-2.0f)) ||
1774          (Val == FloatToBits(4.0f)) ||
1775          (Val == FloatToBits(-4.0f)) ||
1776          (Val == 0x3e22f983 && HasInv2Pi);
1777 }
1778 
1779 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1780   if (!HasInv2Pi)
1781     return false;
1782 
1783   if (isInlinableIntLiteral(Literal))
1784     return true;
1785 
1786   uint16_t Val = static_cast<uint16_t>(Literal);
1787   return Val == 0x3C00 || // 1.0
1788          Val == 0xBC00 || // -1.0
1789          Val == 0x3800 || // 0.5
1790          Val == 0xB800 || // -0.5
1791          Val == 0x4000 || // 2.0
1792          Val == 0xC000 || // -2.0
1793          Val == 0x4400 || // 4.0
1794          Val == 0xC400 || // -4.0
1795          Val == 0x3118;   // 1/2pi
1796 }
1797 
1798 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1799   assert(HasInv2Pi);
1800 
1801   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1802     int16_t Trunc = static_cast<int16_t>(Literal);
1803     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1804   }
1805   if (!(Literal & 0xffff))
1806     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1807 
1808   int16_t Lo16 = static_cast<int16_t>(Literal);
1809   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1810   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1811 }
1812 
1813 bool isInlinableIntLiteralV216(int32_t Literal) {
1814   int16_t Lo16 = static_cast<int16_t>(Literal);
1815   if (isInt<16>(Literal) || isUInt<16>(Literal))
1816     return isInlinableIntLiteral(Lo16);
1817 
1818   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1819   if (!(Literal & 0xffff))
1820     return isInlinableIntLiteral(Hi16);
1821   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1822 }
1823 
1824 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1825   assert(HasInv2Pi);
1826 
1827   int16_t Lo16 = static_cast<int16_t>(Literal);
1828   if (isInt<16>(Literal) || isUInt<16>(Literal))
1829     return true;
1830 
1831   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1832   if (!(Literal & 0xffff))
1833     return true;
1834   return Lo16 == Hi16;
1835 }
1836 
1837 bool isArgPassedInSGPR(const Argument *A) {
1838   const Function *F = A->getParent();
1839 
1840   // Arguments to compute shaders are never a source of divergence.
1841   CallingConv::ID CC = F->getCallingConv();
1842   switch (CC) {
1843   case CallingConv::AMDGPU_KERNEL:
1844   case CallingConv::SPIR_KERNEL:
1845     return true;
1846   case CallingConv::AMDGPU_VS:
1847   case CallingConv::AMDGPU_LS:
1848   case CallingConv::AMDGPU_HS:
1849   case CallingConv::AMDGPU_ES:
1850   case CallingConv::AMDGPU_GS:
1851   case CallingConv::AMDGPU_PS:
1852   case CallingConv::AMDGPU_CS:
1853   case CallingConv::AMDGPU_Gfx:
1854     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1855     // Everything else is in VGPRs.
1856     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
1857            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
1858   default:
1859     // TODO: Should calls support inreg for SGPR inputs?
1860     return false;
1861   }
1862 }
1863 
1864 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1865   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1866 }
1867 
1868 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1869   return isGFX9Plus(ST);
1870 }
1871 
1872 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1873                                       int64_t EncodedOffset) {
1874   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1875                                : isUInt<8>(EncodedOffset);
1876 }
1877 
1878 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1879                                     int64_t EncodedOffset,
1880                                     bool IsBuffer) {
1881   return !IsBuffer &&
1882          hasSMRDSignedImmOffset(ST) &&
1883          isInt<21>(EncodedOffset);
1884 }
1885 
1886 static bool isDwordAligned(uint64_t ByteOffset) {
1887   return (ByteOffset & 3) == 0;
1888 }
1889 
1890 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1891                                 uint64_t ByteOffset) {
1892   if (hasSMEMByteOffset(ST))
1893     return ByteOffset;
1894 
1895   assert(isDwordAligned(ByteOffset));
1896   return ByteOffset >> 2;
1897 }
1898 
1899 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1900                                        int64_t ByteOffset, bool IsBuffer) {
1901   // The signed version is always a byte offset.
1902   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1903     assert(hasSMEMByteOffset(ST));
1904     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1905   }
1906 
1907   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1908     return None;
1909 
1910   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1911   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1912              ? Optional<int64_t>(EncodedOffset)
1913              : None;
1914 }
1915 
1916 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1917                                                 int64_t ByteOffset) {
1918   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1919     return None;
1920 
1921   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1922   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1923 }
1924 
1925 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1926   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1927   if (AMDGPU::isGFX10(ST))
1928     return Signed ? 12 : 11;
1929 
1930   return Signed ? 13 : 12;
1931 }
1932 
1933 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1934 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1935 // hardware bug needing a workaround).
1936 //
1937 // The required alignment ensures that individual address components remain
1938 // aligned if they are aligned to begin with. It also ensures that additional
1939 // offsets within the given alignment can be added to the resulting ImmOffset.
1940 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1941                       const GCNSubtarget *Subtarget, Align Alignment) {
1942   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1943   uint32_t Overflow = 0;
1944 
1945   if (Imm > MaxImm) {
1946     if (Imm <= MaxImm + 64) {
1947       // Use an SOffset inline constant for 4..64
1948       Overflow = Imm - MaxImm;
1949       Imm = MaxImm;
1950     } else {
1951       // Try to keep the same value in SOffset for adjacent loads, so that
1952       // the corresponding register contents can be re-used.
1953       //
1954       // Load values with all low-bits (except for alignment bits) set into
1955       // SOffset, so that a larger range of values can be covered using
1956       // s_movk_i32.
1957       //
1958       // Atomic operations fail to work correctly when individual address
1959       // components are unaligned, even if their sum is aligned.
1960       uint32_t High = (Imm + Alignment.value()) & ~4095;
1961       uint32_t Low = (Imm + Alignment.value()) & 4095;
1962       Imm = Low;
1963       Overflow = High - Alignment.value();
1964     }
1965   }
1966 
1967   // There is a hardware bug in SI and CI which prevents address clamping in
1968   // MUBUF instructions from working correctly with SOffsets. The immediate
1969   // offset is unaffected.
1970   if (Overflow > 0 &&
1971       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1972     return false;
1973 
1974   ImmOffset = Imm;
1975   SOffset = Overflow;
1976   return true;
1977 }
1978 
1979 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1980   *this = getDefaultForCallingConv(F.getCallingConv());
1981 
1982   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1983   if (!IEEEAttr.empty())
1984     IEEE = IEEEAttr == "true";
1985 
1986   StringRef DX10ClampAttr
1987     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1988   if (!DX10ClampAttr.empty())
1989     DX10Clamp = DX10ClampAttr == "true";
1990 
1991   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1992   if (!DenormF32Attr.empty()) {
1993     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1994     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1995     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1996   }
1997 
1998   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1999   if (!DenormAttr.empty()) {
2000     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2001 
2002     if (DenormF32Attr.empty()) {
2003       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2004       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2005     }
2006 
2007     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2008     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2009   }
2010 }
2011 
2012 namespace {
2013 
2014 struct SourceOfDivergence {
2015   unsigned Intr;
2016 };
2017 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2018 
2019 #define GET_SourcesOfDivergence_IMPL
2020 #define GET_Gfx9BufferFormat_IMPL
2021 #define GET_Gfx10PlusBufferFormat_IMPL
2022 #include "AMDGPUGenSearchableTables.inc"
2023 
2024 } // end anonymous namespace
2025 
2026 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2027   return lookupSourceOfDivergence(IntrID);
2028 }
2029 
2030 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2031                                                   uint8_t NumComponents,
2032                                                   uint8_t NumFormat,
2033                                                   const MCSubtargetInfo &STI) {
2034   return isGFX10Plus(STI)
2035              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
2036                                             NumFormat)
2037              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
2038 }
2039 
2040 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2041                                                   const MCSubtargetInfo &STI) {
2042   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
2043                           : getGfx9BufferFormatInfo(Format);
2044 }
2045 
2046 } // namespace AMDGPU
2047 
2048 raw_ostream &operator<<(raw_ostream &OS,
2049                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2050   switch (S) {
2051   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2052     OS << "Unsupported";
2053     break;
2054   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2055     OS << "Any";
2056     break;
2057   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2058     OS << "Off";
2059     break;
2060   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2061     OS << "On";
2062     break;
2063   }
2064   return OS;
2065 }
2066 
2067 } // namespace llvm
2068