1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDGPUTargetTransformInfo.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/IR/IntrinsicsR600.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/MC/MCSectionELF.h" 32 #include "llvm/MC/MCSubtargetInfo.h" 33 #include "llvm/MC/SubtargetFeature.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstdint> 40 #include <cstring> 41 #include <utility> 42 43 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 44 45 #define GET_INSTRINFO_NAMED_OPS 46 #define GET_INSTRMAP_INFO 47 #include "AMDGPUGenInstrInfo.inc" 48 #undef GET_INSTRMAP_INFO 49 #undef GET_INSTRINFO_NAMED_OPS 50 51 namespace { 52 53 /// \returns Bit mask for given bit \p Shift and bit \p Width. 54 unsigned getBitMask(unsigned Shift, unsigned Width) { 55 return ((1 << Width) - 1) << Shift; 56 } 57 58 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 59 /// 60 /// \returns Packed \p Dst. 61 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 62 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 63 Dst |= (Src << Shift) & getBitMask(Shift, Width); 64 return Dst; 65 } 66 67 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 68 /// 69 /// \returns Unpacked bits. 70 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 71 return (Src & getBitMask(Shift, Width)) >> Shift; 72 } 73 74 /// \returns Vmcnt bit shift (lower bits). 75 unsigned getVmcntBitShiftLo() { return 0; } 76 77 /// \returns Vmcnt bit width (lower bits). 78 unsigned getVmcntBitWidthLo() { return 4; } 79 80 /// \returns Expcnt bit shift. 81 unsigned getExpcntBitShift() { return 4; } 82 83 /// \returns Expcnt bit width. 84 unsigned getExpcntBitWidth() { return 3; } 85 86 /// \returns Lgkmcnt bit shift. 87 unsigned getLgkmcntBitShift() { return 8; } 88 89 /// \returns Lgkmcnt bit width. 90 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 91 return (VersionMajor >= 10) ? 6 : 4; 92 } 93 94 /// \returns Vmcnt bit shift (higher bits). 95 unsigned getVmcntBitShiftHi() { return 14; } 96 97 /// \returns Vmcnt bit width (higher bits). 98 unsigned getVmcntBitWidthHi() { return 2; } 99 100 } // end namespace anonymous 101 102 namespace llvm { 103 104 namespace AMDGPU { 105 106 #define GET_MIMGBaseOpcodesTable_IMPL 107 #define GET_MIMGDimInfoTable_IMPL 108 #define GET_MIMGInfoTable_IMPL 109 #define GET_MIMGLZMappingTable_IMPL 110 #define GET_MIMGMIPMappingTable_IMPL 111 #define GET_MIMGG16MappingTable_IMPL 112 #include "AMDGPUGenSearchableTables.inc" 113 114 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 115 unsigned VDataDwords, unsigned VAddrDwords) { 116 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 117 VDataDwords, VAddrDwords); 118 return Info ? Info->Opcode : -1; 119 } 120 121 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 122 const MIMGInfo *Info = getMIMGInfo(Opc); 123 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 124 } 125 126 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 127 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 128 const MIMGInfo *NewInfo = 129 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 130 NewChannels, OrigInfo->VAddrDwords); 131 return NewInfo ? NewInfo->Opcode : -1; 132 } 133 134 struct MUBUFInfo { 135 uint16_t Opcode; 136 uint16_t BaseOpcode; 137 uint8_t elements; 138 bool has_vaddr; 139 bool has_srsrc; 140 bool has_soffset; 141 }; 142 143 struct MTBUFInfo { 144 uint16_t Opcode; 145 uint16_t BaseOpcode; 146 uint8_t elements; 147 bool has_vaddr; 148 bool has_srsrc; 149 bool has_soffset; 150 }; 151 152 struct SMInfo { 153 uint16_t Opcode; 154 bool IsBuffer; 155 }; 156 157 #define GET_MTBUFInfoTable_DECL 158 #define GET_MTBUFInfoTable_IMPL 159 #define GET_MUBUFInfoTable_DECL 160 #define GET_MUBUFInfoTable_IMPL 161 #define GET_SMInfoTable_DECL 162 #define GET_SMInfoTable_IMPL 163 #include "AMDGPUGenSearchableTables.inc" 164 165 int getMTBUFBaseOpcode(unsigned Opc) { 166 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 167 return Info ? Info->BaseOpcode : -1; 168 } 169 170 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 171 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 172 return Info ? Info->Opcode : -1; 173 } 174 175 int getMTBUFElements(unsigned Opc) { 176 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 177 return Info ? Info->elements : 0; 178 } 179 180 bool getMTBUFHasVAddr(unsigned Opc) { 181 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 182 return Info ? Info->has_vaddr : false; 183 } 184 185 bool getMTBUFHasSrsrc(unsigned Opc) { 186 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 187 return Info ? Info->has_srsrc : false; 188 } 189 190 bool getMTBUFHasSoffset(unsigned Opc) { 191 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 192 return Info ? Info->has_soffset : false; 193 } 194 195 int getMUBUFBaseOpcode(unsigned Opc) { 196 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 197 return Info ? Info->BaseOpcode : -1; 198 } 199 200 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 201 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 202 return Info ? Info->Opcode : -1; 203 } 204 205 int getMUBUFElements(unsigned Opc) { 206 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 207 return Info ? Info->elements : 0; 208 } 209 210 bool getMUBUFHasVAddr(unsigned Opc) { 211 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 212 return Info ? Info->has_vaddr : false; 213 } 214 215 bool getMUBUFHasSrsrc(unsigned Opc) { 216 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 217 return Info ? Info->has_srsrc : false; 218 } 219 220 bool getMUBUFHasSoffset(unsigned Opc) { 221 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 222 return Info ? Info->has_soffset : false; 223 } 224 225 bool getSMEMIsBuffer(unsigned Opc) { 226 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 227 return Info ? Info->IsBuffer : false; 228 } 229 230 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 231 // header files, so we need to wrap it in a function that takes unsigned 232 // instead. 233 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 234 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 235 } 236 237 namespace IsaInfo { 238 239 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 240 auto TargetTriple = STI->getTargetTriple(); 241 auto Version = getIsaVersion(STI->getCPU()); 242 243 Stream << TargetTriple.getArchName() << '-' 244 << TargetTriple.getVendorName() << '-' 245 << TargetTriple.getOSName() << '-' 246 << TargetTriple.getEnvironmentName() << '-' 247 << "gfx" 248 << Version.Major 249 << Version.Minor 250 << Version.Stepping; 251 252 if (hasXNACK(*STI)) 253 Stream << "+xnack"; 254 if (hasSRAMECC(*STI)) 255 Stream << "+sram-ecc"; 256 257 Stream.flush(); 258 } 259 260 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 261 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 262 STI->getFeatureBits().test(FeatureCodeObjectV3); 263 } 264 265 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 266 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 267 return 16; 268 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 269 return 32; 270 271 return 64; 272 } 273 274 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 275 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 276 return 32768; 277 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 278 return 65536; 279 280 return 0; 281 } 282 283 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 284 // "Per CU" really means "per whatever functional block the waves of a 285 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 286 // two SIMDs. 287 if (isGFX10(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 288 return 2; 289 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 290 // two CUs, so a total of four SIMDs. 291 return 4; 292 } 293 294 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 295 unsigned FlatWorkGroupSize) { 296 assert(FlatWorkGroupSize != 0); 297 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 298 return 8; 299 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 300 if (N == 1) 301 return 40; 302 N = 40 / N; 303 return std::min(N, 16u); 304 } 305 306 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 307 return 1; 308 } 309 310 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 311 // FIXME: Need to take scratch memory into account. 312 if (!isGFX10(*STI)) 313 return 10; 314 return 20; 315 } 316 317 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 318 unsigned FlatWorkGroupSize) { 319 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 320 getEUsPerCU(STI)); 321 } 322 323 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 324 return 1; 325 } 326 327 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 328 // Some subtargets allow encoding 2048, but this isn't tested or supported. 329 return 1024; 330 } 331 332 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 333 unsigned FlatWorkGroupSize) { 334 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 335 } 336 337 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 338 IsaVersion Version = getIsaVersion(STI->getCPU()); 339 if (Version.Major >= 10) 340 return getAddressableNumSGPRs(STI); 341 if (Version.Major >= 8) 342 return 16; 343 return 8; 344 } 345 346 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 347 return 8; 348 } 349 350 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 351 IsaVersion Version = getIsaVersion(STI->getCPU()); 352 if (Version.Major >= 8) 353 return 800; 354 return 512; 355 } 356 357 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 358 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 359 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 360 361 IsaVersion Version = getIsaVersion(STI->getCPU()); 362 if (Version.Major >= 10) 363 return 106; 364 if (Version.Major >= 8) 365 return 102; 366 return 104; 367 } 368 369 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 370 assert(WavesPerEU != 0); 371 372 IsaVersion Version = getIsaVersion(STI->getCPU()); 373 if (Version.Major >= 10) 374 return 0; 375 376 if (WavesPerEU >= getMaxWavesPerEU(STI)) 377 return 0; 378 379 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 380 if (STI->getFeatureBits().test(FeatureTrapHandler)) 381 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 382 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 383 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 384 } 385 386 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 387 bool Addressable) { 388 assert(WavesPerEU != 0); 389 390 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 391 IsaVersion Version = getIsaVersion(STI->getCPU()); 392 if (Version.Major >= 10) 393 return Addressable ? AddressableNumSGPRs : 108; 394 if (Version.Major >= 8 && !Addressable) 395 AddressableNumSGPRs = 112; 396 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 397 if (STI->getFeatureBits().test(FeatureTrapHandler)) 398 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 399 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 400 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 401 } 402 403 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 404 bool FlatScrUsed, bool XNACKUsed) { 405 unsigned ExtraSGPRs = 0; 406 if (VCCUsed) 407 ExtraSGPRs = 2; 408 409 IsaVersion Version = getIsaVersion(STI->getCPU()); 410 if (Version.Major >= 10) 411 return ExtraSGPRs; 412 413 if (Version.Major < 8) { 414 if (FlatScrUsed) 415 ExtraSGPRs = 4; 416 } else { 417 if (XNACKUsed) 418 ExtraSGPRs = 4; 419 420 if (FlatScrUsed) 421 ExtraSGPRs = 6; 422 } 423 424 return ExtraSGPRs; 425 } 426 427 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 428 bool FlatScrUsed) { 429 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 430 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 431 } 432 433 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 434 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 435 // SGPRBlocks is actual number of SGPR blocks minus 1. 436 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 437 } 438 439 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 440 Optional<bool> EnableWavefrontSize32) { 441 bool IsWave32 = EnableWavefrontSize32 ? 442 *EnableWavefrontSize32 : 443 STI->getFeatureBits().test(FeatureWavefrontSize32); 444 return IsWave32 ? 8 : 4; 445 } 446 447 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 448 Optional<bool> EnableWavefrontSize32) { 449 return getVGPRAllocGranule(STI, EnableWavefrontSize32); 450 } 451 452 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 453 if (!isGFX10(*STI)) 454 return 256; 455 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 456 } 457 458 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 459 return 256; 460 } 461 462 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 463 assert(WavesPerEU != 0); 464 465 if (WavesPerEU >= getMaxWavesPerEU(STI)) 466 return 0; 467 unsigned MinNumVGPRs = 468 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 469 getVGPRAllocGranule(STI)) + 1; 470 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 471 } 472 473 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 474 assert(WavesPerEU != 0); 475 476 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 477 getVGPRAllocGranule(STI)); 478 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 479 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 480 } 481 482 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 483 Optional<bool> EnableWavefrontSize32) { 484 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 485 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 486 // VGPRBlocks is actual number of VGPR blocks minus 1. 487 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 488 } 489 490 } // end namespace IsaInfo 491 492 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 493 const MCSubtargetInfo *STI) { 494 IsaVersion Version = getIsaVersion(STI->getCPU()); 495 496 memset(&Header, 0, sizeof(Header)); 497 498 Header.amd_kernel_code_version_major = 1; 499 Header.amd_kernel_code_version_minor = 2; 500 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 501 Header.amd_machine_version_major = Version.Major; 502 Header.amd_machine_version_minor = Version.Minor; 503 Header.amd_machine_version_stepping = Version.Stepping; 504 Header.kernel_code_entry_byte_offset = sizeof(Header); 505 Header.wavefront_size = 6; 506 507 // If the code object does not support indirect functions, then the value must 508 // be 0xffffffff. 509 Header.call_convention = -1; 510 511 // These alignment values are specified in powers of two, so alignment = 512 // 2^n. The minimum alignment is 2^4 = 16. 513 Header.kernarg_segment_alignment = 4; 514 Header.group_segment_alignment = 4; 515 Header.private_segment_alignment = 4; 516 517 if (Version.Major >= 10) { 518 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 519 Header.wavefront_size = 5; 520 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 521 } 522 Header.compute_pgm_resource_registers |= 523 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 524 S_00B848_MEM_ORDERED(1); 525 } 526 } 527 528 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 529 const MCSubtargetInfo *STI) { 530 IsaVersion Version = getIsaVersion(STI->getCPU()); 531 532 amdhsa::kernel_descriptor_t KD; 533 memset(&KD, 0, sizeof(KD)); 534 535 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 536 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 537 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 538 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 539 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 540 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 541 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 542 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 543 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 544 if (Version.Major >= 10) { 545 AMDHSA_BITS_SET(KD.kernel_code_properties, 546 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 547 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 548 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 549 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 550 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 551 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 552 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 553 } 554 return KD; 555 } 556 557 bool isGroupSegment(const GlobalValue *GV) { 558 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 559 } 560 561 bool isGlobalSegment(const GlobalValue *GV) { 562 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 563 } 564 565 bool isReadOnlySegment(const GlobalValue *GV) { 566 unsigned AS = GV->getAddressSpace(); 567 return AS == AMDGPUAS::CONSTANT_ADDRESS || 568 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 569 } 570 571 bool shouldEmitConstantsToTextSection(const Triple &TT) { 572 return TT.getOS() == Triple::AMDPAL || TT.getArch() == Triple::r600; 573 } 574 575 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 576 Attribute A = F.getFnAttribute(Name); 577 int Result = Default; 578 579 if (A.isStringAttribute()) { 580 StringRef Str = A.getValueAsString(); 581 if (Str.getAsInteger(0, Result)) { 582 LLVMContext &Ctx = F.getContext(); 583 Ctx.emitError("can't parse integer attribute " + Name); 584 } 585 } 586 587 return Result; 588 } 589 590 std::pair<int, int> getIntegerPairAttribute(const Function &F, 591 StringRef Name, 592 std::pair<int, int> Default, 593 bool OnlyFirstRequired) { 594 Attribute A = F.getFnAttribute(Name); 595 if (!A.isStringAttribute()) 596 return Default; 597 598 LLVMContext &Ctx = F.getContext(); 599 std::pair<int, int> Ints = Default; 600 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 601 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 602 Ctx.emitError("can't parse first integer attribute " + Name); 603 return Default; 604 } 605 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 606 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 607 Ctx.emitError("can't parse second integer attribute " + Name); 608 return Default; 609 } 610 } 611 612 return Ints; 613 } 614 615 unsigned getVmcntBitMask(const IsaVersion &Version) { 616 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 617 if (Version.Major < 9) 618 return VmcntLo; 619 620 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 621 return VmcntLo | VmcntHi; 622 } 623 624 unsigned getExpcntBitMask(const IsaVersion &Version) { 625 return (1 << getExpcntBitWidth()) - 1; 626 } 627 628 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 629 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 630 } 631 632 unsigned getWaitcntBitMask(const IsaVersion &Version) { 633 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 634 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 635 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 636 getLgkmcntBitWidth(Version.Major)); 637 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 638 if (Version.Major < 9) 639 return Waitcnt; 640 641 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 642 return Waitcnt | VmcntHi; 643 } 644 645 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 646 unsigned VmcntLo = 647 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 648 if (Version.Major < 9) 649 return VmcntLo; 650 651 unsigned VmcntHi = 652 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 653 VmcntHi <<= getVmcntBitWidthLo(); 654 return VmcntLo | VmcntHi; 655 } 656 657 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 658 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 659 } 660 661 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 662 return unpackBits(Waitcnt, getLgkmcntBitShift(), 663 getLgkmcntBitWidth(Version.Major)); 664 } 665 666 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 667 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 668 Vmcnt = decodeVmcnt(Version, Waitcnt); 669 Expcnt = decodeExpcnt(Version, Waitcnt); 670 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 671 } 672 673 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 674 Waitcnt Decoded; 675 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 676 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 677 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 678 return Decoded; 679 } 680 681 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 682 unsigned Vmcnt) { 683 Waitcnt = 684 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 685 if (Version.Major < 9) 686 return Waitcnt; 687 688 Vmcnt >>= getVmcntBitWidthLo(); 689 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 690 } 691 692 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 693 unsigned Expcnt) { 694 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 695 } 696 697 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 698 unsigned Lgkmcnt) { 699 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 700 getLgkmcntBitWidth(Version.Major)); 701 } 702 703 unsigned encodeWaitcnt(const IsaVersion &Version, 704 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 705 unsigned Waitcnt = getWaitcntBitMask(Version); 706 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 707 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 708 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 709 return Waitcnt; 710 } 711 712 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 713 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 714 } 715 716 //===----------------------------------------------------------------------===// 717 // hwreg 718 //===----------------------------------------------------------------------===// 719 720 namespace Hwreg { 721 722 int64_t getHwregId(const StringRef Name) { 723 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 724 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 725 return Id; 726 } 727 return ID_UNKNOWN_; 728 } 729 730 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 731 if (isSI(STI) || isCI(STI) || isVI(STI)) 732 return ID_SYMBOLIC_FIRST_GFX9_; 733 else if (isGFX9(STI)) 734 return ID_SYMBOLIC_FIRST_GFX10_; 735 else 736 return ID_SYMBOLIC_LAST_; 737 } 738 739 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 740 return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 741 IdSymbolic[Id]; 742 } 743 744 bool isValidHwreg(int64_t Id) { 745 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 746 } 747 748 bool isValidHwregOffset(int64_t Offset) { 749 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 750 } 751 752 bool isValidHwregWidth(int64_t Width) { 753 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 754 } 755 756 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 757 return (Id << ID_SHIFT_) | 758 (Offset << OFFSET_SHIFT_) | 759 ((Width - 1) << WIDTH_M1_SHIFT_); 760 } 761 762 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 763 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 764 } 765 766 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 767 Id = (Val & ID_MASK_) >> ID_SHIFT_; 768 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 769 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 770 } 771 772 } // namespace Hwreg 773 774 //===----------------------------------------------------------------------===// 775 // SendMsg 776 //===----------------------------------------------------------------------===// 777 778 namespace SendMsg { 779 780 int64_t getMsgId(const StringRef Name) { 781 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 782 if (IdSymbolic[i] && Name == IdSymbolic[i]) 783 return i; 784 } 785 return ID_UNKNOWN_; 786 } 787 788 static bool isValidMsgId(int64_t MsgId) { 789 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 790 } 791 792 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 793 if (Strict) { 794 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 795 return isGFX9(STI) || isGFX10(STI); 796 else 797 return isValidMsgId(MsgId); 798 } else { 799 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 800 } 801 } 802 803 StringRef getMsgName(int64_t MsgId) { 804 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 805 } 806 807 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 808 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 809 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 810 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 811 for (int i = F; i < L; ++i) { 812 if (Name == S[i]) { 813 return i; 814 } 815 } 816 return OP_UNKNOWN_; 817 } 818 819 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 820 821 if (!Strict) 822 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 823 824 switch(MsgId) 825 { 826 case ID_GS: 827 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 828 case ID_GS_DONE: 829 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 830 case ID_SYSMSG: 831 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 832 default: 833 return OpId == OP_NONE_; 834 } 835 } 836 837 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 838 assert(msgRequiresOp(MsgId)); 839 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 840 } 841 842 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 843 844 if (!Strict) 845 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 846 847 switch(MsgId) 848 { 849 case ID_GS: 850 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 851 case ID_GS_DONE: 852 return (OpId == OP_GS_NOP)? 853 (StreamId == STREAM_ID_NONE_) : 854 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 855 default: 856 return StreamId == STREAM_ID_NONE_; 857 } 858 } 859 860 bool msgRequiresOp(int64_t MsgId) { 861 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 862 } 863 864 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 865 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 866 } 867 868 void decodeMsg(unsigned Val, 869 uint16_t &MsgId, 870 uint16_t &OpId, 871 uint16_t &StreamId) { 872 MsgId = Val & ID_MASK_; 873 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 874 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 875 } 876 877 uint64_t encodeMsg(uint64_t MsgId, 878 uint64_t OpId, 879 uint64_t StreamId) { 880 return (MsgId << ID_SHIFT_) | 881 (OpId << OP_SHIFT_) | 882 (StreamId << STREAM_ID_SHIFT_); 883 } 884 885 } // namespace SendMsg 886 887 //===----------------------------------------------------------------------===// 888 // 889 //===----------------------------------------------------------------------===// 890 891 unsigned getInitialPSInputAddr(const Function &F) { 892 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 893 } 894 895 bool isShader(CallingConv::ID cc) { 896 switch(cc) { 897 case CallingConv::AMDGPU_VS: 898 case CallingConv::AMDGPU_LS: 899 case CallingConv::AMDGPU_HS: 900 case CallingConv::AMDGPU_ES: 901 case CallingConv::AMDGPU_GS: 902 case CallingConv::AMDGPU_PS: 903 case CallingConv::AMDGPU_CS: 904 return true; 905 default: 906 return false; 907 } 908 } 909 910 bool isCompute(CallingConv::ID cc) { 911 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 912 } 913 914 bool isEntryFunctionCC(CallingConv::ID CC) { 915 switch (CC) { 916 case CallingConv::AMDGPU_KERNEL: 917 case CallingConv::SPIR_KERNEL: 918 case CallingConv::AMDGPU_VS: 919 case CallingConv::AMDGPU_GS: 920 case CallingConv::AMDGPU_PS: 921 case CallingConv::AMDGPU_CS: 922 case CallingConv::AMDGPU_ES: 923 case CallingConv::AMDGPU_HS: 924 case CallingConv::AMDGPU_LS: 925 return true; 926 default: 927 return false; 928 } 929 } 930 931 bool hasXNACK(const MCSubtargetInfo &STI) { 932 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 933 } 934 935 bool hasSRAMECC(const MCSubtargetInfo &STI) { 936 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 937 } 938 939 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 940 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 941 } 942 943 bool hasGFX10A16(const MCSubtargetInfo &STI) { 944 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 945 } 946 947 bool hasG16(const MCSubtargetInfo &STI) { 948 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 949 } 950 951 bool hasPackedD16(const MCSubtargetInfo &STI) { 952 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 953 } 954 955 bool isSI(const MCSubtargetInfo &STI) { 956 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 957 } 958 959 bool isCI(const MCSubtargetInfo &STI) { 960 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 961 } 962 963 bool isVI(const MCSubtargetInfo &STI) { 964 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 965 } 966 967 bool isGFX9(const MCSubtargetInfo &STI) { 968 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 969 } 970 971 bool isGFX10(const MCSubtargetInfo &STI) { 972 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 973 } 974 975 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 976 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 977 } 978 979 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 980 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 981 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 982 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 983 Reg == AMDGPU::SCC; 984 } 985 986 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 987 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 988 if (*R == Reg1) return true; 989 } 990 return false; 991 } 992 993 #define MAP_REG2REG \ 994 using namespace AMDGPU; \ 995 switch(Reg) { \ 996 default: return Reg; \ 997 CASE_CI_VI(FLAT_SCR) \ 998 CASE_CI_VI(FLAT_SCR_LO) \ 999 CASE_CI_VI(FLAT_SCR_HI) \ 1000 CASE_VI_GFX9_GFX10(TTMP0) \ 1001 CASE_VI_GFX9_GFX10(TTMP1) \ 1002 CASE_VI_GFX9_GFX10(TTMP2) \ 1003 CASE_VI_GFX9_GFX10(TTMP3) \ 1004 CASE_VI_GFX9_GFX10(TTMP4) \ 1005 CASE_VI_GFX9_GFX10(TTMP5) \ 1006 CASE_VI_GFX9_GFX10(TTMP6) \ 1007 CASE_VI_GFX9_GFX10(TTMP7) \ 1008 CASE_VI_GFX9_GFX10(TTMP8) \ 1009 CASE_VI_GFX9_GFX10(TTMP9) \ 1010 CASE_VI_GFX9_GFX10(TTMP10) \ 1011 CASE_VI_GFX9_GFX10(TTMP11) \ 1012 CASE_VI_GFX9_GFX10(TTMP12) \ 1013 CASE_VI_GFX9_GFX10(TTMP13) \ 1014 CASE_VI_GFX9_GFX10(TTMP14) \ 1015 CASE_VI_GFX9_GFX10(TTMP15) \ 1016 CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \ 1017 CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \ 1018 CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \ 1019 CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \ 1020 CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \ 1021 CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \ 1022 CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \ 1023 CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \ 1024 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \ 1025 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \ 1026 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \ 1027 CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \ 1028 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1029 CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1030 CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1031 CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1032 } 1033 1034 #define CASE_CI_VI(node) \ 1035 assert(!isSI(STI)); \ 1036 case node: return isCI(STI) ? node##_ci : node##_vi; 1037 1038 #define CASE_VI_GFX9_GFX10(node) \ 1039 case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi; 1040 1041 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1042 if (STI.getTargetTriple().getArch() == Triple::r600) 1043 return Reg; 1044 MAP_REG2REG 1045 } 1046 1047 #undef CASE_CI_VI 1048 #undef CASE_VI_GFX9_GFX10 1049 1050 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1051 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node; 1052 1053 unsigned mc2PseudoReg(unsigned Reg) { 1054 MAP_REG2REG 1055 } 1056 1057 #undef CASE_CI_VI 1058 #undef CASE_VI_GFX9_GFX10 1059 #undef MAP_REG2REG 1060 1061 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1062 assert(OpNo < Desc.NumOperands); 1063 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1064 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1065 OpType <= AMDGPU::OPERAND_SRC_LAST; 1066 } 1067 1068 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1069 assert(OpNo < Desc.NumOperands); 1070 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1071 switch (OpType) { 1072 case AMDGPU::OPERAND_REG_IMM_FP32: 1073 case AMDGPU::OPERAND_REG_IMM_FP64: 1074 case AMDGPU::OPERAND_REG_IMM_FP16: 1075 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1076 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1077 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1078 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1079 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1080 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1081 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1082 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1083 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1084 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1085 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1086 return true; 1087 default: 1088 return false; 1089 } 1090 } 1091 1092 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1093 assert(OpNo < Desc.NumOperands); 1094 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1095 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1096 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1097 } 1098 1099 // Avoid using MCRegisterClass::getSize, since that function will go away 1100 // (move from MC* level to Target* level). Return size in bits. 1101 unsigned getRegBitWidth(unsigned RCID) { 1102 switch (RCID) { 1103 case AMDGPU::VGPR_LO16RegClassID: 1104 case AMDGPU::VGPR_HI16RegClassID: 1105 case AMDGPU::SGPR_LO16RegClassID: 1106 case AMDGPU::AGPR_LO16RegClassID: 1107 return 16; 1108 case AMDGPU::SGPR_32RegClassID: 1109 case AMDGPU::VGPR_32RegClassID: 1110 case AMDGPU::VRegOrLds_32RegClassID: 1111 case AMDGPU::AGPR_32RegClassID: 1112 case AMDGPU::VS_32RegClassID: 1113 case AMDGPU::AV_32RegClassID: 1114 case AMDGPU::SReg_32RegClassID: 1115 case AMDGPU::SReg_32_XM0RegClassID: 1116 case AMDGPU::SRegOrLds_32RegClassID: 1117 return 32; 1118 case AMDGPU::SGPR_64RegClassID: 1119 case AMDGPU::VS_64RegClassID: 1120 case AMDGPU::AV_64RegClassID: 1121 case AMDGPU::SReg_64RegClassID: 1122 case AMDGPU::VReg_64RegClassID: 1123 case AMDGPU::AReg_64RegClassID: 1124 case AMDGPU::SReg_64_XEXECRegClassID: 1125 return 64; 1126 case AMDGPU::SGPR_96RegClassID: 1127 case AMDGPU::SReg_96RegClassID: 1128 case AMDGPU::VReg_96RegClassID: 1129 case AMDGPU::AReg_96RegClassID: 1130 return 96; 1131 case AMDGPU::SGPR_128RegClassID: 1132 case AMDGPU::SReg_128RegClassID: 1133 case AMDGPU::VReg_128RegClassID: 1134 case AMDGPU::AReg_128RegClassID: 1135 return 128; 1136 case AMDGPU::SGPR_160RegClassID: 1137 case AMDGPU::SReg_160RegClassID: 1138 case AMDGPU::VReg_160RegClassID: 1139 case AMDGPU::AReg_160RegClassID: 1140 return 160; 1141 case AMDGPU::SGPR_192RegClassID: 1142 case AMDGPU::SReg_192RegClassID: 1143 case AMDGPU::VReg_192RegClassID: 1144 case AMDGPU::AReg_192RegClassID: 1145 return 192; 1146 case AMDGPU::SGPR_256RegClassID: 1147 case AMDGPU::SReg_256RegClassID: 1148 case AMDGPU::VReg_256RegClassID: 1149 case AMDGPU::AReg_256RegClassID: 1150 return 256; 1151 case AMDGPU::SGPR_512RegClassID: 1152 case AMDGPU::SReg_512RegClassID: 1153 case AMDGPU::VReg_512RegClassID: 1154 case AMDGPU::AReg_512RegClassID: 1155 return 512; 1156 case AMDGPU::SGPR_1024RegClassID: 1157 case AMDGPU::SReg_1024RegClassID: 1158 case AMDGPU::VReg_1024RegClassID: 1159 case AMDGPU::AReg_1024RegClassID: 1160 return 1024; 1161 default: 1162 llvm_unreachable("Unexpected register class"); 1163 } 1164 } 1165 1166 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1167 return getRegBitWidth(RC.getID()); 1168 } 1169 1170 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1171 unsigned OpNo) { 1172 assert(OpNo < Desc.NumOperands); 1173 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1174 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1175 } 1176 1177 bool isInlinableIntLiteral(int64_t Literal) { 1178 return Literal >= -16 && Literal <= 64; 1179 } 1180 1181 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1182 if (isInlinableIntLiteral(Literal)) 1183 return true; 1184 1185 uint64_t Val = static_cast<uint64_t>(Literal); 1186 return (Val == DoubleToBits(0.0)) || 1187 (Val == DoubleToBits(1.0)) || 1188 (Val == DoubleToBits(-1.0)) || 1189 (Val == DoubleToBits(0.5)) || 1190 (Val == DoubleToBits(-0.5)) || 1191 (Val == DoubleToBits(2.0)) || 1192 (Val == DoubleToBits(-2.0)) || 1193 (Val == DoubleToBits(4.0)) || 1194 (Val == DoubleToBits(-4.0)) || 1195 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1196 } 1197 1198 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1199 if (isInlinableIntLiteral(Literal)) 1200 return true; 1201 1202 // The actual type of the operand does not seem to matter as long 1203 // as the bits match one of the inline immediate values. For example: 1204 // 1205 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1206 // so it is a legal inline immediate. 1207 // 1208 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1209 // floating-point, so it is a legal inline immediate. 1210 1211 uint32_t Val = static_cast<uint32_t>(Literal); 1212 return (Val == FloatToBits(0.0f)) || 1213 (Val == FloatToBits(1.0f)) || 1214 (Val == FloatToBits(-1.0f)) || 1215 (Val == FloatToBits(0.5f)) || 1216 (Val == FloatToBits(-0.5f)) || 1217 (Val == FloatToBits(2.0f)) || 1218 (Val == FloatToBits(-2.0f)) || 1219 (Val == FloatToBits(4.0f)) || 1220 (Val == FloatToBits(-4.0f)) || 1221 (Val == 0x3e22f983 && HasInv2Pi); 1222 } 1223 1224 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1225 if (!HasInv2Pi) 1226 return false; 1227 1228 if (isInlinableIntLiteral(Literal)) 1229 return true; 1230 1231 uint16_t Val = static_cast<uint16_t>(Literal); 1232 return Val == 0x3C00 || // 1.0 1233 Val == 0xBC00 || // -1.0 1234 Val == 0x3800 || // 0.5 1235 Val == 0xB800 || // -0.5 1236 Val == 0x4000 || // 2.0 1237 Val == 0xC000 || // -2.0 1238 Val == 0x4400 || // 4.0 1239 Val == 0xC400 || // -4.0 1240 Val == 0x3118; // 1/2pi 1241 } 1242 1243 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1244 assert(HasInv2Pi); 1245 1246 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1247 int16_t Trunc = static_cast<int16_t>(Literal); 1248 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1249 } 1250 if (!(Literal & 0xffff)) 1251 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1252 1253 int16_t Lo16 = static_cast<int16_t>(Literal); 1254 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1255 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1256 } 1257 1258 bool isArgPassedInSGPR(const Argument *A) { 1259 const Function *F = A->getParent(); 1260 1261 // Arguments to compute shaders are never a source of divergence. 1262 CallingConv::ID CC = F->getCallingConv(); 1263 switch (CC) { 1264 case CallingConv::AMDGPU_KERNEL: 1265 case CallingConv::SPIR_KERNEL: 1266 return true; 1267 case CallingConv::AMDGPU_VS: 1268 case CallingConv::AMDGPU_LS: 1269 case CallingConv::AMDGPU_HS: 1270 case CallingConv::AMDGPU_ES: 1271 case CallingConv::AMDGPU_GS: 1272 case CallingConv::AMDGPU_PS: 1273 case CallingConv::AMDGPU_CS: 1274 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1275 // Everything else is in VGPRs. 1276 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1277 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1278 default: 1279 // TODO: Should calls support inreg for SGPR inputs? 1280 return false; 1281 } 1282 } 1283 1284 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1285 return isGCN3Encoding(ST) || isGFX10(ST); 1286 } 1287 1288 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1289 return isGFX9(ST) || isGFX10(ST); 1290 } 1291 1292 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1293 int64_t EncodedOffset) { 1294 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1295 : isUInt<8>(EncodedOffset); 1296 } 1297 1298 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1299 int64_t EncodedOffset, 1300 bool IsBuffer) { 1301 return !IsBuffer && 1302 hasSMRDSignedImmOffset(ST) && 1303 isInt<21>(EncodedOffset); 1304 } 1305 1306 static bool isDwordAligned(uint64_t ByteOffset) { 1307 return (ByteOffset & 3) == 0; 1308 } 1309 1310 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1311 uint64_t ByteOffset) { 1312 if (hasSMEMByteOffset(ST)) 1313 return ByteOffset; 1314 1315 assert(isDwordAligned(ByteOffset)); 1316 return ByteOffset >> 2; 1317 } 1318 1319 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1320 int64_t ByteOffset, bool IsBuffer) { 1321 // The signed version is always a byte offset. 1322 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1323 assert(hasSMEMByteOffset(ST)); 1324 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1325 } 1326 1327 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1328 return None; 1329 1330 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1331 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1332 ? Optional<int64_t>(EncodedOffset) 1333 : None; 1334 } 1335 1336 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1337 int64_t ByteOffset) { 1338 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1339 return None; 1340 1341 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1342 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1343 } 1344 1345 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1346 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1347 // hardware bug needing a workaround). 1348 // 1349 // The required alignment ensures that individual address components remain 1350 // aligned if they are aligned to begin with. It also ensures that additional 1351 // offsets within the given alignment can be added to the resulting ImmOffset. 1352 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1353 const GCNSubtarget *Subtarget, uint32_t Align) { 1354 const uint32_t MaxImm = alignDown(4095, Align); 1355 uint32_t Overflow = 0; 1356 1357 if (Imm > MaxImm) { 1358 if (Imm <= MaxImm + 64) { 1359 // Use an SOffset inline constant for 4..64 1360 Overflow = Imm - MaxImm; 1361 Imm = MaxImm; 1362 } else { 1363 // Try to keep the same value in SOffset for adjacent loads, so that 1364 // the corresponding register contents can be re-used. 1365 // 1366 // Load values with all low-bits (except for alignment bits) set into 1367 // SOffset, so that a larger range of values can be covered using 1368 // s_movk_i32. 1369 // 1370 // Atomic operations fail to work correctly when individual address 1371 // components are unaligned, even if their sum is aligned. 1372 uint32_t High = (Imm + Align) & ~4095; 1373 uint32_t Low = (Imm + Align) & 4095; 1374 Imm = Low; 1375 Overflow = High - Align; 1376 } 1377 } 1378 1379 // There is a hardware bug in SI and CI which prevents address clamping in 1380 // MUBUF instructions from working correctly with SOffsets. The immediate 1381 // offset is unaffected. 1382 if (Overflow > 0 && 1383 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1384 return false; 1385 1386 ImmOffset = Imm; 1387 SOffset = Overflow; 1388 return true; 1389 } 1390 1391 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1392 *this = getDefaultForCallingConv(F.getCallingConv()); 1393 1394 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1395 if (!IEEEAttr.empty()) 1396 IEEE = IEEEAttr == "true"; 1397 1398 StringRef DX10ClampAttr 1399 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1400 if (!DX10ClampAttr.empty()) 1401 DX10Clamp = DX10ClampAttr == "true"; 1402 1403 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1404 if (!DenormF32Attr.empty()) { 1405 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1406 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1407 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1408 } 1409 1410 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1411 if (!DenormAttr.empty()) { 1412 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1413 1414 if (DenormF32Attr.empty()) { 1415 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1416 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1417 } 1418 1419 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1420 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1421 } 1422 } 1423 1424 namespace { 1425 1426 struct SourceOfDivergence { 1427 unsigned Intr; 1428 }; 1429 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1430 1431 #define GET_SourcesOfDivergence_IMPL 1432 #define GET_Gfx9BufferFormat_IMPL 1433 #define GET_Gfx10PlusBufferFormat_IMPL 1434 #include "AMDGPUGenSearchableTables.inc" 1435 1436 } // end anonymous namespace 1437 1438 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1439 return lookupSourceOfDivergence(IntrID); 1440 } 1441 1442 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 1443 uint8_t NumComponents, 1444 uint8_t NumFormat, 1445 const MCSubtargetInfo &STI) { 1446 return isGFX10(STI) 1447 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 1448 NumFormat) 1449 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 1450 } 1451 1452 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 1453 const MCSubtargetInfo &STI) { 1454 return isGFX10(STI) ? getGfx10PlusBufferFormatInfo(Format) 1455 : getGfx9BufferFormatInfo(Format); 1456 } 1457 1458 } // namespace AMDGPU 1459 } // namespace llvm 1460