1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "AMDGPUBaseInfo.h" 11 #include "AMDGPUTargetTransformInfo.h" 12 #include "AMDGPU.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth() { return 4; } 89 90 /// \returns Vmcnt bit shift (higher bits). 91 unsigned getVmcntBitShiftHi() { return 14; } 92 93 /// \returns Vmcnt bit width (higher bits). 94 unsigned getVmcntBitWidthHi() { return 2; } 95 96 } // end namespace anonymous 97 98 namespace llvm { 99 100 namespace AMDGPU { 101 102 struct MIMGInfo { 103 uint16_t Opcode; 104 uint16_t BaseOpcode; 105 uint8_t MIMGEncoding; 106 uint8_t VDataDwords; 107 uint8_t VAddrDwords; 108 }; 109 110 #define GET_MIMGBaseOpcodesTable_IMPL 111 #define GET_MIMGDimInfoTable_IMPL 112 #define GET_MIMGInfoTable_IMPL 113 #define GET_MIMGLZMappingTable_IMPL 114 #include "AMDGPUGenSearchableTables.inc" 115 116 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 117 unsigned VDataDwords, unsigned VAddrDwords) { 118 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 119 VDataDwords, VAddrDwords); 120 return Info ? Info->Opcode : -1; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 struct MUBUFInfo { 132 uint16_t Opcode; 133 uint16_t BaseOpcode; 134 uint8_t dwords; 135 bool has_vaddr; 136 bool has_srsrc; 137 bool has_soffset; 138 }; 139 140 #define GET_MUBUFInfoTable_DECL 141 #define GET_MUBUFInfoTable_IMPL 142 #include "AMDGPUGenSearchableTables.inc" 143 144 int getMUBUFBaseOpcode(unsigned Opc) { 145 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 146 return Info ? Info->BaseOpcode : -1; 147 } 148 149 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) { 150 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords); 151 return Info ? Info->Opcode : -1; 152 } 153 154 int getMUBUFDwords(unsigned Opc) { 155 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 156 return Info ? Info->dwords : 0; 157 } 158 159 bool getMUBUFHasVAddr(unsigned Opc) { 160 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 161 return Info ? Info->has_vaddr : false; 162 } 163 164 bool getMUBUFHasSrsrc(unsigned Opc) { 165 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 166 return Info ? Info->has_srsrc : false; 167 } 168 169 bool getMUBUFHasSoffset(unsigned Opc) { 170 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 171 return Info ? Info->has_soffset : false; 172 } 173 174 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 175 // header files, so we need to wrap it in a function that takes unsigned 176 // instead. 177 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 178 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 179 } 180 181 namespace IsaInfo { 182 183 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 184 auto TargetTriple = STI->getTargetTriple(); 185 auto Version = getIsaVersion(STI->getCPU()); 186 187 Stream << TargetTriple.getArchName() << '-' 188 << TargetTriple.getVendorName() << '-' 189 << TargetTriple.getOSName() << '-' 190 << TargetTriple.getEnvironmentName() << '-' 191 << "gfx" 192 << Version.Major 193 << Version.Minor 194 << Version.Stepping; 195 196 if (hasXNACK(*STI)) 197 Stream << "+xnack"; 198 if (hasSRAMECC(*STI)) 199 Stream << "+sram-ecc"; 200 201 Stream.flush(); 202 } 203 204 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 205 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 206 STI->getFeatureBits().test(FeatureCodeObjectV3); 207 } 208 209 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 210 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 211 return 16; 212 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 213 return 32; 214 215 return 64; 216 } 217 218 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 219 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 220 return 32768; 221 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 222 return 65536; 223 224 return 0; 225 } 226 227 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 228 return 4; 229 } 230 231 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 232 unsigned FlatWorkGroupSize) { 233 if (!STI->getFeatureBits().test(FeatureGCN)) 234 return 8; 235 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 236 if (N == 1) 237 return 40; 238 N = 40 / N; 239 return std::min(N, 16u); 240 } 241 242 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 243 return getMaxWavesPerEU() * getEUsPerCU(STI); 244 } 245 246 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 247 unsigned FlatWorkGroupSize) { 248 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 249 } 250 251 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 252 return 1; 253 } 254 255 unsigned getMaxWavesPerEU() { 256 // FIXME: Need to take scratch memory into account. 257 return 10; 258 } 259 260 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 261 unsigned FlatWorkGroupSize) { 262 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 263 getEUsPerCU(STI)) / getEUsPerCU(STI); 264 } 265 266 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 267 return 1; 268 } 269 270 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 271 return 2048; 272 } 273 274 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 275 unsigned FlatWorkGroupSize) { 276 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 277 getWavefrontSize(STI); 278 } 279 280 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 281 IsaVersion Version = getIsaVersion(STI->getCPU()); 282 if (Version.Major >= 8) 283 return 16; 284 return 8; 285 } 286 287 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 288 return 8; 289 } 290 291 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 292 IsaVersion Version = getIsaVersion(STI->getCPU()); 293 if (Version.Major >= 8) 294 return 800; 295 return 512; 296 } 297 298 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 299 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 300 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 301 302 IsaVersion Version = getIsaVersion(STI->getCPU()); 303 if (Version.Major >= 8) 304 return 102; 305 return 104; 306 } 307 308 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 309 assert(WavesPerEU != 0); 310 311 if (WavesPerEU >= getMaxWavesPerEU()) 312 return 0; 313 314 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 315 if (STI->getFeatureBits().test(FeatureTrapHandler)) 316 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 317 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 318 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 319 } 320 321 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 322 bool Addressable) { 323 assert(WavesPerEU != 0); 324 325 IsaVersion Version = getIsaVersion(STI->getCPU()); 326 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 327 if (Version.Major >= 8 && !Addressable) 328 AddressableNumSGPRs = 112; 329 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 330 if (STI->getFeatureBits().test(FeatureTrapHandler)) 331 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 332 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 333 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 334 } 335 336 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 337 bool FlatScrUsed, bool XNACKUsed) { 338 unsigned ExtraSGPRs = 0; 339 if (VCCUsed) 340 ExtraSGPRs = 2; 341 342 IsaVersion Version = getIsaVersion(STI->getCPU()); 343 if (Version.Major < 8) { 344 if (FlatScrUsed) 345 ExtraSGPRs = 4; 346 } else { 347 if (XNACKUsed) 348 ExtraSGPRs = 4; 349 350 if (FlatScrUsed) 351 ExtraSGPRs = 6; 352 } 353 354 return ExtraSGPRs; 355 } 356 357 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 358 bool FlatScrUsed) { 359 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 360 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 361 } 362 363 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 364 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 365 // SGPRBlocks is actual number of SGPR blocks minus 1. 366 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 367 } 368 369 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) { 370 return 4; 371 } 372 373 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) { 374 return getVGPRAllocGranule(STI); 375 } 376 377 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 378 return 256; 379 } 380 381 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 382 return getTotalNumVGPRs(STI); 383 } 384 385 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 386 assert(WavesPerEU != 0); 387 388 if (WavesPerEU >= getMaxWavesPerEU()) 389 return 0; 390 unsigned MinNumVGPRs = 391 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 392 getVGPRAllocGranule(STI)) + 1; 393 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 394 } 395 396 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 397 assert(WavesPerEU != 0); 398 399 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 400 getVGPRAllocGranule(STI)); 401 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 402 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 403 } 404 405 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) { 406 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI)); 407 // VGPRBlocks is actual number of VGPR blocks minus 1. 408 return NumVGPRs / getVGPREncodingGranule(STI) - 1; 409 } 410 411 } // end namespace IsaInfo 412 413 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 414 const MCSubtargetInfo *STI) { 415 IsaVersion Version = getIsaVersion(STI->getCPU()); 416 417 memset(&Header, 0, sizeof(Header)); 418 419 Header.amd_kernel_code_version_major = 1; 420 Header.amd_kernel_code_version_minor = 2; 421 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 422 Header.amd_machine_version_major = Version.Major; 423 Header.amd_machine_version_minor = Version.Minor; 424 Header.amd_machine_version_stepping = Version.Stepping; 425 Header.kernel_code_entry_byte_offset = sizeof(Header); 426 // wavefront_size is specified as a power of 2: 2^6 = 64 threads. 427 Header.wavefront_size = 6; 428 429 // If the code object does not support indirect functions, then the value must 430 // be 0xffffffff. 431 Header.call_convention = -1; 432 433 // These alignment values are specified in powers of two, so alignment = 434 // 2^n. The minimum alignment is 2^4 = 16. 435 Header.kernarg_segment_alignment = 4; 436 Header.group_segment_alignment = 4; 437 Header.private_segment_alignment = 4; 438 } 439 440 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() { 441 amdhsa::kernel_descriptor_t KD; 442 memset(&KD, 0, sizeof(KD)); 443 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 444 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 445 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 446 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 447 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 448 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 449 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 450 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 451 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 452 return KD; 453 } 454 455 bool isGroupSegment(const GlobalValue *GV) { 456 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 457 } 458 459 bool isGlobalSegment(const GlobalValue *GV) { 460 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 461 } 462 463 bool isReadOnlySegment(const GlobalValue *GV) { 464 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 465 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 466 } 467 468 bool shouldEmitConstantsToTextSection(const Triple &TT) { 469 return TT.getOS() != Triple::AMDHSA; 470 } 471 472 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 473 Attribute A = F.getFnAttribute(Name); 474 int Result = Default; 475 476 if (A.isStringAttribute()) { 477 StringRef Str = A.getValueAsString(); 478 if (Str.getAsInteger(0, Result)) { 479 LLVMContext &Ctx = F.getContext(); 480 Ctx.emitError("can't parse integer attribute " + Name); 481 } 482 } 483 484 return Result; 485 } 486 487 std::pair<int, int> getIntegerPairAttribute(const Function &F, 488 StringRef Name, 489 std::pair<int, int> Default, 490 bool OnlyFirstRequired) { 491 Attribute A = F.getFnAttribute(Name); 492 if (!A.isStringAttribute()) 493 return Default; 494 495 LLVMContext &Ctx = F.getContext(); 496 std::pair<int, int> Ints = Default; 497 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 498 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 499 Ctx.emitError("can't parse first integer attribute " + Name); 500 return Default; 501 } 502 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 503 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 504 Ctx.emitError("can't parse second integer attribute " + Name); 505 return Default; 506 } 507 } 508 509 return Ints; 510 } 511 512 unsigned getVmcntBitMask(const IsaVersion &Version) { 513 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 514 if (Version.Major < 9) 515 return VmcntLo; 516 517 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 518 return VmcntLo | VmcntHi; 519 } 520 521 unsigned getExpcntBitMask(const IsaVersion &Version) { 522 return (1 << getExpcntBitWidth()) - 1; 523 } 524 525 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 526 return (1 << getLgkmcntBitWidth()) - 1; 527 } 528 529 unsigned getWaitcntBitMask(const IsaVersion &Version) { 530 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 531 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 532 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth()); 533 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 534 if (Version.Major < 9) 535 return Waitcnt; 536 537 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 538 return Waitcnt | VmcntHi; 539 } 540 541 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 542 unsigned VmcntLo = 543 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 544 if (Version.Major < 9) 545 return VmcntLo; 546 547 unsigned VmcntHi = 548 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 549 VmcntHi <<= getVmcntBitWidthLo(); 550 return VmcntLo | VmcntHi; 551 } 552 553 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 554 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 555 } 556 557 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 558 return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 559 } 560 561 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 562 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 563 Vmcnt = decodeVmcnt(Version, Waitcnt); 564 Expcnt = decodeExpcnt(Version, Waitcnt); 565 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 566 } 567 568 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 569 Waitcnt Decoded; 570 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 571 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 572 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 573 return Decoded; 574 } 575 576 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 577 unsigned Vmcnt) { 578 Waitcnt = 579 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 580 if (Version.Major < 9) 581 return Waitcnt; 582 583 Vmcnt >>= getVmcntBitWidthLo(); 584 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 585 } 586 587 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 588 unsigned Expcnt) { 589 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 590 } 591 592 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 593 unsigned Lgkmcnt) { 594 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 595 } 596 597 unsigned encodeWaitcnt(const IsaVersion &Version, 598 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 599 unsigned Waitcnt = getWaitcntBitMask(Version); 600 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 601 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 602 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 603 return Waitcnt; 604 } 605 606 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 607 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 608 } 609 610 unsigned getInitialPSInputAddr(const Function &F) { 611 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 612 } 613 614 bool isShader(CallingConv::ID cc) { 615 switch(cc) { 616 case CallingConv::AMDGPU_VS: 617 case CallingConv::AMDGPU_LS: 618 case CallingConv::AMDGPU_HS: 619 case CallingConv::AMDGPU_ES: 620 case CallingConv::AMDGPU_GS: 621 case CallingConv::AMDGPU_PS: 622 case CallingConv::AMDGPU_CS: 623 return true; 624 default: 625 return false; 626 } 627 } 628 629 bool isCompute(CallingConv::ID cc) { 630 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 631 } 632 633 bool isEntryFunctionCC(CallingConv::ID CC) { 634 switch (CC) { 635 case CallingConv::AMDGPU_KERNEL: 636 case CallingConv::SPIR_KERNEL: 637 case CallingConv::AMDGPU_VS: 638 case CallingConv::AMDGPU_GS: 639 case CallingConv::AMDGPU_PS: 640 case CallingConv::AMDGPU_CS: 641 case CallingConv::AMDGPU_ES: 642 case CallingConv::AMDGPU_HS: 643 case CallingConv::AMDGPU_LS: 644 return true; 645 default: 646 return false; 647 } 648 } 649 650 bool hasXNACK(const MCSubtargetInfo &STI) { 651 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 652 } 653 654 bool hasSRAMECC(const MCSubtargetInfo &STI) { 655 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 656 } 657 658 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 659 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 660 } 661 662 bool hasPackedD16(const MCSubtargetInfo &STI) { 663 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 664 } 665 666 bool isSI(const MCSubtargetInfo &STI) { 667 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 668 } 669 670 bool isCI(const MCSubtargetInfo &STI) { 671 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 672 } 673 674 bool isVI(const MCSubtargetInfo &STI) { 675 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 676 } 677 678 bool isGFX9(const MCSubtargetInfo &STI) { 679 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 680 } 681 682 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 683 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 684 } 685 686 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 687 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 688 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 689 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 690 Reg == AMDGPU::SCC; 691 } 692 693 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 694 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 695 if (*R == Reg1) return true; 696 } 697 return false; 698 } 699 700 #define MAP_REG2REG \ 701 using namespace AMDGPU; \ 702 switch(Reg) { \ 703 default: return Reg; \ 704 CASE_CI_VI(FLAT_SCR) \ 705 CASE_CI_VI(FLAT_SCR_LO) \ 706 CASE_CI_VI(FLAT_SCR_HI) \ 707 CASE_VI_GFX9(TTMP0) \ 708 CASE_VI_GFX9(TTMP1) \ 709 CASE_VI_GFX9(TTMP2) \ 710 CASE_VI_GFX9(TTMP3) \ 711 CASE_VI_GFX9(TTMP4) \ 712 CASE_VI_GFX9(TTMP5) \ 713 CASE_VI_GFX9(TTMP6) \ 714 CASE_VI_GFX9(TTMP7) \ 715 CASE_VI_GFX9(TTMP8) \ 716 CASE_VI_GFX9(TTMP9) \ 717 CASE_VI_GFX9(TTMP10) \ 718 CASE_VI_GFX9(TTMP11) \ 719 CASE_VI_GFX9(TTMP12) \ 720 CASE_VI_GFX9(TTMP13) \ 721 CASE_VI_GFX9(TTMP14) \ 722 CASE_VI_GFX9(TTMP15) \ 723 CASE_VI_GFX9(TTMP0_TTMP1) \ 724 CASE_VI_GFX9(TTMP2_TTMP3) \ 725 CASE_VI_GFX9(TTMP4_TTMP5) \ 726 CASE_VI_GFX9(TTMP6_TTMP7) \ 727 CASE_VI_GFX9(TTMP8_TTMP9) \ 728 CASE_VI_GFX9(TTMP10_TTMP11) \ 729 CASE_VI_GFX9(TTMP12_TTMP13) \ 730 CASE_VI_GFX9(TTMP14_TTMP15) \ 731 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \ 732 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \ 733 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \ 734 CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \ 735 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 736 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 737 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 738 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 739 } 740 741 #define CASE_CI_VI(node) \ 742 assert(!isSI(STI)); \ 743 case node: return isCI(STI) ? node##_ci : node##_vi; 744 745 #define CASE_VI_GFX9(node) \ 746 case node: return isGFX9(STI) ? node##_gfx9 : node##_vi; 747 748 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 749 if (STI.getTargetTriple().getArch() == Triple::r600) 750 return Reg; 751 MAP_REG2REG 752 } 753 754 #undef CASE_CI_VI 755 #undef CASE_VI_GFX9 756 757 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 758 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node; 759 760 unsigned mc2PseudoReg(unsigned Reg) { 761 MAP_REG2REG 762 } 763 764 #undef CASE_CI_VI 765 #undef CASE_VI_GFX9 766 #undef MAP_REG2REG 767 768 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 769 assert(OpNo < Desc.NumOperands); 770 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 771 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 772 OpType <= AMDGPU::OPERAND_SRC_LAST; 773 } 774 775 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 776 assert(OpNo < Desc.NumOperands); 777 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 778 switch (OpType) { 779 case AMDGPU::OPERAND_REG_IMM_FP32: 780 case AMDGPU::OPERAND_REG_IMM_FP64: 781 case AMDGPU::OPERAND_REG_IMM_FP16: 782 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 783 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 784 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 785 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 786 return true; 787 default: 788 return false; 789 } 790 } 791 792 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 793 assert(OpNo < Desc.NumOperands); 794 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 795 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 796 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 797 } 798 799 // Avoid using MCRegisterClass::getSize, since that function will go away 800 // (move from MC* level to Target* level). Return size in bits. 801 unsigned getRegBitWidth(unsigned RCID) { 802 switch (RCID) { 803 case AMDGPU::SGPR_32RegClassID: 804 case AMDGPU::VGPR_32RegClassID: 805 case AMDGPU::VS_32RegClassID: 806 case AMDGPU::SReg_32RegClassID: 807 case AMDGPU::SReg_32_XM0RegClassID: 808 return 32; 809 case AMDGPU::SGPR_64RegClassID: 810 case AMDGPU::VS_64RegClassID: 811 case AMDGPU::SReg_64RegClassID: 812 case AMDGPU::VReg_64RegClassID: 813 case AMDGPU::SReg_64_XEXECRegClassID: 814 return 64; 815 case AMDGPU::VReg_96RegClassID: 816 return 96; 817 case AMDGPU::SGPR_128RegClassID: 818 case AMDGPU::SReg_128RegClassID: 819 case AMDGPU::VReg_128RegClassID: 820 return 128; 821 case AMDGPU::SReg_256RegClassID: 822 case AMDGPU::VReg_256RegClassID: 823 return 256; 824 case AMDGPU::SReg_512RegClassID: 825 case AMDGPU::VReg_512RegClassID: 826 return 512; 827 default: 828 llvm_unreachable("Unexpected register class"); 829 } 830 } 831 832 unsigned getRegBitWidth(const MCRegisterClass &RC) { 833 return getRegBitWidth(RC.getID()); 834 } 835 836 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 837 unsigned OpNo) { 838 assert(OpNo < Desc.NumOperands); 839 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 840 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 841 } 842 843 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 844 if (Literal >= -16 && Literal <= 64) 845 return true; 846 847 uint64_t Val = static_cast<uint64_t>(Literal); 848 return (Val == DoubleToBits(0.0)) || 849 (Val == DoubleToBits(1.0)) || 850 (Val == DoubleToBits(-1.0)) || 851 (Val == DoubleToBits(0.5)) || 852 (Val == DoubleToBits(-0.5)) || 853 (Val == DoubleToBits(2.0)) || 854 (Val == DoubleToBits(-2.0)) || 855 (Val == DoubleToBits(4.0)) || 856 (Val == DoubleToBits(-4.0)) || 857 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 858 } 859 860 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 861 if (Literal >= -16 && Literal <= 64) 862 return true; 863 864 // The actual type of the operand does not seem to matter as long 865 // as the bits match one of the inline immediate values. For example: 866 // 867 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 868 // so it is a legal inline immediate. 869 // 870 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 871 // floating-point, so it is a legal inline immediate. 872 873 uint32_t Val = static_cast<uint32_t>(Literal); 874 return (Val == FloatToBits(0.0f)) || 875 (Val == FloatToBits(1.0f)) || 876 (Val == FloatToBits(-1.0f)) || 877 (Val == FloatToBits(0.5f)) || 878 (Val == FloatToBits(-0.5f)) || 879 (Val == FloatToBits(2.0f)) || 880 (Val == FloatToBits(-2.0f)) || 881 (Val == FloatToBits(4.0f)) || 882 (Val == FloatToBits(-4.0f)) || 883 (Val == 0x3e22f983 && HasInv2Pi); 884 } 885 886 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 887 if (!HasInv2Pi) 888 return false; 889 890 if (Literal >= -16 && Literal <= 64) 891 return true; 892 893 uint16_t Val = static_cast<uint16_t>(Literal); 894 return Val == 0x3C00 || // 1.0 895 Val == 0xBC00 || // -1.0 896 Val == 0x3800 || // 0.5 897 Val == 0xB800 || // -0.5 898 Val == 0x4000 || // 2.0 899 Val == 0xC000 || // -2.0 900 Val == 0x4400 || // 4.0 901 Val == 0xC400 || // -4.0 902 Val == 0x3118; // 1/2pi 903 } 904 905 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 906 assert(HasInv2Pi); 907 908 int16_t Lo16 = static_cast<int16_t>(Literal); 909 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 910 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 911 } 912 913 bool isArgPassedInSGPR(const Argument *A) { 914 const Function *F = A->getParent(); 915 916 // Arguments to compute shaders are never a source of divergence. 917 CallingConv::ID CC = F->getCallingConv(); 918 switch (CC) { 919 case CallingConv::AMDGPU_KERNEL: 920 case CallingConv::SPIR_KERNEL: 921 return true; 922 case CallingConv::AMDGPU_VS: 923 case CallingConv::AMDGPU_LS: 924 case CallingConv::AMDGPU_HS: 925 case CallingConv::AMDGPU_ES: 926 case CallingConv::AMDGPU_GS: 927 case CallingConv::AMDGPU_PS: 928 case CallingConv::AMDGPU_CS: 929 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 930 // Everything else is in VGPRs. 931 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 932 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 933 default: 934 // TODO: Should calls support inreg for SGPR inputs? 935 return false; 936 } 937 } 938 939 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 940 if (isGCN3Encoding(ST)) 941 return ByteOffset; 942 return ByteOffset >> 2; 943 } 944 945 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 946 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 947 return isGCN3Encoding(ST) ? 948 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 949 } 950 951 // Given Imm, split it into the values to put into the SOffset and ImmOffset 952 // fields in an MUBUF instruction. Return false if it is not possible (due to a 953 // hardware bug needing a workaround). 954 // 955 // The required alignment ensures that individual address components remain 956 // aligned if they are aligned to begin with. It also ensures that additional 957 // offsets within the given alignment can be added to the resulting ImmOffset. 958 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 959 const GCNSubtarget *Subtarget, uint32_t Align) { 960 const uint32_t MaxImm = alignDown(4095, Align); 961 uint32_t Overflow = 0; 962 963 if (Imm > MaxImm) { 964 if (Imm <= MaxImm + 64) { 965 // Use an SOffset inline constant for 4..64 966 Overflow = Imm - MaxImm; 967 Imm = MaxImm; 968 } else { 969 // Try to keep the same value in SOffset for adjacent loads, so that 970 // the corresponding register contents can be re-used. 971 // 972 // Load values with all low-bits (except for alignment bits) set into 973 // SOffset, so that a larger range of values can be covered using 974 // s_movk_i32. 975 // 976 // Atomic operations fail to work correctly when individual address 977 // components are unaligned, even if their sum is aligned. 978 uint32_t High = (Imm + Align) & ~4095; 979 uint32_t Low = (Imm + Align) & 4095; 980 Imm = Low; 981 Overflow = High - Align; 982 } 983 } 984 985 // There is a hardware bug in SI and CI which prevents address clamping in 986 // MUBUF instructions from working correctly with SOffsets. The immediate 987 // offset is unaffected. 988 if (Overflow > 0 && 989 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 990 return false; 991 992 ImmOffset = Imm; 993 SOffset = Overflow; 994 return true; 995 } 996 997 namespace { 998 999 struct SourceOfDivergence { 1000 unsigned Intr; 1001 }; 1002 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1003 1004 #define GET_SourcesOfDivergence_IMPL 1005 #include "AMDGPUGenSearchableTables.inc" 1006 1007 } // end anonymous namespace 1008 1009 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1010 return lookupSourceOfDivergence(IntrID); 1011 } 1012 } // namespace AMDGPU 1013 } // namespace llvm 1014