1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "AMDGPUBaseInfo.h"
11 #include "AMDGPUTargetTransformInfo.h"
12 #include "AMDGPU.h"
13 #include "SIDefines.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/SubtargetFeature.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstdint>
38 #include <cstring>
39 #include <utility>
40 
41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
42 
43 #define GET_INSTRINFO_NAMED_OPS
44 #define GET_INSTRMAP_INFO
45 #include "AMDGPUGenInstrInfo.inc"
46 #undef GET_INSTRMAP_INFO
47 #undef GET_INSTRINFO_NAMED_OPS
48 
49 namespace {
50 
51 /// \returns Bit mask for given bit \p Shift and bit \p Width.
52 unsigned getBitMask(unsigned Shift, unsigned Width) {
53   return ((1 << Width) - 1) << Shift;
54 }
55 
56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
57 ///
58 /// \returns Packed \p Dst.
59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
60   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
61   Dst |= (Src << Shift) & getBitMask(Shift, Width);
62   return Dst;
63 }
64 
65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
66 ///
67 /// \returns Unpacked bits.
68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
69   return (Src & getBitMask(Shift, Width)) >> Shift;
70 }
71 
72 /// \returns Vmcnt bit shift (lower bits).
73 unsigned getVmcntBitShiftLo() { return 0; }
74 
75 /// \returns Vmcnt bit width (lower bits).
76 unsigned getVmcntBitWidthLo() { return 4; }
77 
78 /// \returns Expcnt bit shift.
79 unsigned getExpcntBitShift() { return 4; }
80 
81 /// \returns Expcnt bit width.
82 unsigned getExpcntBitWidth() { return 3; }
83 
84 /// \returns Lgkmcnt bit shift.
85 unsigned getLgkmcntBitShift() { return 8; }
86 
87 /// \returns Lgkmcnt bit width.
88 unsigned getLgkmcntBitWidth() { return 4; }
89 
90 /// \returns Vmcnt bit shift (higher bits).
91 unsigned getVmcntBitShiftHi() { return 14; }
92 
93 /// \returns Vmcnt bit width (higher bits).
94 unsigned getVmcntBitWidthHi() { return 2; }
95 
96 } // end namespace anonymous
97 
98 namespace llvm {
99 
100 namespace AMDGPU {
101 
102 struct MIMGInfo {
103   uint16_t Opcode;
104   uint16_t BaseOpcode;
105   uint8_t MIMGEncoding;
106   uint8_t VDataDwords;
107   uint8_t VAddrDwords;
108 };
109 
110 #define GET_MIMGBaseOpcodesTable_IMPL
111 #define GET_MIMGDimInfoTable_IMPL
112 #define GET_MIMGInfoTable_IMPL
113 #define GET_MIMGLZMappingTable_IMPL
114 #include "AMDGPUGenSearchableTables.inc"
115 
116 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
117                   unsigned VDataDwords, unsigned VAddrDwords) {
118   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
119                                              VDataDwords, VAddrDwords);
120   return Info ? Info->Opcode : -1;
121 }
122 
123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
124   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
125   const MIMGInfo *NewInfo =
126       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
127                           NewChannels, OrigInfo->VAddrDwords);
128   return NewInfo ? NewInfo->Opcode : -1;
129 }
130 
131 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
132 // header files, so we need to wrap it in a function that takes unsigned
133 // instead.
134 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
135   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
136 }
137 
138 namespace IsaInfo {
139 
140 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
141   auto TargetTriple = STI->getTargetTriple();
142   auto Version = getIsaVersion(STI->getCPU());
143 
144   Stream << TargetTriple.getArchName() << '-'
145          << TargetTriple.getVendorName() << '-'
146          << TargetTriple.getOSName() << '-'
147          << TargetTriple.getEnvironmentName() << '-'
148          << "gfx"
149          << Version.Major
150          << Version.Minor
151          << Version.Stepping;
152 
153   if (hasXNACK(*STI))
154     Stream << "+xnack";
155   if (hasSRAMECC(*STI))
156     Stream << "+sram-ecc";
157 
158   Stream.flush();
159 }
160 
161 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
162   return STI->getFeatureBits().test(FeatureCodeObjectV3);
163 }
164 
165 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
166   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
167     return 16;
168   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
169     return 32;
170 
171   return 64;
172 }
173 
174 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
175   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
176     return 32768;
177   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
178     return 65536;
179 
180   return 0;
181 }
182 
183 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
184   return 4;
185 }
186 
187 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
188                                unsigned FlatWorkGroupSize) {
189   if (!STI->getFeatureBits().test(FeatureGCN))
190     return 8;
191   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
192   if (N == 1)
193     return 40;
194   N = 40 / N;
195   return std::min(N, 16u);
196 }
197 
198 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
199   return getMaxWavesPerEU() * getEUsPerCU(STI);
200 }
201 
202 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
203                           unsigned FlatWorkGroupSize) {
204   return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
205 }
206 
207 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
208   return 1;
209 }
210 
211 unsigned getMaxWavesPerEU() {
212   // FIXME: Need to take scratch memory into account.
213   return 10;
214 }
215 
216 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
217                           unsigned FlatWorkGroupSize) {
218   return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
219                  getEUsPerCU(STI)) / getEUsPerCU(STI);
220 }
221 
222 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
223   return 1;
224 }
225 
226 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
227   return 2048;
228 }
229 
230 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
231                               unsigned FlatWorkGroupSize) {
232   return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
233                  getWavefrontSize(STI);
234 }
235 
236 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
237   IsaVersion Version = getIsaVersion(STI->getCPU());
238   if (Version.Major >= 8)
239     return 16;
240   return 8;
241 }
242 
243 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
244   return 8;
245 }
246 
247 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
248   IsaVersion Version = getIsaVersion(STI->getCPU());
249   if (Version.Major >= 8)
250     return 800;
251   return 512;
252 }
253 
254 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
255   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
256     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
257 
258   IsaVersion Version = getIsaVersion(STI->getCPU());
259   if (Version.Major >= 8)
260     return 102;
261   return 104;
262 }
263 
264 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
265   assert(WavesPerEU != 0);
266 
267   if (WavesPerEU >= getMaxWavesPerEU())
268     return 0;
269 
270   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
271   if (STI->getFeatureBits().test(FeatureTrapHandler))
272     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
273   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
274   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
275 }
276 
277 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
278                         bool Addressable) {
279   assert(WavesPerEU != 0);
280 
281   IsaVersion Version = getIsaVersion(STI->getCPU());
282   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
283   if (Version.Major >= 8 && !Addressable)
284     AddressableNumSGPRs = 112;
285   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
286   if (STI->getFeatureBits().test(FeatureTrapHandler))
287     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
288   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
289   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
290 }
291 
292 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
293                           bool FlatScrUsed, bool XNACKUsed) {
294   unsigned ExtraSGPRs = 0;
295   if (VCCUsed)
296     ExtraSGPRs = 2;
297 
298   IsaVersion Version = getIsaVersion(STI->getCPU());
299   if (Version.Major < 8) {
300     if (FlatScrUsed)
301       ExtraSGPRs = 4;
302   } else {
303     if (XNACKUsed)
304       ExtraSGPRs = 4;
305 
306     if (FlatScrUsed)
307       ExtraSGPRs = 6;
308   }
309 
310   return ExtraSGPRs;
311 }
312 
313 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
314                           bool FlatScrUsed) {
315   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
316                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
317 }
318 
319 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
320   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
321   // SGPRBlocks is actual number of SGPR blocks minus 1.
322   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
323 }
324 
325 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
326   return 4;
327 }
328 
329 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
330   return getVGPRAllocGranule(STI);
331 }
332 
333 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
334   return 256;
335 }
336 
337 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
338   return getTotalNumVGPRs(STI);
339 }
340 
341 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
342   assert(WavesPerEU != 0);
343 
344   if (WavesPerEU >= getMaxWavesPerEU())
345     return 0;
346   unsigned MinNumVGPRs =
347       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
348                 getVGPRAllocGranule(STI)) + 1;
349   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
350 }
351 
352 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
353   assert(WavesPerEU != 0);
354 
355   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
356                                    getVGPRAllocGranule(STI));
357   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
358   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
359 }
360 
361 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
362   NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
363   // VGPRBlocks is actual number of VGPR blocks minus 1.
364   return NumVGPRs / getVGPREncodingGranule(STI) - 1;
365 }
366 
367 } // end namespace IsaInfo
368 
369 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
370                                const MCSubtargetInfo *STI) {
371   IsaVersion Version = getIsaVersion(STI->getCPU());
372 
373   memset(&Header, 0, sizeof(Header));
374 
375   Header.amd_kernel_code_version_major = 1;
376   Header.amd_kernel_code_version_minor = 2;
377   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
378   Header.amd_machine_version_major = Version.Major;
379   Header.amd_machine_version_minor = Version.Minor;
380   Header.amd_machine_version_stepping = Version.Stepping;
381   Header.kernel_code_entry_byte_offset = sizeof(Header);
382   // wavefront_size is specified as a power of 2: 2^6 = 64 threads.
383   Header.wavefront_size = 6;
384 
385   // If the code object does not support indirect functions, then the value must
386   // be 0xffffffff.
387   Header.call_convention = -1;
388 
389   // These alignment values are specified in powers of two, so alignment =
390   // 2^n.  The minimum alignment is 2^4 = 16.
391   Header.kernarg_segment_alignment = 4;
392   Header.group_segment_alignment = 4;
393   Header.private_segment_alignment = 4;
394 }
395 
396 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() {
397   amdhsa::kernel_descriptor_t KD;
398   memset(&KD, 0, sizeof(KD));
399   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
400                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
401                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
402   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
403                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
404   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
405                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
406   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
407                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
408   return KD;
409 }
410 
411 bool isGroupSegment(const GlobalValue *GV) {
412   return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
413 }
414 
415 bool isGlobalSegment(const GlobalValue *GV) {
416   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
417 }
418 
419 bool isReadOnlySegment(const GlobalValue *GV) {
420   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
421          GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
422 }
423 
424 bool shouldEmitConstantsToTextSection(const Triple &TT) {
425   return TT.getOS() != Triple::AMDHSA;
426 }
427 
428 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
429   Attribute A = F.getFnAttribute(Name);
430   int Result = Default;
431 
432   if (A.isStringAttribute()) {
433     StringRef Str = A.getValueAsString();
434     if (Str.getAsInteger(0, Result)) {
435       LLVMContext &Ctx = F.getContext();
436       Ctx.emitError("can't parse integer attribute " + Name);
437     }
438   }
439 
440   return Result;
441 }
442 
443 std::pair<int, int> getIntegerPairAttribute(const Function &F,
444                                             StringRef Name,
445                                             std::pair<int, int> Default,
446                                             bool OnlyFirstRequired) {
447   Attribute A = F.getFnAttribute(Name);
448   if (!A.isStringAttribute())
449     return Default;
450 
451   LLVMContext &Ctx = F.getContext();
452   std::pair<int, int> Ints = Default;
453   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
454   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
455     Ctx.emitError("can't parse first integer attribute " + Name);
456     return Default;
457   }
458   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
459     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
460       Ctx.emitError("can't parse second integer attribute " + Name);
461       return Default;
462     }
463   }
464 
465   return Ints;
466 }
467 
468 unsigned getVmcntBitMask(const IsaVersion &Version) {
469   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
470   if (Version.Major < 9)
471     return VmcntLo;
472 
473   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
474   return VmcntLo | VmcntHi;
475 }
476 
477 unsigned getExpcntBitMask(const IsaVersion &Version) {
478   return (1 << getExpcntBitWidth()) - 1;
479 }
480 
481 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
482   return (1 << getLgkmcntBitWidth()) - 1;
483 }
484 
485 unsigned getWaitcntBitMask(const IsaVersion &Version) {
486   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
487   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
488   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth());
489   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
490   if (Version.Major < 9)
491     return Waitcnt;
492 
493   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
494   return Waitcnt | VmcntHi;
495 }
496 
497 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
498   unsigned VmcntLo =
499       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
500   if (Version.Major < 9)
501     return VmcntLo;
502 
503   unsigned VmcntHi =
504       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
505   VmcntHi <<= getVmcntBitWidthLo();
506   return VmcntLo | VmcntHi;
507 }
508 
509 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
510   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
511 }
512 
513 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
514   return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
515 }
516 
517 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
518                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
519   Vmcnt = decodeVmcnt(Version, Waitcnt);
520   Expcnt = decodeExpcnt(Version, Waitcnt);
521   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
522 }
523 
524 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
525                      unsigned Vmcnt) {
526   Waitcnt =
527       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
528   if (Version.Major < 9)
529     return Waitcnt;
530 
531   Vmcnt >>= getVmcntBitWidthLo();
532   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
533 }
534 
535 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
536                       unsigned Expcnt) {
537   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
538 }
539 
540 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
541                        unsigned Lgkmcnt) {
542   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
543 }
544 
545 unsigned encodeWaitcnt(const IsaVersion &Version,
546                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
547   unsigned Waitcnt = getWaitcntBitMask(Version);
548   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
549   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
550   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
551   return Waitcnt;
552 }
553 
554 unsigned getInitialPSInputAddr(const Function &F) {
555   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
556 }
557 
558 bool isShader(CallingConv::ID cc) {
559   switch(cc) {
560     case CallingConv::AMDGPU_VS:
561     case CallingConv::AMDGPU_LS:
562     case CallingConv::AMDGPU_HS:
563     case CallingConv::AMDGPU_ES:
564     case CallingConv::AMDGPU_GS:
565     case CallingConv::AMDGPU_PS:
566     case CallingConv::AMDGPU_CS:
567       return true;
568     default:
569       return false;
570   }
571 }
572 
573 bool isCompute(CallingConv::ID cc) {
574   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
575 }
576 
577 bool isEntryFunctionCC(CallingConv::ID CC) {
578   switch (CC) {
579   case CallingConv::AMDGPU_KERNEL:
580   case CallingConv::SPIR_KERNEL:
581   case CallingConv::AMDGPU_VS:
582   case CallingConv::AMDGPU_GS:
583   case CallingConv::AMDGPU_PS:
584   case CallingConv::AMDGPU_CS:
585   case CallingConv::AMDGPU_ES:
586   case CallingConv::AMDGPU_HS:
587   case CallingConv::AMDGPU_LS:
588     return true;
589   default:
590     return false;
591   }
592 }
593 
594 bool hasXNACK(const MCSubtargetInfo &STI) {
595   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
596 }
597 
598 bool hasSRAMECC(const MCSubtargetInfo &STI) {
599   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
600 }
601 
602 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
603   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
604 }
605 
606 bool hasPackedD16(const MCSubtargetInfo &STI) {
607   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
608 }
609 
610 bool isSI(const MCSubtargetInfo &STI) {
611   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
612 }
613 
614 bool isCI(const MCSubtargetInfo &STI) {
615   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
616 }
617 
618 bool isVI(const MCSubtargetInfo &STI) {
619   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
620 }
621 
622 bool isGFX9(const MCSubtargetInfo &STI) {
623   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
624 }
625 
626 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
627   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
628 }
629 
630 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
631   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
632   const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
633   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
634     Reg == AMDGPU::SCC;
635 }
636 
637 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
638   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
639     if (*R == Reg1) return true;
640   }
641   return false;
642 }
643 
644 #define MAP_REG2REG \
645   using namespace AMDGPU; \
646   switch(Reg) { \
647   default: return Reg; \
648   CASE_CI_VI(FLAT_SCR) \
649   CASE_CI_VI(FLAT_SCR_LO) \
650   CASE_CI_VI(FLAT_SCR_HI) \
651   CASE_VI_GFX9(TTMP0) \
652   CASE_VI_GFX9(TTMP1) \
653   CASE_VI_GFX9(TTMP2) \
654   CASE_VI_GFX9(TTMP3) \
655   CASE_VI_GFX9(TTMP4) \
656   CASE_VI_GFX9(TTMP5) \
657   CASE_VI_GFX9(TTMP6) \
658   CASE_VI_GFX9(TTMP7) \
659   CASE_VI_GFX9(TTMP8) \
660   CASE_VI_GFX9(TTMP9) \
661   CASE_VI_GFX9(TTMP10) \
662   CASE_VI_GFX9(TTMP11) \
663   CASE_VI_GFX9(TTMP12) \
664   CASE_VI_GFX9(TTMP13) \
665   CASE_VI_GFX9(TTMP14) \
666   CASE_VI_GFX9(TTMP15) \
667   CASE_VI_GFX9(TTMP0_TTMP1) \
668   CASE_VI_GFX9(TTMP2_TTMP3) \
669   CASE_VI_GFX9(TTMP4_TTMP5) \
670   CASE_VI_GFX9(TTMP6_TTMP7) \
671   CASE_VI_GFX9(TTMP8_TTMP9) \
672   CASE_VI_GFX9(TTMP10_TTMP11) \
673   CASE_VI_GFX9(TTMP12_TTMP13) \
674   CASE_VI_GFX9(TTMP14_TTMP15) \
675   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \
676   CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \
677   CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \
678   CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \
679   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
680   CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
681   CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
682   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
683   }
684 
685 #define CASE_CI_VI(node) \
686   assert(!isSI(STI)); \
687   case node: return isCI(STI) ? node##_ci : node##_vi;
688 
689 #define CASE_VI_GFX9(node) \
690   case node: return isGFX9(STI) ? node##_gfx9 : node##_vi;
691 
692 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
693   if (STI.getTargetTriple().getArch() == Triple::r600)
694     return Reg;
695   MAP_REG2REG
696 }
697 
698 #undef CASE_CI_VI
699 #undef CASE_VI_GFX9
700 
701 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
702 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node;
703 
704 unsigned mc2PseudoReg(unsigned Reg) {
705   MAP_REG2REG
706 }
707 
708 #undef CASE_CI_VI
709 #undef CASE_VI_GFX9
710 #undef MAP_REG2REG
711 
712 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
713   assert(OpNo < Desc.NumOperands);
714   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
715   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
716          OpType <= AMDGPU::OPERAND_SRC_LAST;
717 }
718 
719 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
720   assert(OpNo < Desc.NumOperands);
721   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
722   switch (OpType) {
723   case AMDGPU::OPERAND_REG_IMM_FP32:
724   case AMDGPU::OPERAND_REG_IMM_FP64:
725   case AMDGPU::OPERAND_REG_IMM_FP16:
726   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
727   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
728   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
729   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
730     return true;
731   default:
732     return false;
733   }
734 }
735 
736 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
737   assert(OpNo < Desc.NumOperands);
738   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
739   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
740          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
741 }
742 
743 // Avoid using MCRegisterClass::getSize, since that function will go away
744 // (move from MC* level to Target* level). Return size in bits.
745 unsigned getRegBitWidth(unsigned RCID) {
746   switch (RCID) {
747   case AMDGPU::SGPR_32RegClassID:
748   case AMDGPU::VGPR_32RegClassID:
749   case AMDGPU::VS_32RegClassID:
750   case AMDGPU::SReg_32RegClassID:
751   case AMDGPU::SReg_32_XM0RegClassID:
752     return 32;
753   case AMDGPU::SGPR_64RegClassID:
754   case AMDGPU::VS_64RegClassID:
755   case AMDGPU::SReg_64RegClassID:
756   case AMDGPU::VReg_64RegClassID:
757     return 64;
758   case AMDGPU::VReg_96RegClassID:
759     return 96;
760   case AMDGPU::SGPR_128RegClassID:
761   case AMDGPU::SReg_128RegClassID:
762   case AMDGPU::VReg_128RegClassID:
763     return 128;
764   case AMDGPU::SReg_256RegClassID:
765   case AMDGPU::VReg_256RegClassID:
766     return 256;
767   case AMDGPU::SReg_512RegClassID:
768   case AMDGPU::VReg_512RegClassID:
769     return 512;
770   default:
771     llvm_unreachable("Unexpected register class");
772   }
773 }
774 
775 unsigned getRegBitWidth(const MCRegisterClass &RC) {
776   return getRegBitWidth(RC.getID());
777 }
778 
779 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
780                            unsigned OpNo) {
781   assert(OpNo < Desc.NumOperands);
782   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
783   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
784 }
785 
786 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
787   if (Literal >= -16 && Literal <= 64)
788     return true;
789 
790   uint64_t Val = static_cast<uint64_t>(Literal);
791   return (Val == DoubleToBits(0.0)) ||
792          (Val == DoubleToBits(1.0)) ||
793          (Val == DoubleToBits(-1.0)) ||
794          (Val == DoubleToBits(0.5)) ||
795          (Val == DoubleToBits(-0.5)) ||
796          (Val == DoubleToBits(2.0)) ||
797          (Val == DoubleToBits(-2.0)) ||
798          (Val == DoubleToBits(4.0)) ||
799          (Val == DoubleToBits(-4.0)) ||
800          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
801 }
802 
803 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
804   if (Literal >= -16 && Literal <= 64)
805     return true;
806 
807   // The actual type of the operand does not seem to matter as long
808   // as the bits match one of the inline immediate values.  For example:
809   //
810   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
811   // so it is a legal inline immediate.
812   //
813   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
814   // floating-point, so it is a legal inline immediate.
815 
816   uint32_t Val = static_cast<uint32_t>(Literal);
817   return (Val == FloatToBits(0.0f)) ||
818          (Val == FloatToBits(1.0f)) ||
819          (Val == FloatToBits(-1.0f)) ||
820          (Val == FloatToBits(0.5f)) ||
821          (Val == FloatToBits(-0.5f)) ||
822          (Val == FloatToBits(2.0f)) ||
823          (Val == FloatToBits(-2.0f)) ||
824          (Val == FloatToBits(4.0f)) ||
825          (Val == FloatToBits(-4.0f)) ||
826          (Val == 0x3e22f983 && HasInv2Pi);
827 }
828 
829 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
830   if (!HasInv2Pi)
831     return false;
832 
833   if (Literal >= -16 && Literal <= 64)
834     return true;
835 
836   uint16_t Val = static_cast<uint16_t>(Literal);
837   return Val == 0x3C00 || // 1.0
838          Val == 0xBC00 || // -1.0
839          Val == 0x3800 || // 0.5
840          Val == 0xB800 || // -0.5
841          Val == 0x4000 || // 2.0
842          Val == 0xC000 || // -2.0
843          Val == 0x4400 || // 4.0
844          Val == 0xC400 || // -4.0
845          Val == 0x3118;   // 1/2pi
846 }
847 
848 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
849   assert(HasInv2Pi);
850 
851   int16_t Lo16 = static_cast<int16_t>(Literal);
852   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
853   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
854 }
855 
856 bool isArgPassedInSGPR(const Argument *A) {
857   const Function *F = A->getParent();
858 
859   // Arguments to compute shaders are never a source of divergence.
860   CallingConv::ID CC = F->getCallingConv();
861   switch (CC) {
862   case CallingConv::AMDGPU_KERNEL:
863   case CallingConv::SPIR_KERNEL:
864     return true;
865   case CallingConv::AMDGPU_VS:
866   case CallingConv::AMDGPU_LS:
867   case CallingConv::AMDGPU_HS:
868   case CallingConv::AMDGPU_ES:
869   case CallingConv::AMDGPU_GS:
870   case CallingConv::AMDGPU_PS:
871   case CallingConv::AMDGPU_CS:
872     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
873     // Everything else is in VGPRs.
874     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
875            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
876   default:
877     // TODO: Should calls support inreg for SGPR inputs?
878     return false;
879   }
880 }
881 
882 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
883   if (isGCN3Encoding(ST))
884     return ByteOffset;
885   return ByteOffset >> 2;
886 }
887 
888 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
889   int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
890   return isGCN3Encoding(ST) ?
891     isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
892 }
893 
894 // Given Imm, split it into the values to put into the SOffset and ImmOffset
895 // fields in an MUBUF instruction. Return false if it is not possible (due to a
896 // hardware bug needing a workaround).
897 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
898                       const GCNSubtarget *Subtarget) {
899   const uint32_t Align = 4;
900   const uint32_t MaxImm = alignDown(4095, Align);
901   uint32_t Overflow = 0;
902 
903   if (Imm > MaxImm) {
904     if (Imm <= MaxImm + 64) {
905       // Use an SOffset inline constant for 4..64
906       Overflow = Imm - MaxImm;
907       Imm = MaxImm;
908     } else {
909       // Try to keep the same value in SOffset for adjacent loads, so that
910       // the corresponding register contents can be re-used.
911       //
912       // Load values with all low-bits (except for alignment bits) set into
913       // SOffset, so that a larger range of values can be covered using
914       // s_movk_i32.
915       //
916       // Atomic operations fail to work correctly when individual address
917       // components are unaligned, even if their sum is aligned.
918       uint32_t High = (Imm + Align) & ~4095;
919       uint32_t Low = (Imm + Align) & 4095;
920       Imm = Low;
921       Overflow = High - Align;
922     }
923   }
924 
925   // There is a hardware bug in SI and CI which prevents address clamping in
926   // MUBUF instructions from working correctly with SOffsets. The immediate
927   // offset is unaffected.
928   if (Overflow > 0 &&
929       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
930     return false;
931 
932   ImmOffset = Imm;
933   SOffset = Overflow;
934   return true;
935 }
936 
937 namespace {
938 
939 struct SourceOfDivergence {
940   unsigned Intr;
941 };
942 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
943 
944 #define GET_SourcesOfDivergence_IMPL
945 #include "AMDGPUGenSearchableTables.inc"
946 
947 } // end anonymous namespace
948 
949 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
950   return lookupSourceOfDivergence(IntrID);
951 }
952 } // namespace AMDGPU
953 } // namespace llvm
954