1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDGPUSubtarget.h" 13 #include "AMDKernelCodeT.h" 14 #include "llvm/BinaryFormat/ELF.h" 15 #include "llvm/IR/Attributes.h" 16 #include "llvm/IR/Function.h" 17 #include "llvm/IR/GlobalValue.h" 18 #include "llvm/IR/IntrinsicsAMDGPU.h" 19 #include "llvm/IR/IntrinsicsR600.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/MC/MCSubtargetInfo.h" 22 #include "llvm/Support/AMDHSAKernelDescriptor.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/TargetParser.h" 25 26 #define GET_INSTRINFO_NAMED_OPS 27 #define GET_INSTRMAP_INFO 28 #include "AMDGPUGenInstrInfo.inc" 29 30 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion( 31 "amdhsa-code-object-version", llvm::cl::Hidden, 32 llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3)); 33 34 namespace { 35 36 /// \returns Bit mask for given bit \p Shift and bit \p Width. 37 unsigned getBitMask(unsigned Shift, unsigned Width) { 38 return ((1 << Width) - 1) << Shift; 39 } 40 41 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 42 /// 43 /// \returns Packed \p Dst. 44 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 45 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 46 Dst |= (Src << Shift) & getBitMask(Shift, Width); 47 return Dst; 48 } 49 50 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 51 /// 52 /// \returns Unpacked bits. 53 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 54 return (Src & getBitMask(Shift, Width)) >> Shift; 55 } 56 57 /// \returns Vmcnt bit shift (lower bits). 58 unsigned getVmcntBitShiftLo() { return 0; } 59 60 /// \returns Vmcnt bit width (lower bits). 61 unsigned getVmcntBitWidthLo() { return 4; } 62 63 /// \returns Expcnt bit shift. 64 unsigned getExpcntBitShift() { return 4; } 65 66 /// \returns Expcnt bit width. 67 unsigned getExpcntBitWidth() { return 3; } 68 69 /// \returns Lgkmcnt bit shift. 70 unsigned getLgkmcntBitShift() { return 8; } 71 72 /// \returns Lgkmcnt bit width. 73 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 74 return (VersionMajor >= 10) ? 6 : 4; 75 } 76 77 /// \returns Vmcnt bit shift (higher bits). 78 unsigned getVmcntBitShiftHi() { return 14; } 79 80 /// \returns Vmcnt bit width (higher bits). 81 unsigned getVmcntBitWidthHi() { return 2; } 82 83 } // end namespace anonymous 84 85 namespace llvm { 86 87 namespace AMDGPU { 88 89 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) { 90 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) 91 return None; 92 93 switch (AmdhsaCodeObjectVersion) { 94 case 2: 95 return ELF::ELFABIVERSION_AMDGPU_HSA_V2; 96 case 3: 97 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 98 default: 99 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 100 } 101 } 102 103 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { 104 if (const auto &&HsaAbiVer = getHsaAbiVersion(STI)) 105 return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2; 106 return false; 107 } 108 109 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { 110 if (const auto &&HsaAbiVer = getHsaAbiVersion(STI)) 111 return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3; 112 return false; 113 } 114 115 #define GET_MIMGBaseOpcodesTable_IMPL 116 #define GET_MIMGDimInfoTable_IMPL 117 #define GET_MIMGInfoTable_IMPL 118 #define GET_MIMGLZMappingTable_IMPL 119 #define GET_MIMGMIPMappingTable_IMPL 120 #define GET_MIMGG16MappingTable_IMPL 121 #include "AMDGPUGenSearchableTables.inc" 122 123 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 124 unsigned VDataDwords, unsigned VAddrDwords) { 125 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 126 VDataDwords, VAddrDwords); 127 return Info ? Info->Opcode : -1; 128 } 129 130 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 131 const MIMGInfo *Info = getMIMGInfo(Opc); 132 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 133 } 134 135 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 136 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 137 const MIMGInfo *NewInfo = 138 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 139 NewChannels, OrigInfo->VAddrDwords); 140 return NewInfo ? NewInfo->Opcode : -1; 141 } 142 143 struct MUBUFInfo { 144 uint16_t Opcode; 145 uint16_t BaseOpcode; 146 uint8_t elements; 147 bool has_vaddr; 148 bool has_srsrc; 149 bool has_soffset; 150 }; 151 152 struct MTBUFInfo { 153 uint16_t Opcode; 154 uint16_t BaseOpcode; 155 uint8_t elements; 156 bool has_vaddr; 157 bool has_srsrc; 158 bool has_soffset; 159 }; 160 161 struct SMInfo { 162 uint16_t Opcode; 163 bool IsBuffer; 164 }; 165 166 #define GET_MTBUFInfoTable_DECL 167 #define GET_MTBUFInfoTable_IMPL 168 #define GET_MUBUFInfoTable_DECL 169 #define GET_MUBUFInfoTable_IMPL 170 #define GET_SMInfoTable_DECL 171 #define GET_SMInfoTable_IMPL 172 #include "AMDGPUGenSearchableTables.inc" 173 174 int getMTBUFBaseOpcode(unsigned Opc) { 175 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 176 return Info ? Info->BaseOpcode : -1; 177 } 178 179 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 180 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 181 return Info ? Info->Opcode : -1; 182 } 183 184 int getMTBUFElements(unsigned Opc) { 185 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 186 return Info ? Info->elements : 0; 187 } 188 189 bool getMTBUFHasVAddr(unsigned Opc) { 190 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 191 return Info ? Info->has_vaddr : false; 192 } 193 194 bool getMTBUFHasSrsrc(unsigned Opc) { 195 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 196 return Info ? Info->has_srsrc : false; 197 } 198 199 bool getMTBUFHasSoffset(unsigned Opc) { 200 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 201 return Info ? Info->has_soffset : false; 202 } 203 204 int getMUBUFBaseOpcode(unsigned Opc) { 205 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 206 return Info ? Info->BaseOpcode : -1; 207 } 208 209 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 210 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 211 return Info ? Info->Opcode : -1; 212 } 213 214 int getMUBUFElements(unsigned Opc) { 215 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 216 return Info ? Info->elements : 0; 217 } 218 219 bool getMUBUFHasVAddr(unsigned Opc) { 220 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 221 return Info ? Info->has_vaddr : false; 222 } 223 224 bool getMUBUFHasSrsrc(unsigned Opc) { 225 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 226 return Info ? Info->has_srsrc : false; 227 } 228 229 bool getMUBUFHasSoffset(unsigned Opc) { 230 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 231 return Info ? Info->has_soffset : false; 232 } 233 234 bool getSMEMIsBuffer(unsigned Opc) { 235 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 236 return Info ? Info->IsBuffer : false; 237 } 238 239 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 240 // header files, so we need to wrap it in a function that takes unsigned 241 // instead. 242 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 243 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 244 } 245 246 namespace IsaInfo { 247 248 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 249 auto TargetTriple = STI->getTargetTriple(); 250 auto Version = getIsaVersion(STI->getCPU()); 251 252 Stream << TargetTriple.getArchName() << '-' 253 << TargetTriple.getVendorName() << '-' 254 << TargetTriple.getOSName() << '-' 255 << TargetTriple.getEnvironmentName() << '-' 256 << "gfx" 257 << Version.Major 258 << Version.Minor 259 << Version.Stepping; 260 261 if (hasXNACK(*STI)) 262 Stream << "+xnack"; 263 if (hasSRAMECC(*STI)) 264 Stream << "+sram-ecc"; 265 266 Stream.flush(); 267 } 268 269 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 270 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 271 return 16; 272 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 273 return 32; 274 275 return 64; 276 } 277 278 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 279 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 280 return 32768; 281 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 282 return 65536; 283 284 return 0; 285 } 286 287 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 288 // "Per CU" really means "per whatever functional block the waves of a 289 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 290 // two SIMDs. 291 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 292 return 2; 293 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 294 // two CUs, so a total of four SIMDs. 295 return 4; 296 } 297 298 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 299 unsigned FlatWorkGroupSize) { 300 assert(FlatWorkGroupSize != 0); 301 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 302 return 8; 303 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 304 if (N == 1) 305 return 40; 306 N = 40 / N; 307 return std::min(N, 16u); 308 } 309 310 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 311 return 1; 312 } 313 314 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 315 // FIXME: Need to take scratch memory into account. 316 if (!isGFX10Plus(*STI)) 317 return 10; 318 return hasGFX10_3Insts(*STI) ? 16 : 20; 319 } 320 321 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 322 unsigned FlatWorkGroupSize) { 323 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 324 getEUsPerCU(STI)); 325 } 326 327 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 328 return 1; 329 } 330 331 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 332 // Some subtargets allow encoding 2048, but this isn't tested or supported. 333 return 1024; 334 } 335 336 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 337 unsigned FlatWorkGroupSize) { 338 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 339 } 340 341 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 342 IsaVersion Version = getIsaVersion(STI->getCPU()); 343 if (Version.Major >= 10) 344 return getAddressableNumSGPRs(STI); 345 if (Version.Major >= 8) 346 return 16; 347 return 8; 348 } 349 350 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 351 return 8; 352 } 353 354 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 355 IsaVersion Version = getIsaVersion(STI->getCPU()); 356 if (Version.Major >= 8) 357 return 800; 358 return 512; 359 } 360 361 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 362 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 363 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 364 365 IsaVersion Version = getIsaVersion(STI->getCPU()); 366 if (Version.Major >= 10) 367 return 106; 368 if (Version.Major >= 8) 369 return 102; 370 return 104; 371 } 372 373 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 374 assert(WavesPerEU != 0); 375 376 IsaVersion Version = getIsaVersion(STI->getCPU()); 377 if (Version.Major >= 10) 378 return 0; 379 380 if (WavesPerEU >= getMaxWavesPerEU(STI)) 381 return 0; 382 383 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 384 if (STI->getFeatureBits().test(FeatureTrapHandler)) 385 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 386 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 387 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 388 } 389 390 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 391 bool Addressable) { 392 assert(WavesPerEU != 0); 393 394 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 395 IsaVersion Version = getIsaVersion(STI->getCPU()); 396 if (Version.Major >= 10) 397 return Addressable ? AddressableNumSGPRs : 108; 398 if (Version.Major >= 8 && !Addressable) 399 AddressableNumSGPRs = 112; 400 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 401 if (STI->getFeatureBits().test(FeatureTrapHandler)) 402 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 403 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 404 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 405 } 406 407 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 408 bool FlatScrUsed, bool XNACKUsed) { 409 unsigned ExtraSGPRs = 0; 410 if (VCCUsed) 411 ExtraSGPRs = 2; 412 413 IsaVersion Version = getIsaVersion(STI->getCPU()); 414 if (Version.Major >= 10) 415 return ExtraSGPRs; 416 417 if (Version.Major < 8) { 418 if (FlatScrUsed) 419 ExtraSGPRs = 4; 420 } else { 421 if (XNACKUsed) 422 ExtraSGPRs = 4; 423 424 if (FlatScrUsed) 425 ExtraSGPRs = 6; 426 } 427 428 return ExtraSGPRs; 429 } 430 431 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 432 bool FlatScrUsed) { 433 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 434 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 435 } 436 437 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 438 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 439 // SGPRBlocks is actual number of SGPR blocks minus 1. 440 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 441 } 442 443 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 444 Optional<bool> EnableWavefrontSize32) { 445 bool IsWave32 = EnableWavefrontSize32 ? 446 *EnableWavefrontSize32 : 447 STI->getFeatureBits().test(FeatureWavefrontSize32); 448 449 if (hasGFX10_3Insts(*STI)) 450 return IsWave32 ? 16 : 8; 451 452 return IsWave32 ? 8 : 4; 453 } 454 455 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 456 Optional<bool> EnableWavefrontSize32) { 457 458 bool IsWave32 = EnableWavefrontSize32 ? 459 *EnableWavefrontSize32 : 460 STI->getFeatureBits().test(FeatureWavefrontSize32); 461 462 return IsWave32 ? 8 : 4; 463 } 464 465 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 466 if (!isGFX10Plus(*STI)) 467 return 256; 468 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 469 } 470 471 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 472 return 256; 473 } 474 475 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 476 assert(WavesPerEU != 0); 477 478 if (WavesPerEU >= getMaxWavesPerEU(STI)) 479 return 0; 480 unsigned MinNumVGPRs = 481 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 482 getVGPRAllocGranule(STI)) + 1; 483 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 484 } 485 486 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 487 assert(WavesPerEU != 0); 488 489 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 490 getVGPRAllocGranule(STI)); 491 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 492 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 493 } 494 495 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 496 Optional<bool> EnableWavefrontSize32) { 497 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 498 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 499 // VGPRBlocks is actual number of VGPR blocks minus 1. 500 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 501 } 502 503 } // end namespace IsaInfo 504 505 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 506 const MCSubtargetInfo *STI) { 507 IsaVersion Version = getIsaVersion(STI->getCPU()); 508 509 memset(&Header, 0, sizeof(Header)); 510 511 Header.amd_kernel_code_version_major = 1; 512 Header.amd_kernel_code_version_minor = 2; 513 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 514 Header.amd_machine_version_major = Version.Major; 515 Header.amd_machine_version_minor = Version.Minor; 516 Header.amd_machine_version_stepping = Version.Stepping; 517 Header.kernel_code_entry_byte_offset = sizeof(Header); 518 Header.wavefront_size = 6; 519 520 // If the code object does not support indirect functions, then the value must 521 // be 0xffffffff. 522 Header.call_convention = -1; 523 524 // These alignment values are specified in powers of two, so alignment = 525 // 2^n. The minimum alignment is 2^4 = 16. 526 Header.kernarg_segment_alignment = 4; 527 Header.group_segment_alignment = 4; 528 Header.private_segment_alignment = 4; 529 530 if (Version.Major >= 10) { 531 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 532 Header.wavefront_size = 5; 533 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 534 } 535 Header.compute_pgm_resource_registers |= 536 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 537 S_00B848_MEM_ORDERED(1); 538 } 539 } 540 541 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 542 const MCSubtargetInfo *STI) { 543 IsaVersion Version = getIsaVersion(STI->getCPU()); 544 545 amdhsa::kernel_descriptor_t KD; 546 memset(&KD, 0, sizeof(KD)); 547 548 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 549 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 550 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 551 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 552 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 553 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 554 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 555 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 556 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 557 if (Version.Major >= 10) { 558 AMDHSA_BITS_SET(KD.kernel_code_properties, 559 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 560 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 561 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 562 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 563 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 564 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 565 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 566 } 567 return KD; 568 } 569 570 bool isGroupSegment(const GlobalValue *GV) { 571 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 572 } 573 574 bool isGlobalSegment(const GlobalValue *GV) { 575 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 576 } 577 578 bool isReadOnlySegment(const GlobalValue *GV) { 579 unsigned AS = GV->getAddressSpace(); 580 return AS == AMDGPUAS::CONSTANT_ADDRESS || 581 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 582 } 583 584 bool shouldEmitConstantsToTextSection(const Triple &TT) { 585 return TT.getArch() == Triple::r600; 586 } 587 588 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 589 Attribute A = F.getFnAttribute(Name); 590 int Result = Default; 591 592 if (A.isStringAttribute()) { 593 StringRef Str = A.getValueAsString(); 594 if (Str.getAsInteger(0, Result)) { 595 LLVMContext &Ctx = F.getContext(); 596 Ctx.emitError("can't parse integer attribute " + Name); 597 } 598 } 599 600 return Result; 601 } 602 603 std::pair<int, int> getIntegerPairAttribute(const Function &F, 604 StringRef Name, 605 std::pair<int, int> Default, 606 bool OnlyFirstRequired) { 607 Attribute A = F.getFnAttribute(Name); 608 if (!A.isStringAttribute()) 609 return Default; 610 611 LLVMContext &Ctx = F.getContext(); 612 std::pair<int, int> Ints = Default; 613 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 614 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 615 Ctx.emitError("can't parse first integer attribute " + Name); 616 return Default; 617 } 618 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 619 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 620 Ctx.emitError("can't parse second integer attribute " + Name); 621 return Default; 622 } 623 } 624 625 return Ints; 626 } 627 628 unsigned getVmcntBitMask(const IsaVersion &Version) { 629 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 630 if (Version.Major < 9) 631 return VmcntLo; 632 633 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 634 return VmcntLo | VmcntHi; 635 } 636 637 unsigned getExpcntBitMask(const IsaVersion &Version) { 638 return (1 << getExpcntBitWidth()) - 1; 639 } 640 641 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 642 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 643 } 644 645 unsigned getWaitcntBitMask(const IsaVersion &Version) { 646 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 647 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 648 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 649 getLgkmcntBitWidth(Version.Major)); 650 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 651 if (Version.Major < 9) 652 return Waitcnt; 653 654 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 655 return Waitcnt | VmcntHi; 656 } 657 658 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 659 unsigned VmcntLo = 660 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 661 if (Version.Major < 9) 662 return VmcntLo; 663 664 unsigned VmcntHi = 665 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 666 VmcntHi <<= getVmcntBitWidthLo(); 667 return VmcntLo | VmcntHi; 668 } 669 670 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 671 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 672 } 673 674 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 675 return unpackBits(Waitcnt, getLgkmcntBitShift(), 676 getLgkmcntBitWidth(Version.Major)); 677 } 678 679 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 680 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 681 Vmcnt = decodeVmcnt(Version, Waitcnt); 682 Expcnt = decodeExpcnt(Version, Waitcnt); 683 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 684 } 685 686 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 687 Waitcnt Decoded; 688 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 689 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 690 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 691 return Decoded; 692 } 693 694 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 695 unsigned Vmcnt) { 696 Waitcnt = 697 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 698 if (Version.Major < 9) 699 return Waitcnt; 700 701 Vmcnt >>= getVmcntBitWidthLo(); 702 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 703 } 704 705 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 706 unsigned Expcnt) { 707 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 708 } 709 710 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 711 unsigned Lgkmcnt) { 712 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 713 getLgkmcntBitWidth(Version.Major)); 714 } 715 716 unsigned encodeWaitcnt(const IsaVersion &Version, 717 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 718 unsigned Waitcnt = getWaitcntBitMask(Version); 719 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 720 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 721 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 722 return Waitcnt; 723 } 724 725 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 726 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 727 } 728 729 //===----------------------------------------------------------------------===// 730 // hwreg 731 //===----------------------------------------------------------------------===// 732 733 namespace Hwreg { 734 735 int64_t getHwregId(const StringRef Name) { 736 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 737 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 738 return Id; 739 } 740 return ID_UNKNOWN_; 741 } 742 743 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 744 if (isSI(STI) || isCI(STI) || isVI(STI)) 745 return ID_SYMBOLIC_FIRST_GFX9_; 746 else if (isGFX9(STI)) 747 return ID_SYMBOLIC_FIRST_GFX10_; 748 else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) 749 return ID_SYMBOLIC_FIRST_GFX1030_; 750 else 751 return ID_SYMBOLIC_LAST_; 752 } 753 754 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 755 return 756 ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 757 IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI)); 758 } 759 760 bool isValidHwreg(int64_t Id) { 761 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 762 } 763 764 bool isValidHwregOffset(int64_t Offset) { 765 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 766 } 767 768 bool isValidHwregWidth(int64_t Width) { 769 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 770 } 771 772 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 773 return (Id << ID_SHIFT_) | 774 (Offset << OFFSET_SHIFT_) | 775 ((Width - 1) << WIDTH_M1_SHIFT_); 776 } 777 778 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 779 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 780 } 781 782 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 783 Id = (Val & ID_MASK_) >> ID_SHIFT_; 784 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 785 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 786 } 787 788 } // namespace Hwreg 789 790 //===----------------------------------------------------------------------===// 791 // MTBUF Format 792 //===----------------------------------------------------------------------===// 793 794 namespace MTBUFFormat { 795 796 int64_t getDfmt(const StringRef Name) { 797 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 798 if (Name == DfmtSymbolic[Id]) 799 return Id; 800 } 801 return DFMT_UNDEF; 802 } 803 804 StringRef getDfmtName(unsigned Id) { 805 assert(Id <= DFMT_MAX); 806 return DfmtSymbolic[Id]; 807 } 808 809 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 810 if (isSI(STI) || isCI(STI)) 811 return NfmtSymbolicSICI; 812 if (isVI(STI) || isGFX9(STI)) 813 return NfmtSymbolicVI; 814 return NfmtSymbolicGFX10; 815 } 816 817 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 818 auto lookupTable = getNfmtLookupTable(STI); 819 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 820 if (Name == lookupTable[Id]) 821 return Id; 822 } 823 return NFMT_UNDEF; 824 } 825 826 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 827 assert(Id <= NFMT_MAX); 828 return getNfmtLookupTable(STI)[Id]; 829 } 830 831 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 832 unsigned Dfmt; 833 unsigned Nfmt; 834 decodeDfmtNfmt(Id, Dfmt, Nfmt); 835 return isValidNfmt(Nfmt, STI); 836 } 837 838 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 839 return !getNfmtName(Id, STI).empty(); 840 } 841 842 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 843 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 844 } 845 846 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 847 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 848 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 849 } 850 851 int64_t getUnifiedFormat(const StringRef Name) { 852 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 853 if (Name == UfmtSymbolic[Id]) 854 return Id; 855 } 856 return UFMT_UNDEF; 857 } 858 859 StringRef getUnifiedFormatName(unsigned Id) { 860 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 861 } 862 863 bool isValidUnifiedFormat(unsigned Id) { 864 return Id <= UFMT_LAST; 865 } 866 867 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 868 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 869 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 870 if (Fmt == DfmtNfmt2UFmt[Id]) 871 return Id; 872 } 873 return UFMT_UNDEF; 874 } 875 876 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 877 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 878 } 879 880 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 881 if (isGFX10Plus(STI)) 882 return UFMT_DEFAULT; 883 return DFMT_NFMT_DEFAULT; 884 } 885 886 } // namespace MTBUFFormat 887 888 //===----------------------------------------------------------------------===// 889 // SendMsg 890 //===----------------------------------------------------------------------===// 891 892 namespace SendMsg { 893 894 int64_t getMsgId(const StringRef Name) { 895 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 896 if (IdSymbolic[i] && Name == IdSymbolic[i]) 897 return i; 898 } 899 return ID_UNKNOWN_; 900 } 901 902 static bool isValidMsgId(int64_t MsgId) { 903 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 904 } 905 906 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 907 if (Strict) { 908 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 909 return isGFX9Plus(STI); 910 else 911 return isValidMsgId(MsgId); 912 } else { 913 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 914 } 915 } 916 917 StringRef getMsgName(int64_t MsgId) { 918 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 919 } 920 921 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 922 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 923 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 924 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 925 for (int i = F; i < L; ++i) { 926 if (Name == S[i]) { 927 return i; 928 } 929 } 930 return OP_UNKNOWN_; 931 } 932 933 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 934 935 if (!Strict) 936 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 937 938 switch(MsgId) 939 { 940 case ID_GS: 941 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 942 case ID_GS_DONE: 943 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 944 case ID_SYSMSG: 945 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 946 default: 947 return OpId == OP_NONE_; 948 } 949 } 950 951 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 952 assert(msgRequiresOp(MsgId)); 953 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 954 } 955 956 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 957 958 if (!Strict) 959 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 960 961 switch(MsgId) 962 { 963 case ID_GS: 964 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 965 case ID_GS_DONE: 966 return (OpId == OP_GS_NOP)? 967 (StreamId == STREAM_ID_NONE_) : 968 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 969 default: 970 return StreamId == STREAM_ID_NONE_; 971 } 972 } 973 974 bool msgRequiresOp(int64_t MsgId) { 975 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 976 } 977 978 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 979 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 980 } 981 982 void decodeMsg(unsigned Val, 983 uint16_t &MsgId, 984 uint16_t &OpId, 985 uint16_t &StreamId) { 986 MsgId = Val & ID_MASK_; 987 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 988 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 989 } 990 991 uint64_t encodeMsg(uint64_t MsgId, 992 uint64_t OpId, 993 uint64_t StreamId) { 994 return (MsgId << ID_SHIFT_) | 995 (OpId << OP_SHIFT_) | 996 (StreamId << STREAM_ID_SHIFT_); 997 } 998 999 } // namespace SendMsg 1000 1001 //===----------------------------------------------------------------------===// 1002 // 1003 //===----------------------------------------------------------------------===// 1004 1005 unsigned getInitialPSInputAddr(const Function &F) { 1006 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1007 } 1008 1009 bool isShader(CallingConv::ID cc) { 1010 switch(cc) { 1011 case CallingConv::AMDGPU_VS: 1012 case CallingConv::AMDGPU_LS: 1013 case CallingConv::AMDGPU_HS: 1014 case CallingConv::AMDGPU_ES: 1015 case CallingConv::AMDGPU_GS: 1016 case CallingConv::AMDGPU_PS: 1017 case CallingConv::AMDGPU_CS: 1018 return true; 1019 default: 1020 return false; 1021 } 1022 } 1023 1024 bool isGraphics(CallingConv::ID cc) { 1025 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; 1026 } 1027 1028 bool isCompute(CallingConv::ID cc) { 1029 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; 1030 } 1031 1032 bool isEntryFunctionCC(CallingConv::ID CC) { 1033 switch (CC) { 1034 case CallingConv::AMDGPU_KERNEL: 1035 case CallingConv::SPIR_KERNEL: 1036 case CallingConv::AMDGPU_VS: 1037 case CallingConv::AMDGPU_GS: 1038 case CallingConv::AMDGPU_PS: 1039 case CallingConv::AMDGPU_CS: 1040 case CallingConv::AMDGPU_ES: 1041 case CallingConv::AMDGPU_HS: 1042 case CallingConv::AMDGPU_LS: 1043 return true; 1044 default: 1045 return false; 1046 } 1047 } 1048 1049 bool isModuleEntryFunctionCC(CallingConv::ID CC) { 1050 switch (CC) { 1051 case CallingConv::AMDGPU_Gfx: 1052 return true; 1053 default: 1054 return isEntryFunctionCC(CC); 1055 } 1056 } 1057 1058 bool hasXNACK(const MCSubtargetInfo &STI) { 1059 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1060 } 1061 1062 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1063 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1064 } 1065 1066 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1067 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1068 } 1069 1070 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1071 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1072 } 1073 1074 bool hasG16(const MCSubtargetInfo &STI) { 1075 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1076 } 1077 1078 bool hasPackedD16(const MCSubtargetInfo &STI) { 1079 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1080 } 1081 1082 bool isSI(const MCSubtargetInfo &STI) { 1083 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1084 } 1085 1086 bool isCI(const MCSubtargetInfo &STI) { 1087 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1088 } 1089 1090 bool isVI(const MCSubtargetInfo &STI) { 1091 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1092 } 1093 1094 bool isGFX9(const MCSubtargetInfo &STI) { 1095 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1096 } 1097 1098 bool isGFX9Plus(const MCSubtargetInfo &STI) { 1099 return isGFX9(STI) || isGFX10Plus(STI); 1100 } 1101 1102 bool isGFX10(const MCSubtargetInfo &STI) { 1103 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1104 } 1105 1106 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } 1107 1108 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1109 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1110 } 1111 1112 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1113 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1114 } 1115 1116 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1117 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1118 } 1119 1120 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1121 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1122 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1123 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1124 Reg == AMDGPU::SCC; 1125 } 1126 1127 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 1128 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 1129 if (*R == Reg1) return true; 1130 } 1131 return false; 1132 } 1133 1134 #define MAP_REG2REG \ 1135 using namespace AMDGPU; \ 1136 switch(Reg) { \ 1137 default: return Reg; \ 1138 CASE_CI_VI(FLAT_SCR) \ 1139 CASE_CI_VI(FLAT_SCR_LO) \ 1140 CASE_CI_VI(FLAT_SCR_HI) \ 1141 CASE_VI_GFX9PLUS(TTMP0) \ 1142 CASE_VI_GFX9PLUS(TTMP1) \ 1143 CASE_VI_GFX9PLUS(TTMP2) \ 1144 CASE_VI_GFX9PLUS(TTMP3) \ 1145 CASE_VI_GFX9PLUS(TTMP4) \ 1146 CASE_VI_GFX9PLUS(TTMP5) \ 1147 CASE_VI_GFX9PLUS(TTMP6) \ 1148 CASE_VI_GFX9PLUS(TTMP7) \ 1149 CASE_VI_GFX9PLUS(TTMP8) \ 1150 CASE_VI_GFX9PLUS(TTMP9) \ 1151 CASE_VI_GFX9PLUS(TTMP10) \ 1152 CASE_VI_GFX9PLUS(TTMP11) \ 1153 CASE_VI_GFX9PLUS(TTMP12) \ 1154 CASE_VI_GFX9PLUS(TTMP13) \ 1155 CASE_VI_GFX9PLUS(TTMP14) \ 1156 CASE_VI_GFX9PLUS(TTMP15) \ 1157 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \ 1158 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \ 1159 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \ 1160 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \ 1161 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \ 1162 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \ 1163 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \ 1164 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \ 1165 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \ 1166 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \ 1167 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \ 1168 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \ 1169 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1170 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1171 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1172 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1173 } 1174 1175 #define CASE_CI_VI(node) \ 1176 assert(!isSI(STI)); \ 1177 case node: return isCI(STI) ? node##_ci : node##_vi; 1178 1179 #define CASE_VI_GFX9PLUS(node) \ 1180 case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi; 1181 1182 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1183 if (STI.getTargetTriple().getArch() == Triple::r600) 1184 return Reg; 1185 MAP_REG2REG 1186 } 1187 1188 #undef CASE_CI_VI 1189 #undef CASE_VI_GFX9PLUS 1190 1191 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1192 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node; 1193 1194 unsigned mc2PseudoReg(unsigned Reg) { 1195 MAP_REG2REG 1196 } 1197 1198 #undef CASE_CI_VI 1199 #undef CASE_VI_GFX9PLUS 1200 #undef MAP_REG2REG 1201 1202 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1203 assert(OpNo < Desc.NumOperands); 1204 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1205 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1206 OpType <= AMDGPU::OPERAND_SRC_LAST; 1207 } 1208 1209 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1210 assert(OpNo < Desc.NumOperands); 1211 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1212 switch (OpType) { 1213 case AMDGPU::OPERAND_REG_IMM_FP32: 1214 case AMDGPU::OPERAND_REG_IMM_FP64: 1215 case AMDGPU::OPERAND_REG_IMM_FP16: 1216 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1217 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1218 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1219 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1220 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1221 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1222 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1223 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1224 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1225 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1226 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1227 return true; 1228 default: 1229 return false; 1230 } 1231 } 1232 1233 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1234 assert(OpNo < Desc.NumOperands); 1235 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1236 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1237 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1238 } 1239 1240 // Avoid using MCRegisterClass::getSize, since that function will go away 1241 // (move from MC* level to Target* level). Return size in bits. 1242 unsigned getRegBitWidth(unsigned RCID) { 1243 switch (RCID) { 1244 case AMDGPU::VGPR_LO16RegClassID: 1245 case AMDGPU::VGPR_HI16RegClassID: 1246 case AMDGPU::SGPR_LO16RegClassID: 1247 case AMDGPU::AGPR_LO16RegClassID: 1248 return 16; 1249 case AMDGPU::SGPR_32RegClassID: 1250 case AMDGPU::VGPR_32RegClassID: 1251 case AMDGPU::VRegOrLds_32RegClassID: 1252 case AMDGPU::AGPR_32RegClassID: 1253 case AMDGPU::VS_32RegClassID: 1254 case AMDGPU::AV_32RegClassID: 1255 case AMDGPU::SReg_32RegClassID: 1256 case AMDGPU::SReg_32_XM0RegClassID: 1257 case AMDGPU::SRegOrLds_32RegClassID: 1258 return 32; 1259 case AMDGPU::SGPR_64RegClassID: 1260 case AMDGPU::VS_64RegClassID: 1261 case AMDGPU::AV_64RegClassID: 1262 case AMDGPU::SReg_64RegClassID: 1263 case AMDGPU::VReg_64RegClassID: 1264 case AMDGPU::AReg_64RegClassID: 1265 case AMDGPU::SReg_64_XEXECRegClassID: 1266 return 64; 1267 case AMDGPU::SGPR_96RegClassID: 1268 case AMDGPU::SReg_96RegClassID: 1269 case AMDGPU::VReg_96RegClassID: 1270 case AMDGPU::AReg_96RegClassID: 1271 return 96; 1272 case AMDGPU::SGPR_128RegClassID: 1273 case AMDGPU::SReg_128RegClassID: 1274 case AMDGPU::VReg_128RegClassID: 1275 case AMDGPU::AReg_128RegClassID: 1276 return 128; 1277 case AMDGPU::SGPR_160RegClassID: 1278 case AMDGPU::SReg_160RegClassID: 1279 case AMDGPU::VReg_160RegClassID: 1280 case AMDGPU::AReg_160RegClassID: 1281 return 160; 1282 case AMDGPU::SGPR_192RegClassID: 1283 case AMDGPU::SReg_192RegClassID: 1284 case AMDGPU::VReg_192RegClassID: 1285 case AMDGPU::AReg_192RegClassID: 1286 return 192; 1287 case AMDGPU::SGPR_256RegClassID: 1288 case AMDGPU::SReg_256RegClassID: 1289 case AMDGPU::VReg_256RegClassID: 1290 case AMDGPU::AReg_256RegClassID: 1291 return 256; 1292 case AMDGPU::SGPR_512RegClassID: 1293 case AMDGPU::SReg_512RegClassID: 1294 case AMDGPU::VReg_512RegClassID: 1295 case AMDGPU::AReg_512RegClassID: 1296 return 512; 1297 case AMDGPU::SGPR_1024RegClassID: 1298 case AMDGPU::SReg_1024RegClassID: 1299 case AMDGPU::VReg_1024RegClassID: 1300 case AMDGPU::AReg_1024RegClassID: 1301 return 1024; 1302 default: 1303 llvm_unreachable("Unexpected register class"); 1304 } 1305 } 1306 1307 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1308 return getRegBitWidth(RC.getID()); 1309 } 1310 1311 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1312 unsigned OpNo) { 1313 assert(OpNo < Desc.NumOperands); 1314 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1315 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1316 } 1317 1318 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1319 if (isInlinableIntLiteral(Literal)) 1320 return true; 1321 1322 uint64_t Val = static_cast<uint64_t>(Literal); 1323 return (Val == DoubleToBits(0.0)) || 1324 (Val == DoubleToBits(1.0)) || 1325 (Val == DoubleToBits(-1.0)) || 1326 (Val == DoubleToBits(0.5)) || 1327 (Val == DoubleToBits(-0.5)) || 1328 (Val == DoubleToBits(2.0)) || 1329 (Val == DoubleToBits(-2.0)) || 1330 (Val == DoubleToBits(4.0)) || 1331 (Val == DoubleToBits(-4.0)) || 1332 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1333 } 1334 1335 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1336 if (isInlinableIntLiteral(Literal)) 1337 return true; 1338 1339 // The actual type of the operand does not seem to matter as long 1340 // as the bits match one of the inline immediate values. For example: 1341 // 1342 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1343 // so it is a legal inline immediate. 1344 // 1345 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1346 // floating-point, so it is a legal inline immediate. 1347 1348 uint32_t Val = static_cast<uint32_t>(Literal); 1349 return (Val == FloatToBits(0.0f)) || 1350 (Val == FloatToBits(1.0f)) || 1351 (Val == FloatToBits(-1.0f)) || 1352 (Val == FloatToBits(0.5f)) || 1353 (Val == FloatToBits(-0.5f)) || 1354 (Val == FloatToBits(2.0f)) || 1355 (Val == FloatToBits(-2.0f)) || 1356 (Val == FloatToBits(4.0f)) || 1357 (Val == FloatToBits(-4.0f)) || 1358 (Val == 0x3e22f983 && HasInv2Pi); 1359 } 1360 1361 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1362 if (!HasInv2Pi) 1363 return false; 1364 1365 if (isInlinableIntLiteral(Literal)) 1366 return true; 1367 1368 uint16_t Val = static_cast<uint16_t>(Literal); 1369 return Val == 0x3C00 || // 1.0 1370 Val == 0xBC00 || // -1.0 1371 Val == 0x3800 || // 0.5 1372 Val == 0xB800 || // -0.5 1373 Val == 0x4000 || // 2.0 1374 Val == 0xC000 || // -2.0 1375 Val == 0x4400 || // 4.0 1376 Val == 0xC400 || // -4.0 1377 Val == 0x3118; // 1/2pi 1378 } 1379 1380 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1381 assert(HasInv2Pi); 1382 1383 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1384 int16_t Trunc = static_cast<int16_t>(Literal); 1385 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1386 } 1387 if (!(Literal & 0xffff)) 1388 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1389 1390 int16_t Lo16 = static_cast<int16_t>(Literal); 1391 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1392 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1393 } 1394 1395 bool isInlinableIntLiteralV216(int32_t Literal) { 1396 int16_t Lo16 = static_cast<int16_t>(Literal); 1397 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1398 return isInlinableIntLiteral(Lo16); 1399 1400 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1401 if (!(Literal & 0xffff)) 1402 return isInlinableIntLiteral(Hi16); 1403 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1404 } 1405 1406 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1407 assert(HasInv2Pi); 1408 1409 int16_t Lo16 = static_cast<int16_t>(Literal); 1410 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1411 return true; 1412 1413 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1414 if (!(Literal & 0xffff)) 1415 return true; 1416 return Lo16 == Hi16; 1417 } 1418 1419 bool isArgPassedInSGPR(const Argument *A) { 1420 const Function *F = A->getParent(); 1421 1422 // Arguments to compute shaders are never a source of divergence. 1423 CallingConv::ID CC = F->getCallingConv(); 1424 switch (CC) { 1425 case CallingConv::AMDGPU_KERNEL: 1426 case CallingConv::SPIR_KERNEL: 1427 return true; 1428 case CallingConv::AMDGPU_VS: 1429 case CallingConv::AMDGPU_LS: 1430 case CallingConv::AMDGPU_HS: 1431 case CallingConv::AMDGPU_ES: 1432 case CallingConv::AMDGPU_GS: 1433 case CallingConv::AMDGPU_PS: 1434 case CallingConv::AMDGPU_CS: 1435 case CallingConv::AMDGPU_Gfx: 1436 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1437 // Everything else is in VGPRs. 1438 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1439 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1440 default: 1441 // TODO: Should calls support inreg for SGPR inputs? 1442 return false; 1443 } 1444 } 1445 1446 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1447 return isGCN3Encoding(ST) || isGFX10Plus(ST); 1448 } 1449 1450 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1451 return isGFX9Plus(ST); 1452 } 1453 1454 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1455 int64_t EncodedOffset) { 1456 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1457 : isUInt<8>(EncodedOffset); 1458 } 1459 1460 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1461 int64_t EncodedOffset, 1462 bool IsBuffer) { 1463 return !IsBuffer && 1464 hasSMRDSignedImmOffset(ST) && 1465 isInt<21>(EncodedOffset); 1466 } 1467 1468 static bool isDwordAligned(uint64_t ByteOffset) { 1469 return (ByteOffset & 3) == 0; 1470 } 1471 1472 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1473 uint64_t ByteOffset) { 1474 if (hasSMEMByteOffset(ST)) 1475 return ByteOffset; 1476 1477 assert(isDwordAligned(ByteOffset)); 1478 return ByteOffset >> 2; 1479 } 1480 1481 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1482 int64_t ByteOffset, bool IsBuffer) { 1483 // The signed version is always a byte offset. 1484 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1485 assert(hasSMEMByteOffset(ST)); 1486 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1487 } 1488 1489 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1490 return None; 1491 1492 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1493 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1494 ? Optional<int64_t>(EncodedOffset) 1495 : None; 1496 } 1497 1498 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1499 int64_t ByteOffset) { 1500 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1501 return None; 1502 1503 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1504 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1505 } 1506 1507 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { 1508 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. 1509 if (AMDGPU::isGFX10(ST)) 1510 return Signed ? 12 : 11; 1511 1512 return Signed ? 13 : 12; 1513 } 1514 1515 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1516 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1517 // hardware bug needing a workaround). 1518 // 1519 // The required alignment ensures that individual address components remain 1520 // aligned if they are aligned to begin with. It also ensures that additional 1521 // offsets within the given alignment can be added to the resulting ImmOffset. 1522 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1523 const GCNSubtarget *Subtarget, Align Alignment) { 1524 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 1525 uint32_t Overflow = 0; 1526 1527 if (Imm > MaxImm) { 1528 if (Imm <= MaxImm + 64) { 1529 // Use an SOffset inline constant for 4..64 1530 Overflow = Imm - MaxImm; 1531 Imm = MaxImm; 1532 } else { 1533 // Try to keep the same value in SOffset for adjacent loads, so that 1534 // the corresponding register contents can be re-used. 1535 // 1536 // Load values with all low-bits (except for alignment bits) set into 1537 // SOffset, so that a larger range of values can be covered using 1538 // s_movk_i32. 1539 // 1540 // Atomic operations fail to work correctly when individual address 1541 // components are unaligned, even if their sum is aligned. 1542 uint32_t High = (Imm + Alignment.value()) & ~4095; 1543 uint32_t Low = (Imm + Alignment.value()) & 4095; 1544 Imm = Low; 1545 Overflow = High - Alignment.value(); 1546 } 1547 } 1548 1549 // There is a hardware bug in SI and CI which prevents address clamping in 1550 // MUBUF instructions from working correctly with SOffsets. The immediate 1551 // offset is unaffected. 1552 if (Overflow > 0 && 1553 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1554 return false; 1555 1556 ImmOffset = Imm; 1557 SOffset = Overflow; 1558 return true; 1559 } 1560 1561 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1562 *this = getDefaultForCallingConv(F.getCallingConv()); 1563 1564 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1565 if (!IEEEAttr.empty()) 1566 IEEE = IEEEAttr == "true"; 1567 1568 StringRef DX10ClampAttr 1569 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1570 if (!DX10ClampAttr.empty()) 1571 DX10Clamp = DX10ClampAttr == "true"; 1572 1573 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1574 if (!DenormF32Attr.empty()) { 1575 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1576 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1577 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1578 } 1579 1580 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1581 if (!DenormAttr.empty()) { 1582 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1583 1584 if (DenormF32Attr.empty()) { 1585 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1586 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1587 } 1588 1589 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1590 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1591 } 1592 } 1593 1594 namespace { 1595 1596 struct SourceOfDivergence { 1597 unsigned Intr; 1598 }; 1599 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1600 1601 #define GET_SourcesOfDivergence_IMPL 1602 #define GET_Gfx9BufferFormat_IMPL 1603 #define GET_Gfx10PlusBufferFormat_IMPL 1604 #include "AMDGPUGenSearchableTables.inc" 1605 1606 } // end anonymous namespace 1607 1608 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1609 return lookupSourceOfDivergence(IntrID); 1610 } 1611 1612 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 1613 uint8_t NumComponents, 1614 uint8_t NumFormat, 1615 const MCSubtargetInfo &STI) { 1616 return isGFX10Plus(STI) 1617 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 1618 NumFormat) 1619 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 1620 } 1621 1622 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 1623 const MCSubtargetInfo &STI) { 1624 return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) 1625 : getGfx9BufferFormatInfo(Format); 1626 } 1627 1628 } // namespace AMDGPU 1629 } // namespace llvm 1630