1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDKernelCodeT.h" 13 #include "GCNSubtarget.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/IR/Attributes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/GlobalValue.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IntrinsicsR600.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/MC/MCSubtargetInfo.h" 23 #include "llvm/Support/AMDHSAKernelDescriptor.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/TargetParser.h" 26 27 #define GET_INSTRINFO_NAMED_OPS 28 #define GET_INSTRMAP_INFO 29 #include "AMDGPUGenInstrInfo.inc" 30 31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion( 32 "amdhsa-code-object-version", llvm::cl::Hidden, 33 llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3)); 34 35 namespace { 36 37 /// \returns Bit mask for given bit \p Shift and bit \p Width. 38 unsigned getBitMask(unsigned Shift, unsigned Width) { 39 return ((1 << Width) - 1) << Shift; 40 } 41 42 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 43 /// 44 /// \returns Packed \p Dst. 45 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 46 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 47 Dst |= (Src << Shift) & getBitMask(Shift, Width); 48 return Dst; 49 } 50 51 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 52 /// 53 /// \returns Unpacked bits. 54 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 55 return (Src & getBitMask(Shift, Width)) >> Shift; 56 } 57 58 /// \returns Vmcnt bit shift (lower bits). 59 unsigned getVmcntBitShiftLo() { return 0; } 60 61 /// \returns Vmcnt bit width (lower bits). 62 unsigned getVmcntBitWidthLo() { return 4; } 63 64 /// \returns Expcnt bit shift. 65 unsigned getExpcntBitShift() { return 4; } 66 67 /// \returns Expcnt bit width. 68 unsigned getExpcntBitWidth() { return 3; } 69 70 /// \returns Lgkmcnt bit shift. 71 unsigned getLgkmcntBitShift() { return 8; } 72 73 /// \returns Lgkmcnt bit width. 74 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 75 return (VersionMajor >= 10) ? 6 : 4; 76 } 77 78 /// \returns Vmcnt bit shift (higher bits). 79 unsigned getVmcntBitShiftHi() { return 14; } 80 81 /// \returns Vmcnt bit width (higher bits). 82 unsigned getVmcntBitWidthHi() { return 2; } 83 84 } // end namespace anonymous 85 86 namespace llvm { 87 88 namespace AMDGPU { 89 90 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) { 91 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) 92 return None; 93 94 switch (AmdhsaCodeObjectVersion) { 95 case 2: 96 return ELF::ELFABIVERSION_AMDGPU_HSA_V2; 97 case 3: 98 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 99 default: 100 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 101 } 102 } 103 104 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { 105 if (const auto &&HsaAbiVer = getHsaAbiVersion(STI)) 106 return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2; 107 return false; 108 } 109 110 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { 111 if (const auto &&HsaAbiVer = getHsaAbiVersion(STI)) 112 return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3; 113 return false; 114 } 115 116 #define GET_MIMGBaseOpcodesTable_IMPL 117 #define GET_MIMGDimInfoTable_IMPL 118 #define GET_MIMGInfoTable_IMPL 119 #define GET_MIMGLZMappingTable_IMPL 120 #define GET_MIMGMIPMappingTable_IMPL 121 #define GET_MIMGG16MappingTable_IMPL 122 #include "AMDGPUGenSearchableTables.inc" 123 124 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 125 unsigned VDataDwords, unsigned VAddrDwords) { 126 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 127 VDataDwords, VAddrDwords); 128 return Info ? Info->Opcode : -1; 129 } 130 131 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 132 const MIMGInfo *Info = getMIMGInfo(Opc); 133 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 134 } 135 136 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 137 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 138 const MIMGInfo *NewInfo = 139 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 140 NewChannels, OrigInfo->VAddrDwords); 141 return NewInfo ? NewInfo->Opcode : -1; 142 } 143 144 struct MUBUFInfo { 145 uint16_t Opcode; 146 uint16_t BaseOpcode; 147 uint8_t elements; 148 bool has_vaddr; 149 bool has_srsrc; 150 bool has_soffset; 151 }; 152 153 struct MTBUFInfo { 154 uint16_t Opcode; 155 uint16_t BaseOpcode; 156 uint8_t elements; 157 bool has_vaddr; 158 bool has_srsrc; 159 bool has_soffset; 160 }; 161 162 struct SMInfo { 163 uint16_t Opcode; 164 bool IsBuffer; 165 }; 166 167 #define GET_MTBUFInfoTable_DECL 168 #define GET_MTBUFInfoTable_IMPL 169 #define GET_MUBUFInfoTable_DECL 170 #define GET_MUBUFInfoTable_IMPL 171 #define GET_SMInfoTable_DECL 172 #define GET_SMInfoTable_IMPL 173 #include "AMDGPUGenSearchableTables.inc" 174 175 int getMTBUFBaseOpcode(unsigned Opc) { 176 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 177 return Info ? Info->BaseOpcode : -1; 178 } 179 180 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 181 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 182 return Info ? Info->Opcode : -1; 183 } 184 185 int getMTBUFElements(unsigned Opc) { 186 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 187 return Info ? Info->elements : 0; 188 } 189 190 bool getMTBUFHasVAddr(unsigned Opc) { 191 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 192 return Info ? Info->has_vaddr : false; 193 } 194 195 bool getMTBUFHasSrsrc(unsigned Opc) { 196 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 197 return Info ? Info->has_srsrc : false; 198 } 199 200 bool getMTBUFHasSoffset(unsigned Opc) { 201 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 202 return Info ? Info->has_soffset : false; 203 } 204 205 int getMUBUFBaseOpcode(unsigned Opc) { 206 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 207 return Info ? Info->BaseOpcode : -1; 208 } 209 210 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 211 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 212 return Info ? Info->Opcode : -1; 213 } 214 215 int getMUBUFElements(unsigned Opc) { 216 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 217 return Info ? Info->elements : 0; 218 } 219 220 bool getMUBUFHasVAddr(unsigned Opc) { 221 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 222 return Info ? Info->has_vaddr : false; 223 } 224 225 bool getMUBUFHasSrsrc(unsigned Opc) { 226 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 227 return Info ? Info->has_srsrc : false; 228 } 229 230 bool getMUBUFHasSoffset(unsigned Opc) { 231 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 232 return Info ? Info->has_soffset : false; 233 } 234 235 bool getSMEMIsBuffer(unsigned Opc) { 236 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 237 return Info ? Info->IsBuffer : false; 238 } 239 240 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 241 // header files, so we need to wrap it in a function that takes unsigned 242 // instead. 243 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 244 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 245 } 246 247 namespace IsaInfo { 248 249 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI) 250 : XnackSetting(TargetIDSetting::Any), SramEccSetting(TargetIDSetting::Any) { 251 if (!STI.getFeatureBits().test(FeatureSupportsXNACK)) 252 XnackSetting = TargetIDSetting::Unsupported; 253 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC)) 254 SramEccSetting = TargetIDSetting::Unsupported; 255 } 256 257 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) { 258 // Check if xnack or sramecc is explicitly enabled or disabled. In the 259 // absence of the target features we assume we must generate code that can run 260 // in any environment. 261 SubtargetFeatures Features(FS); 262 Optional<bool> XnackRequested; 263 Optional<bool> SramEccRequested; 264 265 for (const std::string &Feature : Features.getFeatures()) { 266 if (Feature == "+xnack") 267 XnackRequested = true; 268 else if (Feature == "-xnack") 269 XnackRequested = false; 270 else if (Feature == "+sramecc") 271 SramEccRequested = true; 272 else if (Feature == "-sramecc") 273 SramEccRequested = false; 274 } 275 276 bool XnackSupported = isXnackSupported(); 277 bool SramEccSupported = isSramEccSupported(); 278 279 if (XnackRequested) { 280 if (XnackSupported) { 281 XnackSetting = 282 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off; 283 } else { 284 // If a specific xnack setting was requested and this GPU does not support 285 // xnack emit a warning. Setting will remain set to "Unsupported". 286 if (*XnackRequested) { 287 errs() << "warning: xnack 'On' was requested for a processor that does " 288 "not support it!\n"; 289 } else { 290 errs() << "warning: xnack 'Off' was requested for a processor that " 291 "does not support it!\n"; 292 } 293 } 294 } 295 296 if (SramEccRequested) { 297 if (SramEccSupported) { 298 SramEccSetting = 299 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off; 300 } else { 301 // If a specific sramecc setting was requested and this GPU does not 302 // support sramecc emit a warning. Setting will remain set to 303 // "Unsupported". 304 if (*SramEccRequested) { 305 errs() << "warning: sramecc 'On' was requested for a processor that " 306 "does not support it!\n"; 307 } else { 308 errs() << "warning: sramecc 'Off' was requested for a processor that " 309 "does not support it!\n"; 310 } 311 } 312 } 313 } 314 315 static TargetIDSetting 316 getTargetIDSettingFromFeatureString(StringRef FeatureString) { 317 if (FeatureString.endswith("-")) 318 return TargetIDSetting::Off; 319 if (FeatureString.endswith("+")) 320 return TargetIDSetting::On; 321 322 llvm_unreachable("Malformed feature string"); 323 } 324 325 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) { 326 SmallVector<StringRef, 3> TargetIDSplit; 327 TargetID.split(TargetIDSplit, ':'); 328 329 for (const auto &FeatureString : TargetIDSplit) { 330 if (FeatureString.startswith("xnack")) 331 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString); 332 if (FeatureString.startswith("sramecc")) 333 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString); 334 } 335 } 336 337 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 338 auto TargetTriple = STI->getTargetTriple(); 339 auto Version = getIsaVersion(STI->getCPU()); 340 341 Stream << TargetTriple.getArchName() << '-' 342 << TargetTriple.getVendorName() << '-' 343 << TargetTriple.getOSName() << '-' 344 << TargetTriple.getEnvironmentName() << '-' 345 << "gfx" 346 << Version.Major 347 << Version.Minor 348 << hexdigit(Version.Stepping, true); 349 350 if (hasXNACK(*STI)) 351 Stream << "+xnack"; 352 if (hasSRAMECC(*STI)) 353 Stream << "+sramecc"; 354 355 Stream.flush(); 356 } 357 358 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 359 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 360 return 16; 361 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 362 return 32; 363 364 return 64; 365 } 366 367 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 368 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 369 return 32768; 370 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 371 return 65536; 372 373 return 0; 374 } 375 376 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 377 // "Per CU" really means "per whatever functional block the waves of a 378 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 379 // two SIMDs. 380 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 381 return 2; 382 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 383 // two CUs, so a total of four SIMDs. 384 return 4; 385 } 386 387 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 388 unsigned FlatWorkGroupSize) { 389 assert(FlatWorkGroupSize != 0); 390 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 391 return 8; 392 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 393 if (N == 1) 394 return 40; 395 N = 40 / N; 396 return std::min(N, 16u); 397 } 398 399 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 400 return 1; 401 } 402 403 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 404 // FIXME: Need to take scratch memory into account. 405 if (isGFX90A(*STI)) 406 return 8; 407 if (!isGFX10Plus(*STI)) 408 return 10; 409 return hasGFX10_3Insts(*STI) ? 16 : 20; 410 } 411 412 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 413 unsigned FlatWorkGroupSize) { 414 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 415 getEUsPerCU(STI)); 416 } 417 418 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 419 return 1; 420 } 421 422 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 423 // Some subtargets allow encoding 2048, but this isn't tested or supported. 424 return 1024; 425 } 426 427 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 428 unsigned FlatWorkGroupSize) { 429 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 430 } 431 432 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 433 IsaVersion Version = getIsaVersion(STI->getCPU()); 434 if (Version.Major >= 10) 435 return getAddressableNumSGPRs(STI); 436 if (Version.Major >= 8) 437 return 16; 438 return 8; 439 } 440 441 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 442 return 8; 443 } 444 445 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 446 IsaVersion Version = getIsaVersion(STI->getCPU()); 447 if (Version.Major >= 8) 448 return 800; 449 return 512; 450 } 451 452 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 453 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 454 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 455 456 IsaVersion Version = getIsaVersion(STI->getCPU()); 457 if (Version.Major >= 10) 458 return 106; 459 if (Version.Major >= 8) 460 return 102; 461 return 104; 462 } 463 464 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 465 assert(WavesPerEU != 0); 466 467 IsaVersion Version = getIsaVersion(STI->getCPU()); 468 if (Version.Major >= 10) 469 return 0; 470 471 if (WavesPerEU >= getMaxWavesPerEU(STI)) 472 return 0; 473 474 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 475 if (STI->getFeatureBits().test(FeatureTrapHandler)) 476 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 477 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 478 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 479 } 480 481 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 482 bool Addressable) { 483 assert(WavesPerEU != 0); 484 485 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 486 IsaVersion Version = getIsaVersion(STI->getCPU()); 487 if (Version.Major >= 10) 488 return Addressable ? AddressableNumSGPRs : 108; 489 if (Version.Major >= 8 && !Addressable) 490 AddressableNumSGPRs = 112; 491 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 492 if (STI->getFeatureBits().test(FeatureTrapHandler)) 493 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 494 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 495 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 496 } 497 498 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 499 bool FlatScrUsed, bool XNACKUsed) { 500 unsigned ExtraSGPRs = 0; 501 if (VCCUsed) 502 ExtraSGPRs = 2; 503 504 IsaVersion Version = getIsaVersion(STI->getCPU()); 505 if (Version.Major >= 10) 506 return ExtraSGPRs; 507 508 if (Version.Major < 8) { 509 if (FlatScrUsed) 510 ExtraSGPRs = 4; 511 } else { 512 if (XNACKUsed) 513 ExtraSGPRs = 4; 514 515 if (FlatScrUsed) 516 ExtraSGPRs = 6; 517 } 518 519 return ExtraSGPRs; 520 } 521 522 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 523 bool FlatScrUsed) { 524 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 525 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 526 } 527 528 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 529 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 530 // SGPRBlocks is actual number of SGPR blocks minus 1. 531 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 532 } 533 534 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 535 Optional<bool> EnableWavefrontSize32) { 536 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 537 return 8; 538 539 bool IsWave32 = EnableWavefrontSize32 ? 540 *EnableWavefrontSize32 : 541 STI->getFeatureBits().test(FeatureWavefrontSize32); 542 543 if (hasGFX10_3Insts(*STI)) 544 return IsWave32 ? 16 : 8; 545 546 return IsWave32 ? 8 : 4; 547 } 548 549 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 550 Optional<bool> EnableWavefrontSize32) { 551 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 552 return 8; 553 554 bool IsWave32 = EnableWavefrontSize32 ? 555 *EnableWavefrontSize32 : 556 STI->getFeatureBits().test(FeatureWavefrontSize32); 557 558 return IsWave32 ? 8 : 4; 559 } 560 561 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 562 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 563 return 512; 564 if (!isGFX10Plus(*STI)) 565 return 256; 566 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 567 } 568 569 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 570 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 571 return 512; 572 return 256; 573 } 574 575 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 576 assert(WavesPerEU != 0); 577 578 if (WavesPerEU >= getMaxWavesPerEU(STI)) 579 return 0; 580 unsigned MinNumVGPRs = 581 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 582 getVGPRAllocGranule(STI)) + 1; 583 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 584 } 585 586 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 587 assert(WavesPerEU != 0); 588 589 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 590 getVGPRAllocGranule(STI)); 591 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 592 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 593 } 594 595 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 596 Optional<bool> EnableWavefrontSize32) { 597 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 598 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 599 // VGPRBlocks is actual number of VGPR blocks minus 1. 600 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 601 } 602 603 } // end namespace IsaInfo 604 605 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 606 const MCSubtargetInfo *STI) { 607 IsaVersion Version = getIsaVersion(STI->getCPU()); 608 609 memset(&Header, 0, sizeof(Header)); 610 611 Header.amd_kernel_code_version_major = 1; 612 Header.amd_kernel_code_version_minor = 2; 613 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 614 Header.amd_machine_version_major = Version.Major; 615 Header.amd_machine_version_minor = Version.Minor; 616 Header.amd_machine_version_stepping = Version.Stepping; 617 Header.kernel_code_entry_byte_offset = sizeof(Header); 618 Header.wavefront_size = 6; 619 620 // If the code object does not support indirect functions, then the value must 621 // be 0xffffffff. 622 Header.call_convention = -1; 623 624 // These alignment values are specified in powers of two, so alignment = 625 // 2^n. The minimum alignment is 2^4 = 16. 626 Header.kernarg_segment_alignment = 4; 627 Header.group_segment_alignment = 4; 628 Header.private_segment_alignment = 4; 629 630 if (Version.Major >= 10) { 631 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 632 Header.wavefront_size = 5; 633 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 634 } 635 Header.compute_pgm_resource_registers |= 636 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 637 S_00B848_MEM_ORDERED(1); 638 } 639 } 640 641 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 642 const MCSubtargetInfo *STI) { 643 IsaVersion Version = getIsaVersion(STI->getCPU()); 644 645 amdhsa::kernel_descriptor_t KD; 646 memset(&KD, 0, sizeof(KD)); 647 648 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 649 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 650 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 651 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 652 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 653 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 654 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 655 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 656 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 657 if (Version.Major >= 10) { 658 AMDHSA_BITS_SET(KD.kernel_code_properties, 659 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 660 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 661 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 662 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 663 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 664 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 665 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 666 } 667 if (AMDGPU::isGFX90A(*STI)) { 668 AMDHSA_BITS_SET(KD.compute_pgm_rsrc3, 669 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, 670 STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0); 671 } 672 return KD; 673 } 674 675 bool isGroupSegment(const GlobalValue *GV) { 676 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 677 } 678 679 bool isGlobalSegment(const GlobalValue *GV) { 680 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 681 } 682 683 bool isReadOnlySegment(const GlobalValue *GV) { 684 unsigned AS = GV->getAddressSpace(); 685 return AS == AMDGPUAS::CONSTANT_ADDRESS || 686 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 687 } 688 689 bool shouldEmitConstantsToTextSection(const Triple &TT) { 690 return TT.getArch() == Triple::r600; 691 } 692 693 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 694 Attribute A = F.getFnAttribute(Name); 695 int Result = Default; 696 697 if (A.isStringAttribute()) { 698 StringRef Str = A.getValueAsString(); 699 if (Str.getAsInteger(0, Result)) { 700 LLVMContext &Ctx = F.getContext(); 701 Ctx.emitError("can't parse integer attribute " + Name); 702 } 703 } 704 705 return Result; 706 } 707 708 std::pair<int, int> getIntegerPairAttribute(const Function &F, 709 StringRef Name, 710 std::pair<int, int> Default, 711 bool OnlyFirstRequired) { 712 Attribute A = F.getFnAttribute(Name); 713 if (!A.isStringAttribute()) 714 return Default; 715 716 LLVMContext &Ctx = F.getContext(); 717 std::pair<int, int> Ints = Default; 718 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 719 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 720 Ctx.emitError("can't parse first integer attribute " + Name); 721 return Default; 722 } 723 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 724 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 725 Ctx.emitError("can't parse second integer attribute " + Name); 726 return Default; 727 } 728 } 729 730 return Ints; 731 } 732 733 unsigned getVmcntBitMask(const IsaVersion &Version) { 734 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 735 if (Version.Major < 9) 736 return VmcntLo; 737 738 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 739 return VmcntLo | VmcntHi; 740 } 741 742 unsigned getExpcntBitMask(const IsaVersion &Version) { 743 return (1 << getExpcntBitWidth()) - 1; 744 } 745 746 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 747 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 748 } 749 750 unsigned getWaitcntBitMask(const IsaVersion &Version) { 751 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 752 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 753 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 754 getLgkmcntBitWidth(Version.Major)); 755 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 756 if (Version.Major < 9) 757 return Waitcnt; 758 759 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 760 return Waitcnt | VmcntHi; 761 } 762 763 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 764 unsigned VmcntLo = 765 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 766 if (Version.Major < 9) 767 return VmcntLo; 768 769 unsigned VmcntHi = 770 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 771 VmcntHi <<= getVmcntBitWidthLo(); 772 return VmcntLo | VmcntHi; 773 } 774 775 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 776 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 777 } 778 779 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 780 return unpackBits(Waitcnt, getLgkmcntBitShift(), 781 getLgkmcntBitWidth(Version.Major)); 782 } 783 784 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 785 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 786 Vmcnt = decodeVmcnt(Version, Waitcnt); 787 Expcnt = decodeExpcnt(Version, Waitcnt); 788 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 789 } 790 791 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 792 Waitcnt Decoded; 793 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 794 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 795 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 796 return Decoded; 797 } 798 799 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 800 unsigned Vmcnt) { 801 Waitcnt = 802 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 803 if (Version.Major < 9) 804 return Waitcnt; 805 806 Vmcnt >>= getVmcntBitWidthLo(); 807 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 808 } 809 810 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 811 unsigned Expcnt) { 812 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 813 } 814 815 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 816 unsigned Lgkmcnt) { 817 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 818 getLgkmcntBitWidth(Version.Major)); 819 } 820 821 unsigned encodeWaitcnt(const IsaVersion &Version, 822 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 823 unsigned Waitcnt = getWaitcntBitMask(Version); 824 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 825 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 826 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 827 return Waitcnt; 828 } 829 830 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 831 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 832 } 833 834 //===----------------------------------------------------------------------===// 835 // hwreg 836 //===----------------------------------------------------------------------===// 837 838 namespace Hwreg { 839 840 int64_t getHwregId(const StringRef Name) { 841 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 842 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 843 return Id; 844 } 845 return ID_UNKNOWN_; 846 } 847 848 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 849 if (isSI(STI) || isCI(STI) || isVI(STI)) 850 return ID_SYMBOLIC_FIRST_GFX9_; 851 else if (isGFX9(STI)) 852 return ID_SYMBOLIC_FIRST_GFX10_; 853 else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) 854 return ID_SYMBOLIC_FIRST_GFX1030_; 855 else 856 return ID_SYMBOLIC_LAST_; 857 } 858 859 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 860 return 861 ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 862 IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI)); 863 } 864 865 bool isValidHwreg(int64_t Id) { 866 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 867 } 868 869 bool isValidHwregOffset(int64_t Offset) { 870 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 871 } 872 873 bool isValidHwregWidth(int64_t Width) { 874 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 875 } 876 877 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 878 return (Id << ID_SHIFT_) | 879 (Offset << OFFSET_SHIFT_) | 880 ((Width - 1) << WIDTH_M1_SHIFT_); 881 } 882 883 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 884 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 885 } 886 887 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 888 Id = (Val & ID_MASK_) >> ID_SHIFT_; 889 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 890 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 891 } 892 893 } // namespace Hwreg 894 895 //===----------------------------------------------------------------------===// 896 // exp tgt 897 //===----------------------------------------------------------------------===// 898 899 namespace Exp { 900 901 struct ExpTgt { 902 StringLiteral Name; 903 unsigned Tgt; 904 unsigned MaxIndex; 905 }; 906 907 static constexpr ExpTgt ExpTgtInfo[] = { 908 {{"null"}, ET_NULL, ET_NULL_MAX_IDX}, 909 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX}, 910 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX}, 911 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX}, 912 {{"pos"}, ET_POS0, ET_POS_MAX_IDX}, 913 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX}, 914 }; 915 916 bool getTgtName(unsigned Id, StringRef &Name, int &Index) { 917 for (const ExpTgt &Val : ExpTgtInfo) { 918 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) { 919 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt); 920 Name = Val.Name; 921 return true; 922 } 923 } 924 return false; 925 } 926 927 unsigned getTgtId(const StringRef Name) { 928 929 for (const ExpTgt &Val : ExpTgtInfo) { 930 if (Val.MaxIndex == 0 && Name == Val.Name) 931 return Val.Tgt; 932 933 if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) { 934 StringRef Suffix = Name.drop_front(Val.Name.size()); 935 936 unsigned Id; 937 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex) 938 return ET_INVALID; 939 940 // Disable leading zeroes 941 if (Suffix.size() > 1 && Suffix[0] == '0') 942 return ET_INVALID; 943 944 return Val.Tgt + Id; 945 } 946 } 947 return ET_INVALID; 948 } 949 950 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) { 951 return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI); 952 } 953 954 } // namespace Exp 955 956 //===----------------------------------------------------------------------===// 957 // MTBUF Format 958 //===----------------------------------------------------------------------===// 959 960 namespace MTBUFFormat { 961 962 int64_t getDfmt(const StringRef Name) { 963 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 964 if (Name == DfmtSymbolic[Id]) 965 return Id; 966 } 967 return DFMT_UNDEF; 968 } 969 970 StringRef getDfmtName(unsigned Id) { 971 assert(Id <= DFMT_MAX); 972 return DfmtSymbolic[Id]; 973 } 974 975 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 976 if (isSI(STI) || isCI(STI)) 977 return NfmtSymbolicSICI; 978 if (isVI(STI) || isGFX9(STI)) 979 return NfmtSymbolicVI; 980 return NfmtSymbolicGFX10; 981 } 982 983 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 984 auto lookupTable = getNfmtLookupTable(STI); 985 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 986 if (Name == lookupTable[Id]) 987 return Id; 988 } 989 return NFMT_UNDEF; 990 } 991 992 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 993 assert(Id <= NFMT_MAX); 994 return getNfmtLookupTable(STI)[Id]; 995 } 996 997 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 998 unsigned Dfmt; 999 unsigned Nfmt; 1000 decodeDfmtNfmt(Id, Dfmt, Nfmt); 1001 return isValidNfmt(Nfmt, STI); 1002 } 1003 1004 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1005 return !getNfmtName(Id, STI).empty(); 1006 } 1007 1008 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 1009 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 1010 } 1011 1012 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 1013 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 1014 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 1015 } 1016 1017 int64_t getUnifiedFormat(const StringRef Name) { 1018 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1019 if (Name == UfmtSymbolic[Id]) 1020 return Id; 1021 } 1022 return UFMT_UNDEF; 1023 } 1024 1025 StringRef getUnifiedFormatName(unsigned Id) { 1026 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 1027 } 1028 1029 bool isValidUnifiedFormat(unsigned Id) { 1030 return Id <= UFMT_LAST; 1031 } 1032 1033 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 1034 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 1035 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1036 if (Fmt == DfmtNfmt2UFmt[Id]) 1037 return Id; 1038 } 1039 return UFMT_UNDEF; 1040 } 1041 1042 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 1043 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 1044 } 1045 1046 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 1047 if (isGFX10Plus(STI)) 1048 return UFMT_DEFAULT; 1049 return DFMT_NFMT_DEFAULT; 1050 } 1051 1052 } // namespace MTBUFFormat 1053 1054 //===----------------------------------------------------------------------===// 1055 // SendMsg 1056 //===----------------------------------------------------------------------===// 1057 1058 namespace SendMsg { 1059 1060 int64_t getMsgId(const StringRef Name) { 1061 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 1062 if (IdSymbolic[i] && Name == IdSymbolic[i]) 1063 return i; 1064 } 1065 return ID_UNKNOWN_; 1066 } 1067 1068 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 1069 if (Strict) { 1070 switch (MsgId) { 1071 case ID_SAVEWAVE: 1072 return isVI(STI) || isGFX9Plus(STI); 1073 case ID_STALL_WAVE_GEN: 1074 case ID_HALT_WAVES: 1075 case ID_ORDERED_PS_DONE: 1076 case ID_GS_ALLOC_REQ: 1077 case ID_GET_DOORBELL: 1078 return isGFX9Plus(STI); 1079 case ID_EARLY_PRIM_DEALLOC: 1080 return isGFX9(STI); 1081 case ID_GET_DDID: 1082 return isGFX10Plus(STI); 1083 default: 1084 return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId]; 1085 } 1086 } else { 1087 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 1088 } 1089 } 1090 1091 StringRef getMsgName(int64_t MsgId) { 1092 assert(0 <= MsgId && MsgId < ID_GAPS_LAST_); 1093 return IdSymbolic[MsgId]; 1094 } 1095 1096 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 1097 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 1098 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 1099 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 1100 for (int i = F; i < L; ++i) { 1101 if (Name == S[i]) { 1102 return i; 1103 } 1104 } 1105 return OP_UNKNOWN_; 1106 } 1107 1108 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, 1109 bool Strict) { 1110 assert(isValidMsgId(MsgId, STI, Strict)); 1111 1112 if (!Strict) 1113 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 1114 1115 switch(MsgId) 1116 { 1117 case ID_GS: 1118 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 1119 case ID_GS_DONE: 1120 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 1121 case ID_SYSMSG: 1122 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 1123 default: 1124 return OpId == OP_NONE_; 1125 } 1126 } 1127 1128 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 1129 assert(msgRequiresOp(MsgId)); 1130 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 1131 } 1132 1133 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, 1134 const MCSubtargetInfo &STI, bool Strict) { 1135 assert(isValidMsgOp(MsgId, OpId, STI, Strict)); 1136 1137 if (!Strict) 1138 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 1139 1140 switch(MsgId) 1141 { 1142 case ID_GS: 1143 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 1144 case ID_GS_DONE: 1145 return (OpId == OP_GS_NOP)? 1146 (StreamId == STREAM_ID_NONE_) : 1147 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 1148 default: 1149 return StreamId == STREAM_ID_NONE_; 1150 } 1151 } 1152 1153 bool msgRequiresOp(int64_t MsgId) { 1154 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 1155 } 1156 1157 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 1158 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 1159 } 1160 1161 void decodeMsg(unsigned Val, 1162 uint16_t &MsgId, 1163 uint16_t &OpId, 1164 uint16_t &StreamId) { 1165 MsgId = Val & ID_MASK_; 1166 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 1167 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 1168 } 1169 1170 uint64_t encodeMsg(uint64_t MsgId, 1171 uint64_t OpId, 1172 uint64_t StreamId) { 1173 return (MsgId << ID_SHIFT_) | 1174 (OpId << OP_SHIFT_) | 1175 (StreamId << STREAM_ID_SHIFT_); 1176 } 1177 1178 } // namespace SendMsg 1179 1180 //===----------------------------------------------------------------------===// 1181 // 1182 //===----------------------------------------------------------------------===// 1183 1184 unsigned getInitialPSInputAddr(const Function &F) { 1185 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1186 } 1187 1188 bool isShader(CallingConv::ID cc) { 1189 switch(cc) { 1190 case CallingConv::AMDGPU_VS: 1191 case CallingConv::AMDGPU_LS: 1192 case CallingConv::AMDGPU_HS: 1193 case CallingConv::AMDGPU_ES: 1194 case CallingConv::AMDGPU_GS: 1195 case CallingConv::AMDGPU_PS: 1196 case CallingConv::AMDGPU_CS: 1197 return true; 1198 default: 1199 return false; 1200 } 1201 } 1202 1203 bool isGraphics(CallingConv::ID cc) { 1204 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; 1205 } 1206 1207 bool isCompute(CallingConv::ID cc) { 1208 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; 1209 } 1210 1211 bool isEntryFunctionCC(CallingConv::ID CC) { 1212 switch (CC) { 1213 case CallingConv::AMDGPU_KERNEL: 1214 case CallingConv::SPIR_KERNEL: 1215 case CallingConv::AMDGPU_VS: 1216 case CallingConv::AMDGPU_GS: 1217 case CallingConv::AMDGPU_PS: 1218 case CallingConv::AMDGPU_CS: 1219 case CallingConv::AMDGPU_ES: 1220 case CallingConv::AMDGPU_HS: 1221 case CallingConv::AMDGPU_LS: 1222 return true; 1223 default: 1224 return false; 1225 } 1226 } 1227 1228 bool isModuleEntryFunctionCC(CallingConv::ID CC) { 1229 switch (CC) { 1230 case CallingConv::AMDGPU_Gfx: 1231 return true; 1232 default: 1233 return isEntryFunctionCC(CC); 1234 } 1235 } 1236 1237 bool hasXNACK(const MCSubtargetInfo &STI) { 1238 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1239 } 1240 1241 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1242 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1243 } 1244 1245 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1246 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1247 } 1248 1249 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1250 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1251 } 1252 1253 bool hasG16(const MCSubtargetInfo &STI) { 1254 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1255 } 1256 1257 bool hasPackedD16(const MCSubtargetInfo &STI) { 1258 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1259 } 1260 1261 bool isSI(const MCSubtargetInfo &STI) { 1262 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1263 } 1264 1265 bool isCI(const MCSubtargetInfo &STI) { 1266 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1267 } 1268 1269 bool isVI(const MCSubtargetInfo &STI) { 1270 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1271 } 1272 1273 bool isGFX9(const MCSubtargetInfo &STI) { 1274 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1275 } 1276 1277 bool isGFX9Plus(const MCSubtargetInfo &STI) { 1278 return isGFX9(STI) || isGFX10Plus(STI); 1279 } 1280 1281 bool isGFX10(const MCSubtargetInfo &STI) { 1282 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1283 } 1284 1285 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } 1286 1287 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1288 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1289 } 1290 1291 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1292 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1293 } 1294 1295 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1296 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1297 } 1298 1299 bool isGFX90A(const MCSubtargetInfo &STI) { 1300 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1301 } 1302 1303 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1304 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1305 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1306 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1307 Reg == AMDGPU::SCC; 1308 } 1309 1310 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 1311 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 1312 if (*R == Reg1) return true; 1313 } 1314 return false; 1315 } 1316 1317 #define MAP_REG2REG \ 1318 using namespace AMDGPU; \ 1319 switch(Reg) { \ 1320 default: return Reg; \ 1321 CASE_CI_VI(FLAT_SCR) \ 1322 CASE_CI_VI(FLAT_SCR_LO) \ 1323 CASE_CI_VI(FLAT_SCR_HI) \ 1324 CASE_VI_GFX9PLUS(TTMP0) \ 1325 CASE_VI_GFX9PLUS(TTMP1) \ 1326 CASE_VI_GFX9PLUS(TTMP2) \ 1327 CASE_VI_GFX9PLUS(TTMP3) \ 1328 CASE_VI_GFX9PLUS(TTMP4) \ 1329 CASE_VI_GFX9PLUS(TTMP5) \ 1330 CASE_VI_GFX9PLUS(TTMP6) \ 1331 CASE_VI_GFX9PLUS(TTMP7) \ 1332 CASE_VI_GFX9PLUS(TTMP8) \ 1333 CASE_VI_GFX9PLUS(TTMP9) \ 1334 CASE_VI_GFX9PLUS(TTMP10) \ 1335 CASE_VI_GFX9PLUS(TTMP11) \ 1336 CASE_VI_GFX9PLUS(TTMP12) \ 1337 CASE_VI_GFX9PLUS(TTMP13) \ 1338 CASE_VI_GFX9PLUS(TTMP14) \ 1339 CASE_VI_GFX9PLUS(TTMP15) \ 1340 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \ 1341 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \ 1342 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \ 1343 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \ 1344 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \ 1345 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \ 1346 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \ 1347 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \ 1348 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \ 1349 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \ 1350 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \ 1351 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \ 1352 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1353 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1354 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1355 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1356 } 1357 1358 #define CASE_CI_VI(node) \ 1359 assert(!isSI(STI)); \ 1360 case node: return isCI(STI) ? node##_ci : node##_vi; 1361 1362 #define CASE_VI_GFX9PLUS(node) \ 1363 case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi; 1364 1365 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1366 if (STI.getTargetTriple().getArch() == Triple::r600) 1367 return Reg; 1368 MAP_REG2REG 1369 } 1370 1371 #undef CASE_CI_VI 1372 #undef CASE_VI_GFX9PLUS 1373 1374 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1375 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node; 1376 1377 unsigned mc2PseudoReg(unsigned Reg) { 1378 MAP_REG2REG 1379 } 1380 1381 #undef CASE_CI_VI 1382 #undef CASE_VI_GFX9PLUS 1383 #undef MAP_REG2REG 1384 1385 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1386 assert(OpNo < Desc.NumOperands); 1387 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1388 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1389 OpType <= AMDGPU::OPERAND_SRC_LAST; 1390 } 1391 1392 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1393 assert(OpNo < Desc.NumOperands); 1394 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1395 switch (OpType) { 1396 case AMDGPU::OPERAND_REG_IMM_FP32: 1397 case AMDGPU::OPERAND_REG_IMM_FP64: 1398 case AMDGPU::OPERAND_REG_IMM_FP16: 1399 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1400 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1401 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1402 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1403 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1404 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1405 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1406 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1407 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1408 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1409 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1410 case AMDGPU::OPERAND_REG_IMM_V2FP32: 1411 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 1412 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 1413 return true; 1414 default: 1415 return false; 1416 } 1417 } 1418 1419 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1420 assert(OpNo < Desc.NumOperands); 1421 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1422 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1423 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1424 } 1425 1426 // Avoid using MCRegisterClass::getSize, since that function will go away 1427 // (move from MC* level to Target* level). Return size in bits. 1428 unsigned getRegBitWidth(unsigned RCID) { 1429 switch (RCID) { 1430 case AMDGPU::VGPR_LO16RegClassID: 1431 case AMDGPU::VGPR_HI16RegClassID: 1432 case AMDGPU::SGPR_LO16RegClassID: 1433 case AMDGPU::AGPR_LO16RegClassID: 1434 return 16; 1435 case AMDGPU::SGPR_32RegClassID: 1436 case AMDGPU::VGPR_32RegClassID: 1437 case AMDGPU::VRegOrLds_32RegClassID: 1438 case AMDGPU::AGPR_32RegClassID: 1439 case AMDGPU::VS_32RegClassID: 1440 case AMDGPU::AV_32RegClassID: 1441 case AMDGPU::SReg_32RegClassID: 1442 case AMDGPU::SReg_32_XM0RegClassID: 1443 case AMDGPU::SRegOrLds_32RegClassID: 1444 return 32; 1445 case AMDGPU::SGPR_64RegClassID: 1446 case AMDGPU::VS_64RegClassID: 1447 case AMDGPU::AV_64RegClassID: 1448 case AMDGPU::SReg_64RegClassID: 1449 case AMDGPU::VReg_64RegClassID: 1450 case AMDGPU::AReg_64RegClassID: 1451 case AMDGPU::SReg_64_XEXECRegClassID: 1452 case AMDGPU::VReg_64_Align2RegClassID: 1453 case AMDGPU::AReg_64_Align2RegClassID: 1454 return 64; 1455 case AMDGPU::SGPR_96RegClassID: 1456 case AMDGPU::SReg_96RegClassID: 1457 case AMDGPU::VReg_96RegClassID: 1458 case AMDGPU::AReg_96RegClassID: 1459 case AMDGPU::VReg_96_Align2RegClassID: 1460 case AMDGPU::AReg_96_Align2RegClassID: 1461 case AMDGPU::AV_96RegClassID: 1462 return 96; 1463 case AMDGPU::SGPR_128RegClassID: 1464 case AMDGPU::SReg_128RegClassID: 1465 case AMDGPU::VReg_128RegClassID: 1466 case AMDGPU::AReg_128RegClassID: 1467 case AMDGPU::VReg_128_Align2RegClassID: 1468 case AMDGPU::AReg_128_Align2RegClassID: 1469 case AMDGPU::AV_128RegClassID: 1470 return 128; 1471 case AMDGPU::SGPR_160RegClassID: 1472 case AMDGPU::SReg_160RegClassID: 1473 case AMDGPU::VReg_160RegClassID: 1474 case AMDGPU::AReg_160RegClassID: 1475 case AMDGPU::VReg_160_Align2RegClassID: 1476 case AMDGPU::AReg_160_Align2RegClassID: 1477 case AMDGPU::AV_160RegClassID: 1478 return 160; 1479 case AMDGPU::SGPR_192RegClassID: 1480 case AMDGPU::SReg_192RegClassID: 1481 case AMDGPU::VReg_192RegClassID: 1482 case AMDGPU::AReg_192RegClassID: 1483 case AMDGPU::VReg_192_Align2RegClassID: 1484 case AMDGPU::AReg_192_Align2RegClassID: 1485 return 192; 1486 case AMDGPU::SGPR_256RegClassID: 1487 case AMDGPU::SReg_256RegClassID: 1488 case AMDGPU::VReg_256RegClassID: 1489 case AMDGPU::AReg_256RegClassID: 1490 case AMDGPU::VReg_256_Align2RegClassID: 1491 case AMDGPU::AReg_256_Align2RegClassID: 1492 return 256; 1493 case AMDGPU::SGPR_512RegClassID: 1494 case AMDGPU::SReg_512RegClassID: 1495 case AMDGPU::VReg_512RegClassID: 1496 case AMDGPU::AReg_512RegClassID: 1497 case AMDGPU::VReg_512_Align2RegClassID: 1498 case AMDGPU::AReg_512_Align2RegClassID: 1499 return 512; 1500 case AMDGPU::SGPR_1024RegClassID: 1501 case AMDGPU::SReg_1024RegClassID: 1502 case AMDGPU::VReg_1024RegClassID: 1503 case AMDGPU::AReg_1024RegClassID: 1504 case AMDGPU::VReg_1024_Align2RegClassID: 1505 case AMDGPU::AReg_1024_Align2RegClassID: 1506 return 1024; 1507 default: 1508 llvm_unreachable("Unexpected register class"); 1509 } 1510 } 1511 1512 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1513 return getRegBitWidth(RC.getID()); 1514 } 1515 1516 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1517 unsigned OpNo) { 1518 assert(OpNo < Desc.NumOperands); 1519 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1520 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1521 } 1522 1523 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1524 if (isInlinableIntLiteral(Literal)) 1525 return true; 1526 1527 uint64_t Val = static_cast<uint64_t>(Literal); 1528 return (Val == DoubleToBits(0.0)) || 1529 (Val == DoubleToBits(1.0)) || 1530 (Val == DoubleToBits(-1.0)) || 1531 (Val == DoubleToBits(0.5)) || 1532 (Val == DoubleToBits(-0.5)) || 1533 (Val == DoubleToBits(2.0)) || 1534 (Val == DoubleToBits(-2.0)) || 1535 (Val == DoubleToBits(4.0)) || 1536 (Val == DoubleToBits(-4.0)) || 1537 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1538 } 1539 1540 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1541 if (isInlinableIntLiteral(Literal)) 1542 return true; 1543 1544 // The actual type of the operand does not seem to matter as long 1545 // as the bits match one of the inline immediate values. For example: 1546 // 1547 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1548 // so it is a legal inline immediate. 1549 // 1550 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1551 // floating-point, so it is a legal inline immediate. 1552 1553 uint32_t Val = static_cast<uint32_t>(Literal); 1554 return (Val == FloatToBits(0.0f)) || 1555 (Val == FloatToBits(1.0f)) || 1556 (Val == FloatToBits(-1.0f)) || 1557 (Val == FloatToBits(0.5f)) || 1558 (Val == FloatToBits(-0.5f)) || 1559 (Val == FloatToBits(2.0f)) || 1560 (Val == FloatToBits(-2.0f)) || 1561 (Val == FloatToBits(4.0f)) || 1562 (Val == FloatToBits(-4.0f)) || 1563 (Val == 0x3e22f983 && HasInv2Pi); 1564 } 1565 1566 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1567 if (!HasInv2Pi) 1568 return false; 1569 1570 if (isInlinableIntLiteral(Literal)) 1571 return true; 1572 1573 uint16_t Val = static_cast<uint16_t>(Literal); 1574 return Val == 0x3C00 || // 1.0 1575 Val == 0xBC00 || // -1.0 1576 Val == 0x3800 || // 0.5 1577 Val == 0xB800 || // -0.5 1578 Val == 0x4000 || // 2.0 1579 Val == 0xC000 || // -2.0 1580 Val == 0x4400 || // 4.0 1581 Val == 0xC400 || // -4.0 1582 Val == 0x3118; // 1/2pi 1583 } 1584 1585 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1586 assert(HasInv2Pi); 1587 1588 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1589 int16_t Trunc = static_cast<int16_t>(Literal); 1590 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1591 } 1592 if (!(Literal & 0xffff)) 1593 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1594 1595 int16_t Lo16 = static_cast<int16_t>(Literal); 1596 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1597 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1598 } 1599 1600 bool isInlinableIntLiteralV216(int32_t Literal) { 1601 int16_t Lo16 = static_cast<int16_t>(Literal); 1602 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1603 return isInlinableIntLiteral(Lo16); 1604 1605 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1606 if (!(Literal & 0xffff)) 1607 return isInlinableIntLiteral(Hi16); 1608 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1609 } 1610 1611 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1612 assert(HasInv2Pi); 1613 1614 int16_t Lo16 = static_cast<int16_t>(Literal); 1615 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1616 return true; 1617 1618 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1619 if (!(Literal & 0xffff)) 1620 return true; 1621 return Lo16 == Hi16; 1622 } 1623 1624 bool isArgPassedInSGPR(const Argument *A) { 1625 const Function *F = A->getParent(); 1626 1627 // Arguments to compute shaders are never a source of divergence. 1628 CallingConv::ID CC = F->getCallingConv(); 1629 switch (CC) { 1630 case CallingConv::AMDGPU_KERNEL: 1631 case CallingConv::SPIR_KERNEL: 1632 return true; 1633 case CallingConv::AMDGPU_VS: 1634 case CallingConv::AMDGPU_LS: 1635 case CallingConv::AMDGPU_HS: 1636 case CallingConv::AMDGPU_ES: 1637 case CallingConv::AMDGPU_GS: 1638 case CallingConv::AMDGPU_PS: 1639 case CallingConv::AMDGPU_CS: 1640 case CallingConv::AMDGPU_Gfx: 1641 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1642 // Everything else is in VGPRs. 1643 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1644 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1645 default: 1646 // TODO: Should calls support inreg for SGPR inputs? 1647 return false; 1648 } 1649 } 1650 1651 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1652 return isGCN3Encoding(ST) || isGFX10Plus(ST); 1653 } 1654 1655 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1656 return isGFX9Plus(ST); 1657 } 1658 1659 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1660 int64_t EncodedOffset) { 1661 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1662 : isUInt<8>(EncodedOffset); 1663 } 1664 1665 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1666 int64_t EncodedOffset, 1667 bool IsBuffer) { 1668 return !IsBuffer && 1669 hasSMRDSignedImmOffset(ST) && 1670 isInt<21>(EncodedOffset); 1671 } 1672 1673 static bool isDwordAligned(uint64_t ByteOffset) { 1674 return (ByteOffset & 3) == 0; 1675 } 1676 1677 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1678 uint64_t ByteOffset) { 1679 if (hasSMEMByteOffset(ST)) 1680 return ByteOffset; 1681 1682 assert(isDwordAligned(ByteOffset)); 1683 return ByteOffset >> 2; 1684 } 1685 1686 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1687 int64_t ByteOffset, bool IsBuffer) { 1688 // The signed version is always a byte offset. 1689 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1690 assert(hasSMEMByteOffset(ST)); 1691 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1692 } 1693 1694 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1695 return None; 1696 1697 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1698 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1699 ? Optional<int64_t>(EncodedOffset) 1700 : None; 1701 } 1702 1703 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1704 int64_t ByteOffset) { 1705 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1706 return None; 1707 1708 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1709 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1710 } 1711 1712 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { 1713 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. 1714 if (AMDGPU::isGFX10(ST)) 1715 return Signed ? 12 : 11; 1716 1717 return Signed ? 13 : 12; 1718 } 1719 1720 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1721 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1722 // hardware bug needing a workaround). 1723 // 1724 // The required alignment ensures that individual address components remain 1725 // aligned if they are aligned to begin with. It also ensures that additional 1726 // offsets within the given alignment can be added to the resulting ImmOffset. 1727 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1728 const GCNSubtarget *Subtarget, Align Alignment) { 1729 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 1730 uint32_t Overflow = 0; 1731 1732 if (Imm > MaxImm) { 1733 if (Imm <= MaxImm + 64) { 1734 // Use an SOffset inline constant for 4..64 1735 Overflow = Imm - MaxImm; 1736 Imm = MaxImm; 1737 } else { 1738 // Try to keep the same value in SOffset for adjacent loads, so that 1739 // the corresponding register contents can be re-used. 1740 // 1741 // Load values with all low-bits (except for alignment bits) set into 1742 // SOffset, so that a larger range of values can be covered using 1743 // s_movk_i32. 1744 // 1745 // Atomic operations fail to work correctly when individual address 1746 // components are unaligned, even if their sum is aligned. 1747 uint32_t High = (Imm + Alignment.value()) & ~4095; 1748 uint32_t Low = (Imm + Alignment.value()) & 4095; 1749 Imm = Low; 1750 Overflow = High - Alignment.value(); 1751 } 1752 } 1753 1754 // There is a hardware bug in SI and CI which prevents address clamping in 1755 // MUBUF instructions from working correctly with SOffsets. The immediate 1756 // offset is unaffected. 1757 if (Overflow > 0 && 1758 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1759 return false; 1760 1761 ImmOffset = Imm; 1762 SOffset = Overflow; 1763 return true; 1764 } 1765 1766 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1767 *this = getDefaultForCallingConv(F.getCallingConv()); 1768 1769 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1770 if (!IEEEAttr.empty()) 1771 IEEE = IEEEAttr == "true"; 1772 1773 StringRef DX10ClampAttr 1774 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1775 if (!DX10ClampAttr.empty()) 1776 DX10Clamp = DX10ClampAttr == "true"; 1777 1778 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1779 if (!DenormF32Attr.empty()) { 1780 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1781 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1782 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1783 } 1784 1785 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1786 if (!DenormAttr.empty()) { 1787 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1788 1789 if (DenormF32Attr.empty()) { 1790 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1791 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1792 } 1793 1794 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1795 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1796 } 1797 } 1798 1799 namespace { 1800 1801 struct SourceOfDivergence { 1802 unsigned Intr; 1803 }; 1804 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1805 1806 #define GET_SourcesOfDivergence_IMPL 1807 #define GET_Gfx9BufferFormat_IMPL 1808 #define GET_Gfx10PlusBufferFormat_IMPL 1809 #include "AMDGPUGenSearchableTables.inc" 1810 1811 } // end anonymous namespace 1812 1813 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1814 return lookupSourceOfDivergence(IntrID); 1815 } 1816 1817 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 1818 uint8_t NumComponents, 1819 uint8_t NumFormat, 1820 const MCSubtargetInfo &STI) { 1821 return isGFX10Plus(STI) 1822 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 1823 NumFormat) 1824 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 1825 } 1826 1827 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 1828 const MCSubtargetInfo &STI) { 1829 return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) 1830 : getGfx9BufferFormatInfo(Format); 1831 } 1832 1833 } // namespace AMDGPU 1834 1835 raw_ostream &operator<<(raw_ostream &OS, 1836 const AMDGPU::IsaInfo::TargetIDSetting S) { 1837 switch (S) { 1838 case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported): 1839 OS << "Unsupported"; 1840 break; 1841 case (AMDGPU::IsaInfo::TargetIDSetting::Any): 1842 OS << "Any"; 1843 break; 1844 case (AMDGPU::IsaInfo::TargetIDSetting::Off): 1845 OS << "Off"; 1846 break; 1847 case (AMDGPU::IsaInfo::TargetIDSetting::On): 1848 OS << "On"; 1849 break; 1850 } 1851 return OS; 1852 } 1853 1854 } // namespace llvm 1855