1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDGPUSubtarget.h"
13 #include "AMDKernelCodeT.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/IR/Attributes.h"
16 #include "llvm/IR/Function.h"
17 #include "llvm/IR/GlobalValue.h"
18 #include "llvm/IR/IntrinsicsAMDGPU.h"
19 #include "llvm/IR/IntrinsicsR600.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/MC/MCSubtargetInfo.h"
22 #include "llvm/Support/AMDHSAKernelDescriptor.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/TargetParser.h"
25 
26 #define GET_INSTRINFO_NAMED_OPS
27 #define GET_INSTRMAP_INFO
28 #include "AMDGPUGenInstrInfo.inc"
29 
30 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
31   "amdhsa-code-object-version", llvm::cl::Hidden,
32   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3));
33 
34 namespace {
35 
36 /// \returns Bit mask for given bit \p Shift and bit \p Width.
37 unsigned getBitMask(unsigned Shift, unsigned Width) {
38   return ((1 << Width) - 1) << Shift;
39 }
40 
41 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
42 ///
43 /// \returns Packed \p Dst.
44 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
45   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
46   Dst |= (Src << Shift) & getBitMask(Shift, Width);
47   return Dst;
48 }
49 
50 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
51 ///
52 /// \returns Unpacked bits.
53 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
54   return (Src & getBitMask(Shift, Width)) >> Shift;
55 }
56 
57 /// \returns Vmcnt bit shift (lower bits).
58 unsigned getVmcntBitShiftLo() { return 0; }
59 
60 /// \returns Vmcnt bit width (lower bits).
61 unsigned getVmcntBitWidthLo() { return 4; }
62 
63 /// \returns Expcnt bit shift.
64 unsigned getExpcntBitShift() { return 4; }
65 
66 /// \returns Expcnt bit width.
67 unsigned getExpcntBitWidth() { return 3; }
68 
69 /// \returns Lgkmcnt bit shift.
70 unsigned getLgkmcntBitShift() { return 8; }
71 
72 /// \returns Lgkmcnt bit width.
73 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
74   return (VersionMajor >= 10) ? 6 : 4;
75 }
76 
77 /// \returns Vmcnt bit shift (higher bits).
78 unsigned getVmcntBitShiftHi() { return 14; }
79 
80 /// \returns Vmcnt bit width (higher bits).
81 unsigned getVmcntBitWidthHi() { return 2; }
82 
83 } // end namespace anonymous
84 
85 namespace llvm {
86 
87 namespace AMDGPU {
88 
89 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
90   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
91     return None;
92 
93   switch (AmdhsaCodeObjectVersion) {
94   case 2:
95     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
96   case 3:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
98   default:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   }
101 }
102 
103 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
104   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
105     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
106   return false;
107 }
108 
109 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
110   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
111     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
112   return false;
113 }
114 
115 #define GET_MIMGBaseOpcodesTable_IMPL
116 #define GET_MIMGDimInfoTable_IMPL
117 #define GET_MIMGInfoTable_IMPL
118 #define GET_MIMGLZMappingTable_IMPL
119 #define GET_MIMGMIPMappingTable_IMPL
120 #define GET_MIMGG16MappingTable_IMPL
121 #include "AMDGPUGenSearchableTables.inc"
122 
123 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
124                   unsigned VDataDwords, unsigned VAddrDwords) {
125   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
126                                              VDataDwords, VAddrDwords);
127   return Info ? Info->Opcode : -1;
128 }
129 
130 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
131   const MIMGInfo *Info = getMIMGInfo(Opc);
132   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
133 }
134 
135 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
136   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
137   const MIMGInfo *NewInfo =
138       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
139                           NewChannels, OrigInfo->VAddrDwords);
140   return NewInfo ? NewInfo->Opcode : -1;
141 }
142 
143 struct MUBUFInfo {
144   uint16_t Opcode;
145   uint16_t BaseOpcode;
146   uint8_t elements;
147   bool has_vaddr;
148   bool has_srsrc;
149   bool has_soffset;
150 };
151 
152 struct MTBUFInfo {
153   uint16_t Opcode;
154   uint16_t BaseOpcode;
155   uint8_t elements;
156   bool has_vaddr;
157   bool has_srsrc;
158   bool has_soffset;
159 };
160 
161 struct SMInfo {
162   uint16_t Opcode;
163   bool IsBuffer;
164 };
165 
166 #define GET_MTBUFInfoTable_DECL
167 #define GET_MTBUFInfoTable_IMPL
168 #define GET_MUBUFInfoTable_DECL
169 #define GET_MUBUFInfoTable_IMPL
170 #define GET_SMInfoTable_DECL
171 #define GET_SMInfoTable_IMPL
172 #include "AMDGPUGenSearchableTables.inc"
173 
174 int getMTBUFBaseOpcode(unsigned Opc) {
175   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
176   return Info ? Info->BaseOpcode : -1;
177 }
178 
179 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
180   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
181   return Info ? Info->Opcode : -1;
182 }
183 
184 int getMTBUFElements(unsigned Opc) {
185   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
186   return Info ? Info->elements : 0;
187 }
188 
189 bool getMTBUFHasVAddr(unsigned Opc) {
190   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
191   return Info ? Info->has_vaddr : false;
192 }
193 
194 bool getMTBUFHasSrsrc(unsigned Opc) {
195   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
196   return Info ? Info->has_srsrc : false;
197 }
198 
199 bool getMTBUFHasSoffset(unsigned Opc) {
200   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
201   return Info ? Info->has_soffset : false;
202 }
203 
204 int getMUBUFBaseOpcode(unsigned Opc) {
205   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
206   return Info ? Info->BaseOpcode : -1;
207 }
208 
209 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
210   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
211   return Info ? Info->Opcode : -1;
212 }
213 
214 int getMUBUFElements(unsigned Opc) {
215   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
216   return Info ? Info->elements : 0;
217 }
218 
219 bool getMUBUFHasVAddr(unsigned Opc) {
220   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
221   return Info ? Info->has_vaddr : false;
222 }
223 
224 bool getMUBUFHasSrsrc(unsigned Opc) {
225   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
226   return Info ? Info->has_srsrc : false;
227 }
228 
229 bool getMUBUFHasSoffset(unsigned Opc) {
230   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
231   return Info ? Info->has_soffset : false;
232 }
233 
234 bool getSMEMIsBuffer(unsigned Opc) {
235   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
236   return Info ? Info->IsBuffer : false;
237 }
238 
239 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
240 // header files, so we need to wrap it in a function that takes unsigned
241 // instead.
242 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
243   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
244 }
245 
246 namespace IsaInfo {
247 
248 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
249   auto TargetTriple = STI->getTargetTriple();
250   auto Version = getIsaVersion(STI->getCPU());
251 
252   Stream << TargetTriple.getArchName() << '-'
253          << TargetTriple.getVendorName() << '-'
254          << TargetTriple.getOSName() << '-'
255          << TargetTriple.getEnvironmentName() << '-'
256          << "gfx"
257          << Version.Major
258          << Version.Minor
259          << Version.Stepping;
260 
261   if (hasXNACK(*STI))
262     Stream << "+xnack";
263   if (hasSRAMECC(*STI))
264     Stream << "+sram-ecc";
265 
266   Stream.flush();
267 }
268 
269 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
270   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
271     return 16;
272   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
273     return 32;
274 
275   return 64;
276 }
277 
278 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
279   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
280     return 32768;
281   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
282     return 65536;
283 
284   return 0;
285 }
286 
287 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
288   // "Per CU" really means "per whatever functional block the waves of a
289   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
290   // two SIMDs.
291   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
292     return 2;
293   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
294   // two CUs, so a total of four SIMDs.
295   return 4;
296 }
297 
298 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
299                                unsigned FlatWorkGroupSize) {
300   assert(FlatWorkGroupSize != 0);
301   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
302     return 8;
303   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
304   if (N == 1)
305     return 40;
306   N = 40 / N;
307   return std::min(N, 16u);
308 }
309 
310 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
311   return 1;
312 }
313 
314 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
315   // FIXME: Need to take scratch memory into account.
316   if (!isGFX10Plus(*STI))
317     return 10;
318   return hasGFX10_3Insts(*STI) ? 16 : 20;
319 }
320 
321 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
322                                    unsigned FlatWorkGroupSize) {
323   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
324                     getEUsPerCU(STI));
325 }
326 
327 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
328   return 1;
329 }
330 
331 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
332   // Some subtargets allow encoding 2048, but this isn't tested or supported.
333   return 1024;
334 }
335 
336 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
337                               unsigned FlatWorkGroupSize) {
338   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
339 }
340 
341 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
342   IsaVersion Version = getIsaVersion(STI->getCPU());
343   if (Version.Major >= 10)
344     return getAddressableNumSGPRs(STI);
345   if (Version.Major >= 8)
346     return 16;
347   return 8;
348 }
349 
350 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
351   return 8;
352 }
353 
354 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
355   IsaVersion Version = getIsaVersion(STI->getCPU());
356   if (Version.Major >= 8)
357     return 800;
358   return 512;
359 }
360 
361 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
362   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
363     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
364 
365   IsaVersion Version = getIsaVersion(STI->getCPU());
366   if (Version.Major >= 10)
367     return 106;
368   if (Version.Major >= 8)
369     return 102;
370   return 104;
371 }
372 
373 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
374   assert(WavesPerEU != 0);
375 
376   IsaVersion Version = getIsaVersion(STI->getCPU());
377   if (Version.Major >= 10)
378     return 0;
379 
380   if (WavesPerEU >= getMaxWavesPerEU(STI))
381     return 0;
382 
383   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
384   if (STI->getFeatureBits().test(FeatureTrapHandler))
385     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
386   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
387   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
388 }
389 
390 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
391                         bool Addressable) {
392   assert(WavesPerEU != 0);
393 
394   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
395   IsaVersion Version = getIsaVersion(STI->getCPU());
396   if (Version.Major >= 10)
397     return Addressable ? AddressableNumSGPRs : 108;
398   if (Version.Major >= 8 && !Addressable)
399     AddressableNumSGPRs = 112;
400   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
401   if (STI->getFeatureBits().test(FeatureTrapHandler))
402     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
403   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
404   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
405 }
406 
407 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
408                           bool FlatScrUsed, bool XNACKUsed) {
409   unsigned ExtraSGPRs = 0;
410   if (VCCUsed)
411     ExtraSGPRs = 2;
412 
413   IsaVersion Version = getIsaVersion(STI->getCPU());
414   if (Version.Major >= 10)
415     return ExtraSGPRs;
416 
417   if (Version.Major < 8) {
418     if (FlatScrUsed)
419       ExtraSGPRs = 4;
420   } else {
421     if (XNACKUsed)
422       ExtraSGPRs = 4;
423 
424     if (FlatScrUsed)
425       ExtraSGPRs = 6;
426   }
427 
428   return ExtraSGPRs;
429 }
430 
431 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
432                           bool FlatScrUsed) {
433   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
434                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
435 }
436 
437 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
438   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
439   // SGPRBlocks is actual number of SGPR blocks minus 1.
440   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
441 }
442 
443 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
444                              Optional<bool> EnableWavefrontSize32) {
445   bool IsWave32 = EnableWavefrontSize32 ?
446       *EnableWavefrontSize32 :
447       STI->getFeatureBits().test(FeatureWavefrontSize32);
448 
449   if (hasGFX10_3Insts(*STI))
450     return IsWave32 ? 16 : 8;
451 
452   return IsWave32 ? 8 : 4;
453 }
454 
455 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
456                                 Optional<bool> EnableWavefrontSize32) {
457 
458   bool IsWave32 = EnableWavefrontSize32 ?
459       *EnableWavefrontSize32 :
460       STI->getFeatureBits().test(FeatureWavefrontSize32);
461 
462   return IsWave32 ? 8 : 4;
463 }
464 
465 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
466   if (!isGFX10Plus(*STI))
467     return 256;
468   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
469 }
470 
471 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
472   return 256;
473 }
474 
475 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
476   assert(WavesPerEU != 0);
477 
478   if (WavesPerEU >= getMaxWavesPerEU(STI))
479     return 0;
480   unsigned MinNumVGPRs =
481       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
482                 getVGPRAllocGranule(STI)) + 1;
483   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
484 }
485 
486 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
487   assert(WavesPerEU != 0);
488 
489   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
490                                    getVGPRAllocGranule(STI));
491   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
492   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
493 }
494 
495 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
496                           Optional<bool> EnableWavefrontSize32) {
497   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
498                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
499   // VGPRBlocks is actual number of VGPR blocks minus 1.
500   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
501 }
502 
503 } // end namespace IsaInfo
504 
505 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
506                                const MCSubtargetInfo *STI) {
507   IsaVersion Version = getIsaVersion(STI->getCPU());
508 
509   memset(&Header, 0, sizeof(Header));
510 
511   Header.amd_kernel_code_version_major = 1;
512   Header.amd_kernel_code_version_minor = 2;
513   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
514   Header.amd_machine_version_major = Version.Major;
515   Header.amd_machine_version_minor = Version.Minor;
516   Header.amd_machine_version_stepping = Version.Stepping;
517   Header.kernel_code_entry_byte_offset = sizeof(Header);
518   Header.wavefront_size = 6;
519 
520   // If the code object does not support indirect functions, then the value must
521   // be 0xffffffff.
522   Header.call_convention = -1;
523 
524   // These alignment values are specified in powers of two, so alignment =
525   // 2^n.  The minimum alignment is 2^4 = 16.
526   Header.kernarg_segment_alignment = 4;
527   Header.group_segment_alignment = 4;
528   Header.private_segment_alignment = 4;
529 
530   if (Version.Major >= 10) {
531     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
532       Header.wavefront_size = 5;
533       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
534     }
535     Header.compute_pgm_resource_registers |=
536       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
537       S_00B848_MEM_ORDERED(1);
538   }
539 }
540 
541 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
542     const MCSubtargetInfo *STI) {
543   IsaVersion Version = getIsaVersion(STI->getCPU());
544 
545   amdhsa::kernel_descriptor_t KD;
546   memset(&KD, 0, sizeof(KD));
547 
548   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
549                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
550                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
551   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
552                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
553   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
554                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
555   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
556                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
557   if (Version.Major >= 10) {
558     AMDHSA_BITS_SET(KD.kernel_code_properties,
559                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
560                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
561     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
562                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
563                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
564     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
565                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
566   }
567   return KD;
568 }
569 
570 bool isGroupSegment(const GlobalValue *GV) {
571   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
572 }
573 
574 bool isGlobalSegment(const GlobalValue *GV) {
575   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
576 }
577 
578 bool isReadOnlySegment(const GlobalValue *GV) {
579   unsigned AS = GV->getAddressSpace();
580   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
581          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
582 }
583 
584 bool shouldEmitConstantsToTextSection(const Triple &TT) {
585   return TT.getArch() == Triple::r600;
586 }
587 
588 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
589   Attribute A = F.getFnAttribute(Name);
590   int Result = Default;
591 
592   if (A.isStringAttribute()) {
593     StringRef Str = A.getValueAsString();
594     if (Str.getAsInteger(0, Result)) {
595       LLVMContext &Ctx = F.getContext();
596       Ctx.emitError("can't parse integer attribute " + Name);
597     }
598   }
599 
600   return Result;
601 }
602 
603 std::pair<int, int> getIntegerPairAttribute(const Function &F,
604                                             StringRef Name,
605                                             std::pair<int, int> Default,
606                                             bool OnlyFirstRequired) {
607   Attribute A = F.getFnAttribute(Name);
608   if (!A.isStringAttribute())
609     return Default;
610 
611   LLVMContext &Ctx = F.getContext();
612   std::pair<int, int> Ints = Default;
613   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
614   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
615     Ctx.emitError("can't parse first integer attribute " + Name);
616     return Default;
617   }
618   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
619     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
620       Ctx.emitError("can't parse second integer attribute " + Name);
621       return Default;
622     }
623   }
624 
625   return Ints;
626 }
627 
628 unsigned getVmcntBitMask(const IsaVersion &Version) {
629   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
630   if (Version.Major < 9)
631     return VmcntLo;
632 
633   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
634   return VmcntLo | VmcntHi;
635 }
636 
637 unsigned getExpcntBitMask(const IsaVersion &Version) {
638   return (1 << getExpcntBitWidth()) - 1;
639 }
640 
641 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
642   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
643 }
644 
645 unsigned getWaitcntBitMask(const IsaVersion &Version) {
646   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
647   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
648   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
649                                 getLgkmcntBitWidth(Version.Major));
650   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
651   if (Version.Major < 9)
652     return Waitcnt;
653 
654   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
655   return Waitcnt | VmcntHi;
656 }
657 
658 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
659   unsigned VmcntLo =
660       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
661   if (Version.Major < 9)
662     return VmcntLo;
663 
664   unsigned VmcntHi =
665       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
666   VmcntHi <<= getVmcntBitWidthLo();
667   return VmcntLo | VmcntHi;
668 }
669 
670 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
671   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
672 }
673 
674 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
675   return unpackBits(Waitcnt, getLgkmcntBitShift(),
676                     getLgkmcntBitWidth(Version.Major));
677 }
678 
679 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
680                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
681   Vmcnt = decodeVmcnt(Version, Waitcnt);
682   Expcnt = decodeExpcnt(Version, Waitcnt);
683   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
684 }
685 
686 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
687   Waitcnt Decoded;
688   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
689   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
690   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
691   return Decoded;
692 }
693 
694 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
695                      unsigned Vmcnt) {
696   Waitcnt =
697       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
698   if (Version.Major < 9)
699     return Waitcnt;
700 
701   Vmcnt >>= getVmcntBitWidthLo();
702   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
703 }
704 
705 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
706                       unsigned Expcnt) {
707   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
708 }
709 
710 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
711                        unsigned Lgkmcnt) {
712   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
713                                     getLgkmcntBitWidth(Version.Major));
714 }
715 
716 unsigned encodeWaitcnt(const IsaVersion &Version,
717                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
718   unsigned Waitcnt = getWaitcntBitMask(Version);
719   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
720   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
721   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
722   return Waitcnt;
723 }
724 
725 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
726   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
727 }
728 
729 //===----------------------------------------------------------------------===//
730 // hwreg
731 //===----------------------------------------------------------------------===//
732 
733 namespace Hwreg {
734 
735 int64_t getHwregId(const StringRef Name) {
736   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
737     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
738       return Id;
739   }
740   return ID_UNKNOWN_;
741 }
742 
743 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
744   if (isSI(STI) || isCI(STI) || isVI(STI))
745     return ID_SYMBOLIC_FIRST_GFX9_;
746   else if (isGFX9(STI))
747     return ID_SYMBOLIC_FIRST_GFX10_;
748   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
749     return ID_SYMBOLIC_FIRST_GFX1030_;
750   else
751     return ID_SYMBOLIC_LAST_;
752 }
753 
754 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
755   return
756     ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
757     IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
758 }
759 
760 bool isValidHwreg(int64_t Id) {
761   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
762 }
763 
764 bool isValidHwregOffset(int64_t Offset) {
765   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
766 }
767 
768 bool isValidHwregWidth(int64_t Width) {
769   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
770 }
771 
772 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
773   return (Id << ID_SHIFT_) |
774          (Offset << OFFSET_SHIFT_) |
775          ((Width - 1) << WIDTH_M1_SHIFT_);
776 }
777 
778 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
779   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
780 }
781 
782 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
783   Id = (Val & ID_MASK_) >> ID_SHIFT_;
784   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
785   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
786 }
787 
788 } // namespace Hwreg
789 
790 //===----------------------------------------------------------------------===//
791 // MTBUF Format
792 //===----------------------------------------------------------------------===//
793 
794 namespace MTBUFFormat {
795 
796 int64_t getDfmt(const StringRef Name) {
797   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
798     if (Name == DfmtSymbolic[Id])
799       return Id;
800   }
801   return DFMT_UNDEF;
802 }
803 
804 StringRef getDfmtName(unsigned Id) {
805   assert(Id <= DFMT_MAX);
806   return DfmtSymbolic[Id];
807 }
808 
809 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
810   if (isSI(STI) || isCI(STI))
811     return NfmtSymbolicSICI;
812   if (isVI(STI) || isGFX9(STI))
813     return NfmtSymbolicVI;
814   return NfmtSymbolicGFX10;
815 }
816 
817 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
818   auto lookupTable = getNfmtLookupTable(STI);
819   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
820     if (Name == lookupTable[Id])
821       return Id;
822   }
823   return NFMT_UNDEF;
824 }
825 
826 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
827   assert(Id <= NFMT_MAX);
828   return getNfmtLookupTable(STI)[Id];
829 }
830 
831 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
832   unsigned Dfmt;
833   unsigned Nfmt;
834   decodeDfmtNfmt(Id, Dfmt, Nfmt);
835   return isValidNfmt(Nfmt, STI);
836 }
837 
838 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
839   return !getNfmtName(Id, STI).empty();
840 }
841 
842 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
843   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
844 }
845 
846 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
847   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
848   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
849 }
850 
851 int64_t getUnifiedFormat(const StringRef Name) {
852   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
853     if (Name == UfmtSymbolic[Id])
854       return Id;
855   }
856   return UFMT_UNDEF;
857 }
858 
859 StringRef getUnifiedFormatName(unsigned Id) {
860   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
861 }
862 
863 bool isValidUnifiedFormat(unsigned Id) {
864   return Id <= UFMT_LAST;
865 }
866 
867 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
868   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
869   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
870     if (Fmt == DfmtNfmt2UFmt[Id])
871       return Id;
872   }
873   return UFMT_UNDEF;
874 }
875 
876 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
877   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
878 }
879 
880 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
881   if (isGFX10Plus(STI))
882     return UFMT_DEFAULT;
883   return DFMT_NFMT_DEFAULT;
884 }
885 
886 } // namespace MTBUFFormat
887 
888 //===----------------------------------------------------------------------===//
889 // SendMsg
890 //===----------------------------------------------------------------------===//
891 
892 namespace SendMsg {
893 
894 int64_t getMsgId(const StringRef Name) {
895   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
896     if (IdSymbolic[i] && Name == IdSymbolic[i])
897       return i;
898   }
899   return ID_UNKNOWN_;
900 }
901 
902 static bool isValidMsgId(int64_t MsgId) {
903   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
904 }
905 
906 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
907   if (Strict) {
908     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
909       return isGFX9Plus(STI);
910     else
911       return isValidMsgId(MsgId);
912   } else {
913     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
914   }
915 }
916 
917 StringRef getMsgName(int64_t MsgId) {
918   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
919 }
920 
921 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
922   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
923   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
924   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
925   for (int i = F; i < L; ++i) {
926     if (Name == S[i]) {
927       return i;
928     }
929   }
930   return OP_UNKNOWN_;
931 }
932 
933 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
934 
935   if (!Strict)
936     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
937 
938   switch(MsgId)
939   {
940   case ID_GS:
941     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
942   case ID_GS_DONE:
943     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
944   case ID_SYSMSG:
945     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
946   default:
947     return OpId == OP_NONE_;
948   }
949 }
950 
951 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
952   assert(msgRequiresOp(MsgId));
953   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
954 }
955 
956 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
957 
958   if (!Strict)
959     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
960 
961   switch(MsgId)
962   {
963   case ID_GS:
964     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
965   case ID_GS_DONE:
966     return (OpId == OP_GS_NOP)?
967            (StreamId == STREAM_ID_NONE_) :
968            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
969   default:
970     return StreamId == STREAM_ID_NONE_;
971   }
972 }
973 
974 bool msgRequiresOp(int64_t MsgId) {
975   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
976 }
977 
978 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
979   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
980 }
981 
982 void decodeMsg(unsigned Val,
983                uint16_t &MsgId,
984                uint16_t &OpId,
985                uint16_t &StreamId) {
986   MsgId = Val & ID_MASK_;
987   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
988   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
989 }
990 
991 uint64_t encodeMsg(uint64_t MsgId,
992                    uint64_t OpId,
993                    uint64_t StreamId) {
994   return (MsgId << ID_SHIFT_) |
995          (OpId << OP_SHIFT_) |
996          (StreamId << STREAM_ID_SHIFT_);
997 }
998 
999 } // namespace SendMsg
1000 
1001 //===----------------------------------------------------------------------===//
1002 //
1003 //===----------------------------------------------------------------------===//
1004 
1005 unsigned getInitialPSInputAddr(const Function &F) {
1006   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1007 }
1008 
1009 bool isShader(CallingConv::ID cc) {
1010   switch(cc) {
1011     case CallingConv::AMDGPU_VS:
1012     case CallingConv::AMDGPU_LS:
1013     case CallingConv::AMDGPU_HS:
1014     case CallingConv::AMDGPU_ES:
1015     case CallingConv::AMDGPU_GS:
1016     case CallingConv::AMDGPU_PS:
1017     case CallingConv::AMDGPU_CS:
1018       return true;
1019     default:
1020       return false;
1021   }
1022 }
1023 
1024 bool isGraphics(CallingConv::ID cc) {
1025   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1026 }
1027 
1028 bool isCompute(CallingConv::ID cc) {
1029   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1030 }
1031 
1032 bool isEntryFunctionCC(CallingConv::ID CC) {
1033   switch (CC) {
1034   case CallingConv::AMDGPU_KERNEL:
1035   case CallingConv::SPIR_KERNEL:
1036   case CallingConv::AMDGPU_VS:
1037   case CallingConv::AMDGPU_GS:
1038   case CallingConv::AMDGPU_PS:
1039   case CallingConv::AMDGPU_CS:
1040   case CallingConv::AMDGPU_ES:
1041   case CallingConv::AMDGPU_HS:
1042   case CallingConv::AMDGPU_LS:
1043     return true;
1044   default:
1045     return false;
1046   }
1047 }
1048 
1049 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1050   switch (CC) {
1051   case CallingConv::AMDGPU_Gfx:
1052     return true;
1053   default:
1054     return isEntryFunctionCC(CC);
1055   }
1056 }
1057 
1058 bool hasXNACK(const MCSubtargetInfo &STI) {
1059   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1060 }
1061 
1062 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1063   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1064 }
1065 
1066 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1067   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1068 }
1069 
1070 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1071   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1072 }
1073 
1074 bool hasG16(const MCSubtargetInfo &STI) {
1075   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1076 }
1077 
1078 bool hasPackedD16(const MCSubtargetInfo &STI) {
1079   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1080 }
1081 
1082 bool isSI(const MCSubtargetInfo &STI) {
1083   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1084 }
1085 
1086 bool isCI(const MCSubtargetInfo &STI) {
1087   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1088 }
1089 
1090 bool isVI(const MCSubtargetInfo &STI) {
1091   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1092 }
1093 
1094 bool isGFX9(const MCSubtargetInfo &STI) {
1095   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1096 }
1097 
1098 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1099   return isGFX9(STI) || isGFX10Plus(STI);
1100 }
1101 
1102 bool isGFX10(const MCSubtargetInfo &STI) {
1103   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1104 }
1105 
1106 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1107 
1108 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1109   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1110 }
1111 
1112 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1113   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1114 }
1115 
1116 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1117   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1118 }
1119 
1120 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1121   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1122   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1123   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1124     Reg == AMDGPU::SCC;
1125 }
1126 
1127 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1128   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1129     if (*R == Reg1) return true;
1130   }
1131   return false;
1132 }
1133 
1134 #define MAP_REG2REG \
1135   using namespace AMDGPU; \
1136   switch(Reg) { \
1137   default: return Reg; \
1138   CASE_CI_VI(FLAT_SCR) \
1139   CASE_CI_VI(FLAT_SCR_LO) \
1140   CASE_CI_VI(FLAT_SCR_HI) \
1141   CASE_VI_GFX9PLUS(TTMP0) \
1142   CASE_VI_GFX9PLUS(TTMP1) \
1143   CASE_VI_GFX9PLUS(TTMP2) \
1144   CASE_VI_GFX9PLUS(TTMP3) \
1145   CASE_VI_GFX9PLUS(TTMP4) \
1146   CASE_VI_GFX9PLUS(TTMP5) \
1147   CASE_VI_GFX9PLUS(TTMP6) \
1148   CASE_VI_GFX9PLUS(TTMP7) \
1149   CASE_VI_GFX9PLUS(TTMP8) \
1150   CASE_VI_GFX9PLUS(TTMP9) \
1151   CASE_VI_GFX9PLUS(TTMP10) \
1152   CASE_VI_GFX9PLUS(TTMP11) \
1153   CASE_VI_GFX9PLUS(TTMP12) \
1154   CASE_VI_GFX9PLUS(TTMP13) \
1155   CASE_VI_GFX9PLUS(TTMP14) \
1156   CASE_VI_GFX9PLUS(TTMP15) \
1157   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1158   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1159   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1160   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1161   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1162   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1163   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1164   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1165   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1166   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1167   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1168   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1169   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1170   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1171   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1172   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1173   }
1174 
1175 #define CASE_CI_VI(node) \
1176   assert(!isSI(STI)); \
1177   case node: return isCI(STI) ? node##_ci : node##_vi;
1178 
1179 #define CASE_VI_GFX9PLUS(node) \
1180   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1181 
1182 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1183   if (STI.getTargetTriple().getArch() == Triple::r600)
1184     return Reg;
1185   MAP_REG2REG
1186 }
1187 
1188 #undef CASE_CI_VI
1189 #undef CASE_VI_GFX9PLUS
1190 
1191 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1192 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1193 
1194 unsigned mc2PseudoReg(unsigned Reg) {
1195   MAP_REG2REG
1196 }
1197 
1198 #undef CASE_CI_VI
1199 #undef CASE_VI_GFX9PLUS
1200 #undef MAP_REG2REG
1201 
1202 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1203   assert(OpNo < Desc.NumOperands);
1204   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1205   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1206          OpType <= AMDGPU::OPERAND_SRC_LAST;
1207 }
1208 
1209 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1210   assert(OpNo < Desc.NumOperands);
1211   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1212   switch (OpType) {
1213   case AMDGPU::OPERAND_REG_IMM_FP32:
1214   case AMDGPU::OPERAND_REG_IMM_FP64:
1215   case AMDGPU::OPERAND_REG_IMM_FP16:
1216   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1217   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1218   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1219   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1220   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1221   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1222   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1223   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1224   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1225   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1226   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1227     return true;
1228   default:
1229     return false;
1230   }
1231 }
1232 
1233 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1234   assert(OpNo < Desc.NumOperands);
1235   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1236   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1237          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1238 }
1239 
1240 // Avoid using MCRegisterClass::getSize, since that function will go away
1241 // (move from MC* level to Target* level). Return size in bits.
1242 unsigned getRegBitWidth(unsigned RCID) {
1243   switch (RCID) {
1244   case AMDGPU::VGPR_LO16RegClassID:
1245   case AMDGPU::VGPR_HI16RegClassID:
1246   case AMDGPU::SGPR_LO16RegClassID:
1247   case AMDGPU::AGPR_LO16RegClassID:
1248     return 16;
1249   case AMDGPU::SGPR_32RegClassID:
1250   case AMDGPU::VGPR_32RegClassID:
1251   case AMDGPU::VRegOrLds_32RegClassID:
1252   case AMDGPU::AGPR_32RegClassID:
1253   case AMDGPU::VS_32RegClassID:
1254   case AMDGPU::AV_32RegClassID:
1255   case AMDGPU::SReg_32RegClassID:
1256   case AMDGPU::SReg_32_XM0RegClassID:
1257   case AMDGPU::SRegOrLds_32RegClassID:
1258     return 32;
1259   case AMDGPU::SGPR_64RegClassID:
1260   case AMDGPU::VS_64RegClassID:
1261   case AMDGPU::AV_64RegClassID:
1262   case AMDGPU::SReg_64RegClassID:
1263   case AMDGPU::VReg_64RegClassID:
1264   case AMDGPU::AReg_64RegClassID:
1265   case AMDGPU::SReg_64_XEXECRegClassID:
1266     return 64;
1267   case AMDGPU::SGPR_96RegClassID:
1268   case AMDGPU::SReg_96RegClassID:
1269   case AMDGPU::VReg_96RegClassID:
1270   case AMDGPU::AReg_96RegClassID:
1271     return 96;
1272   case AMDGPU::SGPR_128RegClassID:
1273   case AMDGPU::SReg_128RegClassID:
1274   case AMDGPU::VReg_128RegClassID:
1275   case AMDGPU::AReg_128RegClassID:
1276     return 128;
1277   case AMDGPU::SGPR_160RegClassID:
1278   case AMDGPU::SReg_160RegClassID:
1279   case AMDGPU::VReg_160RegClassID:
1280   case AMDGPU::AReg_160RegClassID:
1281     return 160;
1282   case AMDGPU::SGPR_192RegClassID:
1283   case AMDGPU::SReg_192RegClassID:
1284   case AMDGPU::VReg_192RegClassID:
1285   case AMDGPU::AReg_192RegClassID:
1286     return 192;
1287   case AMDGPU::SGPR_256RegClassID:
1288   case AMDGPU::SReg_256RegClassID:
1289   case AMDGPU::VReg_256RegClassID:
1290   case AMDGPU::AReg_256RegClassID:
1291     return 256;
1292   case AMDGPU::SGPR_512RegClassID:
1293   case AMDGPU::SReg_512RegClassID:
1294   case AMDGPU::VReg_512RegClassID:
1295   case AMDGPU::AReg_512RegClassID:
1296     return 512;
1297   case AMDGPU::SGPR_1024RegClassID:
1298   case AMDGPU::SReg_1024RegClassID:
1299   case AMDGPU::VReg_1024RegClassID:
1300   case AMDGPU::AReg_1024RegClassID:
1301     return 1024;
1302   default:
1303     llvm_unreachable("Unexpected register class");
1304   }
1305 }
1306 
1307 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1308   return getRegBitWidth(RC.getID());
1309 }
1310 
1311 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1312                            unsigned OpNo) {
1313   assert(OpNo < Desc.NumOperands);
1314   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1315   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1316 }
1317 
1318 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1319   if (isInlinableIntLiteral(Literal))
1320     return true;
1321 
1322   uint64_t Val = static_cast<uint64_t>(Literal);
1323   return (Val == DoubleToBits(0.0)) ||
1324          (Val == DoubleToBits(1.0)) ||
1325          (Val == DoubleToBits(-1.0)) ||
1326          (Val == DoubleToBits(0.5)) ||
1327          (Val == DoubleToBits(-0.5)) ||
1328          (Val == DoubleToBits(2.0)) ||
1329          (Val == DoubleToBits(-2.0)) ||
1330          (Val == DoubleToBits(4.0)) ||
1331          (Val == DoubleToBits(-4.0)) ||
1332          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1333 }
1334 
1335 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1336   if (isInlinableIntLiteral(Literal))
1337     return true;
1338 
1339   // The actual type of the operand does not seem to matter as long
1340   // as the bits match one of the inline immediate values.  For example:
1341   //
1342   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1343   // so it is a legal inline immediate.
1344   //
1345   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1346   // floating-point, so it is a legal inline immediate.
1347 
1348   uint32_t Val = static_cast<uint32_t>(Literal);
1349   return (Val == FloatToBits(0.0f)) ||
1350          (Val == FloatToBits(1.0f)) ||
1351          (Val == FloatToBits(-1.0f)) ||
1352          (Val == FloatToBits(0.5f)) ||
1353          (Val == FloatToBits(-0.5f)) ||
1354          (Val == FloatToBits(2.0f)) ||
1355          (Val == FloatToBits(-2.0f)) ||
1356          (Val == FloatToBits(4.0f)) ||
1357          (Val == FloatToBits(-4.0f)) ||
1358          (Val == 0x3e22f983 && HasInv2Pi);
1359 }
1360 
1361 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1362   if (!HasInv2Pi)
1363     return false;
1364 
1365   if (isInlinableIntLiteral(Literal))
1366     return true;
1367 
1368   uint16_t Val = static_cast<uint16_t>(Literal);
1369   return Val == 0x3C00 || // 1.0
1370          Val == 0xBC00 || // -1.0
1371          Val == 0x3800 || // 0.5
1372          Val == 0xB800 || // -0.5
1373          Val == 0x4000 || // 2.0
1374          Val == 0xC000 || // -2.0
1375          Val == 0x4400 || // 4.0
1376          Val == 0xC400 || // -4.0
1377          Val == 0x3118;   // 1/2pi
1378 }
1379 
1380 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1381   assert(HasInv2Pi);
1382 
1383   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1384     int16_t Trunc = static_cast<int16_t>(Literal);
1385     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1386   }
1387   if (!(Literal & 0xffff))
1388     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1389 
1390   int16_t Lo16 = static_cast<int16_t>(Literal);
1391   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1392   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1393 }
1394 
1395 bool isInlinableIntLiteralV216(int32_t Literal) {
1396   int16_t Lo16 = static_cast<int16_t>(Literal);
1397   if (isInt<16>(Literal) || isUInt<16>(Literal))
1398     return isInlinableIntLiteral(Lo16);
1399 
1400   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1401   if (!(Literal & 0xffff))
1402     return isInlinableIntLiteral(Hi16);
1403   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1404 }
1405 
1406 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1407   assert(HasInv2Pi);
1408 
1409   int16_t Lo16 = static_cast<int16_t>(Literal);
1410   if (isInt<16>(Literal) || isUInt<16>(Literal))
1411     return true;
1412 
1413   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1414   if (!(Literal & 0xffff))
1415     return true;
1416   return Lo16 == Hi16;
1417 }
1418 
1419 bool isArgPassedInSGPR(const Argument *A) {
1420   const Function *F = A->getParent();
1421 
1422   // Arguments to compute shaders are never a source of divergence.
1423   CallingConv::ID CC = F->getCallingConv();
1424   switch (CC) {
1425   case CallingConv::AMDGPU_KERNEL:
1426   case CallingConv::SPIR_KERNEL:
1427     return true;
1428   case CallingConv::AMDGPU_VS:
1429   case CallingConv::AMDGPU_LS:
1430   case CallingConv::AMDGPU_HS:
1431   case CallingConv::AMDGPU_ES:
1432   case CallingConv::AMDGPU_GS:
1433   case CallingConv::AMDGPU_PS:
1434   case CallingConv::AMDGPU_CS:
1435   case CallingConv::AMDGPU_Gfx:
1436     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1437     // Everything else is in VGPRs.
1438     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1439            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1440   default:
1441     // TODO: Should calls support inreg for SGPR inputs?
1442     return false;
1443   }
1444 }
1445 
1446 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1447   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1448 }
1449 
1450 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1451   return isGFX9Plus(ST);
1452 }
1453 
1454 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1455                                       int64_t EncodedOffset) {
1456   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1457                                : isUInt<8>(EncodedOffset);
1458 }
1459 
1460 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1461                                     int64_t EncodedOffset,
1462                                     bool IsBuffer) {
1463   return !IsBuffer &&
1464          hasSMRDSignedImmOffset(ST) &&
1465          isInt<21>(EncodedOffset);
1466 }
1467 
1468 static bool isDwordAligned(uint64_t ByteOffset) {
1469   return (ByteOffset & 3) == 0;
1470 }
1471 
1472 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1473                                 uint64_t ByteOffset) {
1474   if (hasSMEMByteOffset(ST))
1475     return ByteOffset;
1476 
1477   assert(isDwordAligned(ByteOffset));
1478   return ByteOffset >> 2;
1479 }
1480 
1481 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1482                                        int64_t ByteOffset, bool IsBuffer) {
1483   // The signed version is always a byte offset.
1484   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1485     assert(hasSMEMByteOffset(ST));
1486     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1487   }
1488 
1489   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1490     return None;
1491 
1492   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1493   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1494              ? Optional<int64_t>(EncodedOffset)
1495              : None;
1496 }
1497 
1498 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1499                                                 int64_t ByteOffset) {
1500   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1501     return None;
1502 
1503   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1504   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1505 }
1506 
1507 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1508   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1509   if (AMDGPU::isGFX10(ST))
1510     return Signed ? 12 : 11;
1511 
1512   return Signed ? 13 : 12;
1513 }
1514 
1515 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1516 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1517 // hardware bug needing a workaround).
1518 //
1519 // The required alignment ensures that individual address components remain
1520 // aligned if they are aligned to begin with. It also ensures that additional
1521 // offsets within the given alignment can be added to the resulting ImmOffset.
1522 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1523                       const GCNSubtarget *Subtarget, Align Alignment) {
1524   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1525   uint32_t Overflow = 0;
1526 
1527   if (Imm > MaxImm) {
1528     if (Imm <= MaxImm + 64) {
1529       // Use an SOffset inline constant for 4..64
1530       Overflow = Imm - MaxImm;
1531       Imm = MaxImm;
1532     } else {
1533       // Try to keep the same value in SOffset for adjacent loads, so that
1534       // the corresponding register contents can be re-used.
1535       //
1536       // Load values with all low-bits (except for alignment bits) set into
1537       // SOffset, so that a larger range of values can be covered using
1538       // s_movk_i32.
1539       //
1540       // Atomic operations fail to work correctly when individual address
1541       // components are unaligned, even if their sum is aligned.
1542       uint32_t High = (Imm + Alignment.value()) & ~4095;
1543       uint32_t Low = (Imm + Alignment.value()) & 4095;
1544       Imm = Low;
1545       Overflow = High - Alignment.value();
1546     }
1547   }
1548 
1549   // There is a hardware bug in SI and CI which prevents address clamping in
1550   // MUBUF instructions from working correctly with SOffsets. The immediate
1551   // offset is unaffected.
1552   if (Overflow > 0 &&
1553       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1554     return false;
1555 
1556   ImmOffset = Imm;
1557   SOffset = Overflow;
1558   return true;
1559 }
1560 
1561 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1562   *this = getDefaultForCallingConv(F.getCallingConv());
1563 
1564   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1565   if (!IEEEAttr.empty())
1566     IEEE = IEEEAttr == "true";
1567 
1568   StringRef DX10ClampAttr
1569     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1570   if (!DX10ClampAttr.empty())
1571     DX10Clamp = DX10ClampAttr == "true";
1572 
1573   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1574   if (!DenormF32Attr.empty()) {
1575     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1576     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1577     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1578   }
1579 
1580   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1581   if (!DenormAttr.empty()) {
1582     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1583 
1584     if (DenormF32Attr.empty()) {
1585       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1586       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1587     }
1588 
1589     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1590     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1591   }
1592 }
1593 
1594 namespace {
1595 
1596 struct SourceOfDivergence {
1597   unsigned Intr;
1598 };
1599 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1600 
1601 #define GET_SourcesOfDivergence_IMPL
1602 #define GET_Gfx9BufferFormat_IMPL
1603 #define GET_Gfx10PlusBufferFormat_IMPL
1604 #include "AMDGPUGenSearchableTables.inc"
1605 
1606 } // end anonymous namespace
1607 
1608 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1609   return lookupSourceOfDivergence(IntrID);
1610 }
1611 
1612 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1613                                                   uint8_t NumComponents,
1614                                                   uint8_t NumFormat,
1615                                                   const MCSubtargetInfo &STI) {
1616   return isGFX10Plus(STI)
1617              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1618                                             NumFormat)
1619              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1620 }
1621 
1622 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1623                                                   const MCSubtargetInfo &STI) {
1624   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
1625                           : getGfx9BufferFormatInfo(Format);
1626 }
1627 
1628 } // namespace AMDGPU
1629 } // namespace llvm
1630