1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   default:
103     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
104                        Twine(AmdhsaCodeObjectVersion));
105   }
106 }
107 
108 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
109   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
110     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
111   return false;
112 }
113 
114 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
115   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
116     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
117   return false;
118 }
119 
120 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
121   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
122     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
123   return false;
124 }
125 
126 bool isHsaAbiVersion3Or4(const MCSubtargetInfo *STI) {
127   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI);
128 }
129 
130 #define GET_MIMGBaseOpcodesTable_IMPL
131 #define GET_MIMGDimInfoTable_IMPL
132 #define GET_MIMGInfoTable_IMPL
133 #define GET_MIMGLZMappingTable_IMPL
134 #define GET_MIMGMIPMappingTable_IMPL
135 #define GET_MIMGG16MappingTable_IMPL
136 #include "AMDGPUGenSearchableTables.inc"
137 
138 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
139                   unsigned VDataDwords, unsigned VAddrDwords) {
140   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
141                                              VDataDwords, VAddrDwords);
142   return Info ? Info->Opcode : -1;
143 }
144 
145 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
146   const MIMGInfo *Info = getMIMGInfo(Opc);
147   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
148 }
149 
150 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
151   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
152   const MIMGInfo *NewInfo =
153       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
154                           NewChannels, OrigInfo->VAddrDwords);
155   return NewInfo ? NewInfo->Opcode : -1;
156 }
157 
158 struct MUBUFInfo {
159   uint16_t Opcode;
160   uint16_t BaseOpcode;
161   uint8_t elements;
162   bool has_vaddr;
163   bool has_srsrc;
164   bool has_soffset;
165   bool IsBufferInv;
166 };
167 
168 struct MTBUFInfo {
169   uint16_t Opcode;
170   uint16_t BaseOpcode;
171   uint8_t elements;
172   bool has_vaddr;
173   bool has_srsrc;
174   bool has_soffset;
175 };
176 
177 struct SMInfo {
178   uint16_t Opcode;
179   bool IsBuffer;
180 };
181 
182 struct VOPInfo {
183   uint16_t Opcode;
184   bool IsSingle;
185 };
186 
187 #define GET_MTBUFInfoTable_DECL
188 #define GET_MTBUFInfoTable_IMPL
189 #define GET_MUBUFInfoTable_DECL
190 #define GET_MUBUFInfoTable_IMPL
191 #define GET_SMInfoTable_DECL
192 #define GET_SMInfoTable_IMPL
193 #define GET_VOP1InfoTable_DECL
194 #define GET_VOP1InfoTable_IMPL
195 #define GET_VOP2InfoTable_DECL
196 #define GET_VOP2InfoTable_IMPL
197 #define GET_VOP3InfoTable_DECL
198 #define GET_VOP3InfoTable_IMPL
199 #include "AMDGPUGenSearchableTables.inc"
200 
201 int getMTBUFBaseOpcode(unsigned Opc) {
202   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
203   return Info ? Info->BaseOpcode : -1;
204 }
205 
206 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
207   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
208   return Info ? Info->Opcode : -1;
209 }
210 
211 int getMTBUFElements(unsigned Opc) {
212   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
213   return Info ? Info->elements : 0;
214 }
215 
216 bool getMTBUFHasVAddr(unsigned Opc) {
217   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
218   return Info ? Info->has_vaddr : false;
219 }
220 
221 bool getMTBUFHasSrsrc(unsigned Opc) {
222   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
223   return Info ? Info->has_srsrc : false;
224 }
225 
226 bool getMTBUFHasSoffset(unsigned Opc) {
227   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
228   return Info ? Info->has_soffset : false;
229 }
230 
231 int getMUBUFBaseOpcode(unsigned Opc) {
232   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
233   return Info ? Info->BaseOpcode : -1;
234 }
235 
236 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
237   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
238   return Info ? Info->Opcode : -1;
239 }
240 
241 int getMUBUFElements(unsigned Opc) {
242   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
243   return Info ? Info->elements : 0;
244 }
245 
246 bool getMUBUFHasVAddr(unsigned Opc) {
247   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
248   return Info ? Info->has_vaddr : false;
249 }
250 
251 bool getMUBUFHasSrsrc(unsigned Opc) {
252   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
253   return Info ? Info->has_srsrc : false;
254 }
255 
256 bool getMUBUFHasSoffset(unsigned Opc) {
257   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
258   return Info ? Info->has_soffset : false;
259 }
260 
261 bool getMUBUFIsBufferInv(unsigned Opc) {
262   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
263   return Info ? Info->IsBufferInv : false;
264 }
265 
266 bool getSMEMIsBuffer(unsigned Opc) {
267   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
268   return Info ? Info->IsBuffer : false;
269 }
270 
271 bool getVOP1IsSingle(unsigned Opc) {
272   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
273   return Info ? Info->IsSingle : false;
274 }
275 
276 bool getVOP2IsSingle(unsigned Opc) {
277   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
278   return Info ? Info->IsSingle : false;
279 }
280 
281 bool getVOP3IsSingle(unsigned Opc) {
282   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
283   return Info ? Info->IsSingle : false;
284 }
285 
286 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
287 // header files, so we need to wrap it in a function that takes unsigned
288 // instead.
289 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
290   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
291 }
292 
293 namespace IsaInfo {
294 
295 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
296     : STI(STI), XnackSetting(TargetIDSetting::Any),
297       SramEccSetting(TargetIDSetting::Any) {
298   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
299     XnackSetting = TargetIDSetting::Unsupported;
300   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
301     SramEccSetting = TargetIDSetting::Unsupported;
302 }
303 
304 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
305   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
306   // absence of the target features we assume we must generate code that can run
307   // in any environment.
308   SubtargetFeatures Features(FS);
309   Optional<bool> XnackRequested;
310   Optional<bool> SramEccRequested;
311 
312   for (const std::string &Feature : Features.getFeatures()) {
313     if (Feature == "+xnack")
314       XnackRequested = true;
315     else if (Feature == "-xnack")
316       XnackRequested = false;
317     else if (Feature == "+sramecc")
318       SramEccRequested = true;
319     else if (Feature == "-sramecc")
320       SramEccRequested = false;
321   }
322 
323   bool XnackSupported = isXnackSupported();
324   bool SramEccSupported = isSramEccSupported();
325 
326   if (XnackRequested) {
327     if (XnackSupported) {
328       XnackSetting =
329           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
330     } else {
331       // If a specific xnack setting was requested and this GPU does not support
332       // xnack emit a warning. Setting will remain set to "Unsupported".
333       if (*XnackRequested) {
334         errs() << "warning: xnack 'On' was requested for a processor that does "
335                   "not support it!\n";
336       } else {
337         errs() << "warning: xnack 'Off' was requested for a processor that "
338                   "does not support it!\n";
339       }
340     }
341   }
342 
343   if (SramEccRequested) {
344     if (SramEccSupported) {
345       SramEccSetting =
346           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
347     } else {
348       // If a specific sramecc setting was requested and this GPU does not
349       // support sramecc emit a warning. Setting will remain set to
350       // "Unsupported".
351       if (*SramEccRequested) {
352         errs() << "warning: sramecc 'On' was requested for a processor that "
353                   "does not support it!\n";
354       } else {
355         errs() << "warning: sramecc 'Off' was requested for a processor that "
356                   "does not support it!\n";
357       }
358     }
359   }
360 }
361 
362 static TargetIDSetting
363 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
364   if (FeatureString.endswith("-"))
365     return TargetIDSetting::Off;
366   if (FeatureString.endswith("+"))
367     return TargetIDSetting::On;
368 
369   llvm_unreachable("Malformed feature string");
370 }
371 
372 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
373   SmallVector<StringRef, 3> TargetIDSplit;
374   TargetID.split(TargetIDSplit, ':');
375 
376   for (const auto &FeatureString : TargetIDSplit) {
377     if (FeatureString.startswith("xnack"))
378       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
379     if (FeatureString.startswith("sramecc"))
380       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
381   }
382 }
383 
384 std::string AMDGPUTargetID::toString() const {
385   std::string StringRep = "";
386   raw_string_ostream StreamRep(StringRep);
387 
388   auto TargetTriple = STI.getTargetTriple();
389   auto Version = getIsaVersion(STI.getCPU());
390 
391   StreamRep << TargetTriple.getArchName() << '-'
392             << TargetTriple.getVendorName() << '-'
393             << TargetTriple.getOSName() << '-'
394             << TargetTriple.getEnvironmentName() << '-';
395 
396   std::string Processor = "";
397   // TODO: Following else statement is present here because we used various
398   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
399   // Remove once all aliases are removed from GCNProcessors.td.
400   if (Version.Major >= 9)
401     Processor = STI.getCPU().str();
402   else
403     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
404                  Twine(Version.Stepping))
405                     .str();
406 
407   std::string Features = "";
408   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
409     switch (*HsaAbiVersion) {
410     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
411       // Code object V2 only supported specific processors and had fixed
412       // settings for the XNACK.
413       if (Processor == "gfx600") {
414       } else if (Processor == "gfx601") {
415       } else if (Processor == "gfx602") {
416       } else if (Processor == "gfx700") {
417       } else if (Processor == "gfx701") {
418       } else if (Processor == "gfx702") {
419       } else if (Processor == "gfx703") {
420       } else if (Processor == "gfx704") {
421       } else if (Processor == "gfx705") {
422       } else if (Processor == "gfx801") {
423         if (!isXnackOnOrAny())
424           report_fatal_error(
425               "AMD GPU code object V2 does not support processor " + Processor +
426               " without XNACK");
427       } else if (Processor == "gfx802") {
428       } else if (Processor == "gfx803") {
429       } else if (Processor == "gfx805") {
430       } else if (Processor == "gfx810") {
431         if (!isXnackOnOrAny())
432           report_fatal_error(
433               "AMD GPU code object V2 does not support processor " + Processor +
434               " without XNACK");
435       } else if (Processor == "gfx900") {
436         if (isXnackOnOrAny())
437           Processor = "gfx901";
438       } else if (Processor == "gfx902") {
439         if (isXnackOnOrAny())
440           Processor = "gfx903";
441       } else if (Processor == "gfx904") {
442         if (isXnackOnOrAny())
443           Processor = "gfx905";
444       } else if (Processor == "gfx906") {
445         if (isXnackOnOrAny())
446           Processor = "gfx907";
447       } else if (Processor == "gfx90c") {
448         if (isXnackOnOrAny())
449           report_fatal_error(
450               "AMD GPU code object V2 does not support processor " + Processor +
451               " with XNACK being ON or ANY");
452       } else {
453         report_fatal_error(
454             "AMD GPU code object V2 does not support processor " + Processor);
455       }
456       break;
457     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
458       // xnack.
459       if (isXnackOnOrAny())
460         Features += "+xnack";
461       // In code object v2 and v3, "sramecc" feature was spelled with a
462       // hyphen ("sram-ecc").
463       if (isSramEccOnOrAny())
464         Features += "+sram-ecc";
465       break;
466     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
467       // sramecc.
468       if (getSramEccSetting() == TargetIDSetting::Off)
469         Features += ":sramecc-";
470       else if (getSramEccSetting() == TargetIDSetting::On)
471         Features += ":sramecc+";
472       // xnack.
473       if (getXnackSetting() == TargetIDSetting::Off)
474         Features += ":xnack-";
475       else if (getXnackSetting() == TargetIDSetting::On)
476         Features += ":xnack+";
477       break;
478     default:
479       break;
480     }
481   }
482 
483   StreamRep << Processor << Features;
484 
485   StreamRep.flush();
486   return StringRep;
487 }
488 
489 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
490   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
491     return 16;
492   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
493     return 32;
494 
495   return 64;
496 }
497 
498 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
499   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
500     return 32768;
501   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
502     return 65536;
503 
504   return 0;
505 }
506 
507 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
508   // "Per CU" really means "per whatever functional block the waves of a
509   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
510   // two SIMDs.
511   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
512     return 2;
513   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
514   // two CUs, so a total of four SIMDs.
515   return 4;
516 }
517 
518 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
519                                unsigned FlatWorkGroupSize) {
520   assert(FlatWorkGroupSize != 0);
521   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
522     return 8;
523   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
524   if (N == 1)
525     return 40;
526   N = 40 / N;
527   return std::min(N, 16u);
528 }
529 
530 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
531   return 1;
532 }
533 
534 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
535   // FIXME: Need to take scratch memory into account.
536   if (isGFX90A(*STI))
537     return 8;
538   if (!isGFX10Plus(*STI))
539     return 10;
540   return hasGFX10_3Insts(*STI) ? 16 : 20;
541 }
542 
543 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
544                                    unsigned FlatWorkGroupSize) {
545   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
546                     getEUsPerCU(STI));
547 }
548 
549 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
550   return 1;
551 }
552 
553 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
554   // Some subtargets allow encoding 2048, but this isn't tested or supported.
555   return 1024;
556 }
557 
558 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
559                               unsigned FlatWorkGroupSize) {
560   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
561 }
562 
563 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
564   IsaVersion Version = getIsaVersion(STI->getCPU());
565   if (Version.Major >= 10)
566     return getAddressableNumSGPRs(STI);
567   if (Version.Major >= 8)
568     return 16;
569   return 8;
570 }
571 
572 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
573   return 8;
574 }
575 
576 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
577   IsaVersion Version = getIsaVersion(STI->getCPU());
578   if (Version.Major >= 8)
579     return 800;
580   return 512;
581 }
582 
583 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
584   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
585     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
586 
587   IsaVersion Version = getIsaVersion(STI->getCPU());
588   if (Version.Major >= 10)
589     return 106;
590   if (Version.Major >= 8)
591     return 102;
592   return 104;
593 }
594 
595 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
596   assert(WavesPerEU != 0);
597 
598   IsaVersion Version = getIsaVersion(STI->getCPU());
599   if (Version.Major >= 10)
600     return 0;
601 
602   if (WavesPerEU >= getMaxWavesPerEU(STI))
603     return 0;
604 
605   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
606   if (STI->getFeatureBits().test(FeatureTrapHandler))
607     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
608   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
609   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
610 }
611 
612 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
613                         bool Addressable) {
614   assert(WavesPerEU != 0);
615 
616   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
617   IsaVersion Version = getIsaVersion(STI->getCPU());
618   if (Version.Major >= 10)
619     return Addressable ? AddressableNumSGPRs : 108;
620   if (Version.Major >= 8 && !Addressable)
621     AddressableNumSGPRs = 112;
622   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
623   if (STI->getFeatureBits().test(FeatureTrapHandler))
624     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
625   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
626   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
627 }
628 
629 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
630                           bool FlatScrUsed, bool XNACKUsed) {
631   unsigned ExtraSGPRs = 0;
632   if (VCCUsed)
633     ExtraSGPRs = 2;
634 
635   IsaVersion Version = getIsaVersion(STI->getCPU());
636   if (Version.Major >= 10)
637     return ExtraSGPRs;
638 
639   if (Version.Major < 8) {
640     if (FlatScrUsed)
641       ExtraSGPRs = 4;
642   } else {
643     if (XNACKUsed)
644       ExtraSGPRs = 4;
645 
646     if (FlatScrUsed)
647       ExtraSGPRs = 6;
648   }
649 
650   return ExtraSGPRs;
651 }
652 
653 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
654                           bool FlatScrUsed) {
655   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
656                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
657 }
658 
659 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
660   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
661   // SGPRBlocks is actual number of SGPR blocks minus 1.
662   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
663 }
664 
665 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
666                              Optional<bool> EnableWavefrontSize32) {
667   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
668     return 8;
669 
670   bool IsWave32 = EnableWavefrontSize32 ?
671       *EnableWavefrontSize32 :
672       STI->getFeatureBits().test(FeatureWavefrontSize32);
673 
674   if (hasGFX10_3Insts(*STI))
675     return IsWave32 ? 16 : 8;
676 
677   return IsWave32 ? 8 : 4;
678 }
679 
680 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
681                                 Optional<bool> EnableWavefrontSize32) {
682   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
683     return 8;
684 
685   bool IsWave32 = EnableWavefrontSize32 ?
686       *EnableWavefrontSize32 :
687       STI->getFeatureBits().test(FeatureWavefrontSize32);
688 
689   return IsWave32 ? 8 : 4;
690 }
691 
692 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
693   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
694     return 512;
695   if (!isGFX10Plus(*STI))
696     return 256;
697   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
698 }
699 
700 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
701   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
702     return 512;
703   return 256;
704 }
705 
706 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
707   assert(WavesPerEU != 0);
708 
709   if (WavesPerEU >= getMaxWavesPerEU(STI))
710     return 0;
711   unsigned MinNumVGPRs =
712       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
713                 getVGPRAllocGranule(STI)) + 1;
714   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
715 }
716 
717 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
718   assert(WavesPerEU != 0);
719 
720   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
721                                    getVGPRAllocGranule(STI));
722   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
723   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
724 }
725 
726 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
727                           Optional<bool> EnableWavefrontSize32) {
728   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
729                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
730   // VGPRBlocks is actual number of VGPR blocks minus 1.
731   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
732 }
733 
734 } // end namespace IsaInfo
735 
736 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
737                                const MCSubtargetInfo *STI) {
738   IsaVersion Version = getIsaVersion(STI->getCPU());
739 
740   memset(&Header, 0, sizeof(Header));
741 
742   Header.amd_kernel_code_version_major = 1;
743   Header.amd_kernel_code_version_minor = 2;
744   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
745   Header.amd_machine_version_major = Version.Major;
746   Header.amd_machine_version_minor = Version.Minor;
747   Header.amd_machine_version_stepping = Version.Stepping;
748   Header.kernel_code_entry_byte_offset = sizeof(Header);
749   Header.wavefront_size = 6;
750 
751   // If the code object does not support indirect functions, then the value must
752   // be 0xffffffff.
753   Header.call_convention = -1;
754 
755   // These alignment values are specified in powers of two, so alignment =
756   // 2^n.  The minimum alignment is 2^4 = 16.
757   Header.kernarg_segment_alignment = 4;
758   Header.group_segment_alignment = 4;
759   Header.private_segment_alignment = 4;
760 
761   if (Version.Major >= 10) {
762     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
763       Header.wavefront_size = 5;
764       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
765     }
766     Header.compute_pgm_resource_registers |=
767       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
768       S_00B848_MEM_ORDERED(1);
769   }
770 }
771 
772 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
773     const MCSubtargetInfo *STI) {
774   IsaVersion Version = getIsaVersion(STI->getCPU());
775 
776   amdhsa::kernel_descriptor_t KD;
777   memset(&KD, 0, sizeof(KD));
778 
779   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
780                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
781                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
782   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
783                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
784   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
785                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
786   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
787                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
788   if (Version.Major >= 10) {
789     AMDHSA_BITS_SET(KD.kernel_code_properties,
790                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
791                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
792     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
793                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
794                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
795     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
796                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
797   }
798   if (AMDGPU::isGFX90A(*STI)) {
799     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
800                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
801                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
802   }
803   return KD;
804 }
805 
806 bool isGroupSegment(const GlobalValue *GV) {
807   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
808 }
809 
810 bool isGlobalSegment(const GlobalValue *GV) {
811   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
812 }
813 
814 bool isReadOnlySegment(const GlobalValue *GV) {
815   unsigned AS = GV->getAddressSpace();
816   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
817          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
818 }
819 
820 bool shouldEmitConstantsToTextSection(const Triple &TT) {
821   return TT.getArch() == Triple::r600;
822 }
823 
824 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
825   Attribute A = F.getFnAttribute(Name);
826   int Result = Default;
827 
828   if (A.isStringAttribute()) {
829     StringRef Str = A.getValueAsString();
830     if (Str.getAsInteger(0, Result)) {
831       LLVMContext &Ctx = F.getContext();
832       Ctx.emitError("can't parse integer attribute " + Name);
833     }
834   }
835 
836   return Result;
837 }
838 
839 std::pair<int, int> getIntegerPairAttribute(const Function &F,
840                                             StringRef Name,
841                                             std::pair<int, int> Default,
842                                             bool OnlyFirstRequired) {
843   Attribute A = F.getFnAttribute(Name);
844   if (!A.isStringAttribute())
845     return Default;
846 
847   LLVMContext &Ctx = F.getContext();
848   std::pair<int, int> Ints = Default;
849   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
850   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
851     Ctx.emitError("can't parse first integer attribute " + Name);
852     return Default;
853   }
854   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
855     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
856       Ctx.emitError("can't parse second integer attribute " + Name);
857       return Default;
858     }
859   }
860 
861   return Ints;
862 }
863 
864 unsigned getVmcntBitMask(const IsaVersion &Version) {
865   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
866   if (Version.Major < 9)
867     return VmcntLo;
868 
869   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
870   return VmcntLo | VmcntHi;
871 }
872 
873 unsigned getExpcntBitMask(const IsaVersion &Version) {
874   return (1 << getExpcntBitWidth()) - 1;
875 }
876 
877 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
878   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
879 }
880 
881 unsigned getWaitcntBitMask(const IsaVersion &Version) {
882   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
883   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
884   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
885                                 getLgkmcntBitWidth(Version.Major));
886   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
887   if (Version.Major < 9)
888     return Waitcnt;
889 
890   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
891   return Waitcnt | VmcntHi;
892 }
893 
894 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
895   unsigned VmcntLo =
896       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
897   if (Version.Major < 9)
898     return VmcntLo;
899 
900   unsigned VmcntHi =
901       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
902   VmcntHi <<= getVmcntBitWidthLo();
903   return VmcntLo | VmcntHi;
904 }
905 
906 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
907   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
908 }
909 
910 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
911   return unpackBits(Waitcnt, getLgkmcntBitShift(),
912                     getLgkmcntBitWidth(Version.Major));
913 }
914 
915 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
916                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
917   Vmcnt = decodeVmcnt(Version, Waitcnt);
918   Expcnt = decodeExpcnt(Version, Waitcnt);
919   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
920 }
921 
922 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
923   Waitcnt Decoded;
924   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
925   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
926   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
927   return Decoded;
928 }
929 
930 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
931                      unsigned Vmcnt) {
932   Waitcnt =
933       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
934   if (Version.Major < 9)
935     return Waitcnt;
936 
937   Vmcnt >>= getVmcntBitWidthLo();
938   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
939 }
940 
941 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
942                       unsigned Expcnt) {
943   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
944 }
945 
946 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
947                        unsigned Lgkmcnt) {
948   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
949                                     getLgkmcntBitWidth(Version.Major));
950 }
951 
952 unsigned encodeWaitcnt(const IsaVersion &Version,
953                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
954   unsigned Waitcnt = getWaitcntBitMask(Version);
955   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
956   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
957   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
958   return Waitcnt;
959 }
960 
961 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
962   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
963 }
964 
965 //===----------------------------------------------------------------------===//
966 // hwreg
967 //===----------------------------------------------------------------------===//
968 
969 namespace Hwreg {
970 
971 int64_t getHwregId(const StringRef Name) {
972   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
973     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
974       return Id;
975   }
976   return ID_UNKNOWN_;
977 }
978 
979 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
980   if (isSI(STI) || isCI(STI) || isVI(STI))
981     return ID_SYMBOLIC_FIRST_GFX9_;
982   else if (isGFX9(STI))
983     return ID_SYMBOLIC_FIRST_GFX10_;
984   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
985     return ID_SYMBOLIC_FIRST_GFX1030_;
986   else
987     return ID_SYMBOLIC_LAST_;
988 }
989 
990 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
991   return
992     ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
993     IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
994 }
995 
996 bool isValidHwreg(int64_t Id) {
997   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
998 }
999 
1000 bool isValidHwregOffset(int64_t Offset) {
1001   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1002 }
1003 
1004 bool isValidHwregWidth(int64_t Width) {
1005   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1006 }
1007 
1008 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1009   return (Id << ID_SHIFT_) |
1010          (Offset << OFFSET_SHIFT_) |
1011          ((Width - 1) << WIDTH_M1_SHIFT_);
1012 }
1013 
1014 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1015   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
1016 }
1017 
1018 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1019   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1020   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1021   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1022 }
1023 
1024 } // namespace Hwreg
1025 
1026 //===----------------------------------------------------------------------===//
1027 // exp tgt
1028 //===----------------------------------------------------------------------===//
1029 
1030 namespace Exp {
1031 
1032 struct ExpTgt {
1033   StringLiteral Name;
1034   unsigned Tgt;
1035   unsigned MaxIndex;
1036 };
1037 
1038 static constexpr ExpTgt ExpTgtInfo[] = {
1039   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1040   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1041   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1042   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1043   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1044   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1045 };
1046 
1047 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1048   for (const ExpTgt &Val : ExpTgtInfo) {
1049     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1050       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1051       Name = Val.Name;
1052       return true;
1053     }
1054   }
1055   return false;
1056 }
1057 
1058 unsigned getTgtId(const StringRef Name) {
1059 
1060   for (const ExpTgt &Val : ExpTgtInfo) {
1061     if (Val.MaxIndex == 0 && Name == Val.Name)
1062       return Val.Tgt;
1063 
1064     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1065       StringRef Suffix = Name.drop_front(Val.Name.size());
1066 
1067       unsigned Id;
1068       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1069         return ET_INVALID;
1070 
1071       // Disable leading zeroes
1072       if (Suffix.size() > 1 && Suffix[0] == '0')
1073         return ET_INVALID;
1074 
1075       return Val.Tgt + Id;
1076     }
1077   }
1078   return ET_INVALID;
1079 }
1080 
1081 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1082   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1083 }
1084 
1085 } // namespace Exp
1086 
1087 //===----------------------------------------------------------------------===//
1088 // MTBUF Format
1089 //===----------------------------------------------------------------------===//
1090 
1091 namespace MTBUFFormat {
1092 
1093 int64_t getDfmt(const StringRef Name) {
1094   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1095     if (Name == DfmtSymbolic[Id])
1096       return Id;
1097   }
1098   return DFMT_UNDEF;
1099 }
1100 
1101 StringRef getDfmtName(unsigned Id) {
1102   assert(Id <= DFMT_MAX);
1103   return DfmtSymbolic[Id];
1104 }
1105 
1106 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1107   if (isSI(STI) || isCI(STI))
1108     return NfmtSymbolicSICI;
1109   if (isVI(STI) || isGFX9(STI))
1110     return NfmtSymbolicVI;
1111   return NfmtSymbolicGFX10;
1112 }
1113 
1114 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1115   auto lookupTable = getNfmtLookupTable(STI);
1116   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1117     if (Name == lookupTable[Id])
1118       return Id;
1119   }
1120   return NFMT_UNDEF;
1121 }
1122 
1123 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1124   assert(Id <= NFMT_MAX);
1125   return getNfmtLookupTable(STI)[Id];
1126 }
1127 
1128 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1129   unsigned Dfmt;
1130   unsigned Nfmt;
1131   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1132   return isValidNfmt(Nfmt, STI);
1133 }
1134 
1135 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1136   return !getNfmtName(Id, STI).empty();
1137 }
1138 
1139 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1140   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1141 }
1142 
1143 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1144   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1145   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1146 }
1147 
1148 int64_t getUnifiedFormat(const StringRef Name) {
1149   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1150     if (Name == UfmtSymbolic[Id])
1151       return Id;
1152   }
1153   return UFMT_UNDEF;
1154 }
1155 
1156 StringRef getUnifiedFormatName(unsigned Id) {
1157   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1158 }
1159 
1160 bool isValidUnifiedFormat(unsigned Id) {
1161   return Id <= UFMT_LAST;
1162 }
1163 
1164 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1165   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1166   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1167     if (Fmt == DfmtNfmt2UFmt[Id])
1168       return Id;
1169   }
1170   return UFMT_UNDEF;
1171 }
1172 
1173 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1174   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1175 }
1176 
1177 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1178   if (isGFX10Plus(STI))
1179     return UFMT_DEFAULT;
1180   return DFMT_NFMT_DEFAULT;
1181 }
1182 
1183 } // namespace MTBUFFormat
1184 
1185 //===----------------------------------------------------------------------===//
1186 // SendMsg
1187 //===----------------------------------------------------------------------===//
1188 
1189 namespace SendMsg {
1190 
1191 int64_t getMsgId(const StringRef Name) {
1192   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1193     if (IdSymbolic[i] && Name == IdSymbolic[i])
1194       return i;
1195   }
1196   return ID_UNKNOWN_;
1197 }
1198 
1199 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1200   if (Strict) {
1201     switch (MsgId) {
1202     case ID_SAVEWAVE:
1203       return isVI(STI) || isGFX9Plus(STI);
1204     case ID_STALL_WAVE_GEN:
1205     case ID_HALT_WAVES:
1206     case ID_ORDERED_PS_DONE:
1207     case ID_GS_ALLOC_REQ:
1208     case ID_GET_DOORBELL:
1209       return isGFX9Plus(STI);
1210     case ID_EARLY_PRIM_DEALLOC:
1211       return isGFX9(STI);
1212     case ID_GET_DDID:
1213       return isGFX10Plus(STI);
1214     default:
1215       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1216     }
1217   } else {
1218     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1219   }
1220 }
1221 
1222 StringRef getMsgName(int64_t MsgId) {
1223   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1224   return IdSymbolic[MsgId];
1225 }
1226 
1227 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1228   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1229   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1230   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1231   for (int i = F; i < L; ++i) {
1232     if (Name == S[i]) {
1233       return i;
1234     }
1235   }
1236   return OP_UNKNOWN_;
1237 }
1238 
1239 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1240                   bool Strict) {
1241   assert(isValidMsgId(MsgId, STI, Strict));
1242 
1243   if (!Strict)
1244     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1245 
1246   switch(MsgId)
1247   {
1248   case ID_GS:
1249     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1250   case ID_GS_DONE:
1251     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1252   case ID_SYSMSG:
1253     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1254   default:
1255     return OpId == OP_NONE_;
1256   }
1257 }
1258 
1259 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1260   assert(msgRequiresOp(MsgId));
1261   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1262 }
1263 
1264 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1265                       const MCSubtargetInfo &STI, bool Strict) {
1266   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1267 
1268   if (!Strict)
1269     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1270 
1271   switch(MsgId)
1272   {
1273   case ID_GS:
1274     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1275   case ID_GS_DONE:
1276     return (OpId == OP_GS_NOP)?
1277            (StreamId == STREAM_ID_NONE_) :
1278            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1279   default:
1280     return StreamId == STREAM_ID_NONE_;
1281   }
1282 }
1283 
1284 bool msgRequiresOp(int64_t MsgId) {
1285   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1286 }
1287 
1288 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1289   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1290 }
1291 
1292 void decodeMsg(unsigned Val,
1293                uint16_t &MsgId,
1294                uint16_t &OpId,
1295                uint16_t &StreamId) {
1296   MsgId = Val & ID_MASK_;
1297   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1298   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1299 }
1300 
1301 uint64_t encodeMsg(uint64_t MsgId,
1302                    uint64_t OpId,
1303                    uint64_t StreamId) {
1304   return (MsgId << ID_SHIFT_) |
1305          (OpId << OP_SHIFT_) |
1306          (StreamId << STREAM_ID_SHIFT_);
1307 }
1308 
1309 } // namespace SendMsg
1310 
1311 //===----------------------------------------------------------------------===//
1312 //
1313 //===----------------------------------------------------------------------===//
1314 
1315 unsigned getInitialPSInputAddr(const Function &F) {
1316   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1317 }
1318 
1319 bool isShader(CallingConv::ID cc) {
1320   switch(cc) {
1321     case CallingConv::AMDGPU_VS:
1322     case CallingConv::AMDGPU_LS:
1323     case CallingConv::AMDGPU_HS:
1324     case CallingConv::AMDGPU_ES:
1325     case CallingConv::AMDGPU_GS:
1326     case CallingConv::AMDGPU_PS:
1327     case CallingConv::AMDGPU_CS:
1328       return true;
1329     default:
1330       return false;
1331   }
1332 }
1333 
1334 bool isGraphics(CallingConv::ID cc) {
1335   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1336 }
1337 
1338 bool isCompute(CallingConv::ID cc) {
1339   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1340 }
1341 
1342 bool isEntryFunctionCC(CallingConv::ID CC) {
1343   switch (CC) {
1344   case CallingConv::AMDGPU_KERNEL:
1345   case CallingConv::SPIR_KERNEL:
1346   case CallingConv::AMDGPU_VS:
1347   case CallingConv::AMDGPU_GS:
1348   case CallingConv::AMDGPU_PS:
1349   case CallingConv::AMDGPU_CS:
1350   case CallingConv::AMDGPU_ES:
1351   case CallingConv::AMDGPU_HS:
1352   case CallingConv::AMDGPU_LS:
1353     return true;
1354   default:
1355     return false;
1356   }
1357 }
1358 
1359 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1360   switch (CC) {
1361   case CallingConv::AMDGPU_Gfx:
1362     return true;
1363   default:
1364     return isEntryFunctionCC(CC);
1365   }
1366 }
1367 
1368 bool hasXNACK(const MCSubtargetInfo &STI) {
1369   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1370 }
1371 
1372 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1373   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1374 }
1375 
1376 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1377   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1378 }
1379 
1380 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1381   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1382 }
1383 
1384 bool hasG16(const MCSubtargetInfo &STI) {
1385   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1386 }
1387 
1388 bool hasPackedD16(const MCSubtargetInfo &STI) {
1389   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1390 }
1391 
1392 bool isSI(const MCSubtargetInfo &STI) {
1393   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1394 }
1395 
1396 bool isCI(const MCSubtargetInfo &STI) {
1397   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1398 }
1399 
1400 bool isVI(const MCSubtargetInfo &STI) {
1401   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1402 }
1403 
1404 bool isGFX9(const MCSubtargetInfo &STI) {
1405   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1406 }
1407 
1408 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1409   return isGFX9(STI) || isGFX10Plus(STI);
1410 }
1411 
1412 bool isGFX10(const MCSubtargetInfo &STI) {
1413   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1414 }
1415 
1416 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1417 
1418 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1419   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1420 }
1421 
1422 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1423   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1424 }
1425 
1426 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1427   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1428 }
1429 
1430 bool isGFX90A(const MCSubtargetInfo &STI) {
1431   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1432 }
1433 
1434 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1435   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1436   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1437   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1438     Reg == AMDGPU::SCC;
1439 }
1440 
1441 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1442   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1443     if (*R == Reg1) return true;
1444   }
1445   return false;
1446 }
1447 
1448 #define MAP_REG2REG \
1449   using namespace AMDGPU; \
1450   switch(Reg) { \
1451   default: return Reg; \
1452   CASE_CI_VI(FLAT_SCR) \
1453   CASE_CI_VI(FLAT_SCR_LO) \
1454   CASE_CI_VI(FLAT_SCR_HI) \
1455   CASE_VI_GFX9PLUS(TTMP0) \
1456   CASE_VI_GFX9PLUS(TTMP1) \
1457   CASE_VI_GFX9PLUS(TTMP2) \
1458   CASE_VI_GFX9PLUS(TTMP3) \
1459   CASE_VI_GFX9PLUS(TTMP4) \
1460   CASE_VI_GFX9PLUS(TTMP5) \
1461   CASE_VI_GFX9PLUS(TTMP6) \
1462   CASE_VI_GFX9PLUS(TTMP7) \
1463   CASE_VI_GFX9PLUS(TTMP8) \
1464   CASE_VI_GFX9PLUS(TTMP9) \
1465   CASE_VI_GFX9PLUS(TTMP10) \
1466   CASE_VI_GFX9PLUS(TTMP11) \
1467   CASE_VI_GFX9PLUS(TTMP12) \
1468   CASE_VI_GFX9PLUS(TTMP13) \
1469   CASE_VI_GFX9PLUS(TTMP14) \
1470   CASE_VI_GFX9PLUS(TTMP15) \
1471   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1472   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1473   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1474   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1475   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1476   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1477   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1478   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1479   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1480   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1481   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1482   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1483   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1484   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1485   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1486   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1487   }
1488 
1489 #define CASE_CI_VI(node) \
1490   assert(!isSI(STI)); \
1491   case node: return isCI(STI) ? node##_ci : node##_vi;
1492 
1493 #define CASE_VI_GFX9PLUS(node) \
1494   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1495 
1496 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1497   if (STI.getTargetTriple().getArch() == Triple::r600)
1498     return Reg;
1499   MAP_REG2REG
1500 }
1501 
1502 #undef CASE_CI_VI
1503 #undef CASE_VI_GFX9PLUS
1504 
1505 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1506 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1507 
1508 unsigned mc2PseudoReg(unsigned Reg) {
1509   MAP_REG2REG
1510 }
1511 
1512 #undef CASE_CI_VI
1513 #undef CASE_VI_GFX9PLUS
1514 #undef MAP_REG2REG
1515 
1516 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1517   assert(OpNo < Desc.NumOperands);
1518   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1519   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1520          OpType <= AMDGPU::OPERAND_SRC_LAST;
1521 }
1522 
1523 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1524   assert(OpNo < Desc.NumOperands);
1525   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1526   switch (OpType) {
1527   case AMDGPU::OPERAND_REG_IMM_FP32:
1528   case AMDGPU::OPERAND_REG_IMM_FP64:
1529   case AMDGPU::OPERAND_REG_IMM_FP16:
1530   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1531   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1532   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1533   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1534   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1535   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1536   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1537   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1538   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1539   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1540   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1541   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1542   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1543   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1544     return true;
1545   default:
1546     return false;
1547   }
1548 }
1549 
1550 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1551   assert(OpNo < Desc.NumOperands);
1552   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1553   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1554          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1555 }
1556 
1557 // Avoid using MCRegisterClass::getSize, since that function will go away
1558 // (move from MC* level to Target* level). Return size in bits.
1559 unsigned getRegBitWidth(unsigned RCID) {
1560   switch (RCID) {
1561   case AMDGPU::VGPR_LO16RegClassID:
1562   case AMDGPU::VGPR_HI16RegClassID:
1563   case AMDGPU::SGPR_LO16RegClassID:
1564   case AMDGPU::AGPR_LO16RegClassID:
1565     return 16;
1566   case AMDGPU::SGPR_32RegClassID:
1567   case AMDGPU::VGPR_32RegClassID:
1568   case AMDGPU::VRegOrLds_32RegClassID:
1569   case AMDGPU::AGPR_32RegClassID:
1570   case AMDGPU::VS_32RegClassID:
1571   case AMDGPU::AV_32RegClassID:
1572   case AMDGPU::SReg_32RegClassID:
1573   case AMDGPU::SReg_32_XM0RegClassID:
1574   case AMDGPU::SRegOrLds_32RegClassID:
1575     return 32;
1576   case AMDGPU::SGPR_64RegClassID:
1577   case AMDGPU::VS_64RegClassID:
1578   case AMDGPU::AV_64RegClassID:
1579   case AMDGPU::SReg_64RegClassID:
1580   case AMDGPU::VReg_64RegClassID:
1581   case AMDGPU::AReg_64RegClassID:
1582   case AMDGPU::SReg_64_XEXECRegClassID:
1583   case AMDGPU::VReg_64_Align2RegClassID:
1584   case AMDGPU::AReg_64_Align2RegClassID:
1585     return 64;
1586   case AMDGPU::SGPR_96RegClassID:
1587   case AMDGPU::SReg_96RegClassID:
1588   case AMDGPU::VReg_96RegClassID:
1589   case AMDGPU::AReg_96RegClassID:
1590   case AMDGPU::VReg_96_Align2RegClassID:
1591   case AMDGPU::AReg_96_Align2RegClassID:
1592   case AMDGPU::AV_96RegClassID:
1593     return 96;
1594   case AMDGPU::SGPR_128RegClassID:
1595   case AMDGPU::SReg_128RegClassID:
1596   case AMDGPU::VReg_128RegClassID:
1597   case AMDGPU::AReg_128RegClassID:
1598   case AMDGPU::VReg_128_Align2RegClassID:
1599   case AMDGPU::AReg_128_Align2RegClassID:
1600   case AMDGPU::AV_128RegClassID:
1601     return 128;
1602   case AMDGPU::SGPR_160RegClassID:
1603   case AMDGPU::SReg_160RegClassID:
1604   case AMDGPU::VReg_160RegClassID:
1605   case AMDGPU::AReg_160RegClassID:
1606   case AMDGPU::VReg_160_Align2RegClassID:
1607   case AMDGPU::AReg_160_Align2RegClassID:
1608   case AMDGPU::AV_160RegClassID:
1609     return 160;
1610   case AMDGPU::SGPR_192RegClassID:
1611   case AMDGPU::SReg_192RegClassID:
1612   case AMDGPU::VReg_192RegClassID:
1613   case AMDGPU::AReg_192RegClassID:
1614   case AMDGPU::VReg_192_Align2RegClassID:
1615   case AMDGPU::AReg_192_Align2RegClassID:
1616     return 192;
1617   case AMDGPU::SGPR_256RegClassID:
1618   case AMDGPU::SReg_256RegClassID:
1619   case AMDGPU::VReg_256RegClassID:
1620   case AMDGPU::AReg_256RegClassID:
1621   case AMDGPU::VReg_256_Align2RegClassID:
1622   case AMDGPU::AReg_256_Align2RegClassID:
1623     return 256;
1624   case AMDGPU::SGPR_512RegClassID:
1625   case AMDGPU::SReg_512RegClassID:
1626   case AMDGPU::VReg_512RegClassID:
1627   case AMDGPU::AReg_512RegClassID:
1628   case AMDGPU::VReg_512_Align2RegClassID:
1629   case AMDGPU::AReg_512_Align2RegClassID:
1630     return 512;
1631   case AMDGPU::SGPR_1024RegClassID:
1632   case AMDGPU::SReg_1024RegClassID:
1633   case AMDGPU::VReg_1024RegClassID:
1634   case AMDGPU::AReg_1024RegClassID:
1635   case AMDGPU::VReg_1024_Align2RegClassID:
1636   case AMDGPU::AReg_1024_Align2RegClassID:
1637     return 1024;
1638   default:
1639     llvm_unreachable("Unexpected register class");
1640   }
1641 }
1642 
1643 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1644   return getRegBitWidth(RC.getID());
1645 }
1646 
1647 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1648                            unsigned OpNo) {
1649   assert(OpNo < Desc.NumOperands);
1650   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1651   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1652 }
1653 
1654 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1655   if (isInlinableIntLiteral(Literal))
1656     return true;
1657 
1658   uint64_t Val = static_cast<uint64_t>(Literal);
1659   return (Val == DoubleToBits(0.0)) ||
1660          (Val == DoubleToBits(1.0)) ||
1661          (Val == DoubleToBits(-1.0)) ||
1662          (Val == DoubleToBits(0.5)) ||
1663          (Val == DoubleToBits(-0.5)) ||
1664          (Val == DoubleToBits(2.0)) ||
1665          (Val == DoubleToBits(-2.0)) ||
1666          (Val == DoubleToBits(4.0)) ||
1667          (Val == DoubleToBits(-4.0)) ||
1668          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1669 }
1670 
1671 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1672   if (isInlinableIntLiteral(Literal))
1673     return true;
1674 
1675   // The actual type of the operand does not seem to matter as long
1676   // as the bits match one of the inline immediate values.  For example:
1677   //
1678   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1679   // so it is a legal inline immediate.
1680   //
1681   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1682   // floating-point, so it is a legal inline immediate.
1683 
1684   uint32_t Val = static_cast<uint32_t>(Literal);
1685   return (Val == FloatToBits(0.0f)) ||
1686          (Val == FloatToBits(1.0f)) ||
1687          (Val == FloatToBits(-1.0f)) ||
1688          (Val == FloatToBits(0.5f)) ||
1689          (Val == FloatToBits(-0.5f)) ||
1690          (Val == FloatToBits(2.0f)) ||
1691          (Val == FloatToBits(-2.0f)) ||
1692          (Val == FloatToBits(4.0f)) ||
1693          (Val == FloatToBits(-4.0f)) ||
1694          (Val == 0x3e22f983 && HasInv2Pi);
1695 }
1696 
1697 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1698   if (!HasInv2Pi)
1699     return false;
1700 
1701   if (isInlinableIntLiteral(Literal))
1702     return true;
1703 
1704   uint16_t Val = static_cast<uint16_t>(Literal);
1705   return Val == 0x3C00 || // 1.0
1706          Val == 0xBC00 || // -1.0
1707          Val == 0x3800 || // 0.5
1708          Val == 0xB800 || // -0.5
1709          Val == 0x4000 || // 2.0
1710          Val == 0xC000 || // -2.0
1711          Val == 0x4400 || // 4.0
1712          Val == 0xC400 || // -4.0
1713          Val == 0x3118;   // 1/2pi
1714 }
1715 
1716 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1717   assert(HasInv2Pi);
1718 
1719   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1720     int16_t Trunc = static_cast<int16_t>(Literal);
1721     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1722   }
1723   if (!(Literal & 0xffff))
1724     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1725 
1726   int16_t Lo16 = static_cast<int16_t>(Literal);
1727   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1728   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1729 }
1730 
1731 bool isInlinableIntLiteralV216(int32_t Literal) {
1732   int16_t Lo16 = static_cast<int16_t>(Literal);
1733   if (isInt<16>(Literal) || isUInt<16>(Literal))
1734     return isInlinableIntLiteral(Lo16);
1735 
1736   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1737   if (!(Literal & 0xffff))
1738     return isInlinableIntLiteral(Hi16);
1739   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1740 }
1741 
1742 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1743   assert(HasInv2Pi);
1744 
1745   int16_t Lo16 = static_cast<int16_t>(Literal);
1746   if (isInt<16>(Literal) || isUInt<16>(Literal))
1747     return true;
1748 
1749   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1750   if (!(Literal & 0xffff))
1751     return true;
1752   return Lo16 == Hi16;
1753 }
1754 
1755 bool isArgPassedInSGPR(const Argument *A) {
1756   const Function *F = A->getParent();
1757 
1758   // Arguments to compute shaders are never a source of divergence.
1759   CallingConv::ID CC = F->getCallingConv();
1760   switch (CC) {
1761   case CallingConv::AMDGPU_KERNEL:
1762   case CallingConv::SPIR_KERNEL:
1763     return true;
1764   case CallingConv::AMDGPU_VS:
1765   case CallingConv::AMDGPU_LS:
1766   case CallingConv::AMDGPU_HS:
1767   case CallingConv::AMDGPU_ES:
1768   case CallingConv::AMDGPU_GS:
1769   case CallingConv::AMDGPU_PS:
1770   case CallingConv::AMDGPU_CS:
1771   case CallingConv::AMDGPU_Gfx:
1772     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1773     // Everything else is in VGPRs.
1774     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1775            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1776   default:
1777     // TODO: Should calls support inreg for SGPR inputs?
1778     return false;
1779   }
1780 }
1781 
1782 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1783   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1784 }
1785 
1786 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1787   return isGFX9Plus(ST);
1788 }
1789 
1790 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1791                                       int64_t EncodedOffset) {
1792   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1793                                : isUInt<8>(EncodedOffset);
1794 }
1795 
1796 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1797                                     int64_t EncodedOffset,
1798                                     bool IsBuffer) {
1799   return !IsBuffer &&
1800          hasSMRDSignedImmOffset(ST) &&
1801          isInt<21>(EncodedOffset);
1802 }
1803 
1804 static bool isDwordAligned(uint64_t ByteOffset) {
1805   return (ByteOffset & 3) == 0;
1806 }
1807 
1808 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1809                                 uint64_t ByteOffset) {
1810   if (hasSMEMByteOffset(ST))
1811     return ByteOffset;
1812 
1813   assert(isDwordAligned(ByteOffset));
1814   return ByteOffset >> 2;
1815 }
1816 
1817 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1818                                        int64_t ByteOffset, bool IsBuffer) {
1819   // The signed version is always a byte offset.
1820   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1821     assert(hasSMEMByteOffset(ST));
1822     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1823   }
1824 
1825   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1826     return None;
1827 
1828   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1829   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1830              ? Optional<int64_t>(EncodedOffset)
1831              : None;
1832 }
1833 
1834 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1835                                                 int64_t ByteOffset) {
1836   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1837     return None;
1838 
1839   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1840   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1841 }
1842 
1843 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1844   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1845   if (AMDGPU::isGFX10(ST))
1846     return Signed ? 12 : 11;
1847 
1848   return Signed ? 13 : 12;
1849 }
1850 
1851 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1852 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1853 // hardware bug needing a workaround).
1854 //
1855 // The required alignment ensures that individual address components remain
1856 // aligned if they are aligned to begin with. It also ensures that additional
1857 // offsets within the given alignment can be added to the resulting ImmOffset.
1858 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1859                       const GCNSubtarget *Subtarget, Align Alignment) {
1860   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1861   uint32_t Overflow = 0;
1862 
1863   if (Imm > MaxImm) {
1864     if (Imm <= MaxImm + 64) {
1865       // Use an SOffset inline constant for 4..64
1866       Overflow = Imm - MaxImm;
1867       Imm = MaxImm;
1868     } else {
1869       // Try to keep the same value in SOffset for adjacent loads, so that
1870       // the corresponding register contents can be re-used.
1871       //
1872       // Load values with all low-bits (except for alignment bits) set into
1873       // SOffset, so that a larger range of values can be covered using
1874       // s_movk_i32.
1875       //
1876       // Atomic operations fail to work correctly when individual address
1877       // components are unaligned, even if their sum is aligned.
1878       uint32_t High = (Imm + Alignment.value()) & ~4095;
1879       uint32_t Low = (Imm + Alignment.value()) & 4095;
1880       Imm = Low;
1881       Overflow = High - Alignment.value();
1882     }
1883   }
1884 
1885   // There is a hardware bug in SI and CI which prevents address clamping in
1886   // MUBUF instructions from working correctly with SOffsets. The immediate
1887   // offset is unaffected.
1888   if (Overflow > 0 &&
1889       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1890     return false;
1891 
1892   ImmOffset = Imm;
1893   SOffset = Overflow;
1894   return true;
1895 }
1896 
1897 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1898   *this = getDefaultForCallingConv(F.getCallingConv());
1899 
1900   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1901   if (!IEEEAttr.empty())
1902     IEEE = IEEEAttr == "true";
1903 
1904   StringRef DX10ClampAttr
1905     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1906   if (!DX10ClampAttr.empty())
1907     DX10Clamp = DX10ClampAttr == "true";
1908 
1909   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1910   if (!DenormF32Attr.empty()) {
1911     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1912     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1913     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1914   }
1915 
1916   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1917   if (!DenormAttr.empty()) {
1918     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1919 
1920     if (DenormF32Attr.empty()) {
1921       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1922       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1923     }
1924 
1925     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1926     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1927   }
1928 }
1929 
1930 namespace {
1931 
1932 struct SourceOfDivergence {
1933   unsigned Intr;
1934 };
1935 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1936 
1937 #define GET_SourcesOfDivergence_IMPL
1938 #define GET_Gfx9BufferFormat_IMPL
1939 #define GET_Gfx10PlusBufferFormat_IMPL
1940 #include "AMDGPUGenSearchableTables.inc"
1941 
1942 } // end anonymous namespace
1943 
1944 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1945   return lookupSourceOfDivergence(IntrID);
1946 }
1947 
1948 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1949                                                   uint8_t NumComponents,
1950                                                   uint8_t NumFormat,
1951                                                   const MCSubtargetInfo &STI) {
1952   return isGFX10Plus(STI)
1953              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1954                                             NumFormat)
1955              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1956 }
1957 
1958 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1959                                                   const MCSubtargetInfo &STI) {
1960   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
1961                           : getGfx9BufferFormatInfo(Format);
1962 }
1963 
1964 } // namespace AMDGPU
1965 
1966 raw_ostream &operator<<(raw_ostream &OS,
1967                         const AMDGPU::IsaInfo::TargetIDSetting S) {
1968   switch (S) {
1969   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
1970     OS << "Unsupported";
1971     break;
1972   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
1973     OS << "Any";
1974     break;
1975   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
1976     OS << "Off";
1977     break;
1978   case (AMDGPU::IsaInfo::TargetIDSetting::On):
1979     OS << "On";
1980     break;
1981   }
1982   return OS;
1983 }
1984 
1985 } // namespace llvm
1986