1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "AMDGPUBaseInfo.h" 11 #include "AMDGPUTargetTransformInfo.h" 12 #include "AMDGPU.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth() { return 4; } 89 90 /// \returns Vmcnt bit shift (higher bits). 91 unsigned getVmcntBitShiftHi() { return 14; } 92 93 /// \returns Vmcnt bit width (higher bits). 94 unsigned getVmcntBitWidthHi() { return 2; } 95 96 } // end namespace anonymous 97 98 namespace llvm { 99 100 namespace AMDGPU { 101 102 struct MIMGInfo { 103 uint16_t Opcode; 104 uint16_t BaseOpcode; 105 uint8_t MIMGEncoding; 106 uint8_t VDataDwords; 107 uint8_t VAddrDwords; 108 }; 109 110 #define GET_MIMGBaseOpcodesTable_IMPL 111 #define GET_MIMGDimInfoTable_IMPL 112 #define GET_MIMGInfoTable_IMPL 113 #define GET_MIMGLZMappingTable_IMPL 114 #include "AMDGPUGenSearchableTables.inc" 115 116 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 117 unsigned VDataDwords, unsigned VAddrDwords) { 118 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 119 VDataDwords, VAddrDwords); 120 return Info ? Info->Opcode : -1; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 132 // header files, so we need to wrap it in a function that takes unsigned 133 // instead. 134 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 135 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 136 } 137 138 namespace IsaInfo { 139 140 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 141 auto TargetTriple = STI->getTargetTriple(); 142 auto Version = getIsaVersion(STI->getCPU()); 143 144 Stream << TargetTriple.getArchName() << '-' 145 << TargetTriple.getVendorName() << '-' 146 << TargetTriple.getOSName() << '-' 147 << TargetTriple.getEnvironmentName() << '-' 148 << "gfx" 149 << Version.Major 150 << Version.Minor 151 << Version.Stepping; 152 153 if (hasXNACK(*STI)) 154 Stream << "+xnack"; 155 if (hasSRAMECC(*STI)) 156 Stream << "+sram-ecc"; 157 158 Stream.flush(); 159 } 160 161 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 162 return STI->getFeatureBits().test(FeatureCodeObjectV3); 163 } 164 165 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 166 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 167 return 16; 168 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 169 return 32; 170 171 return 64; 172 } 173 174 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 175 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 176 return 32768; 177 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 178 return 65536; 179 180 return 0; 181 } 182 183 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 184 return 4; 185 } 186 187 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 188 unsigned FlatWorkGroupSize) { 189 if (!STI->getFeatureBits().test(FeatureGCN)) 190 return 8; 191 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 192 if (N == 1) 193 return 40; 194 N = 40 / N; 195 return std::min(N, 16u); 196 } 197 198 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 199 return getMaxWavesPerEU() * getEUsPerCU(STI); 200 } 201 202 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 203 unsigned FlatWorkGroupSize) { 204 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 205 } 206 207 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 208 return 1; 209 } 210 211 unsigned getMaxWavesPerEU() { 212 // FIXME: Need to take scratch memory into account. 213 return 10; 214 } 215 216 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 217 unsigned FlatWorkGroupSize) { 218 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 219 getEUsPerCU(STI)) / getEUsPerCU(STI); 220 } 221 222 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 223 return 1; 224 } 225 226 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 227 return 2048; 228 } 229 230 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 231 unsigned FlatWorkGroupSize) { 232 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 233 getWavefrontSize(STI); 234 } 235 236 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 237 IsaVersion Version = getIsaVersion(STI->getCPU()); 238 if (Version.Major >= 8) 239 return 16; 240 return 8; 241 } 242 243 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 244 return 8; 245 } 246 247 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 248 IsaVersion Version = getIsaVersion(STI->getCPU()); 249 if (Version.Major >= 8) 250 return 800; 251 return 512; 252 } 253 254 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 255 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 256 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 257 258 IsaVersion Version = getIsaVersion(STI->getCPU()); 259 if (Version.Major >= 8) 260 return 102; 261 return 104; 262 } 263 264 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 265 assert(WavesPerEU != 0); 266 267 if (WavesPerEU >= getMaxWavesPerEU()) 268 return 0; 269 270 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 271 if (STI->getFeatureBits().test(FeatureTrapHandler)) 272 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 273 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 274 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 275 } 276 277 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 278 bool Addressable) { 279 assert(WavesPerEU != 0); 280 281 IsaVersion Version = getIsaVersion(STI->getCPU()); 282 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 283 if (Version.Major >= 8 && !Addressable) 284 AddressableNumSGPRs = 112; 285 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 286 if (STI->getFeatureBits().test(FeatureTrapHandler)) 287 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 288 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 289 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 290 } 291 292 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 293 bool FlatScrUsed, bool XNACKUsed) { 294 unsigned ExtraSGPRs = 0; 295 if (VCCUsed) 296 ExtraSGPRs = 2; 297 298 IsaVersion Version = getIsaVersion(STI->getCPU()); 299 if (Version.Major < 8) { 300 if (FlatScrUsed) 301 ExtraSGPRs = 4; 302 } else { 303 if (XNACKUsed) 304 ExtraSGPRs = 4; 305 306 if (FlatScrUsed) 307 ExtraSGPRs = 6; 308 } 309 310 return ExtraSGPRs; 311 } 312 313 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 314 bool FlatScrUsed) { 315 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 316 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 317 } 318 319 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 320 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 321 // SGPRBlocks is actual number of SGPR blocks minus 1. 322 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 323 } 324 325 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) { 326 return 4; 327 } 328 329 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) { 330 return getVGPRAllocGranule(STI); 331 } 332 333 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 334 return 256; 335 } 336 337 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 338 return getTotalNumVGPRs(STI); 339 } 340 341 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 342 assert(WavesPerEU != 0); 343 344 if (WavesPerEU >= getMaxWavesPerEU()) 345 return 0; 346 unsigned MinNumVGPRs = 347 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 348 getVGPRAllocGranule(STI)) + 1; 349 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 350 } 351 352 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 353 assert(WavesPerEU != 0); 354 355 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 356 getVGPRAllocGranule(STI)); 357 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 358 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 359 } 360 361 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) { 362 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI)); 363 // VGPRBlocks is actual number of VGPR blocks minus 1. 364 return NumVGPRs / getVGPREncodingGranule(STI) - 1; 365 } 366 367 } // end namespace IsaInfo 368 369 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 370 const MCSubtargetInfo *STI) { 371 IsaVersion Version = getIsaVersion(STI->getCPU()); 372 373 memset(&Header, 0, sizeof(Header)); 374 375 Header.amd_kernel_code_version_major = 1; 376 Header.amd_kernel_code_version_minor = 2; 377 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 378 Header.amd_machine_version_major = Version.Major; 379 Header.amd_machine_version_minor = Version.Minor; 380 Header.amd_machine_version_stepping = Version.Stepping; 381 Header.kernel_code_entry_byte_offset = sizeof(Header); 382 // wavefront_size is specified as a power of 2: 2^6 = 64 threads. 383 Header.wavefront_size = 6; 384 385 // If the code object does not support indirect functions, then the value must 386 // be 0xffffffff. 387 Header.call_convention = -1; 388 389 // These alignment values are specified in powers of two, so alignment = 390 // 2^n. The minimum alignment is 2^4 = 16. 391 Header.kernarg_segment_alignment = 4; 392 Header.group_segment_alignment = 4; 393 Header.private_segment_alignment = 4; 394 } 395 396 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() { 397 amdhsa::kernel_descriptor_t KD; 398 memset(&KD, 0, sizeof(KD)); 399 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 400 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 401 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 402 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 403 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 404 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 405 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 406 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 407 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 408 return KD; 409 } 410 411 bool isGroupSegment(const GlobalValue *GV) { 412 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 413 } 414 415 bool isGlobalSegment(const GlobalValue *GV) { 416 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 417 } 418 419 bool isReadOnlySegment(const GlobalValue *GV) { 420 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 421 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 422 } 423 424 bool shouldEmitConstantsToTextSection(const Triple &TT) { 425 return TT.getOS() != Triple::AMDHSA; 426 } 427 428 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 429 Attribute A = F.getFnAttribute(Name); 430 int Result = Default; 431 432 if (A.isStringAttribute()) { 433 StringRef Str = A.getValueAsString(); 434 if (Str.getAsInteger(0, Result)) { 435 LLVMContext &Ctx = F.getContext(); 436 Ctx.emitError("can't parse integer attribute " + Name); 437 } 438 } 439 440 return Result; 441 } 442 443 std::pair<int, int> getIntegerPairAttribute(const Function &F, 444 StringRef Name, 445 std::pair<int, int> Default, 446 bool OnlyFirstRequired) { 447 Attribute A = F.getFnAttribute(Name); 448 if (!A.isStringAttribute()) 449 return Default; 450 451 LLVMContext &Ctx = F.getContext(); 452 std::pair<int, int> Ints = Default; 453 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 454 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 455 Ctx.emitError("can't parse first integer attribute " + Name); 456 return Default; 457 } 458 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 459 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 460 Ctx.emitError("can't parse second integer attribute " + Name); 461 return Default; 462 } 463 } 464 465 return Ints; 466 } 467 468 unsigned getVmcntBitMask(const IsaVersion &Version) { 469 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 470 if (Version.Major < 9) 471 return VmcntLo; 472 473 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 474 return VmcntLo | VmcntHi; 475 } 476 477 unsigned getExpcntBitMask(const IsaVersion &Version) { 478 return (1 << getExpcntBitWidth()) - 1; 479 } 480 481 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 482 return (1 << getLgkmcntBitWidth()) - 1; 483 } 484 485 unsigned getWaitcntBitMask(const IsaVersion &Version) { 486 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 487 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 488 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth()); 489 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 490 if (Version.Major < 9) 491 return Waitcnt; 492 493 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 494 return Waitcnt | VmcntHi; 495 } 496 497 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 498 unsigned VmcntLo = 499 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 500 if (Version.Major < 9) 501 return VmcntLo; 502 503 unsigned VmcntHi = 504 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 505 VmcntHi <<= getVmcntBitWidthLo(); 506 return VmcntLo | VmcntHi; 507 } 508 509 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 510 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 511 } 512 513 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 514 return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 515 } 516 517 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 518 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 519 Vmcnt = decodeVmcnt(Version, Waitcnt); 520 Expcnt = decodeExpcnt(Version, Waitcnt); 521 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 522 } 523 524 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 525 unsigned Vmcnt) { 526 Waitcnt = 527 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 528 if (Version.Major < 9) 529 return Waitcnt; 530 531 Vmcnt >>= getVmcntBitWidthLo(); 532 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 533 } 534 535 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 536 unsigned Expcnt) { 537 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 538 } 539 540 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 541 unsigned Lgkmcnt) { 542 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 543 } 544 545 unsigned encodeWaitcnt(const IsaVersion &Version, 546 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 547 unsigned Waitcnt = getWaitcntBitMask(Version); 548 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 549 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 550 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 551 return Waitcnt; 552 } 553 554 unsigned getInitialPSInputAddr(const Function &F) { 555 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 556 } 557 558 bool isShader(CallingConv::ID cc) { 559 switch(cc) { 560 case CallingConv::AMDGPU_VS: 561 case CallingConv::AMDGPU_LS: 562 case CallingConv::AMDGPU_HS: 563 case CallingConv::AMDGPU_ES: 564 case CallingConv::AMDGPU_GS: 565 case CallingConv::AMDGPU_PS: 566 case CallingConv::AMDGPU_CS: 567 return true; 568 default: 569 return false; 570 } 571 } 572 573 bool isCompute(CallingConv::ID cc) { 574 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 575 } 576 577 bool isEntryFunctionCC(CallingConv::ID CC) { 578 switch (CC) { 579 case CallingConv::AMDGPU_KERNEL: 580 case CallingConv::SPIR_KERNEL: 581 case CallingConv::AMDGPU_VS: 582 case CallingConv::AMDGPU_GS: 583 case CallingConv::AMDGPU_PS: 584 case CallingConv::AMDGPU_CS: 585 case CallingConv::AMDGPU_ES: 586 case CallingConv::AMDGPU_HS: 587 case CallingConv::AMDGPU_LS: 588 return true; 589 default: 590 return false; 591 } 592 } 593 594 bool hasXNACK(const MCSubtargetInfo &STI) { 595 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 596 } 597 598 bool hasSRAMECC(const MCSubtargetInfo &STI) { 599 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 600 } 601 602 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 603 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 604 } 605 606 bool hasPackedD16(const MCSubtargetInfo &STI) { 607 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 608 } 609 610 bool isSI(const MCSubtargetInfo &STI) { 611 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 612 } 613 614 bool isCI(const MCSubtargetInfo &STI) { 615 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 616 } 617 618 bool isVI(const MCSubtargetInfo &STI) { 619 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 620 } 621 622 bool isGFX9(const MCSubtargetInfo &STI) { 623 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 624 } 625 626 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 627 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 628 } 629 630 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 631 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 632 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 633 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 634 Reg == AMDGPU::SCC; 635 } 636 637 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 638 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 639 if (*R == Reg1) return true; 640 } 641 return false; 642 } 643 644 #define MAP_REG2REG \ 645 using namespace AMDGPU; \ 646 switch(Reg) { \ 647 default: return Reg; \ 648 CASE_CI_VI(FLAT_SCR) \ 649 CASE_CI_VI(FLAT_SCR_LO) \ 650 CASE_CI_VI(FLAT_SCR_HI) \ 651 CASE_VI_GFX9(TTMP0) \ 652 CASE_VI_GFX9(TTMP1) \ 653 CASE_VI_GFX9(TTMP2) \ 654 CASE_VI_GFX9(TTMP3) \ 655 CASE_VI_GFX9(TTMP4) \ 656 CASE_VI_GFX9(TTMP5) \ 657 CASE_VI_GFX9(TTMP6) \ 658 CASE_VI_GFX9(TTMP7) \ 659 CASE_VI_GFX9(TTMP8) \ 660 CASE_VI_GFX9(TTMP9) \ 661 CASE_VI_GFX9(TTMP10) \ 662 CASE_VI_GFX9(TTMP11) \ 663 CASE_VI_GFX9(TTMP12) \ 664 CASE_VI_GFX9(TTMP13) \ 665 CASE_VI_GFX9(TTMP14) \ 666 CASE_VI_GFX9(TTMP15) \ 667 CASE_VI_GFX9(TTMP0_TTMP1) \ 668 CASE_VI_GFX9(TTMP2_TTMP3) \ 669 CASE_VI_GFX9(TTMP4_TTMP5) \ 670 CASE_VI_GFX9(TTMP6_TTMP7) \ 671 CASE_VI_GFX9(TTMP8_TTMP9) \ 672 CASE_VI_GFX9(TTMP10_TTMP11) \ 673 CASE_VI_GFX9(TTMP12_TTMP13) \ 674 CASE_VI_GFX9(TTMP14_TTMP15) \ 675 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \ 676 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \ 677 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \ 678 CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \ 679 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 680 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 681 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 682 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 683 } 684 685 #define CASE_CI_VI(node) \ 686 assert(!isSI(STI)); \ 687 case node: return isCI(STI) ? node##_ci : node##_vi; 688 689 #define CASE_VI_GFX9(node) \ 690 case node: return isGFX9(STI) ? node##_gfx9 : node##_vi; 691 692 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 693 if (STI.getTargetTriple().getArch() == Triple::r600) 694 return Reg; 695 MAP_REG2REG 696 } 697 698 #undef CASE_CI_VI 699 #undef CASE_VI_GFX9 700 701 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 702 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node; 703 704 unsigned mc2PseudoReg(unsigned Reg) { 705 MAP_REG2REG 706 } 707 708 #undef CASE_CI_VI 709 #undef CASE_VI_GFX9 710 #undef MAP_REG2REG 711 712 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 713 assert(OpNo < Desc.NumOperands); 714 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 715 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 716 OpType <= AMDGPU::OPERAND_SRC_LAST; 717 } 718 719 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 720 assert(OpNo < Desc.NumOperands); 721 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 722 switch (OpType) { 723 case AMDGPU::OPERAND_REG_IMM_FP32: 724 case AMDGPU::OPERAND_REG_IMM_FP64: 725 case AMDGPU::OPERAND_REG_IMM_FP16: 726 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 727 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 728 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 729 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 730 return true; 731 default: 732 return false; 733 } 734 } 735 736 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 737 assert(OpNo < Desc.NumOperands); 738 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 739 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 740 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 741 } 742 743 // Avoid using MCRegisterClass::getSize, since that function will go away 744 // (move from MC* level to Target* level). Return size in bits. 745 unsigned getRegBitWidth(unsigned RCID) { 746 switch (RCID) { 747 case AMDGPU::SGPR_32RegClassID: 748 case AMDGPU::VGPR_32RegClassID: 749 case AMDGPU::VS_32RegClassID: 750 case AMDGPU::SReg_32RegClassID: 751 case AMDGPU::SReg_32_XM0RegClassID: 752 return 32; 753 case AMDGPU::SGPR_64RegClassID: 754 case AMDGPU::VS_64RegClassID: 755 case AMDGPU::SReg_64RegClassID: 756 case AMDGPU::VReg_64RegClassID: 757 return 64; 758 case AMDGPU::VReg_96RegClassID: 759 return 96; 760 case AMDGPU::SGPR_128RegClassID: 761 case AMDGPU::SReg_128RegClassID: 762 case AMDGPU::VReg_128RegClassID: 763 return 128; 764 case AMDGPU::SReg_256RegClassID: 765 case AMDGPU::VReg_256RegClassID: 766 return 256; 767 case AMDGPU::SReg_512RegClassID: 768 case AMDGPU::VReg_512RegClassID: 769 return 512; 770 default: 771 llvm_unreachable("Unexpected register class"); 772 } 773 } 774 775 unsigned getRegBitWidth(const MCRegisterClass &RC) { 776 return getRegBitWidth(RC.getID()); 777 } 778 779 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 780 unsigned OpNo) { 781 assert(OpNo < Desc.NumOperands); 782 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 783 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 784 } 785 786 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 787 if (Literal >= -16 && Literal <= 64) 788 return true; 789 790 uint64_t Val = static_cast<uint64_t>(Literal); 791 return (Val == DoubleToBits(0.0)) || 792 (Val == DoubleToBits(1.0)) || 793 (Val == DoubleToBits(-1.0)) || 794 (Val == DoubleToBits(0.5)) || 795 (Val == DoubleToBits(-0.5)) || 796 (Val == DoubleToBits(2.0)) || 797 (Val == DoubleToBits(-2.0)) || 798 (Val == DoubleToBits(4.0)) || 799 (Val == DoubleToBits(-4.0)) || 800 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 801 } 802 803 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 804 if (Literal >= -16 && Literal <= 64) 805 return true; 806 807 // The actual type of the operand does not seem to matter as long 808 // as the bits match one of the inline immediate values. For example: 809 // 810 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 811 // so it is a legal inline immediate. 812 // 813 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 814 // floating-point, so it is a legal inline immediate. 815 816 uint32_t Val = static_cast<uint32_t>(Literal); 817 return (Val == FloatToBits(0.0f)) || 818 (Val == FloatToBits(1.0f)) || 819 (Val == FloatToBits(-1.0f)) || 820 (Val == FloatToBits(0.5f)) || 821 (Val == FloatToBits(-0.5f)) || 822 (Val == FloatToBits(2.0f)) || 823 (Val == FloatToBits(-2.0f)) || 824 (Val == FloatToBits(4.0f)) || 825 (Val == FloatToBits(-4.0f)) || 826 (Val == 0x3e22f983 && HasInv2Pi); 827 } 828 829 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 830 if (!HasInv2Pi) 831 return false; 832 833 if (Literal >= -16 && Literal <= 64) 834 return true; 835 836 uint16_t Val = static_cast<uint16_t>(Literal); 837 return Val == 0x3C00 || // 1.0 838 Val == 0xBC00 || // -1.0 839 Val == 0x3800 || // 0.5 840 Val == 0xB800 || // -0.5 841 Val == 0x4000 || // 2.0 842 Val == 0xC000 || // -2.0 843 Val == 0x4400 || // 4.0 844 Val == 0xC400 || // -4.0 845 Val == 0x3118; // 1/2pi 846 } 847 848 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 849 assert(HasInv2Pi); 850 851 int16_t Lo16 = static_cast<int16_t>(Literal); 852 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 853 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 854 } 855 856 bool isArgPassedInSGPR(const Argument *A) { 857 const Function *F = A->getParent(); 858 859 // Arguments to compute shaders are never a source of divergence. 860 CallingConv::ID CC = F->getCallingConv(); 861 switch (CC) { 862 case CallingConv::AMDGPU_KERNEL: 863 case CallingConv::SPIR_KERNEL: 864 return true; 865 case CallingConv::AMDGPU_VS: 866 case CallingConv::AMDGPU_LS: 867 case CallingConv::AMDGPU_HS: 868 case CallingConv::AMDGPU_ES: 869 case CallingConv::AMDGPU_GS: 870 case CallingConv::AMDGPU_PS: 871 case CallingConv::AMDGPU_CS: 872 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 873 // Everything else is in VGPRs. 874 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 875 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 876 default: 877 // TODO: Should calls support inreg for SGPR inputs? 878 return false; 879 } 880 } 881 882 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 883 if (isGCN3Encoding(ST)) 884 return ByteOffset; 885 return ByteOffset >> 2; 886 } 887 888 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 889 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 890 return isGCN3Encoding(ST) ? 891 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 892 } 893 894 // Given Imm, split it into the values to put into the SOffset and ImmOffset 895 // fields in an MUBUF instruction. Return false if it is not possible (due to a 896 // hardware bug needing a workaround). 897 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 898 const GCNSubtarget *Subtarget) { 899 const uint32_t Align = 4; 900 const uint32_t MaxImm = alignDown(4095, Align); 901 uint32_t Overflow = 0; 902 903 if (Imm > MaxImm) { 904 if (Imm <= MaxImm + 64) { 905 // Use an SOffset inline constant for 4..64 906 Overflow = Imm - MaxImm; 907 Imm = MaxImm; 908 } else { 909 // Try to keep the same value in SOffset for adjacent loads, so that 910 // the corresponding register contents can be re-used. 911 // 912 // Load values with all low-bits (except for alignment bits) set into 913 // SOffset, so that a larger range of values can be covered using 914 // s_movk_i32. 915 // 916 // Atomic operations fail to work correctly when individual address 917 // components are unaligned, even if their sum is aligned. 918 uint32_t High = (Imm + Align) & ~4095; 919 uint32_t Low = (Imm + Align) & 4095; 920 Imm = Low; 921 Overflow = High - Align; 922 } 923 } 924 925 // There is a hardware bug in SI and CI which prevents address clamping in 926 // MUBUF instructions from working correctly with SOffsets. The immediate 927 // offset is unaffected. 928 if (Overflow > 0 && 929 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 930 return false; 931 932 ImmOffset = Imm; 933 SOffset = Overflow; 934 return true; 935 } 936 937 namespace { 938 939 struct SourceOfDivergence { 940 unsigned Intr; 941 }; 942 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 943 944 #define GET_SourcesOfDivergence_IMPL 945 #include "AMDGPUGenSearchableTables.inc" 946 947 } // end anonymous namespace 948 949 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 950 return lookupSourceOfDivergence(IntrID); 951 } 952 } // namespace AMDGPU 953 } // namespace llvm 954