1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPUTargetTransformInfo.h"
11 #include "AMDGPU.h"
12 #include "SIDefines.h"
13 #include "AMDGPUAsmUtils.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <utility>
40 
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
42 
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
48 
49 namespace {
50 
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
52 unsigned getBitMask(unsigned Shift, unsigned Width) {
53   return ((1 << Width) - 1) << Shift;
54 }
55 
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Packed \p Dst.
59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
60   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
61   Dst |= (Src << Shift) & getBitMask(Shift, Width);
62   return Dst;
63 }
64 
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
66 ///
67 /// \returns Unpacked bits.
68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
69   return (Src & getBitMask(Shift, Width)) >> Shift;
70 }
71 
72 /// \returns Vmcnt bit shift (lower bits).
73 unsigned getVmcntBitShiftLo() { return 0; }
74 
75 /// \returns Vmcnt bit width (lower bits).
76 unsigned getVmcntBitWidthLo() { return 4; }
77 
78 /// \returns Expcnt bit shift.
79 unsigned getExpcntBitShift() { return 4; }
80 
81 /// \returns Expcnt bit width.
82 unsigned getExpcntBitWidth() { return 3; }
83 
84 /// \returns Lgkmcnt bit shift.
85 unsigned getLgkmcntBitShift() { return 8; }
86 
87 /// \returns Lgkmcnt bit width.
88 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
89   return (VersionMajor >= 10) ? 6 : 4;
90 }
91 
92 /// \returns Vmcnt bit shift (higher bits).
93 unsigned getVmcntBitShiftHi() { return 14; }
94 
95 /// \returns Vmcnt bit width (higher bits).
96 unsigned getVmcntBitWidthHi() { return 2; }
97 
98 } // end namespace anonymous
99 
100 namespace llvm {
101 
102 namespace AMDGPU {
103 
104 #define GET_MIMGBaseOpcodesTable_IMPL
105 #define GET_MIMGDimInfoTable_IMPL
106 #define GET_MIMGInfoTable_IMPL
107 #define GET_MIMGLZMappingTable_IMPL
108 #define GET_MIMGMIPMappingTable_IMPL
109 #include "AMDGPUGenSearchableTables.inc"
110 
111 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
112                   unsigned VDataDwords, unsigned VAddrDwords) {
113   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
114                                              VDataDwords, VAddrDwords);
115   return Info ? Info->Opcode : -1;
116 }
117 
118 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
119   const MIMGInfo *Info = getMIMGInfo(Opc);
120   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
121 }
122 
123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
124   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
125   const MIMGInfo *NewInfo =
126       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
127                           NewChannels, OrigInfo->VAddrDwords);
128   return NewInfo ? NewInfo->Opcode : -1;
129 }
130 
131 struct MUBUFInfo {
132   uint16_t Opcode;
133   uint16_t BaseOpcode;
134   uint8_t dwords;
135   bool has_vaddr;
136   bool has_srsrc;
137   bool has_soffset;
138 };
139 
140 #define GET_MUBUFInfoTable_DECL
141 #define GET_MUBUFInfoTable_IMPL
142 #include "AMDGPUGenSearchableTables.inc"
143 
144 int getMUBUFBaseOpcode(unsigned Opc) {
145   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
146   return Info ? Info->BaseOpcode : -1;
147 }
148 
149 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) {
150   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords);
151   return Info ? Info->Opcode : -1;
152 }
153 
154 int getMUBUFDwords(unsigned Opc) {
155   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
156   return Info ? Info->dwords : 0;
157 }
158 
159 bool getMUBUFHasVAddr(unsigned Opc) {
160   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
161   return Info ? Info->has_vaddr : false;
162 }
163 
164 bool getMUBUFHasSrsrc(unsigned Opc) {
165   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
166   return Info ? Info->has_srsrc : false;
167 }
168 
169 bool getMUBUFHasSoffset(unsigned Opc) {
170   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
171   return Info ? Info->has_soffset : false;
172 }
173 
174 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
175 // header files, so we need to wrap it in a function that takes unsigned
176 // instead.
177 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
178   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
179 }
180 
181 namespace IsaInfo {
182 
183 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
184   auto TargetTriple = STI->getTargetTriple();
185   auto Version = getIsaVersion(STI->getCPU());
186 
187   Stream << TargetTriple.getArchName() << '-'
188          << TargetTriple.getVendorName() << '-'
189          << TargetTriple.getOSName() << '-'
190          << TargetTriple.getEnvironmentName() << '-'
191          << "gfx"
192          << Version.Major
193          << Version.Minor
194          << Version.Stepping;
195 
196   if (hasXNACK(*STI))
197     Stream << "+xnack";
198   if (hasSRAMECC(*STI))
199     Stream << "+sram-ecc";
200 
201   Stream.flush();
202 }
203 
204 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
205   return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
206              STI->getFeatureBits().test(FeatureCodeObjectV3);
207 }
208 
209 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
210   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
211     return 16;
212   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
213     return 32;
214 
215   return 64;
216 }
217 
218 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
219   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
220     return 32768;
221   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
222     return 65536;
223 
224   return 0;
225 }
226 
227 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
228   return 4;
229 }
230 
231 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
232                                unsigned FlatWorkGroupSize) {
233   assert(FlatWorkGroupSize != 0);
234   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
235     return 8;
236   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
237   if (N == 1)
238     return 40;
239   N = 40 / N;
240   return std::min(N, 16u);
241 }
242 
243 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
244   return getMaxWavesPerEU() * getEUsPerCU(STI);
245 }
246 
247 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
248                           unsigned FlatWorkGroupSize) {
249   return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
250 }
251 
252 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
253   return 1;
254 }
255 
256 unsigned getMaxWavesPerEU() {
257   // FIXME: Need to take scratch memory into account.
258   return 10;
259 }
260 
261 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
262                           unsigned FlatWorkGroupSize) {
263   return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
264                  getEUsPerCU(STI)) / getEUsPerCU(STI);
265 }
266 
267 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
268   return 1;
269 }
270 
271 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
272   return 2048;
273 }
274 
275 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
276                               unsigned FlatWorkGroupSize) {
277   return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
278                  getWavefrontSize(STI);
279 }
280 
281 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
282   IsaVersion Version = getIsaVersion(STI->getCPU());
283   if (Version.Major >= 10)
284     return getAddressableNumSGPRs(STI);
285   if (Version.Major >= 8)
286     return 16;
287   return 8;
288 }
289 
290 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
291   return 8;
292 }
293 
294 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
295   IsaVersion Version = getIsaVersion(STI->getCPU());
296   if (Version.Major >= 8)
297     return 800;
298   return 512;
299 }
300 
301 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
302   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
303     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
304 
305   IsaVersion Version = getIsaVersion(STI->getCPU());
306   if (Version.Major >= 10)
307     return 106;
308   if (Version.Major >= 8)
309     return 102;
310   return 104;
311 }
312 
313 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
314   assert(WavesPerEU != 0);
315 
316   IsaVersion Version = getIsaVersion(STI->getCPU());
317   if (Version.Major >= 10)
318     return 0;
319 
320   if (WavesPerEU >= getMaxWavesPerEU())
321     return 0;
322 
323   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
324   if (STI->getFeatureBits().test(FeatureTrapHandler))
325     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
326   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
327   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
328 }
329 
330 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
331                         bool Addressable) {
332   assert(WavesPerEU != 0);
333 
334   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
335   IsaVersion Version = getIsaVersion(STI->getCPU());
336   if (Version.Major >= 10)
337     return Addressable ? AddressableNumSGPRs : 108;
338   if (Version.Major >= 8 && !Addressable)
339     AddressableNumSGPRs = 112;
340   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
341   if (STI->getFeatureBits().test(FeatureTrapHandler))
342     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
343   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
344   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
345 }
346 
347 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
348                           bool FlatScrUsed, bool XNACKUsed) {
349   unsigned ExtraSGPRs = 0;
350   if (VCCUsed)
351     ExtraSGPRs = 2;
352 
353   IsaVersion Version = getIsaVersion(STI->getCPU());
354   if (Version.Major >= 10)
355     return ExtraSGPRs;
356 
357   if (Version.Major < 8) {
358     if (FlatScrUsed)
359       ExtraSGPRs = 4;
360   } else {
361     if (XNACKUsed)
362       ExtraSGPRs = 4;
363 
364     if (FlatScrUsed)
365       ExtraSGPRs = 6;
366   }
367 
368   return ExtraSGPRs;
369 }
370 
371 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
372                           bool FlatScrUsed) {
373   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
374                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
375 }
376 
377 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
378   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
379   // SGPRBlocks is actual number of SGPR blocks minus 1.
380   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
381 }
382 
383 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
384                              Optional<bool> EnableWavefrontSize32) {
385   bool IsWave32 = EnableWavefrontSize32 ?
386       *EnableWavefrontSize32 :
387       STI->getFeatureBits().test(FeatureWavefrontSize32);
388   return IsWave32 ? 8 : 4;
389 }
390 
391 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
392                                 Optional<bool> EnableWavefrontSize32) {
393   return getVGPRAllocGranule(STI, EnableWavefrontSize32);
394 }
395 
396 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
397   return 256;
398 }
399 
400 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
401   return getTotalNumVGPRs(STI);
402 }
403 
404 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
405   assert(WavesPerEU != 0);
406 
407   if (WavesPerEU >= getMaxWavesPerEU())
408     return 0;
409   unsigned MinNumVGPRs =
410       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
411                 getVGPRAllocGranule(STI)) + 1;
412   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
413 }
414 
415 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
416   assert(WavesPerEU != 0);
417 
418   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
419                                    getVGPRAllocGranule(STI));
420   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
421   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
422 }
423 
424 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
425                           Optional<bool> EnableWavefrontSize32) {
426   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
427                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
428   // VGPRBlocks is actual number of VGPR blocks minus 1.
429   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
430 }
431 
432 } // end namespace IsaInfo
433 
434 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
435                                const MCSubtargetInfo *STI) {
436   IsaVersion Version = getIsaVersion(STI->getCPU());
437 
438   memset(&Header, 0, sizeof(Header));
439 
440   Header.amd_kernel_code_version_major = 1;
441   Header.amd_kernel_code_version_minor = 2;
442   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
443   Header.amd_machine_version_major = Version.Major;
444   Header.amd_machine_version_minor = Version.Minor;
445   Header.amd_machine_version_stepping = Version.Stepping;
446   Header.kernel_code_entry_byte_offset = sizeof(Header);
447   Header.wavefront_size = 6;
448 
449   // If the code object does not support indirect functions, then the value must
450   // be 0xffffffff.
451   Header.call_convention = -1;
452 
453   // These alignment values are specified in powers of two, so alignment =
454   // 2^n.  The minimum alignment is 2^4 = 16.
455   Header.kernarg_segment_alignment = 4;
456   Header.group_segment_alignment = 4;
457   Header.private_segment_alignment = 4;
458 
459   if (Version.Major >= 10) {
460     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
461       Header.wavefront_size = 5;
462       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
463     }
464     Header.compute_pgm_resource_registers |=
465       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
466       S_00B848_MEM_ORDERED(1);
467   }
468 }
469 
470 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
471     const MCSubtargetInfo *STI) {
472   IsaVersion Version = getIsaVersion(STI->getCPU());
473 
474   amdhsa::kernel_descriptor_t KD;
475   memset(&KD, 0, sizeof(KD));
476 
477   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
478                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
479                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
480   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
481                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
482   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
483                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
484   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
485                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
486   if (Version.Major >= 10) {
487     AMDHSA_BITS_SET(KD.kernel_code_properties,
488                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
489                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
490     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
491                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
492                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
493     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
494                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
495   }
496   return KD;
497 }
498 
499 bool isGroupSegment(const GlobalValue *GV) {
500   return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
501 }
502 
503 bool isGlobalSegment(const GlobalValue *GV) {
504   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
505 }
506 
507 bool isReadOnlySegment(const GlobalValue *GV) {
508   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
509          GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
510 }
511 
512 bool shouldEmitConstantsToTextSection(const Triple &TT) {
513   return TT.getOS() != Triple::AMDHSA;
514 }
515 
516 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
517   Attribute A = F.getFnAttribute(Name);
518   int Result = Default;
519 
520   if (A.isStringAttribute()) {
521     StringRef Str = A.getValueAsString();
522     if (Str.getAsInteger(0, Result)) {
523       LLVMContext &Ctx = F.getContext();
524       Ctx.emitError("can't parse integer attribute " + Name);
525     }
526   }
527 
528   return Result;
529 }
530 
531 std::pair<int, int> getIntegerPairAttribute(const Function &F,
532                                             StringRef Name,
533                                             std::pair<int, int> Default,
534                                             bool OnlyFirstRequired) {
535   Attribute A = F.getFnAttribute(Name);
536   if (!A.isStringAttribute())
537     return Default;
538 
539   LLVMContext &Ctx = F.getContext();
540   std::pair<int, int> Ints = Default;
541   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
542   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
543     Ctx.emitError("can't parse first integer attribute " + Name);
544     return Default;
545   }
546   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
547     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
548       Ctx.emitError("can't parse second integer attribute " + Name);
549       return Default;
550     }
551   }
552 
553   return Ints;
554 }
555 
556 unsigned getVmcntBitMask(const IsaVersion &Version) {
557   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
558   if (Version.Major < 9)
559     return VmcntLo;
560 
561   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
562   return VmcntLo | VmcntHi;
563 }
564 
565 unsigned getExpcntBitMask(const IsaVersion &Version) {
566   return (1 << getExpcntBitWidth()) - 1;
567 }
568 
569 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
570   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
571 }
572 
573 unsigned getWaitcntBitMask(const IsaVersion &Version) {
574   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
575   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
576   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
577                                 getLgkmcntBitWidth(Version.Major));
578   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
579   if (Version.Major < 9)
580     return Waitcnt;
581 
582   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
583   return Waitcnt | VmcntHi;
584 }
585 
586 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
587   unsigned VmcntLo =
588       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
589   if (Version.Major < 9)
590     return VmcntLo;
591 
592   unsigned VmcntHi =
593       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
594   VmcntHi <<= getVmcntBitWidthLo();
595   return VmcntLo | VmcntHi;
596 }
597 
598 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
599   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
600 }
601 
602 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
603   return unpackBits(Waitcnt, getLgkmcntBitShift(),
604                     getLgkmcntBitWidth(Version.Major));
605 }
606 
607 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
608                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
609   Vmcnt = decodeVmcnt(Version, Waitcnt);
610   Expcnt = decodeExpcnt(Version, Waitcnt);
611   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
612 }
613 
614 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
615   Waitcnt Decoded;
616   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
617   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
618   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
619   return Decoded;
620 }
621 
622 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
623                      unsigned Vmcnt) {
624   Waitcnt =
625       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
626   if (Version.Major < 9)
627     return Waitcnt;
628 
629   Vmcnt >>= getVmcntBitWidthLo();
630   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
631 }
632 
633 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
634                       unsigned Expcnt) {
635   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
636 }
637 
638 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
639                        unsigned Lgkmcnt) {
640   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
641                                     getLgkmcntBitWidth(Version.Major));
642 }
643 
644 unsigned encodeWaitcnt(const IsaVersion &Version,
645                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
646   unsigned Waitcnt = getWaitcntBitMask(Version);
647   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
648   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
649   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
650   return Waitcnt;
651 }
652 
653 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
654   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
655 }
656 
657 //===----------------------------------------------------------------------===//
658 // hwreg
659 //===----------------------------------------------------------------------===//
660 
661 namespace Hwreg {
662 
663 int64_t getHwregId(const StringRef Name) {
664   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
665     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
666       return Id;
667   }
668   return ID_UNKNOWN_;
669 }
670 
671 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
672   if (isSI(STI) || isCI(STI) || isVI(STI))
673     return ID_SYMBOLIC_FIRST_GFX9_;
674   else if (isGFX9(STI))
675     return ID_SYMBOLIC_FIRST_GFX10_;
676   else
677     return ID_SYMBOLIC_LAST_;
678 }
679 
680 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
681   return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
682          IdSymbolic[Id];
683 }
684 
685 bool isValidHwreg(int64_t Id) {
686   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
687 }
688 
689 bool isValidHwregOffset(int64_t Offset) {
690   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
691 }
692 
693 bool isValidHwregWidth(int64_t Width) {
694   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
695 }
696 
697 int64_t encodeHwreg(int64_t Id, int64_t Offset, int64_t Width) {
698   return (Id << ID_SHIFT_) |
699          (Offset << OFFSET_SHIFT_) |
700          ((Width - 1) << WIDTH_M1_SHIFT_);
701 }
702 
703 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
704   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
705 }
706 
707 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
708   Id = (Val & ID_MASK_) >> ID_SHIFT_;
709   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
710   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
711 }
712 
713 } // namespace Hwreg
714 
715 //===----------------------------------------------------------------------===//
716 //
717 //===----------------------------------------------------------------------===//
718 
719 unsigned getInitialPSInputAddr(const Function &F) {
720   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
721 }
722 
723 bool isShader(CallingConv::ID cc) {
724   switch(cc) {
725     case CallingConv::AMDGPU_VS:
726     case CallingConv::AMDGPU_LS:
727     case CallingConv::AMDGPU_HS:
728     case CallingConv::AMDGPU_ES:
729     case CallingConv::AMDGPU_GS:
730     case CallingConv::AMDGPU_PS:
731     case CallingConv::AMDGPU_CS:
732       return true;
733     default:
734       return false;
735   }
736 }
737 
738 bool isCompute(CallingConv::ID cc) {
739   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
740 }
741 
742 bool isEntryFunctionCC(CallingConv::ID CC) {
743   switch (CC) {
744   case CallingConv::AMDGPU_KERNEL:
745   case CallingConv::SPIR_KERNEL:
746   case CallingConv::AMDGPU_VS:
747   case CallingConv::AMDGPU_GS:
748   case CallingConv::AMDGPU_PS:
749   case CallingConv::AMDGPU_CS:
750   case CallingConv::AMDGPU_ES:
751   case CallingConv::AMDGPU_HS:
752   case CallingConv::AMDGPU_LS:
753     return true;
754   default:
755     return false;
756   }
757 }
758 
759 bool hasXNACK(const MCSubtargetInfo &STI) {
760   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
761 }
762 
763 bool hasSRAMECC(const MCSubtargetInfo &STI) {
764   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
765 }
766 
767 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
768   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
769 }
770 
771 bool hasPackedD16(const MCSubtargetInfo &STI) {
772   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
773 }
774 
775 bool isSI(const MCSubtargetInfo &STI) {
776   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
777 }
778 
779 bool isCI(const MCSubtargetInfo &STI) {
780   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
781 }
782 
783 bool isVI(const MCSubtargetInfo &STI) {
784   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
785 }
786 
787 bool isGFX9(const MCSubtargetInfo &STI) {
788   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
789 }
790 
791 bool isGFX10(const MCSubtargetInfo &STI) {
792   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
793 }
794 
795 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
796   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
797 }
798 
799 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
800   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
801   const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
802   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
803     Reg == AMDGPU::SCC;
804 }
805 
806 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
807   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
808     if (*R == Reg1) return true;
809   }
810   return false;
811 }
812 
813 #define MAP_REG2REG \
814   using namespace AMDGPU; \
815   switch(Reg) { \
816   default: return Reg; \
817   CASE_CI_VI(FLAT_SCR) \
818   CASE_CI_VI(FLAT_SCR_LO) \
819   CASE_CI_VI(FLAT_SCR_HI) \
820   CASE_VI_GFX9_GFX10(TTMP0) \
821   CASE_VI_GFX9_GFX10(TTMP1) \
822   CASE_VI_GFX9_GFX10(TTMP2) \
823   CASE_VI_GFX9_GFX10(TTMP3) \
824   CASE_VI_GFX9_GFX10(TTMP4) \
825   CASE_VI_GFX9_GFX10(TTMP5) \
826   CASE_VI_GFX9_GFX10(TTMP6) \
827   CASE_VI_GFX9_GFX10(TTMP7) \
828   CASE_VI_GFX9_GFX10(TTMP8) \
829   CASE_VI_GFX9_GFX10(TTMP9) \
830   CASE_VI_GFX9_GFX10(TTMP10) \
831   CASE_VI_GFX9_GFX10(TTMP11) \
832   CASE_VI_GFX9_GFX10(TTMP12) \
833   CASE_VI_GFX9_GFX10(TTMP13) \
834   CASE_VI_GFX9_GFX10(TTMP14) \
835   CASE_VI_GFX9_GFX10(TTMP15) \
836   CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
837   CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
838   CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
839   CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
840   CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
841   CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
842   CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
843   CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
844   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
845   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
846   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
847   CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
848   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
849   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
850   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
851   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
852   }
853 
854 #define CASE_CI_VI(node) \
855   assert(!isSI(STI)); \
856   case node: return isCI(STI) ? node##_ci : node##_vi;
857 
858 #define CASE_VI_GFX9_GFX10(node) \
859   case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
860 
861 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
862   if (STI.getTargetTriple().getArch() == Triple::r600)
863     return Reg;
864   MAP_REG2REG
865 }
866 
867 #undef CASE_CI_VI
868 #undef CASE_VI_GFX9_GFX10
869 
870 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
871 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
872 
873 unsigned mc2PseudoReg(unsigned Reg) {
874   MAP_REG2REG
875 }
876 
877 #undef CASE_CI_VI
878 #undef CASE_VI_GFX9_GFX10
879 #undef MAP_REG2REG
880 
881 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
882   assert(OpNo < Desc.NumOperands);
883   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
884   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
885          OpType <= AMDGPU::OPERAND_SRC_LAST;
886 }
887 
888 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
889   assert(OpNo < Desc.NumOperands);
890   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
891   switch (OpType) {
892   case AMDGPU::OPERAND_REG_IMM_FP32:
893   case AMDGPU::OPERAND_REG_IMM_FP64:
894   case AMDGPU::OPERAND_REG_IMM_FP16:
895   case AMDGPU::OPERAND_REG_IMM_V2FP16:
896   case AMDGPU::OPERAND_REG_IMM_V2INT16:
897   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
898   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
899   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
900   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
901   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
902     return true;
903   default:
904     return false;
905   }
906 }
907 
908 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
909   assert(OpNo < Desc.NumOperands);
910   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
911   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
912          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
913 }
914 
915 // Avoid using MCRegisterClass::getSize, since that function will go away
916 // (move from MC* level to Target* level). Return size in bits.
917 unsigned getRegBitWidth(unsigned RCID) {
918   switch (RCID) {
919   case AMDGPU::SGPR_32RegClassID:
920   case AMDGPU::VGPR_32RegClassID:
921   case AMDGPU::VRegOrLds_32RegClassID:
922   case AMDGPU::VS_32RegClassID:
923   case AMDGPU::SReg_32RegClassID:
924   case AMDGPU::SReg_32_XM0RegClassID:
925   case AMDGPU::SRegOrLds_32RegClassID:
926     return 32;
927   case AMDGPU::SGPR_64RegClassID:
928   case AMDGPU::VS_64RegClassID:
929   case AMDGPU::SReg_64RegClassID:
930   case AMDGPU::VReg_64RegClassID:
931   case AMDGPU::SReg_64_XEXECRegClassID:
932     return 64;
933   case AMDGPU::SGPR_96RegClassID:
934   case AMDGPU::SReg_96RegClassID:
935   case AMDGPU::VReg_96RegClassID:
936     return 96;
937   case AMDGPU::SGPR_128RegClassID:
938   case AMDGPU::SReg_128RegClassID:
939   case AMDGPU::VReg_128RegClassID:
940     return 128;
941   case AMDGPU::SGPR_160RegClassID:
942   case AMDGPU::SReg_160RegClassID:
943   case AMDGPU::VReg_160RegClassID:
944     return 160;
945   case AMDGPU::SReg_256RegClassID:
946   case AMDGPU::VReg_256RegClassID:
947     return 256;
948   case AMDGPU::SReg_512RegClassID:
949   case AMDGPU::VReg_512RegClassID:
950     return 512;
951   default:
952     llvm_unreachable("Unexpected register class");
953   }
954 }
955 
956 unsigned getRegBitWidth(const MCRegisterClass &RC) {
957   return getRegBitWidth(RC.getID());
958 }
959 
960 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
961                            unsigned OpNo) {
962   assert(OpNo < Desc.NumOperands);
963   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
964   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
965 }
966 
967 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
968   if (Literal >= -16 && Literal <= 64)
969     return true;
970 
971   uint64_t Val = static_cast<uint64_t>(Literal);
972   return (Val == DoubleToBits(0.0)) ||
973          (Val == DoubleToBits(1.0)) ||
974          (Val == DoubleToBits(-1.0)) ||
975          (Val == DoubleToBits(0.5)) ||
976          (Val == DoubleToBits(-0.5)) ||
977          (Val == DoubleToBits(2.0)) ||
978          (Val == DoubleToBits(-2.0)) ||
979          (Val == DoubleToBits(4.0)) ||
980          (Val == DoubleToBits(-4.0)) ||
981          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
982 }
983 
984 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
985   if (Literal >= -16 && Literal <= 64)
986     return true;
987 
988   // The actual type of the operand does not seem to matter as long
989   // as the bits match one of the inline immediate values.  For example:
990   //
991   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
992   // so it is a legal inline immediate.
993   //
994   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
995   // floating-point, so it is a legal inline immediate.
996 
997   uint32_t Val = static_cast<uint32_t>(Literal);
998   return (Val == FloatToBits(0.0f)) ||
999          (Val == FloatToBits(1.0f)) ||
1000          (Val == FloatToBits(-1.0f)) ||
1001          (Val == FloatToBits(0.5f)) ||
1002          (Val == FloatToBits(-0.5f)) ||
1003          (Val == FloatToBits(2.0f)) ||
1004          (Val == FloatToBits(-2.0f)) ||
1005          (Val == FloatToBits(4.0f)) ||
1006          (Val == FloatToBits(-4.0f)) ||
1007          (Val == 0x3e22f983 && HasInv2Pi);
1008 }
1009 
1010 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1011   if (!HasInv2Pi)
1012     return false;
1013 
1014   if (Literal >= -16 && Literal <= 64)
1015     return true;
1016 
1017   uint16_t Val = static_cast<uint16_t>(Literal);
1018   return Val == 0x3C00 || // 1.0
1019          Val == 0xBC00 || // -1.0
1020          Val == 0x3800 || // 0.5
1021          Val == 0xB800 || // -0.5
1022          Val == 0x4000 || // 2.0
1023          Val == 0xC000 || // -2.0
1024          Val == 0x4400 || // 4.0
1025          Val == 0xC400 || // -4.0
1026          Val == 0x3118;   // 1/2pi
1027 }
1028 
1029 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1030   assert(HasInv2Pi);
1031 
1032   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1033     int16_t Trunc = static_cast<int16_t>(Literal);
1034     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1035   }
1036   if (!(Literal & 0xffff))
1037     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1038 
1039   int16_t Lo16 = static_cast<int16_t>(Literal);
1040   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1041   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1042 }
1043 
1044 bool isArgPassedInSGPR(const Argument *A) {
1045   const Function *F = A->getParent();
1046 
1047   // Arguments to compute shaders are never a source of divergence.
1048   CallingConv::ID CC = F->getCallingConv();
1049   switch (CC) {
1050   case CallingConv::AMDGPU_KERNEL:
1051   case CallingConv::SPIR_KERNEL:
1052     return true;
1053   case CallingConv::AMDGPU_VS:
1054   case CallingConv::AMDGPU_LS:
1055   case CallingConv::AMDGPU_HS:
1056   case CallingConv::AMDGPU_ES:
1057   case CallingConv::AMDGPU_GS:
1058   case CallingConv::AMDGPU_PS:
1059   case CallingConv::AMDGPU_CS:
1060     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1061     // Everything else is in VGPRs.
1062     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1063            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1064   default:
1065     // TODO: Should calls support inreg for SGPR inputs?
1066     return false;
1067   }
1068 }
1069 
1070 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1071   return isGCN3Encoding(ST) || isGFX10(ST);
1072 }
1073 
1074 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1075   if (hasSMEMByteOffset(ST))
1076     return ByteOffset;
1077   return ByteOffset >> 2;
1078 }
1079 
1080 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
1081   int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
1082   return (hasSMEMByteOffset(ST)) ?
1083     isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
1084 }
1085 
1086 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1087 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1088 // hardware bug needing a workaround).
1089 //
1090 // The required alignment ensures that individual address components remain
1091 // aligned if they are aligned to begin with. It also ensures that additional
1092 // offsets within the given alignment can be added to the resulting ImmOffset.
1093 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1094                       const GCNSubtarget *Subtarget, uint32_t Align) {
1095   const uint32_t MaxImm = alignDown(4095, Align);
1096   uint32_t Overflow = 0;
1097 
1098   if (Imm > MaxImm) {
1099     if (Imm <= MaxImm + 64) {
1100       // Use an SOffset inline constant for 4..64
1101       Overflow = Imm - MaxImm;
1102       Imm = MaxImm;
1103     } else {
1104       // Try to keep the same value in SOffset for adjacent loads, so that
1105       // the corresponding register contents can be re-used.
1106       //
1107       // Load values with all low-bits (except for alignment bits) set into
1108       // SOffset, so that a larger range of values can be covered using
1109       // s_movk_i32.
1110       //
1111       // Atomic operations fail to work correctly when individual address
1112       // components are unaligned, even if their sum is aligned.
1113       uint32_t High = (Imm + Align) & ~4095;
1114       uint32_t Low = (Imm + Align) & 4095;
1115       Imm = Low;
1116       Overflow = High - Align;
1117     }
1118   }
1119 
1120   // There is a hardware bug in SI and CI which prevents address clamping in
1121   // MUBUF instructions from working correctly with SOffsets. The immediate
1122   // offset is unaffected.
1123   if (Overflow > 0 &&
1124       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1125     return false;
1126 
1127   ImmOffset = Imm;
1128   SOffset = Overflow;
1129   return true;
1130 }
1131 
1132 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1133   *this = getDefaultForCallingConv(F.getCallingConv());
1134 
1135   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1136   if (!IEEEAttr.empty())
1137     IEEE = IEEEAttr == "true";
1138 
1139   StringRef DX10ClampAttr
1140     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1141   if (!DX10ClampAttr.empty())
1142     DX10Clamp = DX10ClampAttr == "true";
1143 }
1144 
1145 namespace {
1146 
1147 struct SourceOfDivergence {
1148   unsigned Intr;
1149 };
1150 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1151 
1152 #define GET_SourcesOfDivergence_IMPL
1153 #include "AMDGPUGenSearchableTables.inc"
1154 
1155 } // end anonymous namespace
1156 
1157 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1158   return lookupSourceOfDivergence(IntrID);
1159 }
1160 
1161 } // namespace AMDGPU
1162 } // namespace llvm
1163