1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "AMDGPUBaseInfo.h" 11 #include "AMDGPUTargetTransformInfo.h" 12 #include "AMDGPU.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth() { return 4; } 89 90 /// \returns Vmcnt bit shift (higher bits). 91 unsigned getVmcntBitShiftHi() { return 14; } 92 93 /// \returns Vmcnt bit width (higher bits). 94 unsigned getVmcntBitWidthHi() { return 2; } 95 96 } // end namespace anonymous 97 98 namespace llvm { 99 100 namespace AMDGPU { 101 102 struct MIMGInfo { 103 uint16_t Opcode; 104 uint16_t BaseOpcode; 105 uint8_t MIMGEncoding; 106 uint8_t VDataDwords; 107 uint8_t VAddrDwords; 108 }; 109 110 #define GET_MIMGBaseOpcodesTable_IMPL 111 #define GET_MIMGDimInfoTable_IMPL 112 #define GET_MIMGInfoTable_IMPL 113 #define GET_MIMGLZMappingTable_IMPL 114 #include "AMDGPUGenSearchableTables.inc" 115 116 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 117 unsigned VDataDwords, unsigned VAddrDwords) { 118 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 119 VDataDwords, VAddrDwords); 120 return Info ? Info->Opcode : -1; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 132 // header files, so we need to wrap it in a function that takes unsigned 133 // instead. 134 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 135 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 136 } 137 138 namespace IsaInfo { 139 140 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 141 auto TargetTriple = STI->getTargetTriple(); 142 auto Version = getIsaVersion(STI->getCPU()); 143 144 Stream << TargetTriple.getArchName() << '-' 145 << TargetTriple.getVendorName() << '-' 146 << TargetTriple.getOSName() << '-' 147 << TargetTriple.getEnvironmentName() << '-' 148 << "gfx" 149 << Version.Major 150 << Version.Minor 151 << Version.Stepping; 152 153 if (hasXNACK(*STI)) 154 Stream << "+xnack"; 155 if (hasSRAMECC(*STI)) 156 Stream << "+sram-ecc"; 157 158 Stream.flush(); 159 } 160 161 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 162 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 163 STI->getFeatureBits().test(FeatureCodeObjectV3); 164 } 165 166 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 167 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 168 return 16; 169 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 170 return 32; 171 172 return 64; 173 } 174 175 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 176 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 177 return 32768; 178 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 179 return 65536; 180 181 return 0; 182 } 183 184 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 185 return 4; 186 } 187 188 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 189 unsigned FlatWorkGroupSize) { 190 if (!STI->getFeatureBits().test(FeatureGCN)) 191 return 8; 192 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 193 if (N == 1) 194 return 40; 195 N = 40 / N; 196 return std::min(N, 16u); 197 } 198 199 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 200 return getMaxWavesPerEU() * getEUsPerCU(STI); 201 } 202 203 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 204 unsigned FlatWorkGroupSize) { 205 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 206 } 207 208 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 209 return 1; 210 } 211 212 unsigned getMaxWavesPerEU() { 213 // FIXME: Need to take scratch memory into account. 214 return 10; 215 } 216 217 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 218 unsigned FlatWorkGroupSize) { 219 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 220 getEUsPerCU(STI)) / getEUsPerCU(STI); 221 } 222 223 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 224 return 1; 225 } 226 227 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 228 return 2048; 229 } 230 231 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 232 unsigned FlatWorkGroupSize) { 233 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 234 getWavefrontSize(STI); 235 } 236 237 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 238 IsaVersion Version = getIsaVersion(STI->getCPU()); 239 if (Version.Major >= 8) 240 return 16; 241 return 8; 242 } 243 244 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 245 return 8; 246 } 247 248 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 249 IsaVersion Version = getIsaVersion(STI->getCPU()); 250 if (Version.Major >= 8) 251 return 800; 252 return 512; 253 } 254 255 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 256 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 257 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 258 259 IsaVersion Version = getIsaVersion(STI->getCPU()); 260 if (Version.Major >= 8) 261 return 102; 262 return 104; 263 } 264 265 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 266 assert(WavesPerEU != 0); 267 268 if (WavesPerEU >= getMaxWavesPerEU()) 269 return 0; 270 271 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 272 if (STI->getFeatureBits().test(FeatureTrapHandler)) 273 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 274 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 275 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 276 } 277 278 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 279 bool Addressable) { 280 assert(WavesPerEU != 0); 281 282 IsaVersion Version = getIsaVersion(STI->getCPU()); 283 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 284 if (Version.Major >= 8 && !Addressable) 285 AddressableNumSGPRs = 112; 286 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 287 if (STI->getFeatureBits().test(FeatureTrapHandler)) 288 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 289 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 290 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 291 } 292 293 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 294 bool FlatScrUsed, bool XNACKUsed) { 295 unsigned ExtraSGPRs = 0; 296 if (VCCUsed) 297 ExtraSGPRs = 2; 298 299 IsaVersion Version = getIsaVersion(STI->getCPU()); 300 if (Version.Major < 8) { 301 if (FlatScrUsed) 302 ExtraSGPRs = 4; 303 } else { 304 if (XNACKUsed) 305 ExtraSGPRs = 4; 306 307 if (FlatScrUsed) 308 ExtraSGPRs = 6; 309 } 310 311 return ExtraSGPRs; 312 } 313 314 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 315 bool FlatScrUsed) { 316 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 317 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 318 } 319 320 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 321 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 322 // SGPRBlocks is actual number of SGPR blocks minus 1. 323 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 324 } 325 326 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) { 327 return 4; 328 } 329 330 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) { 331 return getVGPRAllocGranule(STI); 332 } 333 334 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 335 return 256; 336 } 337 338 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 339 return getTotalNumVGPRs(STI); 340 } 341 342 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 343 assert(WavesPerEU != 0); 344 345 if (WavesPerEU >= getMaxWavesPerEU()) 346 return 0; 347 unsigned MinNumVGPRs = 348 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 349 getVGPRAllocGranule(STI)) + 1; 350 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 351 } 352 353 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 354 assert(WavesPerEU != 0); 355 356 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 357 getVGPRAllocGranule(STI)); 358 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 359 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 360 } 361 362 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) { 363 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI)); 364 // VGPRBlocks is actual number of VGPR blocks minus 1. 365 return NumVGPRs / getVGPREncodingGranule(STI) - 1; 366 } 367 368 } // end namespace IsaInfo 369 370 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 371 const MCSubtargetInfo *STI) { 372 IsaVersion Version = getIsaVersion(STI->getCPU()); 373 374 memset(&Header, 0, sizeof(Header)); 375 376 Header.amd_kernel_code_version_major = 1; 377 Header.amd_kernel_code_version_minor = 2; 378 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 379 Header.amd_machine_version_major = Version.Major; 380 Header.amd_machine_version_minor = Version.Minor; 381 Header.amd_machine_version_stepping = Version.Stepping; 382 Header.kernel_code_entry_byte_offset = sizeof(Header); 383 // wavefront_size is specified as a power of 2: 2^6 = 64 threads. 384 Header.wavefront_size = 6; 385 386 // If the code object does not support indirect functions, then the value must 387 // be 0xffffffff. 388 Header.call_convention = -1; 389 390 // These alignment values are specified in powers of two, so alignment = 391 // 2^n. The minimum alignment is 2^4 = 16. 392 Header.kernarg_segment_alignment = 4; 393 Header.group_segment_alignment = 4; 394 Header.private_segment_alignment = 4; 395 } 396 397 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() { 398 amdhsa::kernel_descriptor_t KD; 399 memset(&KD, 0, sizeof(KD)); 400 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 401 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 402 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 403 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 404 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 405 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 406 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 407 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 408 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 409 return KD; 410 } 411 412 bool isGroupSegment(const GlobalValue *GV) { 413 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 414 } 415 416 bool isGlobalSegment(const GlobalValue *GV) { 417 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 418 } 419 420 bool isReadOnlySegment(const GlobalValue *GV) { 421 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 422 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 423 } 424 425 bool shouldEmitConstantsToTextSection(const Triple &TT) { 426 return TT.getOS() != Triple::AMDHSA; 427 } 428 429 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 430 Attribute A = F.getFnAttribute(Name); 431 int Result = Default; 432 433 if (A.isStringAttribute()) { 434 StringRef Str = A.getValueAsString(); 435 if (Str.getAsInteger(0, Result)) { 436 LLVMContext &Ctx = F.getContext(); 437 Ctx.emitError("can't parse integer attribute " + Name); 438 } 439 } 440 441 return Result; 442 } 443 444 std::pair<int, int> getIntegerPairAttribute(const Function &F, 445 StringRef Name, 446 std::pair<int, int> Default, 447 bool OnlyFirstRequired) { 448 Attribute A = F.getFnAttribute(Name); 449 if (!A.isStringAttribute()) 450 return Default; 451 452 LLVMContext &Ctx = F.getContext(); 453 std::pair<int, int> Ints = Default; 454 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 455 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 456 Ctx.emitError("can't parse first integer attribute " + Name); 457 return Default; 458 } 459 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 460 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 461 Ctx.emitError("can't parse second integer attribute " + Name); 462 return Default; 463 } 464 } 465 466 return Ints; 467 } 468 469 unsigned getVmcntBitMask(const IsaVersion &Version) { 470 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 471 if (Version.Major < 9) 472 return VmcntLo; 473 474 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 475 return VmcntLo | VmcntHi; 476 } 477 478 unsigned getExpcntBitMask(const IsaVersion &Version) { 479 return (1 << getExpcntBitWidth()) - 1; 480 } 481 482 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 483 return (1 << getLgkmcntBitWidth()) - 1; 484 } 485 486 unsigned getWaitcntBitMask(const IsaVersion &Version) { 487 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 488 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 489 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth()); 490 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 491 if (Version.Major < 9) 492 return Waitcnt; 493 494 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 495 return Waitcnt | VmcntHi; 496 } 497 498 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 499 unsigned VmcntLo = 500 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 501 if (Version.Major < 9) 502 return VmcntLo; 503 504 unsigned VmcntHi = 505 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 506 VmcntHi <<= getVmcntBitWidthLo(); 507 return VmcntLo | VmcntHi; 508 } 509 510 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 511 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 512 } 513 514 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 515 return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 516 } 517 518 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 519 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 520 Vmcnt = decodeVmcnt(Version, Waitcnt); 521 Expcnt = decodeExpcnt(Version, Waitcnt); 522 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 523 } 524 525 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 526 Waitcnt Decoded; 527 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 528 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 529 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 530 return Decoded; 531 } 532 533 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 534 unsigned Vmcnt) { 535 Waitcnt = 536 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 537 if (Version.Major < 9) 538 return Waitcnt; 539 540 Vmcnt >>= getVmcntBitWidthLo(); 541 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 542 } 543 544 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 545 unsigned Expcnt) { 546 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 547 } 548 549 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 550 unsigned Lgkmcnt) { 551 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 552 } 553 554 unsigned encodeWaitcnt(const IsaVersion &Version, 555 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 556 unsigned Waitcnt = getWaitcntBitMask(Version); 557 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 558 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 559 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 560 return Waitcnt; 561 } 562 563 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 564 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 565 } 566 567 unsigned getInitialPSInputAddr(const Function &F) { 568 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 569 } 570 571 bool isShader(CallingConv::ID cc) { 572 switch(cc) { 573 case CallingConv::AMDGPU_VS: 574 case CallingConv::AMDGPU_LS: 575 case CallingConv::AMDGPU_HS: 576 case CallingConv::AMDGPU_ES: 577 case CallingConv::AMDGPU_GS: 578 case CallingConv::AMDGPU_PS: 579 case CallingConv::AMDGPU_CS: 580 return true; 581 default: 582 return false; 583 } 584 } 585 586 bool isCompute(CallingConv::ID cc) { 587 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 588 } 589 590 bool isEntryFunctionCC(CallingConv::ID CC) { 591 switch (CC) { 592 case CallingConv::AMDGPU_KERNEL: 593 case CallingConv::SPIR_KERNEL: 594 case CallingConv::AMDGPU_VS: 595 case CallingConv::AMDGPU_GS: 596 case CallingConv::AMDGPU_PS: 597 case CallingConv::AMDGPU_CS: 598 case CallingConv::AMDGPU_ES: 599 case CallingConv::AMDGPU_HS: 600 case CallingConv::AMDGPU_LS: 601 return true; 602 default: 603 return false; 604 } 605 } 606 607 bool hasXNACK(const MCSubtargetInfo &STI) { 608 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 609 } 610 611 bool hasSRAMECC(const MCSubtargetInfo &STI) { 612 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 613 } 614 615 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 616 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 617 } 618 619 bool hasPackedD16(const MCSubtargetInfo &STI) { 620 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 621 } 622 623 bool isSI(const MCSubtargetInfo &STI) { 624 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 625 } 626 627 bool isCI(const MCSubtargetInfo &STI) { 628 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 629 } 630 631 bool isVI(const MCSubtargetInfo &STI) { 632 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 633 } 634 635 bool isGFX9(const MCSubtargetInfo &STI) { 636 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 637 } 638 639 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 640 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 641 } 642 643 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 644 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 645 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 646 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 647 Reg == AMDGPU::SCC; 648 } 649 650 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 651 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 652 if (*R == Reg1) return true; 653 } 654 return false; 655 } 656 657 #define MAP_REG2REG \ 658 using namespace AMDGPU; \ 659 switch(Reg) { \ 660 default: return Reg; \ 661 CASE_CI_VI(FLAT_SCR) \ 662 CASE_CI_VI(FLAT_SCR_LO) \ 663 CASE_CI_VI(FLAT_SCR_HI) \ 664 CASE_VI_GFX9(TTMP0) \ 665 CASE_VI_GFX9(TTMP1) \ 666 CASE_VI_GFX9(TTMP2) \ 667 CASE_VI_GFX9(TTMP3) \ 668 CASE_VI_GFX9(TTMP4) \ 669 CASE_VI_GFX9(TTMP5) \ 670 CASE_VI_GFX9(TTMP6) \ 671 CASE_VI_GFX9(TTMP7) \ 672 CASE_VI_GFX9(TTMP8) \ 673 CASE_VI_GFX9(TTMP9) \ 674 CASE_VI_GFX9(TTMP10) \ 675 CASE_VI_GFX9(TTMP11) \ 676 CASE_VI_GFX9(TTMP12) \ 677 CASE_VI_GFX9(TTMP13) \ 678 CASE_VI_GFX9(TTMP14) \ 679 CASE_VI_GFX9(TTMP15) \ 680 CASE_VI_GFX9(TTMP0_TTMP1) \ 681 CASE_VI_GFX9(TTMP2_TTMP3) \ 682 CASE_VI_GFX9(TTMP4_TTMP5) \ 683 CASE_VI_GFX9(TTMP6_TTMP7) \ 684 CASE_VI_GFX9(TTMP8_TTMP9) \ 685 CASE_VI_GFX9(TTMP10_TTMP11) \ 686 CASE_VI_GFX9(TTMP12_TTMP13) \ 687 CASE_VI_GFX9(TTMP14_TTMP15) \ 688 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \ 689 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \ 690 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \ 691 CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \ 692 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 693 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 694 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 695 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 696 } 697 698 #define CASE_CI_VI(node) \ 699 assert(!isSI(STI)); \ 700 case node: return isCI(STI) ? node##_ci : node##_vi; 701 702 #define CASE_VI_GFX9(node) \ 703 case node: return isGFX9(STI) ? node##_gfx9 : node##_vi; 704 705 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 706 if (STI.getTargetTriple().getArch() == Triple::r600) 707 return Reg; 708 MAP_REG2REG 709 } 710 711 #undef CASE_CI_VI 712 #undef CASE_VI_GFX9 713 714 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 715 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node; 716 717 unsigned mc2PseudoReg(unsigned Reg) { 718 MAP_REG2REG 719 } 720 721 #undef CASE_CI_VI 722 #undef CASE_VI_GFX9 723 #undef MAP_REG2REG 724 725 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 726 assert(OpNo < Desc.NumOperands); 727 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 728 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 729 OpType <= AMDGPU::OPERAND_SRC_LAST; 730 } 731 732 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 733 assert(OpNo < Desc.NumOperands); 734 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 735 switch (OpType) { 736 case AMDGPU::OPERAND_REG_IMM_FP32: 737 case AMDGPU::OPERAND_REG_IMM_FP64: 738 case AMDGPU::OPERAND_REG_IMM_FP16: 739 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 740 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 741 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 742 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 743 return true; 744 default: 745 return false; 746 } 747 } 748 749 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 750 assert(OpNo < Desc.NumOperands); 751 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 752 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 753 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 754 } 755 756 // Avoid using MCRegisterClass::getSize, since that function will go away 757 // (move from MC* level to Target* level). Return size in bits. 758 unsigned getRegBitWidth(unsigned RCID) { 759 switch (RCID) { 760 case AMDGPU::SGPR_32RegClassID: 761 case AMDGPU::VGPR_32RegClassID: 762 case AMDGPU::VS_32RegClassID: 763 case AMDGPU::SReg_32RegClassID: 764 case AMDGPU::SReg_32_XM0RegClassID: 765 return 32; 766 case AMDGPU::SGPR_64RegClassID: 767 case AMDGPU::VS_64RegClassID: 768 case AMDGPU::SReg_64RegClassID: 769 case AMDGPU::VReg_64RegClassID: 770 case AMDGPU::SReg_64_XEXECRegClassID: 771 return 64; 772 case AMDGPU::VReg_96RegClassID: 773 return 96; 774 case AMDGPU::SGPR_128RegClassID: 775 case AMDGPU::SReg_128RegClassID: 776 case AMDGPU::VReg_128RegClassID: 777 return 128; 778 case AMDGPU::SReg_256RegClassID: 779 case AMDGPU::VReg_256RegClassID: 780 return 256; 781 case AMDGPU::SReg_512RegClassID: 782 case AMDGPU::VReg_512RegClassID: 783 return 512; 784 default: 785 llvm_unreachable("Unexpected register class"); 786 } 787 } 788 789 unsigned getRegBitWidth(const MCRegisterClass &RC) { 790 return getRegBitWidth(RC.getID()); 791 } 792 793 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 794 unsigned OpNo) { 795 assert(OpNo < Desc.NumOperands); 796 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 797 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 798 } 799 800 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 801 if (Literal >= -16 && Literal <= 64) 802 return true; 803 804 uint64_t Val = static_cast<uint64_t>(Literal); 805 return (Val == DoubleToBits(0.0)) || 806 (Val == DoubleToBits(1.0)) || 807 (Val == DoubleToBits(-1.0)) || 808 (Val == DoubleToBits(0.5)) || 809 (Val == DoubleToBits(-0.5)) || 810 (Val == DoubleToBits(2.0)) || 811 (Val == DoubleToBits(-2.0)) || 812 (Val == DoubleToBits(4.0)) || 813 (Val == DoubleToBits(-4.0)) || 814 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 815 } 816 817 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 818 if (Literal >= -16 && Literal <= 64) 819 return true; 820 821 // The actual type of the operand does not seem to matter as long 822 // as the bits match one of the inline immediate values. For example: 823 // 824 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 825 // so it is a legal inline immediate. 826 // 827 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 828 // floating-point, so it is a legal inline immediate. 829 830 uint32_t Val = static_cast<uint32_t>(Literal); 831 return (Val == FloatToBits(0.0f)) || 832 (Val == FloatToBits(1.0f)) || 833 (Val == FloatToBits(-1.0f)) || 834 (Val == FloatToBits(0.5f)) || 835 (Val == FloatToBits(-0.5f)) || 836 (Val == FloatToBits(2.0f)) || 837 (Val == FloatToBits(-2.0f)) || 838 (Val == FloatToBits(4.0f)) || 839 (Val == FloatToBits(-4.0f)) || 840 (Val == 0x3e22f983 && HasInv2Pi); 841 } 842 843 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 844 if (!HasInv2Pi) 845 return false; 846 847 if (Literal >= -16 && Literal <= 64) 848 return true; 849 850 uint16_t Val = static_cast<uint16_t>(Literal); 851 return Val == 0x3C00 || // 1.0 852 Val == 0xBC00 || // -1.0 853 Val == 0x3800 || // 0.5 854 Val == 0xB800 || // -0.5 855 Val == 0x4000 || // 2.0 856 Val == 0xC000 || // -2.0 857 Val == 0x4400 || // 4.0 858 Val == 0xC400 || // -4.0 859 Val == 0x3118; // 1/2pi 860 } 861 862 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 863 assert(HasInv2Pi); 864 865 int16_t Lo16 = static_cast<int16_t>(Literal); 866 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 867 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 868 } 869 870 bool isArgPassedInSGPR(const Argument *A) { 871 const Function *F = A->getParent(); 872 873 // Arguments to compute shaders are never a source of divergence. 874 CallingConv::ID CC = F->getCallingConv(); 875 switch (CC) { 876 case CallingConv::AMDGPU_KERNEL: 877 case CallingConv::SPIR_KERNEL: 878 return true; 879 case CallingConv::AMDGPU_VS: 880 case CallingConv::AMDGPU_LS: 881 case CallingConv::AMDGPU_HS: 882 case CallingConv::AMDGPU_ES: 883 case CallingConv::AMDGPU_GS: 884 case CallingConv::AMDGPU_PS: 885 case CallingConv::AMDGPU_CS: 886 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 887 // Everything else is in VGPRs. 888 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 889 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 890 default: 891 // TODO: Should calls support inreg for SGPR inputs? 892 return false; 893 } 894 } 895 896 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 897 if (isGCN3Encoding(ST)) 898 return ByteOffset; 899 return ByteOffset >> 2; 900 } 901 902 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 903 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 904 return isGCN3Encoding(ST) ? 905 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 906 } 907 908 // Given Imm, split it into the values to put into the SOffset and ImmOffset 909 // fields in an MUBUF instruction. Return false if it is not possible (due to a 910 // hardware bug needing a workaround). 911 // 912 // The required alignment ensures that individual address components remain 913 // aligned if they are aligned to begin with. It also ensures that additional 914 // offsets within the given alignment can be added to the resulting ImmOffset. 915 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 916 const GCNSubtarget *Subtarget, uint32_t Align) { 917 const uint32_t MaxImm = alignDown(4095, Align); 918 uint32_t Overflow = 0; 919 920 if (Imm > MaxImm) { 921 if (Imm <= MaxImm + 64) { 922 // Use an SOffset inline constant for 4..64 923 Overflow = Imm - MaxImm; 924 Imm = MaxImm; 925 } else { 926 // Try to keep the same value in SOffset for adjacent loads, so that 927 // the corresponding register contents can be re-used. 928 // 929 // Load values with all low-bits (except for alignment bits) set into 930 // SOffset, so that a larger range of values can be covered using 931 // s_movk_i32. 932 // 933 // Atomic operations fail to work correctly when individual address 934 // components are unaligned, even if their sum is aligned. 935 uint32_t High = (Imm + Align) & ~4095; 936 uint32_t Low = (Imm + Align) & 4095; 937 Imm = Low; 938 Overflow = High - Align; 939 } 940 } 941 942 // There is a hardware bug in SI and CI which prevents address clamping in 943 // MUBUF instructions from working correctly with SOffsets. The immediate 944 // offset is unaffected. 945 if (Overflow > 0 && 946 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 947 return false; 948 949 ImmOffset = Imm; 950 SOffset = Overflow; 951 return true; 952 } 953 954 namespace { 955 956 struct SourceOfDivergence { 957 unsigned Intr; 958 }; 959 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 960 961 #define GET_SourcesOfDivergence_IMPL 962 #include "AMDGPUGenSearchableTables.inc" 963 964 } // end anonymous namespace 965 966 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 967 return lookupSourceOfDivergence(IntrID); 968 } 969 } // namespace AMDGPU 970 } // namespace llvm 971