1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3));
34 
35 namespace {
36 
37 /// \returns Bit mask for given bit \p Shift and bit \p Width.
38 unsigned getBitMask(unsigned Shift, unsigned Width) {
39   return ((1 << Width) - 1) << Shift;
40 }
41 
42 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
43 ///
44 /// \returns Packed \p Dst.
45 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
46   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
47   Dst |= (Src << Shift) & getBitMask(Shift, Width);
48   return Dst;
49 }
50 
51 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
52 ///
53 /// \returns Unpacked bits.
54 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
55   return (Src & getBitMask(Shift, Width)) >> Shift;
56 }
57 
58 /// \returns Vmcnt bit shift (lower bits).
59 unsigned getVmcntBitShiftLo() { return 0; }
60 
61 /// \returns Vmcnt bit width (lower bits).
62 unsigned getVmcntBitWidthLo() { return 4; }
63 
64 /// \returns Expcnt bit shift.
65 unsigned getExpcntBitShift() { return 4; }
66 
67 /// \returns Expcnt bit width.
68 unsigned getExpcntBitWidth() { return 3; }
69 
70 /// \returns Lgkmcnt bit shift.
71 unsigned getLgkmcntBitShift() { return 8; }
72 
73 /// \returns Lgkmcnt bit width.
74 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
75   return (VersionMajor >= 10) ? 6 : 4;
76 }
77 
78 /// \returns Vmcnt bit shift (higher bits).
79 unsigned getVmcntBitShiftHi() { return 14; }
80 
81 /// \returns Vmcnt bit width (higher bits).
82 unsigned getVmcntBitWidthHi() { return 2; }
83 
84 } // end namespace anonymous
85 
86 namespace llvm {
87 
88 namespace AMDGPU {
89 
90 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
91   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
92     return None;
93 
94   switch (AmdhsaCodeObjectVersion) {
95   case 2:
96     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
97   case 3:
98     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
99   default:
100     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
101   }
102 }
103 
104 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
105   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
106     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
107   return false;
108 }
109 
110 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
111   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
112     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
113   return false;
114 }
115 
116 #define GET_MIMGBaseOpcodesTable_IMPL
117 #define GET_MIMGDimInfoTable_IMPL
118 #define GET_MIMGInfoTable_IMPL
119 #define GET_MIMGLZMappingTable_IMPL
120 #define GET_MIMGMIPMappingTable_IMPL
121 #define GET_MIMGG16MappingTable_IMPL
122 #include "AMDGPUGenSearchableTables.inc"
123 
124 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
125                   unsigned VDataDwords, unsigned VAddrDwords) {
126   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
127                                              VDataDwords, VAddrDwords);
128   return Info ? Info->Opcode : -1;
129 }
130 
131 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
132   const MIMGInfo *Info = getMIMGInfo(Opc);
133   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
134 }
135 
136 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
137   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
138   const MIMGInfo *NewInfo =
139       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
140                           NewChannels, OrigInfo->VAddrDwords);
141   return NewInfo ? NewInfo->Opcode : -1;
142 }
143 
144 struct MUBUFInfo {
145   uint16_t Opcode;
146   uint16_t BaseOpcode;
147   uint8_t elements;
148   bool has_vaddr;
149   bool has_srsrc;
150   bool has_soffset;
151 };
152 
153 struct MTBUFInfo {
154   uint16_t Opcode;
155   uint16_t BaseOpcode;
156   uint8_t elements;
157   bool has_vaddr;
158   bool has_srsrc;
159   bool has_soffset;
160 };
161 
162 struct SMInfo {
163   uint16_t Opcode;
164   bool IsBuffer;
165 };
166 
167 #define GET_MTBUFInfoTable_DECL
168 #define GET_MTBUFInfoTable_IMPL
169 #define GET_MUBUFInfoTable_DECL
170 #define GET_MUBUFInfoTable_IMPL
171 #define GET_SMInfoTable_DECL
172 #define GET_SMInfoTable_IMPL
173 #include "AMDGPUGenSearchableTables.inc"
174 
175 int getMTBUFBaseOpcode(unsigned Opc) {
176   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
177   return Info ? Info->BaseOpcode : -1;
178 }
179 
180 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
181   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
182   return Info ? Info->Opcode : -1;
183 }
184 
185 int getMTBUFElements(unsigned Opc) {
186   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
187   return Info ? Info->elements : 0;
188 }
189 
190 bool getMTBUFHasVAddr(unsigned Opc) {
191   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
192   return Info ? Info->has_vaddr : false;
193 }
194 
195 bool getMTBUFHasSrsrc(unsigned Opc) {
196   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
197   return Info ? Info->has_srsrc : false;
198 }
199 
200 bool getMTBUFHasSoffset(unsigned Opc) {
201   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
202   return Info ? Info->has_soffset : false;
203 }
204 
205 int getMUBUFBaseOpcode(unsigned Opc) {
206   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
207   return Info ? Info->BaseOpcode : -1;
208 }
209 
210 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
211   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
212   return Info ? Info->Opcode : -1;
213 }
214 
215 int getMUBUFElements(unsigned Opc) {
216   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
217   return Info ? Info->elements : 0;
218 }
219 
220 bool getMUBUFHasVAddr(unsigned Opc) {
221   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
222   return Info ? Info->has_vaddr : false;
223 }
224 
225 bool getMUBUFHasSrsrc(unsigned Opc) {
226   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
227   return Info ? Info->has_srsrc : false;
228 }
229 
230 bool getMUBUFHasSoffset(unsigned Opc) {
231   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
232   return Info ? Info->has_soffset : false;
233 }
234 
235 bool getSMEMIsBuffer(unsigned Opc) {
236   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
237   return Info ? Info->IsBuffer : false;
238 }
239 
240 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
241 // header files, so we need to wrap it in a function that takes unsigned
242 // instead.
243 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
244   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
245 }
246 
247 namespace IsaInfo {
248 
249 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
250     : XnackSetting(TargetIDSetting::Any), SramEccSetting(TargetIDSetting::Any) {
251   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
252     XnackSetting = TargetIDSetting::Unsupported;
253   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
254     SramEccSetting = TargetIDSetting::Unsupported;
255 }
256 
257 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
258   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
259   // absence of the target features we assume we must generate code that can run
260   // in any environment.
261   SubtargetFeatures Features(FS);
262   Optional<bool> XnackRequested;
263   Optional<bool> SramEccRequested;
264 
265   for (const std::string &Feature : Features.getFeatures()) {
266     if (Feature == "+xnack")
267       XnackRequested = true;
268     else if (Feature == "-xnack")
269       XnackRequested = false;
270     else if (Feature == "+sramecc")
271       SramEccRequested = true;
272     else if (Feature == "-sramecc")
273       SramEccRequested = false;
274   }
275 
276   bool XnackSupported = isXnackSupported();
277   bool SramEccSupported = isSramEccSupported();
278 
279   if (XnackRequested) {
280     if (XnackSupported) {
281       XnackSetting =
282           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
283     } else {
284       // If a specific xnack setting was requested and this GPU does not support
285       // xnack emit a warning. Setting will remain set to "Unsupported".
286       if (*XnackRequested) {
287         errs() << "warning: xnack 'On' was requested for a processor that does "
288                   "not support it!\n";
289       } else {
290         errs() << "warning: xnack 'Off' was requested for a processor that "
291                   "does not support it!\n";
292       }
293     }
294   }
295 
296   if (SramEccRequested) {
297     if (SramEccSupported) {
298       SramEccSetting =
299           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
300     } else {
301       // If a specific sramecc setting was requested and this GPU does not
302       // support sramecc emit a warning. Setting will remain set to
303       // "Unsupported".
304       if (*SramEccRequested) {
305         errs() << "warning: sramecc 'On' was requested for a processor that "
306                   "does not support it!\n";
307       } else {
308         errs() << "warning: sramecc 'Off' was requested for a processor that "
309                   "does not support it!\n";
310       }
311     }
312   }
313 }
314 
315 static TargetIDSetting
316 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
317   if (FeatureString.endswith("-"))
318     return TargetIDSetting::Off;
319   if (FeatureString.endswith("+"))
320     return TargetIDSetting::On;
321 
322   llvm_unreachable("Malformed feature string");
323 }
324 
325 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
326   SmallVector<StringRef, 3> TargetIDSplit;
327   TargetID.split(TargetIDSplit, ':');
328 
329   for (const auto &FeatureString : TargetIDSplit) {
330     if (FeatureString.startswith("xnack"))
331       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
332     if (FeatureString.startswith("sramecc"))
333       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
334   }
335 }
336 
337 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
338   auto TargetTriple = STI->getTargetTriple();
339   auto Version = getIsaVersion(STI->getCPU());
340 
341   Stream << TargetTriple.getArchName() << '-'
342          << TargetTriple.getVendorName() << '-'
343          << TargetTriple.getOSName() << '-'
344          << TargetTriple.getEnvironmentName() << '-'
345          << "gfx"
346          << Version.Major
347          << Version.Minor
348          << hexdigit(Version.Stepping, true);
349 
350   if (hasXNACK(*STI))
351     Stream << "+xnack";
352   if (hasSRAMECC(*STI))
353     Stream << "+sramecc";
354 
355   Stream.flush();
356 }
357 
358 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
359   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
360     return 16;
361   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
362     return 32;
363 
364   return 64;
365 }
366 
367 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
368   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
369     return 32768;
370   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
371     return 65536;
372 
373   return 0;
374 }
375 
376 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
377   // "Per CU" really means "per whatever functional block the waves of a
378   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
379   // two SIMDs.
380   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
381     return 2;
382   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
383   // two CUs, so a total of four SIMDs.
384   return 4;
385 }
386 
387 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
388                                unsigned FlatWorkGroupSize) {
389   assert(FlatWorkGroupSize != 0);
390   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
391     return 8;
392   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
393   if (N == 1)
394     return 40;
395   N = 40 / N;
396   return std::min(N, 16u);
397 }
398 
399 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
400   return 1;
401 }
402 
403 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
404   // FIXME: Need to take scratch memory into account.
405   if (isGFX90A(*STI))
406     return 8;
407   if (!isGFX10Plus(*STI))
408     return 10;
409   return hasGFX10_3Insts(*STI) ? 16 : 20;
410 }
411 
412 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
413                                    unsigned FlatWorkGroupSize) {
414   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
415                     getEUsPerCU(STI));
416 }
417 
418 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
419   return 1;
420 }
421 
422 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
423   // Some subtargets allow encoding 2048, but this isn't tested or supported.
424   return 1024;
425 }
426 
427 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
428                               unsigned FlatWorkGroupSize) {
429   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
430 }
431 
432 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
433   IsaVersion Version = getIsaVersion(STI->getCPU());
434   if (Version.Major >= 10)
435     return getAddressableNumSGPRs(STI);
436   if (Version.Major >= 8)
437     return 16;
438   return 8;
439 }
440 
441 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
442   return 8;
443 }
444 
445 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
446   IsaVersion Version = getIsaVersion(STI->getCPU());
447   if (Version.Major >= 8)
448     return 800;
449   return 512;
450 }
451 
452 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
453   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
454     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
455 
456   IsaVersion Version = getIsaVersion(STI->getCPU());
457   if (Version.Major >= 10)
458     return 106;
459   if (Version.Major >= 8)
460     return 102;
461   return 104;
462 }
463 
464 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
465   assert(WavesPerEU != 0);
466 
467   IsaVersion Version = getIsaVersion(STI->getCPU());
468   if (Version.Major >= 10)
469     return 0;
470 
471   if (WavesPerEU >= getMaxWavesPerEU(STI))
472     return 0;
473 
474   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
475   if (STI->getFeatureBits().test(FeatureTrapHandler))
476     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
477   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
478   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
479 }
480 
481 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
482                         bool Addressable) {
483   assert(WavesPerEU != 0);
484 
485   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
486   IsaVersion Version = getIsaVersion(STI->getCPU());
487   if (Version.Major >= 10)
488     return Addressable ? AddressableNumSGPRs : 108;
489   if (Version.Major >= 8 && !Addressable)
490     AddressableNumSGPRs = 112;
491   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
492   if (STI->getFeatureBits().test(FeatureTrapHandler))
493     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
494   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
495   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
496 }
497 
498 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
499                           bool FlatScrUsed, bool XNACKUsed) {
500   unsigned ExtraSGPRs = 0;
501   if (VCCUsed)
502     ExtraSGPRs = 2;
503 
504   IsaVersion Version = getIsaVersion(STI->getCPU());
505   if (Version.Major >= 10)
506     return ExtraSGPRs;
507 
508   if (Version.Major < 8) {
509     if (FlatScrUsed)
510       ExtraSGPRs = 4;
511   } else {
512     if (XNACKUsed)
513       ExtraSGPRs = 4;
514 
515     if (FlatScrUsed)
516       ExtraSGPRs = 6;
517   }
518 
519   return ExtraSGPRs;
520 }
521 
522 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
523                           bool FlatScrUsed) {
524   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
525                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
526 }
527 
528 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
529   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
530   // SGPRBlocks is actual number of SGPR blocks minus 1.
531   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
532 }
533 
534 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
535                              Optional<bool> EnableWavefrontSize32) {
536   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
537     return 8;
538 
539   bool IsWave32 = EnableWavefrontSize32 ?
540       *EnableWavefrontSize32 :
541       STI->getFeatureBits().test(FeatureWavefrontSize32);
542 
543   if (hasGFX10_3Insts(*STI))
544     return IsWave32 ? 16 : 8;
545 
546   return IsWave32 ? 8 : 4;
547 }
548 
549 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
550                                 Optional<bool> EnableWavefrontSize32) {
551   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
552     return 8;
553 
554   bool IsWave32 = EnableWavefrontSize32 ?
555       *EnableWavefrontSize32 :
556       STI->getFeatureBits().test(FeatureWavefrontSize32);
557 
558   return IsWave32 ? 8 : 4;
559 }
560 
561 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
562   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
563     return 512;
564   if (!isGFX10Plus(*STI))
565     return 256;
566   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
567 }
568 
569 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
570   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
571     return 512;
572   return 256;
573 }
574 
575 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
576   assert(WavesPerEU != 0);
577 
578   if (WavesPerEU >= getMaxWavesPerEU(STI))
579     return 0;
580   unsigned MinNumVGPRs =
581       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
582                 getVGPRAllocGranule(STI)) + 1;
583   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
584 }
585 
586 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
587   assert(WavesPerEU != 0);
588 
589   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
590                                    getVGPRAllocGranule(STI));
591   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
592   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
593 }
594 
595 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
596                           Optional<bool> EnableWavefrontSize32) {
597   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
598                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
599   // VGPRBlocks is actual number of VGPR blocks minus 1.
600   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
601 }
602 
603 } // end namespace IsaInfo
604 
605 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
606                                const MCSubtargetInfo *STI) {
607   IsaVersion Version = getIsaVersion(STI->getCPU());
608 
609   memset(&Header, 0, sizeof(Header));
610 
611   Header.amd_kernel_code_version_major = 1;
612   Header.amd_kernel_code_version_minor = 2;
613   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
614   Header.amd_machine_version_major = Version.Major;
615   Header.amd_machine_version_minor = Version.Minor;
616   Header.amd_machine_version_stepping = Version.Stepping;
617   Header.kernel_code_entry_byte_offset = sizeof(Header);
618   Header.wavefront_size = 6;
619 
620   // If the code object does not support indirect functions, then the value must
621   // be 0xffffffff.
622   Header.call_convention = -1;
623 
624   // These alignment values are specified in powers of two, so alignment =
625   // 2^n.  The minimum alignment is 2^4 = 16.
626   Header.kernarg_segment_alignment = 4;
627   Header.group_segment_alignment = 4;
628   Header.private_segment_alignment = 4;
629 
630   if (Version.Major >= 10) {
631     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
632       Header.wavefront_size = 5;
633       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
634     }
635     Header.compute_pgm_resource_registers |=
636       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
637       S_00B848_MEM_ORDERED(1);
638   }
639 }
640 
641 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
642     const MCSubtargetInfo *STI) {
643   IsaVersion Version = getIsaVersion(STI->getCPU());
644 
645   amdhsa::kernel_descriptor_t KD;
646   memset(&KD, 0, sizeof(KD));
647 
648   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
649                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
650                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
651   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
652                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
653   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
654                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
655   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
656                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
657   if (Version.Major >= 10) {
658     AMDHSA_BITS_SET(KD.kernel_code_properties,
659                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
660                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
661     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
662                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
663                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
664     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
665                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
666   }
667   if (AMDGPU::isGFX90A(*STI)) {
668     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
669                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
670                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
671   }
672   return KD;
673 }
674 
675 bool isGroupSegment(const GlobalValue *GV) {
676   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
677 }
678 
679 bool isGlobalSegment(const GlobalValue *GV) {
680   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
681 }
682 
683 bool isReadOnlySegment(const GlobalValue *GV) {
684   unsigned AS = GV->getAddressSpace();
685   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
686          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
687 }
688 
689 bool shouldEmitConstantsToTextSection(const Triple &TT) {
690   return TT.getArch() == Triple::r600;
691 }
692 
693 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
694   Attribute A = F.getFnAttribute(Name);
695   int Result = Default;
696 
697   if (A.isStringAttribute()) {
698     StringRef Str = A.getValueAsString();
699     if (Str.getAsInteger(0, Result)) {
700       LLVMContext &Ctx = F.getContext();
701       Ctx.emitError("can't parse integer attribute " + Name);
702     }
703   }
704 
705   return Result;
706 }
707 
708 std::pair<int, int> getIntegerPairAttribute(const Function &F,
709                                             StringRef Name,
710                                             std::pair<int, int> Default,
711                                             bool OnlyFirstRequired) {
712   Attribute A = F.getFnAttribute(Name);
713   if (!A.isStringAttribute())
714     return Default;
715 
716   LLVMContext &Ctx = F.getContext();
717   std::pair<int, int> Ints = Default;
718   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
719   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
720     Ctx.emitError("can't parse first integer attribute " + Name);
721     return Default;
722   }
723   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
724     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
725       Ctx.emitError("can't parse second integer attribute " + Name);
726       return Default;
727     }
728   }
729 
730   return Ints;
731 }
732 
733 unsigned getVmcntBitMask(const IsaVersion &Version) {
734   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
735   if (Version.Major < 9)
736     return VmcntLo;
737 
738   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
739   return VmcntLo | VmcntHi;
740 }
741 
742 unsigned getExpcntBitMask(const IsaVersion &Version) {
743   return (1 << getExpcntBitWidth()) - 1;
744 }
745 
746 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
747   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
748 }
749 
750 unsigned getWaitcntBitMask(const IsaVersion &Version) {
751   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
752   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
753   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
754                                 getLgkmcntBitWidth(Version.Major));
755   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
756   if (Version.Major < 9)
757     return Waitcnt;
758 
759   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
760   return Waitcnt | VmcntHi;
761 }
762 
763 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
764   unsigned VmcntLo =
765       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
766   if (Version.Major < 9)
767     return VmcntLo;
768 
769   unsigned VmcntHi =
770       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
771   VmcntHi <<= getVmcntBitWidthLo();
772   return VmcntLo | VmcntHi;
773 }
774 
775 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
776   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
777 }
778 
779 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
780   return unpackBits(Waitcnt, getLgkmcntBitShift(),
781                     getLgkmcntBitWidth(Version.Major));
782 }
783 
784 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
785                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
786   Vmcnt = decodeVmcnt(Version, Waitcnt);
787   Expcnt = decodeExpcnt(Version, Waitcnt);
788   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
789 }
790 
791 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
792   Waitcnt Decoded;
793   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
794   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
795   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
796   return Decoded;
797 }
798 
799 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
800                      unsigned Vmcnt) {
801   Waitcnt =
802       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
803   if (Version.Major < 9)
804     return Waitcnt;
805 
806   Vmcnt >>= getVmcntBitWidthLo();
807   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
808 }
809 
810 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
811                       unsigned Expcnt) {
812   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
813 }
814 
815 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
816                        unsigned Lgkmcnt) {
817   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
818                                     getLgkmcntBitWidth(Version.Major));
819 }
820 
821 unsigned encodeWaitcnt(const IsaVersion &Version,
822                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
823   unsigned Waitcnt = getWaitcntBitMask(Version);
824   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
825   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
826   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
827   return Waitcnt;
828 }
829 
830 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
831   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
832 }
833 
834 //===----------------------------------------------------------------------===//
835 // hwreg
836 //===----------------------------------------------------------------------===//
837 
838 namespace Hwreg {
839 
840 int64_t getHwregId(const StringRef Name) {
841   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
842     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
843       return Id;
844   }
845   return ID_UNKNOWN_;
846 }
847 
848 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
849   if (isSI(STI) || isCI(STI) || isVI(STI))
850     return ID_SYMBOLIC_FIRST_GFX9_;
851   else if (isGFX9(STI))
852     return ID_SYMBOLIC_FIRST_GFX10_;
853   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
854     return ID_SYMBOLIC_FIRST_GFX1030_;
855   else
856     return ID_SYMBOLIC_LAST_;
857 }
858 
859 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
860   return
861     ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
862     IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
863 }
864 
865 bool isValidHwreg(int64_t Id) {
866   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
867 }
868 
869 bool isValidHwregOffset(int64_t Offset) {
870   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
871 }
872 
873 bool isValidHwregWidth(int64_t Width) {
874   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
875 }
876 
877 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
878   return (Id << ID_SHIFT_) |
879          (Offset << OFFSET_SHIFT_) |
880          ((Width - 1) << WIDTH_M1_SHIFT_);
881 }
882 
883 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
884   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
885 }
886 
887 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
888   Id = (Val & ID_MASK_) >> ID_SHIFT_;
889   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
890   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
891 }
892 
893 } // namespace Hwreg
894 
895 //===----------------------------------------------------------------------===//
896 // exp tgt
897 //===----------------------------------------------------------------------===//
898 
899 namespace Exp {
900 
901 struct ExpTgt {
902   StringLiteral Name;
903   unsigned Tgt;
904   unsigned MaxIndex;
905 };
906 
907 static constexpr ExpTgt ExpTgtInfo[] = {
908   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
909   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
910   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
911   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
912   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
913   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
914 };
915 
916 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
917   for (const ExpTgt &Val : ExpTgtInfo) {
918     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
919       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
920       Name = Val.Name;
921       return true;
922     }
923   }
924   return false;
925 }
926 
927 unsigned getTgtId(const StringRef Name) {
928 
929   for (const ExpTgt &Val : ExpTgtInfo) {
930     if (Val.MaxIndex == 0 && Name == Val.Name)
931       return Val.Tgt;
932 
933     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
934       StringRef Suffix = Name.drop_front(Val.Name.size());
935 
936       unsigned Id;
937       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
938         return ET_INVALID;
939 
940       // Disable leading zeroes
941       if (Suffix.size() > 1 && Suffix[0] == '0')
942         return ET_INVALID;
943 
944       return Val.Tgt + Id;
945     }
946   }
947   return ET_INVALID;
948 }
949 
950 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
951   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
952 }
953 
954 } // namespace Exp
955 
956 //===----------------------------------------------------------------------===//
957 // MTBUF Format
958 //===----------------------------------------------------------------------===//
959 
960 namespace MTBUFFormat {
961 
962 int64_t getDfmt(const StringRef Name) {
963   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
964     if (Name == DfmtSymbolic[Id])
965       return Id;
966   }
967   return DFMT_UNDEF;
968 }
969 
970 StringRef getDfmtName(unsigned Id) {
971   assert(Id <= DFMT_MAX);
972   return DfmtSymbolic[Id];
973 }
974 
975 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
976   if (isSI(STI) || isCI(STI))
977     return NfmtSymbolicSICI;
978   if (isVI(STI) || isGFX9(STI))
979     return NfmtSymbolicVI;
980   return NfmtSymbolicGFX10;
981 }
982 
983 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
984   auto lookupTable = getNfmtLookupTable(STI);
985   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
986     if (Name == lookupTable[Id])
987       return Id;
988   }
989   return NFMT_UNDEF;
990 }
991 
992 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
993   assert(Id <= NFMT_MAX);
994   return getNfmtLookupTable(STI)[Id];
995 }
996 
997 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
998   unsigned Dfmt;
999   unsigned Nfmt;
1000   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1001   return isValidNfmt(Nfmt, STI);
1002 }
1003 
1004 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1005   return !getNfmtName(Id, STI).empty();
1006 }
1007 
1008 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1009   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1010 }
1011 
1012 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1013   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1014   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1015 }
1016 
1017 int64_t getUnifiedFormat(const StringRef Name) {
1018   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1019     if (Name == UfmtSymbolic[Id])
1020       return Id;
1021   }
1022   return UFMT_UNDEF;
1023 }
1024 
1025 StringRef getUnifiedFormatName(unsigned Id) {
1026   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1027 }
1028 
1029 bool isValidUnifiedFormat(unsigned Id) {
1030   return Id <= UFMT_LAST;
1031 }
1032 
1033 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1034   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1035   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1036     if (Fmt == DfmtNfmt2UFmt[Id])
1037       return Id;
1038   }
1039   return UFMT_UNDEF;
1040 }
1041 
1042 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1043   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1044 }
1045 
1046 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1047   if (isGFX10Plus(STI))
1048     return UFMT_DEFAULT;
1049   return DFMT_NFMT_DEFAULT;
1050 }
1051 
1052 } // namespace MTBUFFormat
1053 
1054 //===----------------------------------------------------------------------===//
1055 // SendMsg
1056 //===----------------------------------------------------------------------===//
1057 
1058 namespace SendMsg {
1059 
1060 int64_t getMsgId(const StringRef Name) {
1061   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1062     if (IdSymbolic[i] && Name == IdSymbolic[i])
1063       return i;
1064   }
1065   return ID_UNKNOWN_;
1066 }
1067 
1068 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1069   if (Strict) {
1070     switch (MsgId) {
1071     case ID_SAVEWAVE:
1072       return isVI(STI) || isGFX9Plus(STI);
1073     case ID_STALL_WAVE_GEN:
1074     case ID_HALT_WAVES:
1075     case ID_ORDERED_PS_DONE:
1076     case ID_GS_ALLOC_REQ:
1077     case ID_GET_DOORBELL:
1078       return isGFX9Plus(STI);
1079     case ID_EARLY_PRIM_DEALLOC:
1080       return isGFX9(STI);
1081     case ID_GET_DDID:
1082       return isGFX10Plus(STI);
1083     default:
1084       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1085     }
1086   } else {
1087     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1088   }
1089 }
1090 
1091 StringRef getMsgName(int64_t MsgId) {
1092   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1093   return IdSymbolic[MsgId];
1094 }
1095 
1096 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1097   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1098   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1099   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1100   for (int i = F; i < L; ++i) {
1101     if (Name == S[i]) {
1102       return i;
1103     }
1104   }
1105   return OP_UNKNOWN_;
1106 }
1107 
1108 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1109                   bool Strict) {
1110   assert(isValidMsgId(MsgId, STI, Strict));
1111 
1112   if (!Strict)
1113     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1114 
1115   switch(MsgId)
1116   {
1117   case ID_GS:
1118     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1119   case ID_GS_DONE:
1120     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1121   case ID_SYSMSG:
1122     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1123   default:
1124     return OpId == OP_NONE_;
1125   }
1126 }
1127 
1128 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1129   assert(msgRequiresOp(MsgId));
1130   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1131 }
1132 
1133 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1134                       const MCSubtargetInfo &STI, bool Strict) {
1135   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1136 
1137   if (!Strict)
1138     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1139 
1140   switch(MsgId)
1141   {
1142   case ID_GS:
1143     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1144   case ID_GS_DONE:
1145     return (OpId == OP_GS_NOP)?
1146            (StreamId == STREAM_ID_NONE_) :
1147            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1148   default:
1149     return StreamId == STREAM_ID_NONE_;
1150   }
1151 }
1152 
1153 bool msgRequiresOp(int64_t MsgId) {
1154   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1155 }
1156 
1157 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1158   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1159 }
1160 
1161 void decodeMsg(unsigned Val,
1162                uint16_t &MsgId,
1163                uint16_t &OpId,
1164                uint16_t &StreamId) {
1165   MsgId = Val & ID_MASK_;
1166   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1167   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1168 }
1169 
1170 uint64_t encodeMsg(uint64_t MsgId,
1171                    uint64_t OpId,
1172                    uint64_t StreamId) {
1173   return (MsgId << ID_SHIFT_) |
1174          (OpId << OP_SHIFT_) |
1175          (StreamId << STREAM_ID_SHIFT_);
1176 }
1177 
1178 } // namespace SendMsg
1179 
1180 //===----------------------------------------------------------------------===//
1181 //
1182 //===----------------------------------------------------------------------===//
1183 
1184 unsigned getInitialPSInputAddr(const Function &F) {
1185   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1186 }
1187 
1188 bool isShader(CallingConv::ID cc) {
1189   switch(cc) {
1190     case CallingConv::AMDGPU_VS:
1191     case CallingConv::AMDGPU_LS:
1192     case CallingConv::AMDGPU_HS:
1193     case CallingConv::AMDGPU_ES:
1194     case CallingConv::AMDGPU_GS:
1195     case CallingConv::AMDGPU_PS:
1196     case CallingConv::AMDGPU_CS:
1197       return true;
1198     default:
1199       return false;
1200   }
1201 }
1202 
1203 bool isGraphics(CallingConv::ID cc) {
1204   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1205 }
1206 
1207 bool isCompute(CallingConv::ID cc) {
1208   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1209 }
1210 
1211 bool isEntryFunctionCC(CallingConv::ID CC) {
1212   switch (CC) {
1213   case CallingConv::AMDGPU_KERNEL:
1214   case CallingConv::SPIR_KERNEL:
1215   case CallingConv::AMDGPU_VS:
1216   case CallingConv::AMDGPU_GS:
1217   case CallingConv::AMDGPU_PS:
1218   case CallingConv::AMDGPU_CS:
1219   case CallingConv::AMDGPU_ES:
1220   case CallingConv::AMDGPU_HS:
1221   case CallingConv::AMDGPU_LS:
1222     return true;
1223   default:
1224     return false;
1225   }
1226 }
1227 
1228 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1229   switch (CC) {
1230   case CallingConv::AMDGPU_Gfx:
1231     return true;
1232   default:
1233     return isEntryFunctionCC(CC);
1234   }
1235 }
1236 
1237 bool hasXNACK(const MCSubtargetInfo &STI) {
1238   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1239 }
1240 
1241 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1242   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1243 }
1244 
1245 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1246   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1247 }
1248 
1249 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1250   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1251 }
1252 
1253 bool hasG16(const MCSubtargetInfo &STI) {
1254   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1255 }
1256 
1257 bool hasPackedD16(const MCSubtargetInfo &STI) {
1258   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1259 }
1260 
1261 bool isSI(const MCSubtargetInfo &STI) {
1262   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1263 }
1264 
1265 bool isCI(const MCSubtargetInfo &STI) {
1266   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1267 }
1268 
1269 bool isVI(const MCSubtargetInfo &STI) {
1270   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1271 }
1272 
1273 bool isGFX9(const MCSubtargetInfo &STI) {
1274   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1275 }
1276 
1277 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1278   return isGFX9(STI) || isGFX10Plus(STI);
1279 }
1280 
1281 bool isGFX10(const MCSubtargetInfo &STI) {
1282   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1283 }
1284 
1285 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1286 
1287 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1288   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1289 }
1290 
1291 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1292   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1293 }
1294 
1295 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1296   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1297 }
1298 
1299 bool isGFX90A(const MCSubtargetInfo &STI) {
1300   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1301 }
1302 
1303 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1304   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1305   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1306   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1307     Reg == AMDGPU::SCC;
1308 }
1309 
1310 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1311   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1312     if (*R == Reg1) return true;
1313   }
1314   return false;
1315 }
1316 
1317 #define MAP_REG2REG \
1318   using namespace AMDGPU; \
1319   switch(Reg) { \
1320   default: return Reg; \
1321   CASE_CI_VI(FLAT_SCR) \
1322   CASE_CI_VI(FLAT_SCR_LO) \
1323   CASE_CI_VI(FLAT_SCR_HI) \
1324   CASE_VI_GFX9PLUS(TTMP0) \
1325   CASE_VI_GFX9PLUS(TTMP1) \
1326   CASE_VI_GFX9PLUS(TTMP2) \
1327   CASE_VI_GFX9PLUS(TTMP3) \
1328   CASE_VI_GFX9PLUS(TTMP4) \
1329   CASE_VI_GFX9PLUS(TTMP5) \
1330   CASE_VI_GFX9PLUS(TTMP6) \
1331   CASE_VI_GFX9PLUS(TTMP7) \
1332   CASE_VI_GFX9PLUS(TTMP8) \
1333   CASE_VI_GFX9PLUS(TTMP9) \
1334   CASE_VI_GFX9PLUS(TTMP10) \
1335   CASE_VI_GFX9PLUS(TTMP11) \
1336   CASE_VI_GFX9PLUS(TTMP12) \
1337   CASE_VI_GFX9PLUS(TTMP13) \
1338   CASE_VI_GFX9PLUS(TTMP14) \
1339   CASE_VI_GFX9PLUS(TTMP15) \
1340   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1341   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1342   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1343   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1344   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1345   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1346   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1347   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1348   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1349   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1350   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1351   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1352   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1353   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1354   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1355   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1356   }
1357 
1358 #define CASE_CI_VI(node) \
1359   assert(!isSI(STI)); \
1360   case node: return isCI(STI) ? node##_ci : node##_vi;
1361 
1362 #define CASE_VI_GFX9PLUS(node) \
1363   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1364 
1365 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1366   if (STI.getTargetTriple().getArch() == Triple::r600)
1367     return Reg;
1368   MAP_REG2REG
1369 }
1370 
1371 #undef CASE_CI_VI
1372 #undef CASE_VI_GFX9PLUS
1373 
1374 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1375 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1376 
1377 unsigned mc2PseudoReg(unsigned Reg) {
1378   MAP_REG2REG
1379 }
1380 
1381 #undef CASE_CI_VI
1382 #undef CASE_VI_GFX9PLUS
1383 #undef MAP_REG2REG
1384 
1385 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1386   assert(OpNo < Desc.NumOperands);
1387   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1388   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1389          OpType <= AMDGPU::OPERAND_SRC_LAST;
1390 }
1391 
1392 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1393   assert(OpNo < Desc.NumOperands);
1394   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1395   switch (OpType) {
1396   case AMDGPU::OPERAND_REG_IMM_FP32:
1397   case AMDGPU::OPERAND_REG_IMM_FP64:
1398   case AMDGPU::OPERAND_REG_IMM_FP16:
1399   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1400   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1401   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1402   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1403   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1404   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1405   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1406   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1407   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1408   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1409   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1410   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1411   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1412   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1413     return true;
1414   default:
1415     return false;
1416   }
1417 }
1418 
1419 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1420   assert(OpNo < Desc.NumOperands);
1421   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1422   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1423          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1424 }
1425 
1426 // Avoid using MCRegisterClass::getSize, since that function will go away
1427 // (move from MC* level to Target* level). Return size in bits.
1428 unsigned getRegBitWidth(unsigned RCID) {
1429   switch (RCID) {
1430   case AMDGPU::VGPR_LO16RegClassID:
1431   case AMDGPU::VGPR_HI16RegClassID:
1432   case AMDGPU::SGPR_LO16RegClassID:
1433   case AMDGPU::AGPR_LO16RegClassID:
1434     return 16;
1435   case AMDGPU::SGPR_32RegClassID:
1436   case AMDGPU::VGPR_32RegClassID:
1437   case AMDGPU::VRegOrLds_32RegClassID:
1438   case AMDGPU::AGPR_32RegClassID:
1439   case AMDGPU::VS_32RegClassID:
1440   case AMDGPU::AV_32RegClassID:
1441   case AMDGPU::SReg_32RegClassID:
1442   case AMDGPU::SReg_32_XM0RegClassID:
1443   case AMDGPU::SRegOrLds_32RegClassID:
1444     return 32;
1445   case AMDGPU::SGPR_64RegClassID:
1446   case AMDGPU::VS_64RegClassID:
1447   case AMDGPU::AV_64RegClassID:
1448   case AMDGPU::SReg_64RegClassID:
1449   case AMDGPU::VReg_64RegClassID:
1450   case AMDGPU::AReg_64RegClassID:
1451   case AMDGPU::SReg_64_XEXECRegClassID:
1452   case AMDGPU::VReg_64_Align2RegClassID:
1453   case AMDGPU::AReg_64_Align2RegClassID:
1454     return 64;
1455   case AMDGPU::SGPR_96RegClassID:
1456   case AMDGPU::SReg_96RegClassID:
1457   case AMDGPU::VReg_96RegClassID:
1458   case AMDGPU::AReg_96RegClassID:
1459   case AMDGPU::VReg_96_Align2RegClassID:
1460   case AMDGPU::AReg_96_Align2RegClassID:
1461   case AMDGPU::AV_96RegClassID:
1462     return 96;
1463   case AMDGPU::SGPR_128RegClassID:
1464   case AMDGPU::SReg_128RegClassID:
1465   case AMDGPU::VReg_128RegClassID:
1466   case AMDGPU::AReg_128RegClassID:
1467   case AMDGPU::VReg_128_Align2RegClassID:
1468   case AMDGPU::AReg_128_Align2RegClassID:
1469   case AMDGPU::AV_128RegClassID:
1470     return 128;
1471   case AMDGPU::SGPR_160RegClassID:
1472   case AMDGPU::SReg_160RegClassID:
1473   case AMDGPU::VReg_160RegClassID:
1474   case AMDGPU::AReg_160RegClassID:
1475   case AMDGPU::VReg_160_Align2RegClassID:
1476   case AMDGPU::AReg_160_Align2RegClassID:
1477   case AMDGPU::AV_160RegClassID:
1478     return 160;
1479   case AMDGPU::SGPR_192RegClassID:
1480   case AMDGPU::SReg_192RegClassID:
1481   case AMDGPU::VReg_192RegClassID:
1482   case AMDGPU::AReg_192RegClassID:
1483   case AMDGPU::VReg_192_Align2RegClassID:
1484   case AMDGPU::AReg_192_Align2RegClassID:
1485     return 192;
1486   case AMDGPU::SGPR_256RegClassID:
1487   case AMDGPU::SReg_256RegClassID:
1488   case AMDGPU::VReg_256RegClassID:
1489   case AMDGPU::AReg_256RegClassID:
1490   case AMDGPU::VReg_256_Align2RegClassID:
1491   case AMDGPU::AReg_256_Align2RegClassID:
1492     return 256;
1493   case AMDGPU::SGPR_512RegClassID:
1494   case AMDGPU::SReg_512RegClassID:
1495   case AMDGPU::VReg_512RegClassID:
1496   case AMDGPU::AReg_512RegClassID:
1497   case AMDGPU::VReg_512_Align2RegClassID:
1498   case AMDGPU::AReg_512_Align2RegClassID:
1499     return 512;
1500   case AMDGPU::SGPR_1024RegClassID:
1501   case AMDGPU::SReg_1024RegClassID:
1502   case AMDGPU::VReg_1024RegClassID:
1503   case AMDGPU::AReg_1024RegClassID:
1504   case AMDGPU::VReg_1024_Align2RegClassID:
1505   case AMDGPU::AReg_1024_Align2RegClassID:
1506     return 1024;
1507   default:
1508     llvm_unreachable("Unexpected register class");
1509   }
1510 }
1511 
1512 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1513   return getRegBitWidth(RC.getID());
1514 }
1515 
1516 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1517                            unsigned OpNo) {
1518   assert(OpNo < Desc.NumOperands);
1519   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1520   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1521 }
1522 
1523 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1524   if (isInlinableIntLiteral(Literal))
1525     return true;
1526 
1527   uint64_t Val = static_cast<uint64_t>(Literal);
1528   return (Val == DoubleToBits(0.0)) ||
1529          (Val == DoubleToBits(1.0)) ||
1530          (Val == DoubleToBits(-1.0)) ||
1531          (Val == DoubleToBits(0.5)) ||
1532          (Val == DoubleToBits(-0.5)) ||
1533          (Val == DoubleToBits(2.0)) ||
1534          (Val == DoubleToBits(-2.0)) ||
1535          (Val == DoubleToBits(4.0)) ||
1536          (Val == DoubleToBits(-4.0)) ||
1537          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1538 }
1539 
1540 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1541   if (isInlinableIntLiteral(Literal))
1542     return true;
1543 
1544   // The actual type of the operand does not seem to matter as long
1545   // as the bits match one of the inline immediate values.  For example:
1546   //
1547   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1548   // so it is a legal inline immediate.
1549   //
1550   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1551   // floating-point, so it is a legal inline immediate.
1552 
1553   uint32_t Val = static_cast<uint32_t>(Literal);
1554   return (Val == FloatToBits(0.0f)) ||
1555          (Val == FloatToBits(1.0f)) ||
1556          (Val == FloatToBits(-1.0f)) ||
1557          (Val == FloatToBits(0.5f)) ||
1558          (Val == FloatToBits(-0.5f)) ||
1559          (Val == FloatToBits(2.0f)) ||
1560          (Val == FloatToBits(-2.0f)) ||
1561          (Val == FloatToBits(4.0f)) ||
1562          (Val == FloatToBits(-4.0f)) ||
1563          (Val == 0x3e22f983 && HasInv2Pi);
1564 }
1565 
1566 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1567   if (!HasInv2Pi)
1568     return false;
1569 
1570   if (isInlinableIntLiteral(Literal))
1571     return true;
1572 
1573   uint16_t Val = static_cast<uint16_t>(Literal);
1574   return Val == 0x3C00 || // 1.0
1575          Val == 0xBC00 || // -1.0
1576          Val == 0x3800 || // 0.5
1577          Val == 0xB800 || // -0.5
1578          Val == 0x4000 || // 2.0
1579          Val == 0xC000 || // -2.0
1580          Val == 0x4400 || // 4.0
1581          Val == 0xC400 || // -4.0
1582          Val == 0x3118;   // 1/2pi
1583 }
1584 
1585 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1586   assert(HasInv2Pi);
1587 
1588   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1589     int16_t Trunc = static_cast<int16_t>(Literal);
1590     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1591   }
1592   if (!(Literal & 0xffff))
1593     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1594 
1595   int16_t Lo16 = static_cast<int16_t>(Literal);
1596   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1597   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1598 }
1599 
1600 bool isInlinableIntLiteralV216(int32_t Literal) {
1601   int16_t Lo16 = static_cast<int16_t>(Literal);
1602   if (isInt<16>(Literal) || isUInt<16>(Literal))
1603     return isInlinableIntLiteral(Lo16);
1604 
1605   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1606   if (!(Literal & 0xffff))
1607     return isInlinableIntLiteral(Hi16);
1608   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1609 }
1610 
1611 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1612   assert(HasInv2Pi);
1613 
1614   int16_t Lo16 = static_cast<int16_t>(Literal);
1615   if (isInt<16>(Literal) || isUInt<16>(Literal))
1616     return true;
1617 
1618   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1619   if (!(Literal & 0xffff))
1620     return true;
1621   return Lo16 == Hi16;
1622 }
1623 
1624 bool isArgPassedInSGPR(const Argument *A) {
1625   const Function *F = A->getParent();
1626 
1627   // Arguments to compute shaders are never a source of divergence.
1628   CallingConv::ID CC = F->getCallingConv();
1629   switch (CC) {
1630   case CallingConv::AMDGPU_KERNEL:
1631   case CallingConv::SPIR_KERNEL:
1632     return true;
1633   case CallingConv::AMDGPU_VS:
1634   case CallingConv::AMDGPU_LS:
1635   case CallingConv::AMDGPU_HS:
1636   case CallingConv::AMDGPU_ES:
1637   case CallingConv::AMDGPU_GS:
1638   case CallingConv::AMDGPU_PS:
1639   case CallingConv::AMDGPU_CS:
1640   case CallingConv::AMDGPU_Gfx:
1641     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1642     // Everything else is in VGPRs.
1643     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1644            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1645   default:
1646     // TODO: Should calls support inreg for SGPR inputs?
1647     return false;
1648   }
1649 }
1650 
1651 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1652   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1653 }
1654 
1655 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1656   return isGFX9Plus(ST);
1657 }
1658 
1659 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1660                                       int64_t EncodedOffset) {
1661   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1662                                : isUInt<8>(EncodedOffset);
1663 }
1664 
1665 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1666                                     int64_t EncodedOffset,
1667                                     bool IsBuffer) {
1668   return !IsBuffer &&
1669          hasSMRDSignedImmOffset(ST) &&
1670          isInt<21>(EncodedOffset);
1671 }
1672 
1673 static bool isDwordAligned(uint64_t ByteOffset) {
1674   return (ByteOffset & 3) == 0;
1675 }
1676 
1677 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1678                                 uint64_t ByteOffset) {
1679   if (hasSMEMByteOffset(ST))
1680     return ByteOffset;
1681 
1682   assert(isDwordAligned(ByteOffset));
1683   return ByteOffset >> 2;
1684 }
1685 
1686 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1687                                        int64_t ByteOffset, bool IsBuffer) {
1688   // The signed version is always a byte offset.
1689   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1690     assert(hasSMEMByteOffset(ST));
1691     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1692   }
1693 
1694   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1695     return None;
1696 
1697   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1698   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1699              ? Optional<int64_t>(EncodedOffset)
1700              : None;
1701 }
1702 
1703 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1704                                                 int64_t ByteOffset) {
1705   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1706     return None;
1707 
1708   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1709   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1710 }
1711 
1712 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1713   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1714   if (AMDGPU::isGFX10(ST))
1715     return Signed ? 12 : 11;
1716 
1717   return Signed ? 13 : 12;
1718 }
1719 
1720 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1721 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1722 // hardware bug needing a workaround).
1723 //
1724 // The required alignment ensures that individual address components remain
1725 // aligned if they are aligned to begin with. It also ensures that additional
1726 // offsets within the given alignment can be added to the resulting ImmOffset.
1727 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1728                       const GCNSubtarget *Subtarget, Align Alignment) {
1729   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1730   uint32_t Overflow = 0;
1731 
1732   if (Imm > MaxImm) {
1733     if (Imm <= MaxImm + 64) {
1734       // Use an SOffset inline constant for 4..64
1735       Overflow = Imm - MaxImm;
1736       Imm = MaxImm;
1737     } else {
1738       // Try to keep the same value in SOffset for adjacent loads, so that
1739       // the corresponding register contents can be re-used.
1740       //
1741       // Load values with all low-bits (except for alignment bits) set into
1742       // SOffset, so that a larger range of values can be covered using
1743       // s_movk_i32.
1744       //
1745       // Atomic operations fail to work correctly when individual address
1746       // components are unaligned, even if their sum is aligned.
1747       uint32_t High = (Imm + Alignment.value()) & ~4095;
1748       uint32_t Low = (Imm + Alignment.value()) & 4095;
1749       Imm = Low;
1750       Overflow = High - Alignment.value();
1751     }
1752   }
1753 
1754   // There is a hardware bug in SI and CI which prevents address clamping in
1755   // MUBUF instructions from working correctly with SOffsets. The immediate
1756   // offset is unaffected.
1757   if (Overflow > 0 &&
1758       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1759     return false;
1760 
1761   ImmOffset = Imm;
1762   SOffset = Overflow;
1763   return true;
1764 }
1765 
1766 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1767   *this = getDefaultForCallingConv(F.getCallingConv());
1768 
1769   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1770   if (!IEEEAttr.empty())
1771     IEEE = IEEEAttr == "true";
1772 
1773   StringRef DX10ClampAttr
1774     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1775   if (!DX10ClampAttr.empty())
1776     DX10Clamp = DX10ClampAttr == "true";
1777 
1778   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1779   if (!DenormF32Attr.empty()) {
1780     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1781     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1782     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1783   }
1784 
1785   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1786   if (!DenormAttr.empty()) {
1787     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1788 
1789     if (DenormF32Attr.empty()) {
1790       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1791       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1792     }
1793 
1794     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1795     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1796   }
1797 }
1798 
1799 namespace {
1800 
1801 struct SourceOfDivergence {
1802   unsigned Intr;
1803 };
1804 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1805 
1806 #define GET_SourcesOfDivergence_IMPL
1807 #define GET_Gfx9BufferFormat_IMPL
1808 #define GET_Gfx10PlusBufferFormat_IMPL
1809 #include "AMDGPUGenSearchableTables.inc"
1810 
1811 } // end anonymous namespace
1812 
1813 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1814   return lookupSourceOfDivergence(IntrID);
1815 }
1816 
1817 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1818                                                   uint8_t NumComponents,
1819                                                   uint8_t NumFormat,
1820                                                   const MCSubtargetInfo &STI) {
1821   return isGFX10Plus(STI)
1822              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1823                                             NumFormat)
1824              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1825 }
1826 
1827 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1828                                                   const MCSubtargetInfo &STI) {
1829   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
1830                           : getGfx9BufferFormatInfo(Format);
1831 }
1832 
1833 } // namespace AMDGPU
1834 
1835 raw_ostream &operator<<(raw_ostream &OS,
1836                         const AMDGPU::IsaInfo::TargetIDSetting S) {
1837   switch (S) {
1838   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
1839     OS << "Unsupported";
1840     break;
1841   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
1842     OS << "Any";
1843     break;
1844   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
1845     OS << "Off";
1846     break;
1847   case (AMDGPU::IsaInfo::TargetIDSetting::On):
1848     OS << "On";
1849     break;
1850   }
1851   return OS;
1852 }
1853 
1854 } // namespace llvm
1855