1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   case 5:
103     return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
104   default:
105     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
106                        Twine(AmdhsaCodeObjectVersion));
107   }
108 }
109 
110 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
111   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
112     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
113   return false;
114 }
115 
116 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
117   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
118     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
119   return false;
120 }
121 
122 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
123   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
124     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
125   return false;
126 }
127 
128 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) {
129   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
130     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5;
131   return false;
132 }
133 
134 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) {
135   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) ||
136          isHsaAbiVersion5(STI);
137 }
138 
139 unsigned getAmdhsaCodeObjectVersion() {
140   return AmdhsaCodeObjectVersion;
141 }
142 
143 // FIXME: All such magic numbers about the ABI should be in a
144 // central TD file.
145 unsigned getHostcallImplicitArgPosition() {
146   switch (AmdhsaCodeObjectVersion) {
147   case 2:
148   case 3:
149   case 4:
150     return 24;
151   case 5:
152     return AMDGPU::ImplicitArg::HOSTCALL_PTR_OFFSET;
153   default:
154     llvm_unreachable("Unexpected code object version");
155     return 0;
156   }
157 }
158 
159 #define GET_MIMGBaseOpcodesTable_IMPL
160 #define GET_MIMGDimInfoTable_IMPL
161 #define GET_MIMGInfoTable_IMPL
162 #define GET_MIMGLZMappingTable_IMPL
163 #define GET_MIMGMIPMappingTable_IMPL
164 #define GET_MIMGBiasMappingTable_IMPL
165 #define GET_MIMGOffsetMappingTable_IMPL
166 #define GET_MIMGG16MappingTable_IMPL
167 #include "AMDGPUGenSearchableTables.inc"
168 
169 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
170                   unsigned VDataDwords, unsigned VAddrDwords) {
171   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
172                                              VDataDwords, VAddrDwords);
173   return Info ? Info->Opcode : -1;
174 }
175 
176 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
177   const MIMGInfo *Info = getMIMGInfo(Opc);
178   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
179 }
180 
181 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
182   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
183   const MIMGInfo *NewInfo =
184       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
185                           NewChannels, OrigInfo->VAddrDwords);
186   return NewInfo ? NewInfo->Opcode : -1;
187 }
188 
189 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
190                            const MIMGDimInfo *Dim, bool IsA16,
191                            bool IsG16Supported) {
192   unsigned AddrWords = BaseOpcode->NumExtraArgs;
193   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
194                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
195   if (IsA16)
196     AddrWords += divideCeil(AddrComponents, 2);
197   else
198     AddrWords += AddrComponents;
199 
200   // Note: For subtargets that support A16 but not G16, enabling A16 also
201   // enables 16 bit gradients.
202   // For subtargets that support A16 (operand) and G16 (done with a different
203   // instruction encoding), they are independent.
204 
205   if (BaseOpcode->Gradients) {
206     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
207       // There are two gradients per coordinate, we pack them separately.
208       // For the 3d case,
209       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
210       AddrWords += alignTo<2>(Dim->NumGradients / 2);
211     else
212       AddrWords += Dim->NumGradients;
213   }
214   return AddrWords;
215 }
216 
217 struct MUBUFInfo {
218   uint16_t Opcode;
219   uint16_t BaseOpcode;
220   uint8_t elements;
221   bool has_vaddr;
222   bool has_srsrc;
223   bool has_soffset;
224   bool IsBufferInv;
225 };
226 
227 struct MTBUFInfo {
228   uint16_t Opcode;
229   uint16_t BaseOpcode;
230   uint8_t elements;
231   bool has_vaddr;
232   bool has_srsrc;
233   bool has_soffset;
234 };
235 
236 struct SMInfo {
237   uint16_t Opcode;
238   bool IsBuffer;
239 };
240 
241 struct VOPInfo {
242   uint16_t Opcode;
243   bool IsSingle;
244 };
245 
246 #define GET_MTBUFInfoTable_DECL
247 #define GET_MTBUFInfoTable_IMPL
248 #define GET_MUBUFInfoTable_DECL
249 #define GET_MUBUFInfoTable_IMPL
250 #define GET_SMInfoTable_DECL
251 #define GET_SMInfoTable_IMPL
252 #define GET_VOP1InfoTable_DECL
253 #define GET_VOP1InfoTable_IMPL
254 #define GET_VOP2InfoTable_DECL
255 #define GET_VOP2InfoTable_IMPL
256 #define GET_VOP3InfoTable_DECL
257 #define GET_VOP3InfoTable_IMPL
258 #include "AMDGPUGenSearchableTables.inc"
259 
260 int getMTBUFBaseOpcode(unsigned Opc) {
261   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
262   return Info ? Info->BaseOpcode : -1;
263 }
264 
265 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
266   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
267   return Info ? Info->Opcode : -1;
268 }
269 
270 int getMTBUFElements(unsigned Opc) {
271   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
272   return Info ? Info->elements : 0;
273 }
274 
275 bool getMTBUFHasVAddr(unsigned Opc) {
276   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
277   return Info ? Info->has_vaddr : false;
278 }
279 
280 bool getMTBUFHasSrsrc(unsigned Opc) {
281   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
282   return Info ? Info->has_srsrc : false;
283 }
284 
285 bool getMTBUFHasSoffset(unsigned Opc) {
286   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
287   return Info ? Info->has_soffset : false;
288 }
289 
290 int getMUBUFBaseOpcode(unsigned Opc) {
291   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
292   return Info ? Info->BaseOpcode : -1;
293 }
294 
295 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
296   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
297   return Info ? Info->Opcode : -1;
298 }
299 
300 int getMUBUFElements(unsigned Opc) {
301   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
302   return Info ? Info->elements : 0;
303 }
304 
305 bool getMUBUFHasVAddr(unsigned Opc) {
306   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
307   return Info ? Info->has_vaddr : false;
308 }
309 
310 bool getMUBUFHasSrsrc(unsigned Opc) {
311   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
312   return Info ? Info->has_srsrc : false;
313 }
314 
315 bool getMUBUFHasSoffset(unsigned Opc) {
316   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
317   return Info ? Info->has_soffset : false;
318 }
319 
320 bool getMUBUFIsBufferInv(unsigned Opc) {
321   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
322   return Info ? Info->IsBufferInv : false;
323 }
324 
325 bool getSMEMIsBuffer(unsigned Opc) {
326   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
327   return Info ? Info->IsBuffer : false;
328 }
329 
330 bool getVOP1IsSingle(unsigned Opc) {
331   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
332   return Info ? Info->IsSingle : false;
333 }
334 
335 bool getVOP2IsSingle(unsigned Opc) {
336   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
337   return Info ? Info->IsSingle : false;
338 }
339 
340 bool getVOP3IsSingle(unsigned Opc) {
341   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
342   return Info ? Info->IsSingle : false;
343 }
344 
345 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
346 // header files, so we need to wrap it in a function that takes unsigned
347 // instead.
348 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
349   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
350 }
351 
352 namespace IsaInfo {
353 
354 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
355     : STI(STI), XnackSetting(TargetIDSetting::Any),
356       SramEccSetting(TargetIDSetting::Any) {
357   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
358     XnackSetting = TargetIDSetting::Unsupported;
359   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
360     SramEccSetting = TargetIDSetting::Unsupported;
361 }
362 
363 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
364   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
365   // absence of the target features we assume we must generate code that can run
366   // in any environment.
367   SubtargetFeatures Features(FS);
368   Optional<bool> XnackRequested;
369   Optional<bool> SramEccRequested;
370 
371   for (const std::string &Feature : Features.getFeatures()) {
372     if (Feature == "+xnack")
373       XnackRequested = true;
374     else if (Feature == "-xnack")
375       XnackRequested = false;
376     else if (Feature == "+sramecc")
377       SramEccRequested = true;
378     else if (Feature == "-sramecc")
379       SramEccRequested = false;
380   }
381 
382   bool XnackSupported = isXnackSupported();
383   bool SramEccSupported = isSramEccSupported();
384 
385   if (XnackRequested) {
386     if (XnackSupported) {
387       XnackSetting =
388           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
389     } else {
390       // If a specific xnack setting was requested and this GPU does not support
391       // xnack emit a warning. Setting will remain set to "Unsupported".
392       if (*XnackRequested) {
393         errs() << "warning: xnack 'On' was requested for a processor that does "
394                   "not support it!\n";
395       } else {
396         errs() << "warning: xnack 'Off' was requested for a processor that "
397                   "does not support it!\n";
398       }
399     }
400   }
401 
402   if (SramEccRequested) {
403     if (SramEccSupported) {
404       SramEccSetting =
405           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
406     } else {
407       // If a specific sramecc setting was requested and this GPU does not
408       // support sramecc emit a warning. Setting will remain set to
409       // "Unsupported".
410       if (*SramEccRequested) {
411         errs() << "warning: sramecc 'On' was requested for a processor that "
412                   "does not support it!\n";
413       } else {
414         errs() << "warning: sramecc 'Off' was requested for a processor that "
415                   "does not support it!\n";
416       }
417     }
418   }
419 }
420 
421 static TargetIDSetting
422 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
423   if (FeatureString.endswith("-"))
424     return TargetIDSetting::Off;
425   if (FeatureString.endswith("+"))
426     return TargetIDSetting::On;
427 
428   llvm_unreachable("Malformed feature string");
429 }
430 
431 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
432   SmallVector<StringRef, 3> TargetIDSplit;
433   TargetID.split(TargetIDSplit, ':');
434 
435   for (const auto &FeatureString : TargetIDSplit) {
436     if (FeatureString.startswith("xnack"))
437       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
438     if (FeatureString.startswith("sramecc"))
439       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
440   }
441 }
442 
443 std::string AMDGPUTargetID::toString() const {
444   std::string StringRep;
445   raw_string_ostream StreamRep(StringRep);
446 
447   auto TargetTriple = STI.getTargetTriple();
448   auto Version = getIsaVersion(STI.getCPU());
449 
450   StreamRep << TargetTriple.getArchName() << '-'
451             << TargetTriple.getVendorName() << '-'
452             << TargetTriple.getOSName() << '-'
453             << TargetTriple.getEnvironmentName() << '-';
454 
455   std::string Processor;
456   // TODO: Following else statement is present here because we used various
457   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
458   // Remove once all aliases are removed from GCNProcessors.td.
459   if (Version.Major >= 9)
460     Processor = STI.getCPU().str();
461   else
462     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
463                  Twine(Version.Stepping))
464                     .str();
465 
466   std::string Features;
467   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
468     switch (*HsaAbiVersion) {
469     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
470       // Code object V2 only supported specific processors and had fixed
471       // settings for the XNACK.
472       if (Processor == "gfx600") {
473       } else if (Processor == "gfx601") {
474       } else if (Processor == "gfx602") {
475       } else if (Processor == "gfx700") {
476       } else if (Processor == "gfx701") {
477       } else if (Processor == "gfx702") {
478       } else if (Processor == "gfx703") {
479       } else if (Processor == "gfx704") {
480       } else if (Processor == "gfx705") {
481       } else if (Processor == "gfx801") {
482         if (!isXnackOnOrAny())
483           report_fatal_error(
484               "AMD GPU code object V2 does not support processor " +
485               Twine(Processor) + " without XNACK");
486       } else if (Processor == "gfx802") {
487       } else if (Processor == "gfx803") {
488       } else if (Processor == "gfx805") {
489       } else if (Processor == "gfx810") {
490         if (!isXnackOnOrAny())
491           report_fatal_error(
492               "AMD GPU code object V2 does not support processor " +
493               Twine(Processor) + " without XNACK");
494       } else if (Processor == "gfx900") {
495         if (isXnackOnOrAny())
496           Processor = "gfx901";
497       } else if (Processor == "gfx902") {
498         if (isXnackOnOrAny())
499           Processor = "gfx903";
500       } else if (Processor == "gfx904") {
501         if (isXnackOnOrAny())
502           Processor = "gfx905";
503       } else if (Processor == "gfx906") {
504         if (isXnackOnOrAny())
505           Processor = "gfx907";
506       } else if (Processor == "gfx90c") {
507         if (isXnackOnOrAny())
508           report_fatal_error(
509               "AMD GPU code object V2 does not support processor " +
510               Twine(Processor) + " with XNACK being ON or ANY");
511       } else {
512         report_fatal_error(
513             "AMD GPU code object V2 does not support processor " +
514             Twine(Processor));
515       }
516       break;
517     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
518       // xnack.
519       if (isXnackOnOrAny())
520         Features += "+xnack";
521       // In code object v2 and v3, "sramecc" feature was spelled with a
522       // hyphen ("sram-ecc").
523       if (isSramEccOnOrAny())
524         Features += "+sram-ecc";
525       break;
526     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
527     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
528       // sramecc.
529       if (getSramEccSetting() == TargetIDSetting::Off)
530         Features += ":sramecc-";
531       else if (getSramEccSetting() == TargetIDSetting::On)
532         Features += ":sramecc+";
533       // xnack.
534       if (getXnackSetting() == TargetIDSetting::Off)
535         Features += ":xnack-";
536       else if (getXnackSetting() == TargetIDSetting::On)
537         Features += ":xnack+";
538       break;
539     default:
540       break;
541     }
542   }
543 
544   StreamRep << Processor << Features;
545 
546   StreamRep.flush();
547   return StringRep;
548 }
549 
550 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
551   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
552     return 16;
553   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
554     return 32;
555 
556   return 64;
557 }
558 
559 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
560   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
561     return 32768;
562   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
563     return 65536;
564 
565   return 0;
566 }
567 
568 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
569   // "Per CU" really means "per whatever functional block the waves of a
570   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
571   // two SIMDs.
572   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
573     return 2;
574   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
575   // two CUs, so a total of four SIMDs.
576   return 4;
577 }
578 
579 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
580                                unsigned FlatWorkGroupSize) {
581   assert(FlatWorkGroupSize != 0);
582   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
583     return 8;
584   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
585   if (N == 1)
586     return 40;
587   N = 40 / N;
588   return std::min(N, 16u);
589 }
590 
591 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
592   return 1;
593 }
594 
595 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
596   // FIXME: Need to take scratch memory into account.
597   if (isGFX90A(*STI))
598     return 8;
599   if (!isGFX10Plus(*STI))
600     return 10;
601   return hasGFX10_3Insts(*STI) ? 16 : 20;
602 }
603 
604 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
605                                    unsigned FlatWorkGroupSize) {
606   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
607                     getEUsPerCU(STI));
608 }
609 
610 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
611   return 1;
612 }
613 
614 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
615   // Some subtargets allow encoding 2048, but this isn't tested or supported.
616   return 1024;
617 }
618 
619 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
620                               unsigned FlatWorkGroupSize) {
621   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
622 }
623 
624 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
625   IsaVersion Version = getIsaVersion(STI->getCPU());
626   if (Version.Major >= 10)
627     return getAddressableNumSGPRs(STI);
628   if (Version.Major >= 8)
629     return 16;
630   return 8;
631 }
632 
633 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
634   return 8;
635 }
636 
637 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
638   IsaVersion Version = getIsaVersion(STI->getCPU());
639   if (Version.Major >= 8)
640     return 800;
641   return 512;
642 }
643 
644 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
645   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
646     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
647 
648   IsaVersion Version = getIsaVersion(STI->getCPU());
649   if (Version.Major >= 10)
650     return 106;
651   if (Version.Major >= 8)
652     return 102;
653   return 104;
654 }
655 
656 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
657   assert(WavesPerEU != 0);
658 
659   IsaVersion Version = getIsaVersion(STI->getCPU());
660   if (Version.Major >= 10)
661     return 0;
662 
663   if (WavesPerEU >= getMaxWavesPerEU(STI))
664     return 0;
665 
666   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
667   if (STI->getFeatureBits().test(FeatureTrapHandler))
668     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
669   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
670   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
671 }
672 
673 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
674                         bool Addressable) {
675   assert(WavesPerEU != 0);
676 
677   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
678   IsaVersion Version = getIsaVersion(STI->getCPU());
679   if (Version.Major >= 10)
680     return Addressable ? AddressableNumSGPRs : 108;
681   if (Version.Major >= 8 && !Addressable)
682     AddressableNumSGPRs = 112;
683   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
684   if (STI->getFeatureBits().test(FeatureTrapHandler))
685     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
686   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
687   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
688 }
689 
690 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
691                           bool FlatScrUsed, bool XNACKUsed) {
692   unsigned ExtraSGPRs = 0;
693   if (VCCUsed)
694     ExtraSGPRs = 2;
695 
696   IsaVersion Version = getIsaVersion(STI->getCPU());
697   if (Version.Major >= 10)
698     return ExtraSGPRs;
699 
700   if (Version.Major < 8) {
701     if (FlatScrUsed)
702       ExtraSGPRs = 4;
703   } else {
704     if (XNACKUsed)
705       ExtraSGPRs = 4;
706 
707     if (FlatScrUsed ||
708         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
709       ExtraSGPRs = 6;
710   }
711 
712   return ExtraSGPRs;
713 }
714 
715 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
716                           bool FlatScrUsed) {
717   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
718                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
719 }
720 
721 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
722   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
723   // SGPRBlocks is actual number of SGPR blocks minus 1.
724   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
725 }
726 
727 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
728                              Optional<bool> EnableWavefrontSize32) {
729   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
730     return 8;
731 
732   bool IsWave32 = EnableWavefrontSize32 ?
733       *EnableWavefrontSize32 :
734       STI->getFeatureBits().test(FeatureWavefrontSize32);
735 
736   if (hasGFX10_3Insts(*STI))
737     return IsWave32 ? 16 : 8;
738 
739   return IsWave32 ? 8 : 4;
740 }
741 
742 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
743                                 Optional<bool> EnableWavefrontSize32) {
744   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
745     return 8;
746 
747   bool IsWave32 = EnableWavefrontSize32 ?
748       *EnableWavefrontSize32 :
749       STI->getFeatureBits().test(FeatureWavefrontSize32);
750 
751   return IsWave32 ? 8 : 4;
752 }
753 
754 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
755   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
756     return 512;
757   if (!isGFX10Plus(*STI))
758     return 256;
759   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
760 }
761 
762 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
763   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
764     return 512;
765   return 256;
766 }
767 
768 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
769   assert(WavesPerEU != 0);
770 
771   if (WavesPerEU >= getMaxWavesPerEU(STI))
772     return 0;
773   unsigned MinNumVGPRs =
774       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
775                 getVGPRAllocGranule(STI)) + 1;
776   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
777 }
778 
779 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
780   assert(WavesPerEU != 0);
781 
782   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
783                                    getVGPRAllocGranule(STI));
784   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
785   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
786 }
787 
788 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
789                           Optional<bool> EnableWavefrontSize32) {
790   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
791                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
792   // VGPRBlocks is actual number of VGPR blocks minus 1.
793   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
794 }
795 
796 } // end namespace IsaInfo
797 
798 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
799                                const MCSubtargetInfo *STI) {
800   IsaVersion Version = getIsaVersion(STI->getCPU());
801 
802   memset(&Header, 0, sizeof(Header));
803 
804   Header.amd_kernel_code_version_major = 1;
805   Header.amd_kernel_code_version_minor = 2;
806   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
807   Header.amd_machine_version_major = Version.Major;
808   Header.amd_machine_version_minor = Version.Minor;
809   Header.amd_machine_version_stepping = Version.Stepping;
810   Header.kernel_code_entry_byte_offset = sizeof(Header);
811   Header.wavefront_size = 6;
812 
813   // If the code object does not support indirect functions, then the value must
814   // be 0xffffffff.
815   Header.call_convention = -1;
816 
817   // These alignment values are specified in powers of two, so alignment =
818   // 2^n.  The minimum alignment is 2^4 = 16.
819   Header.kernarg_segment_alignment = 4;
820   Header.group_segment_alignment = 4;
821   Header.private_segment_alignment = 4;
822 
823   if (Version.Major >= 10) {
824     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
825       Header.wavefront_size = 5;
826       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
827     }
828     Header.compute_pgm_resource_registers |=
829       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
830       S_00B848_MEM_ORDERED(1);
831   }
832 }
833 
834 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
835     const MCSubtargetInfo *STI) {
836   IsaVersion Version = getIsaVersion(STI->getCPU());
837 
838   amdhsa::kernel_descriptor_t KD;
839   memset(&KD, 0, sizeof(KD));
840 
841   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
842                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
843                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
844   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
845                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
846   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
847                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
848   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
849                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
850   if (Version.Major >= 10) {
851     AMDHSA_BITS_SET(KD.kernel_code_properties,
852                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
853                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
854     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
855                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
856                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
857     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
858                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
859   }
860   if (AMDGPU::isGFX90A(*STI)) {
861     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
862                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
863                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
864   }
865   return KD;
866 }
867 
868 bool isGroupSegment(const GlobalValue *GV) {
869   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
870 }
871 
872 bool isGlobalSegment(const GlobalValue *GV) {
873   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
874 }
875 
876 bool isReadOnlySegment(const GlobalValue *GV) {
877   unsigned AS = GV->getAddressSpace();
878   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
879          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
880 }
881 
882 bool shouldEmitConstantsToTextSection(const Triple &TT) {
883   return TT.getArch() == Triple::r600;
884 }
885 
886 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
887   Attribute A = F.getFnAttribute(Name);
888   int Result = Default;
889 
890   if (A.isStringAttribute()) {
891     StringRef Str = A.getValueAsString();
892     if (Str.getAsInteger(0, Result)) {
893       LLVMContext &Ctx = F.getContext();
894       Ctx.emitError("can't parse integer attribute " + Name);
895     }
896   }
897 
898   return Result;
899 }
900 
901 std::pair<int, int> getIntegerPairAttribute(const Function &F,
902                                             StringRef Name,
903                                             std::pair<int, int> Default,
904                                             bool OnlyFirstRequired) {
905   Attribute A = F.getFnAttribute(Name);
906   if (!A.isStringAttribute())
907     return Default;
908 
909   LLVMContext &Ctx = F.getContext();
910   std::pair<int, int> Ints = Default;
911   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
912   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
913     Ctx.emitError("can't parse first integer attribute " + Name);
914     return Default;
915   }
916   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
917     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
918       Ctx.emitError("can't parse second integer attribute " + Name);
919       return Default;
920     }
921   }
922 
923   return Ints;
924 }
925 
926 unsigned getVmcntBitMask(const IsaVersion &Version) {
927   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
928   if (Version.Major < 9)
929     return VmcntLo;
930 
931   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
932   return VmcntLo | VmcntHi;
933 }
934 
935 unsigned getExpcntBitMask(const IsaVersion &Version) {
936   return (1 << getExpcntBitWidth()) - 1;
937 }
938 
939 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
940   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
941 }
942 
943 unsigned getWaitcntBitMask(const IsaVersion &Version) {
944   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
945   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
946   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
947                                 getLgkmcntBitWidth(Version.Major));
948   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
949   if (Version.Major < 9)
950     return Waitcnt;
951 
952   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
953   return Waitcnt | VmcntHi;
954 }
955 
956 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
957   unsigned VmcntLo =
958       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
959   if (Version.Major < 9)
960     return VmcntLo;
961 
962   unsigned VmcntHi =
963       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
964   VmcntHi <<= getVmcntBitWidthLo();
965   return VmcntLo | VmcntHi;
966 }
967 
968 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
969   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
970 }
971 
972 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
973   return unpackBits(Waitcnt, getLgkmcntBitShift(),
974                     getLgkmcntBitWidth(Version.Major));
975 }
976 
977 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
978                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
979   Vmcnt = decodeVmcnt(Version, Waitcnt);
980   Expcnt = decodeExpcnt(Version, Waitcnt);
981   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
982 }
983 
984 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
985   Waitcnt Decoded;
986   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
987   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
988   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
989   return Decoded;
990 }
991 
992 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
993                      unsigned Vmcnt) {
994   Waitcnt =
995       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
996   if (Version.Major < 9)
997     return Waitcnt;
998 
999   Vmcnt >>= getVmcntBitWidthLo();
1000   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
1001 }
1002 
1003 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1004                       unsigned Expcnt) {
1005   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
1006 }
1007 
1008 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1009                        unsigned Lgkmcnt) {
1010   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
1011                                     getLgkmcntBitWidth(Version.Major));
1012 }
1013 
1014 unsigned encodeWaitcnt(const IsaVersion &Version,
1015                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
1016   unsigned Waitcnt = getWaitcntBitMask(Version);
1017   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
1018   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1019   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1020   return Waitcnt;
1021 }
1022 
1023 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1024   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
1025 }
1026 
1027 //===----------------------------------------------------------------------===//
1028 // Custom Operands.
1029 //
1030 // A table of custom operands shall describe "primary" operand names
1031 // first followed by aliases if any. It is not required but recommended
1032 // to arrange operands so that operand encoding match operand position
1033 // in the table. This will make disassembly a bit more efficient.
1034 // Unused slots in the table shall have an empty name.
1035 //
1036 //===----------------------------------------------------------------------===//
1037 
1038 template <class T>
1039 static bool isValidOpr(int Idx, const CustomOperand<T> OpInfo[], int OpInfoSize,
1040                        T Context) {
1041   return 0 <= Idx && Idx < OpInfoSize && !OpInfo[Idx].Name.empty() &&
1042          (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context));
1043 }
1044 
1045 template <class T>
1046 static int getOprIdx(std::function<bool(const CustomOperand<T> &)> Test,
1047                      const CustomOperand<T> OpInfo[], int OpInfoSize,
1048                      T Context) {
1049   int InvalidIdx = OPR_ID_UNKNOWN;
1050   for (int Idx = 0; Idx < OpInfoSize; ++Idx) {
1051     if (Test(OpInfo[Idx])) {
1052       if (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context))
1053         return Idx;
1054       InvalidIdx = OPR_ID_UNSUPPORTED;
1055     }
1056   }
1057   return InvalidIdx;
1058 }
1059 
1060 template <class T>
1061 static int getOprIdx(const StringRef Name, const CustomOperand<T> OpInfo[],
1062                      int OpInfoSize, T Context) {
1063   auto Test = [=](const CustomOperand<T> &Op) { return Op.Name == Name; };
1064   return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
1065 }
1066 
1067 template <class T>
1068 static int getOprIdx(int Id, const CustomOperand<T> OpInfo[], int OpInfoSize,
1069                      T Context, bool QuickCheck = true) {
1070   auto Test = [=](const CustomOperand<T> &Op) {
1071     return Op.Encoding == Id && !Op.Name.empty();
1072   };
1073   // This is an optimization that should work in most cases.
1074   // As a side effect, it may cause selection of an alias
1075   // instead of a primary operand name in case of sparse tables.
1076   if (QuickCheck && isValidOpr<T>(Id, OpInfo, OpInfoSize, Context) &&
1077       OpInfo[Id].Encoding == Id) {
1078     return Id;
1079   }
1080   return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context);
1081 }
1082 
1083 //===----------------------------------------------------------------------===//
1084 // hwreg
1085 //===----------------------------------------------------------------------===//
1086 
1087 namespace Hwreg {
1088 
1089 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) {
1090   int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Opr, OPR_SIZE, STI);
1091   return (Idx < 0) ? Idx : Opr[Idx].Encoding;
1092 }
1093 
1094 bool isValidHwreg(int64_t Id) {
1095   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1096 }
1097 
1098 bool isValidHwregOffset(int64_t Offset) {
1099   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1100 }
1101 
1102 bool isValidHwregWidth(int64_t Width) {
1103   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1104 }
1105 
1106 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1107   return (Id << ID_SHIFT_) |
1108          (Offset << OFFSET_SHIFT_) |
1109          ((Width - 1) << WIDTH_M1_SHIFT_);
1110 }
1111 
1112 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1113   int Idx = getOprIdx<const MCSubtargetInfo &>(Id, Opr, OPR_SIZE, STI);
1114   return (Idx < 0) ? "" : Opr[Idx].Name;
1115 }
1116 
1117 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1118   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1119   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1120   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1121 }
1122 
1123 } // namespace Hwreg
1124 
1125 //===----------------------------------------------------------------------===//
1126 // exp tgt
1127 //===----------------------------------------------------------------------===//
1128 
1129 namespace Exp {
1130 
1131 struct ExpTgt {
1132   StringLiteral Name;
1133   unsigned Tgt;
1134   unsigned MaxIndex;
1135 };
1136 
1137 static constexpr ExpTgt ExpTgtInfo[] = {
1138   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1139   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1140   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1141   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1142   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1143   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1144 };
1145 
1146 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1147   for (const ExpTgt &Val : ExpTgtInfo) {
1148     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1149       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1150       Name = Val.Name;
1151       return true;
1152     }
1153   }
1154   return false;
1155 }
1156 
1157 unsigned getTgtId(const StringRef Name) {
1158 
1159   for (const ExpTgt &Val : ExpTgtInfo) {
1160     if (Val.MaxIndex == 0 && Name == Val.Name)
1161       return Val.Tgt;
1162 
1163     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1164       StringRef Suffix = Name.drop_front(Val.Name.size());
1165 
1166       unsigned Id;
1167       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1168         return ET_INVALID;
1169 
1170       // Disable leading zeroes
1171       if (Suffix.size() > 1 && Suffix[0] == '0')
1172         return ET_INVALID;
1173 
1174       return Val.Tgt + Id;
1175     }
1176   }
1177   return ET_INVALID;
1178 }
1179 
1180 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1181   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1182 }
1183 
1184 } // namespace Exp
1185 
1186 //===----------------------------------------------------------------------===//
1187 // MTBUF Format
1188 //===----------------------------------------------------------------------===//
1189 
1190 namespace MTBUFFormat {
1191 
1192 int64_t getDfmt(const StringRef Name) {
1193   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1194     if (Name == DfmtSymbolic[Id])
1195       return Id;
1196   }
1197   return DFMT_UNDEF;
1198 }
1199 
1200 StringRef getDfmtName(unsigned Id) {
1201   assert(Id <= DFMT_MAX);
1202   return DfmtSymbolic[Id];
1203 }
1204 
1205 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1206   if (isSI(STI) || isCI(STI))
1207     return NfmtSymbolicSICI;
1208   if (isVI(STI) || isGFX9(STI))
1209     return NfmtSymbolicVI;
1210   return NfmtSymbolicGFX10;
1211 }
1212 
1213 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1214   auto lookupTable = getNfmtLookupTable(STI);
1215   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1216     if (Name == lookupTable[Id])
1217       return Id;
1218   }
1219   return NFMT_UNDEF;
1220 }
1221 
1222 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1223   assert(Id <= NFMT_MAX);
1224   return getNfmtLookupTable(STI)[Id];
1225 }
1226 
1227 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1228   unsigned Dfmt;
1229   unsigned Nfmt;
1230   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1231   return isValidNfmt(Nfmt, STI);
1232 }
1233 
1234 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1235   return !getNfmtName(Id, STI).empty();
1236 }
1237 
1238 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1239   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1240 }
1241 
1242 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1243   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1244   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1245 }
1246 
1247 int64_t getUnifiedFormat(const StringRef Name) {
1248   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1249     if (Name == UfmtSymbolic[Id])
1250       return Id;
1251   }
1252   return UFMT_UNDEF;
1253 }
1254 
1255 StringRef getUnifiedFormatName(unsigned Id) {
1256   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1257 }
1258 
1259 bool isValidUnifiedFormat(unsigned Id) {
1260   return Id <= UFMT_LAST;
1261 }
1262 
1263 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1264   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1265   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1266     if (Fmt == DfmtNfmt2UFmt[Id])
1267       return Id;
1268   }
1269   return UFMT_UNDEF;
1270 }
1271 
1272 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1273   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1274 }
1275 
1276 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1277   if (isGFX10Plus(STI))
1278     return UFMT_DEFAULT;
1279   return DFMT_NFMT_DEFAULT;
1280 }
1281 
1282 } // namespace MTBUFFormat
1283 
1284 //===----------------------------------------------------------------------===//
1285 // SendMsg
1286 //===----------------------------------------------------------------------===//
1287 
1288 namespace SendMsg {
1289 
1290 int64_t getMsgId(const StringRef Name, const MCSubtargetInfo &STI) {
1291   int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Msg, MSG_SIZE, STI);
1292   return (Idx < 0) ? Idx : Msg[Idx].Encoding;
1293 }
1294 
1295 bool isValidMsgId(int64_t MsgId) {
1296   return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1297 }
1298 
1299 StringRef getMsgName(int64_t MsgId, const MCSubtargetInfo &STI) {
1300   int Idx = getOprIdx<const MCSubtargetInfo &>(MsgId, Msg, MSG_SIZE, STI);
1301   return (Idx < 0) ? "" : Msg[Idx].Name;
1302 }
1303 
1304 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1305   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1306   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1307   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1308   for (int i = F; i < L; ++i) {
1309     if (Name == S[i]) {
1310       return i;
1311     }
1312   }
1313   return OP_UNKNOWN_;
1314 }
1315 
1316 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1317                   bool Strict) {
1318   assert(isValidMsgId(MsgId));
1319 
1320   if (!Strict)
1321     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1322 
1323   switch(MsgId)
1324   {
1325   case ID_GS:
1326     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1327   case ID_GS_DONE:
1328     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1329   case ID_SYSMSG:
1330     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1331   default:
1332     return OpId == OP_NONE_;
1333   }
1334 }
1335 
1336 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1337   assert(msgRequiresOp(MsgId));
1338   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1339 }
1340 
1341 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1342                       const MCSubtargetInfo &STI, bool Strict) {
1343   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1344 
1345   if (!Strict)
1346     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1347 
1348   switch(MsgId)
1349   {
1350   case ID_GS:
1351     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1352   case ID_GS_DONE:
1353     return (OpId == OP_GS_NOP)?
1354            (StreamId == STREAM_ID_NONE_) :
1355            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1356   default:
1357     return StreamId == STREAM_ID_NONE_;
1358   }
1359 }
1360 
1361 bool msgRequiresOp(int64_t MsgId) {
1362   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1363 }
1364 
1365 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1366   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1367 }
1368 
1369 void decodeMsg(unsigned Val,
1370                uint16_t &MsgId,
1371                uint16_t &OpId,
1372                uint16_t &StreamId) {
1373   MsgId = Val & ID_MASK_;
1374   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1375   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1376 }
1377 
1378 uint64_t encodeMsg(uint64_t MsgId,
1379                    uint64_t OpId,
1380                    uint64_t StreamId) {
1381   return (MsgId << ID_SHIFT_) |
1382          (OpId << OP_SHIFT_) |
1383          (StreamId << STREAM_ID_SHIFT_);
1384 }
1385 
1386 } // namespace SendMsg
1387 
1388 //===----------------------------------------------------------------------===//
1389 //
1390 //===----------------------------------------------------------------------===//
1391 
1392 unsigned getInitialPSInputAddr(const Function &F) {
1393   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1394 }
1395 
1396 bool getHasColorExport(const Function &F) {
1397   // As a safe default always respond as if PS has color exports.
1398   return getIntegerAttribute(
1399              F, "amdgpu-color-export",
1400              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1401 }
1402 
1403 bool getHasDepthExport(const Function &F) {
1404   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1405 }
1406 
1407 bool isShader(CallingConv::ID cc) {
1408   switch(cc) {
1409     case CallingConv::AMDGPU_VS:
1410     case CallingConv::AMDGPU_LS:
1411     case CallingConv::AMDGPU_HS:
1412     case CallingConv::AMDGPU_ES:
1413     case CallingConv::AMDGPU_GS:
1414     case CallingConv::AMDGPU_PS:
1415     case CallingConv::AMDGPU_CS:
1416       return true;
1417     default:
1418       return false;
1419   }
1420 }
1421 
1422 bool isGraphics(CallingConv::ID cc) {
1423   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1424 }
1425 
1426 bool isCompute(CallingConv::ID cc) {
1427   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1428 }
1429 
1430 bool isEntryFunctionCC(CallingConv::ID CC) {
1431   switch (CC) {
1432   case CallingConv::AMDGPU_KERNEL:
1433   case CallingConv::SPIR_KERNEL:
1434   case CallingConv::AMDGPU_VS:
1435   case CallingConv::AMDGPU_GS:
1436   case CallingConv::AMDGPU_PS:
1437   case CallingConv::AMDGPU_CS:
1438   case CallingConv::AMDGPU_ES:
1439   case CallingConv::AMDGPU_HS:
1440   case CallingConv::AMDGPU_LS:
1441     return true;
1442   default:
1443     return false;
1444   }
1445 }
1446 
1447 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1448   switch (CC) {
1449   case CallingConv::AMDGPU_Gfx:
1450     return true;
1451   default:
1452     return isEntryFunctionCC(CC);
1453   }
1454 }
1455 
1456 bool isKernelCC(const Function *Func) {
1457   return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
1458 }
1459 
1460 bool hasXNACK(const MCSubtargetInfo &STI) {
1461   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1462 }
1463 
1464 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1465   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1466 }
1467 
1468 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1469   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1470 }
1471 
1472 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1473   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1474 }
1475 
1476 bool hasG16(const MCSubtargetInfo &STI) {
1477   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1478 }
1479 
1480 bool hasPackedD16(const MCSubtargetInfo &STI) {
1481   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1482 }
1483 
1484 bool isSI(const MCSubtargetInfo &STI) {
1485   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1486 }
1487 
1488 bool isCI(const MCSubtargetInfo &STI) {
1489   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1490 }
1491 
1492 bool isVI(const MCSubtargetInfo &STI) {
1493   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1494 }
1495 
1496 bool isGFX9(const MCSubtargetInfo &STI) {
1497   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1498 }
1499 
1500 bool isGFX9_GFX10(const MCSubtargetInfo &STI) {
1501   return isGFX9(STI) || isGFX10(STI);
1502 }
1503 
1504 bool isGFX8Plus(const MCSubtargetInfo &STI) {
1505   return isVI(STI) || isGFX9Plus(STI);
1506 }
1507 
1508 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1509   return isGFX9(STI) || isGFX10Plus(STI);
1510 }
1511 
1512 bool isGFX10(const MCSubtargetInfo &STI) {
1513   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1514 }
1515 
1516 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1517 
1518 bool isNotGFX10Plus(const MCSubtargetInfo &STI) {
1519   return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1520 }
1521 
1522 bool isGFX10Before1030(const MCSubtargetInfo &STI) {
1523   return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1524 }
1525 
1526 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1527   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1528 }
1529 
1530 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1531   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1532 }
1533 
1534 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1535   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1536 }
1537 
1538 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1539   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1540 }
1541 
1542 bool isGFX90A(const MCSubtargetInfo &STI) {
1543   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1544 }
1545 
1546 bool isGFX940(const MCSubtargetInfo &STI) {
1547   return STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts];
1548 }
1549 
1550 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1551   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1552 }
1553 
1554 bool hasMAIInsts(const MCSubtargetInfo &STI) {
1555   return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts];
1556 }
1557 
1558 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
1559                          int32_t ArgNumVGPR) {
1560   if (has90AInsts && ArgNumAGPR)
1561     return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
1562   return std::max(ArgNumVGPR, ArgNumAGPR);
1563 }
1564 
1565 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1566   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1567   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1568   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1569     Reg == AMDGPU::SCC;
1570 }
1571 
1572 #define MAP_REG2REG \
1573   using namespace AMDGPU; \
1574   switch(Reg) { \
1575   default: return Reg; \
1576   CASE_CI_VI(FLAT_SCR) \
1577   CASE_CI_VI(FLAT_SCR_LO) \
1578   CASE_CI_VI(FLAT_SCR_HI) \
1579   CASE_VI_GFX9PLUS(TTMP0) \
1580   CASE_VI_GFX9PLUS(TTMP1) \
1581   CASE_VI_GFX9PLUS(TTMP2) \
1582   CASE_VI_GFX9PLUS(TTMP3) \
1583   CASE_VI_GFX9PLUS(TTMP4) \
1584   CASE_VI_GFX9PLUS(TTMP5) \
1585   CASE_VI_GFX9PLUS(TTMP6) \
1586   CASE_VI_GFX9PLUS(TTMP7) \
1587   CASE_VI_GFX9PLUS(TTMP8) \
1588   CASE_VI_GFX9PLUS(TTMP9) \
1589   CASE_VI_GFX9PLUS(TTMP10) \
1590   CASE_VI_GFX9PLUS(TTMP11) \
1591   CASE_VI_GFX9PLUS(TTMP12) \
1592   CASE_VI_GFX9PLUS(TTMP13) \
1593   CASE_VI_GFX9PLUS(TTMP14) \
1594   CASE_VI_GFX9PLUS(TTMP15) \
1595   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1596   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1597   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1598   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1599   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1600   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1601   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1602   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1603   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1604   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1605   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1606   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1607   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1608   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1609   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1610   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1611   }
1612 
1613 #define CASE_CI_VI(node) \
1614   assert(!isSI(STI)); \
1615   case node: return isCI(STI) ? node##_ci : node##_vi;
1616 
1617 #define CASE_VI_GFX9PLUS(node) \
1618   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1619 
1620 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1621   if (STI.getTargetTriple().getArch() == Triple::r600)
1622     return Reg;
1623   MAP_REG2REG
1624 }
1625 
1626 #undef CASE_CI_VI
1627 #undef CASE_VI_GFX9PLUS
1628 
1629 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1630 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1631 
1632 unsigned mc2PseudoReg(unsigned Reg) {
1633   MAP_REG2REG
1634 }
1635 
1636 #undef CASE_CI_VI
1637 #undef CASE_VI_GFX9PLUS
1638 #undef MAP_REG2REG
1639 
1640 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1641   assert(OpNo < Desc.NumOperands);
1642   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1643   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1644          OpType <= AMDGPU::OPERAND_SRC_LAST;
1645 }
1646 
1647 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1648   assert(OpNo < Desc.NumOperands);
1649   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1650   switch (OpType) {
1651   case AMDGPU::OPERAND_REG_IMM_FP32:
1652   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1653   case AMDGPU::OPERAND_REG_IMM_FP64:
1654   case AMDGPU::OPERAND_REG_IMM_FP16:
1655   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1656   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1657   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1658   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1659   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1660   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1661   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1662   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1663   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1664   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1665   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1666   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1667   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1668   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1669   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1670     return true;
1671   default:
1672     return false;
1673   }
1674 }
1675 
1676 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1677   assert(OpNo < Desc.NumOperands);
1678   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1679   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1680          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1681 }
1682 
1683 // Avoid using MCRegisterClass::getSize, since that function will go away
1684 // (move from MC* level to Target* level). Return size in bits.
1685 unsigned getRegBitWidth(unsigned RCID) {
1686   switch (RCID) {
1687   case AMDGPU::VGPR_LO16RegClassID:
1688   case AMDGPU::VGPR_HI16RegClassID:
1689   case AMDGPU::SGPR_LO16RegClassID:
1690   case AMDGPU::AGPR_LO16RegClassID:
1691     return 16;
1692   case AMDGPU::SGPR_32RegClassID:
1693   case AMDGPU::VGPR_32RegClassID:
1694   case AMDGPU::VRegOrLds_32RegClassID:
1695   case AMDGPU::AGPR_32RegClassID:
1696   case AMDGPU::VS_32RegClassID:
1697   case AMDGPU::AV_32RegClassID:
1698   case AMDGPU::SReg_32RegClassID:
1699   case AMDGPU::SReg_32_XM0RegClassID:
1700   case AMDGPU::SRegOrLds_32RegClassID:
1701     return 32;
1702   case AMDGPU::SGPR_64RegClassID:
1703   case AMDGPU::VS_64RegClassID:
1704   case AMDGPU::SReg_64RegClassID:
1705   case AMDGPU::VReg_64RegClassID:
1706   case AMDGPU::AReg_64RegClassID:
1707   case AMDGPU::SReg_64_XEXECRegClassID:
1708   case AMDGPU::VReg_64_Align2RegClassID:
1709   case AMDGPU::AReg_64_Align2RegClassID:
1710   case AMDGPU::AV_64RegClassID:
1711   case AMDGPU::AV_64_Align2RegClassID:
1712     return 64;
1713   case AMDGPU::SGPR_96RegClassID:
1714   case AMDGPU::SReg_96RegClassID:
1715   case AMDGPU::VReg_96RegClassID:
1716   case AMDGPU::AReg_96RegClassID:
1717   case AMDGPU::VReg_96_Align2RegClassID:
1718   case AMDGPU::AReg_96_Align2RegClassID:
1719   case AMDGPU::AV_96RegClassID:
1720   case AMDGPU::AV_96_Align2RegClassID:
1721     return 96;
1722   case AMDGPU::SGPR_128RegClassID:
1723   case AMDGPU::SReg_128RegClassID:
1724   case AMDGPU::VReg_128RegClassID:
1725   case AMDGPU::AReg_128RegClassID:
1726   case AMDGPU::VReg_128_Align2RegClassID:
1727   case AMDGPU::AReg_128_Align2RegClassID:
1728   case AMDGPU::AV_128RegClassID:
1729   case AMDGPU::AV_128_Align2RegClassID:
1730     return 128;
1731   case AMDGPU::SGPR_160RegClassID:
1732   case AMDGPU::SReg_160RegClassID:
1733   case AMDGPU::VReg_160RegClassID:
1734   case AMDGPU::AReg_160RegClassID:
1735   case AMDGPU::VReg_160_Align2RegClassID:
1736   case AMDGPU::AReg_160_Align2RegClassID:
1737   case AMDGPU::AV_160RegClassID:
1738   case AMDGPU::AV_160_Align2RegClassID:
1739     return 160;
1740   case AMDGPU::SGPR_192RegClassID:
1741   case AMDGPU::SReg_192RegClassID:
1742   case AMDGPU::VReg_192RegClassID:
1743   case AMDGPU::AReg_192RegClassID:
1744   case AMDGPU::VReg_192_Align2RegClassID:
1745   case AMDGPU::AReg_192_Align2RegClassID:
1746   case AMDGPU::AV_192RegClassID:
1747   case AMDGPU::AV_192_Align2RegClassID:
1748     return 192;
1749   case AMDGPU::SGPR_224RegClassID:
1750   case AMDGPU::SReg_224RegClassID:
1751   case AMDGPU::VReg_224RegClassID:
1752   case AMDGPU::AReg_224RegClassID:
1753   case AMDGPU::VReg_224_Align2RegClassID:
1754   case AMDGPU::AReg_224_Align2RegClassID:
1755   case AMDGPU::AV_224RegClassID:
1756   case AMDGPU::AV_224_Align2RegClassID:
1757     return 224;
1758   case AMDGPU::SGPR_256RegClassID:
1759   case AMDGPU::SReg_256RegClassID:
1760   case AMDGPU::VReg_256RegClassID:
1761   case AMDGPU::AReg_256RegClassID:
1762   case AMDGPU::VReg_256_Align2RegClassID:
1763   case AMDGPU::AReg_256_Align2RegClassID:
1764   case AMDGPU::AV_256RegClassID:
1765   case AMDGPU::AV_256_Align2RegClassID:
1766     return 256;
1767   case AMDGPU::SGPR_512RegClassID:
1768   case AMDGPU::SReg_512RegClassID:
1769   case AMDGPU::VReg_512RegClassID:
1770   case AMDGPU::AReg_512RegClassID:
1771   case AMDGPU::VReg_512_Align2RegClassID:
1772   case AMDGPU::AReg_512_Align2RegClassID:
1773   case AMDGPU::AV_512RegClassID:
1774   case AMDGPU::AV_512_Align2RegClassID:
1775     return 512;
1776   case AMDGPU::SGPR_1024RegClassID:
1777   case AMDGPU::SReg_1024RegClassID:
1778   case AMDGPU::VReg_1024RegClassID:
1779   case AMDGPU::AReg_1024RegClassID:
1780   case AMDGPU::VReg_1024_Align2RegClassID:
1781   case AMDGPU::AReg_1024_Align2RegClassID:
1782   case AMDGPU::AV_1024RegClassID:
1783   case AMDGPU::AV_1024_Align2RegClassID:
1784     return 1024;
1785   default:
1786     llvm_unreachable("Unexpected register class");
1787   }
1788 }
1789 
1790 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1791   return getRegBitWidth(RC.getID());
1792 }
1793 
1794 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1795                            unsigned OpNo) {
1796   assert(OpNo < Desc.NumOperands);
1797   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1798   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1799 }
1800 
1801 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1802   if (isInlinableIntLiteral(Literal))
1803     return true;
1804 
1805   uint64_t Val = static_cast<uint64_t>(Literal);
1806   return (Val == DoubleToBits(0.0)) ||
1807          (Val == DoubleToBits(1.0)) ||
1808          (Val == DoubleToBits(-1.0)) ||
1809          (Val == DoubleToBits(0.5)) ||
1810          (Val == DoubleToBits(-0.5)) ||
1811          (Val == DoubleToBits(2.0)) ||
1812          (Val == DoubleToBits(-2.0)) ||
1813          (Val == DoubleToBits(4.0)) ||
1814          (Val == DoubleToBits(-4.0)) ||
1815          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1816 }
1817 
1818 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1819   if (isInlinableIntLiteral(Literal))
1820     return true;
1821 
1822   // The actual type of the operand does not seem to matter as long
1823   // as the bits match one of the inline immediate values.  For example:
1824   //
1825   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1826   // so it is a legal inline immediate.
1827   //
1828   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1829   // floating-point, so it is a legal inline immediate.
1830 
1831   uint32_t Val = static_cast<uint32_t>(Literal);
1832   return (Val == FloatToBits(0.0f)) ||
1833          (Val == FloatToBits(1.0f)) ||
1834          (Val == FloatToBits(-1.0f)) ||
1835          (Val == FloatToBits(0.5f)) ||
1836          (Val == FloatToBits(-0.5f)) ||
1837          (Val == FloatToBits(2.0f)) ||
1838          (Val == FloatToBits(-2.0f)) ||
1839          (Val == FloatToBits(4.0f)) ||
1840          (Val == FloatToBits(-4.0f)) ||
1841          (Val == 0x3e22f983 && HasInv2Pi);
1842 }
1843 
1844 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1845   if (!HasInv2Pi)
1846     return false;
1847 
1848   if (isInlinableIntLiteral(Literal))
1849     return true;
1850 
1851   uint16_t Val = static_cast<uint16_t>(Literal);
1852   return Val == 0x3C00 || // 1.0
1853          Val == 0xBC00 || // -1.0
1854          Val == 0x3800 || // 0.5
1855          Val == 0xB800 || // -0.5
1856          Val == 0x4000 || // 2.0
1857          Val == 0xC000 || // -2.0
1858          Val == 0x4400 || // 4.0
1859          Val == 0xC400 || // -4.0
1860          Val == 0x3118;   // 1/2pi
1861 }
1862 
1863 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1864   assert(HasInv2Pi);
1865 
1866   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1867     int16_t Trunc = static_cast<int16_t>(Literal);
1868     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1869   }
1870   if (!(Literal & 0xffff))
1871     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1872 
1873   int16_t Lo16 = static_cast<int16_t>(Literal);
1874   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1875   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1876 }
1877 
1878 bool isInlinableIntLiteralV216(int32_t Literal) {
1879   int16_t Lo16 = static_cast<int16_t>(Literal);
1880   if (isInt<16>(Literal) || isUInt<16>(Literal))
1881     return isInlinableIntLiteral(Lo16);
1882 
1883   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1884   if (!(Literal & 0xffff))
1885     return isInlinableIntLiteral(Hi16);
1886   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1887 }
1888 
1889 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1890   assert(HasInv2Pi);
1891 
1892   int16_t Lo16 = static_cast<int16_t>(Literal);
1893   if (isInt<16>(Literal) || isUInt<16>(Literal))
1894     return true;
1895 
1896   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1897   if (!(Literal & 0xffff))
1898     return true;
1899   return Lo16 == Hi16;
1900 }
1901 
1902 bool isArgPassedInSGPR(const Argument *A) {
1903   const Function *F = A->getParent();
1904 
1905   // Arguments to compute shaders are never a source of divergence.
1906   CallingConv::ID CC = F->getCallingConv();
1907   switch (CC) {
1908   case CallingConv::AMDGPU_KERNEL:
1909   case CallingConv::SPIR_KERNEL:
1910     return true;
1911   case CallingConv::AMDGPU_VS:
1912   case CallingConv::AMDGPU_LS:
1913   case CallingConv::AMDGPU_HS:
1914   case CallingConv::AMDGPU_ES:
1915   case CallingConv::AMDGPU_GS:
1916   case CallingConv::AMDGPU_PS:
1917   case CallingConv::AMDGPU_CS:
1918   case CallingConv::AMDGPU_Gfx:
1919     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1920     // Everything else is in VGPRs.
1921     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
1922            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
1923   default:
1924     // TODO: Should calls support inreg for SGPR inputs?
1925     return false;
1926   }
1927 }
1928 
1929 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1930   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1931 }
1932 
1933 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1934   return isGFX9Plus(ST);
1935 }
1936 
1937 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1938                                       int64_t EncodedOffset) {
1939   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1940                                : isUInt<8>(EncodedOffset);
1941 }
1942 
1943 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1944                                     int64_t EncodedOffset,
1945                                     bool IsBuffer) {
1946   return !IsBuffer &&
1947          hasSMRDSignedImmOffset(ST) &&
1948          isInt<21>(EncodedOffset);
1949 }
1950 
1951 static bool isDwordAligned(uint64_t ByteOffset) {
1952   return (ByteOffset & 3) == 0;
1953 }
1954 
1955 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1956                                 uint64_t ByteOffset) {
1957   if (hasSMEMByteOffset(ST))
1958     return ByteOffset;
1959 
1960   assert(isDwordAligned(ByteOffset));
1961   return ByteOffset >> 2;
1962 }
1963 
1964 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1965                                        int64_t ByteOffset, bool IsBuffer) {
1966   // The signed version is always a byte offset.
1967   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1968     assert(hasSMEMByteOffset(ST));
1969     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1970   }
1971 
1972   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1973     return None;
1974 
1975   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1976   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1977              ? Optional<int64_t>(EncodedOffset)
1978              : None;
1979 }
1980 
1981 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1982                                                 int64_t ByteOffset) {
1983   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1984     return None;
1985 
1986   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1987   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1988 }
1989 
1990 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1991   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1992   if (AMDGPU::isGFX10(ST))
1993     return Signed ? 12 : 11;
1994 
1995   return Signed ? 13 : 12;
1996 }
1997 
1998 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1999 // fields in an MUBUF instruction. Return false if it is not possible (due to a
2000 // hardware bug needing a workaround).
2001 //
2002 // The required alignment ensures that individual address components remain
2003 // aligned if they are aligned to begin with. It also ensures that additional
2004 // offsets within the given alignment can be added to the resulting ImmOffset.
2005 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
2006                       const GCNSubtarget *Subtarget, Align Alignment) {
2007   const uint32_t MaxImm = alignDown(4095, Alignment.value());
2008   uint32_t Overflow = 0;
2009 
2010   if (Imm > MaxImm) {
2011     if (Imm <= MaxImm + 64) {
2012       // Use an SOffset inline constant for 4..64
2013       Overflow = Imm - MaxImm;
2014       Imm = MaxImm;
2015     } else {
2016       // Try to keep the same value in SOffset for adjacent loads, so that
2017       // the corresponding register contents can be re-used.
2018       //
2019       // Load values with all low-bits (except for alignment bits) set into
2020       // SOffset, so that a larger range of values can be covered using
2021       // s_movk_i32.
2022       //
2023       // Atomic operations fail to work correctly when individual address
2024       // components are unaligned, even if their sum is aligned.
2025       uint32_t High = (Imm + Alignment.value()) & ~4095;
2026       uint32_t Low = (Imm + Alignment.value()) & 4095;
2027       Imm = Low;
2028       Overflow = High - Alignment.value();
2029     }
2030   }
2031 
2032   // There is a hardware bug in SI and CI which prevents address clamping in
2033   // MUBUF instructions from working correctly with SOffsets. The immediate
2034   // offset is unaffected.
2035   if (Overflow > 0 &&
2036       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
2037     return false;
2038 
2039   ImmOffset = Imm;
2040   SOffset = Overflow;
2041   return true;
2042 }
2043 
2044 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
2045   *this = getDefaultForCallingConv(F.getCallingConv());
2046 
2047   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
2048   if (!IEEEAttr.empty())
2049     IEEE = IEEEAttr == "true";
2050 
2051   StringRef DX10ClampAttr
2052     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
2053   if (!DX10ClampAttr.empty())
2054     DX10Clamp = DX10ClampAttr == "true";
2055 
2056   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
2057   if (!DenormF32Attr.empty()) {
2058     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
2059     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2060     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2061   }
2062 
2063   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
2064   if (!DenormAttr.empty()) {
2065     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2066 
2067     if (DenormF32Attr.empty()) {
2068       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2069       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2070     }
2071 
2072     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2073     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2074   }
2075 }
2076 
2077 namespace {
2078 
2079 struct SourceOfDivergence {
2080   unsigned Intr;
2081 };
2082 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2083 
2084 #define GET_SourcesOfDivergence_IMPL
2085 #define GET_Gfx9BufferFormat_IMPL
2086 #define GET_Gfx10PlusBufferFormat_IMPL
2087 #include "AMDGPUGenSearchableTables.inc"
2088 
2089 } // end anonymous namespace
2090 
2091 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2092   return lookupSourceOfDivergence(IntrID);
2093 }
2094 
2095 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2096                                                   uint8_t NumComponents,
2097                                                   uint8_t NumFormat,
2098                                                   const MCSubtargetInfo &STI) {
2099   return isGFX10Plus(STI)
2100              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
2101                                             NumFormat)
2102              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
2103 }
2104 
2105 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2106                                                   const MCSubtargetInfo &STI) {
2107   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
2108                           : getGfx9BufferFormatInfo(Format);
2109 }
2110 
2111 } // namespace AMDGPU
2112 
2113 raw_ostream &operator<<(raw_ostream &OS,
2114                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2115   switch (S) {
2116   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2117     OS << "Unsupported";
2118     break;
2119   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2120     OS << "Any";
2121     break;
2122   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2123     OS << "Off";
2124     break;
2125   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2126     OS << "On";
2127     break;
2128   }
2129   return OS;
2130 }
2131 
2132 } // namespace llvm
2133