1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDKernelCodeT.h" 13 #include "GCNSubtarget.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/IR/Attributes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/GlobalValue.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IntrinsicsR600.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/MC/MCSubtargetInfo.h" 23 #include "llvm/Support/AMDHSAKernelDescriptor.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/TargetParser.h" 26 27 #define GET_INSTRINFO_NAMED_OPS 28 #define GET_INSTRMAP_INFO 29 #include "AMDGPUGenInstrInfo.inc" 30 31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion( 32 "amdhsa-code-object-version", llvm::cl::Hidden, 33 llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4), 34 llvm::cl::ZeroOrMore); 35 36 namespace { 37 38 /// \returns Bit mask for given bit \p Shift and bit \p Width. 39 unsigned getBitMask(unsigned Shift, unsigned Width) { 40 return ((1 << Width) - 1) << Shift; 41 } 42 43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 44 /// 45 /// \returns Packed \p Dst. 46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 47 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 48 Dst |= (Src << Shift) & getBitMask(Shift, Width); 49 return Dst; 50 } 51 52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 53 /// 54 /// \returns Unpacked bits. 55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 56 return (Src & getBitMask(Shift, Width)) >> Shift; 57 } 58 59 /// \returns Vmcnt bit shift (lower bits). 60 unsigned getVmcntBitShiftLo() { return 0; } 61 62 /// \returns Vmcnt bit width (lower bits). 63 unsigned getVmcntBitWidthLo() { return 4; } 64 65 /// \returns Expcnt bit shift. 66 unsigned getExpcntBitShift() { return 4; } 67 68 /// \returns Expcnt bit width. 69 unsigned getExpcntBitWidth() { return 3; } 70 71 /// \returns Lgkmcnt bit shift. 72 unsigned getLgkmcntBitShift() { return 8; } 73 74 /// \returns Lgkmcnt bit width. 75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 76 return (VersionMajor >= 10) ? 6 : 4; 77 } 78 79 /// \returns Vmcnt bit shift (higher bits). 80 unsigned getVmcntBitShiftHi() { return 14; } 81 82 /// \returns Vmcnt bit width (higher bits). 83 unsigned getVmcntBitWidthHi() { return 2; } 84 85 } // end namespace anonymous 86 87 namespace llvm { 88 89 namespace AMDGPU { 90 91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) { 92 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) 93 return None; 94 95 switch (AmdhsaCodeObjectVersion) { 96 case 2: 97 return ELF::ELFABIVERSION_AMDGPU_HSA_V2; 98 case 3: 99 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 100 case 4: 101 return ELF::ELFABIVERSION_AMDGPU_HSA_V4; 102 case 5: 103 return ELF::ELFABIVERSION_AMDGPU_HSA_V5; 104 default: 105 report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") + 106 Twine(AmdhsaCodeObjectVersion)); 107 } 108 } 109 110 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { 111 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 112 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2; 113 return false; 114 } 115 116 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { 117 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 118 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3; 119 return false; 120 } 121 122 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) { 123 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 124 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4; 125 return false; 126 } 127 128 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) { 129 if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI)) 130 return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5; 131 return false; 132 } 133 134 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) { 135 return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) || 136 isHsaAbiVersion5(STI); 137 } 138 139 unsigned getAmdhsaCodeObjectVersion() { 140 return AmdhsaCodeObjectVersion; 141 } 142 143 // FIXME: All such magic numbers about the ABI should be in a 144 // central TD file. 145 unsigned getHostcallImplicitArgPosition() { 146 switch (AmdhsaCodeObjectVersion) { 147 case 2: 148 case 3: 149 case 4: 150 return 24; 151 case 5: 152 return 80; 153 default: 154 llvm_unreachable("Unexpected code object version"); 155 return 0; 156 } 157 } 158 159 unsigned getHeapPtrImplicitArgPosition() { 160 if (AmdhsaCodeObjectVersion == 5) 161 return 96; 162 llvm_unreachable("hidden_heap is supported only by code object version 5"); 163 return 0; 164 } 165 166 unsigned getQueuePtrImplicitArgPosition() { 167 if (AmdhsaCodeObjectVersion == 5) 168 return 200; 169 llvm_unreachable("queue_ptr is supported only by code object version 5"); 170 return 0; 171 } 172 173 #define GET_MIMGBaseOpcodesTable_IMPL 174 #define GET_MIMGDimInfoTable_IMPL 175 #define GET_MIMGInfoTable_IMPL 176 #define GET_MIMGLZMappingTable_IMPL 177 #define GET_MIMGMIPMappingTable_IMPL 178 #define GET_MIMGBiasMappingTable_IMPL 179 #define GET_MIMGOffsetMappingTable_IMPL 180 #define GET_MIMGG16MappingTable_IMPL 181 #include "AMDGPUGenSearchableTables.inc" 182 183 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 184 unsigned VDataDwords, unsigned VAddrDwords) { 185 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 186 VDataDwords, VAddrDwords); 187 return Info ? Info->Opcode : -1; 188 } 189 190 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 191 const MIMGInfo *Info = getMIMGInfo(Opc); 192 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 193 } 194 195 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 196 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 197 const MIMGInfo *NewInfo = 198 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 199 NewChannels, OrigInfo->VAddrDwords); 200 return NewInfo ? NewInfo->Opcode : -1; 201 } 202 203 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode, 204 const MIMGDimInfo *Dim, bool IsA16, 205 bool IsG16Supported) { 206 unsigned AddrWords = BaseOpcode->NumExtraArgs; 207 unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) + 208 (BaseOpcode->LodOrClampOrMip ? 1 : 0); 209 if (IsA16) 210 AddrWords += divideCeil(AddrComponents, 2); 211 else 212 AddrWords += AddrComponents; 213 214 // Note: For subtargets that support A16 but not G16, enabling A16 also 215 // enables 16 bit gradients. 216 // For subtargets that support A16 (operand) and G16 (done with a different 217 // instruction encoding), they are independent. 218 219 if (BaseOpcode->Gradients) { 220 if ((IsA16 && !IsG16Supported) || BaseOpcode->G16) 221 // There are two gradients per coordinate, we pack them separately. 222 // For the 3d case, 223 // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv) 224 AddrWords += alignTo<2>(Dim->NumGradients / 2); 225 else 226 AddrWords += Dim->NumGradients; 227 } 228 return AddrWords; 229 } 230 231 struct MUBUFInfo { 232 uint16_t Opcode; 233 uint16_t BaseOpcode; 234 uint8_t elements; 235 bool has_vaddr; 236 bool has_srsrc; 237 bool has_soffset; 238 bool IsBufferInv; 239 }; 240 241 struct MTBUFInfo { 242 uint16_t Opcode; 243 uint16_t BaseOpcode; 244 uint8_t elements; 245 bool has_vaddr; 246 bool has_srsrc; 247 bool has_soffset; 248 }; 249 250 struct SMInfo { 251 uint16_t Opcode; 252 bool IsBuffer; 253 }; 254 255 struct VOPInfo { 256 uint16_t Opcode; 257 bool IsSingle; 258 }; 259 260 #define GET_MTBUFInfoTable_DECL 261 #define GET_MTBUFInfoTable_IMPL 262 #define GET_MUBUFInfoTable_DECL 263 #define GET_MUBUFInfoTable_IMPL 264 #define GET_SMInfoTable_DECL 265 #define GET_SMInfoTable_IMPL 266 #define GET_VOP1InfoTable_DECL 267 #define GET_VOP1InfoTable_IMPL 268 #define GET_VOP2InfoTable_DECL 269 #define GET_VOP2InfoTable_IMPL 270 #define GET_VOP3InfoTable_DECL 271 #define GET_VOP3InfoTable_IMPL 272 #include "AMDGPUGenSearchableTables.inc" 273 274 int getMTBUFBaseOpcode(unsigned Opc) { 275 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 276 return Info ? Info->BaseOpcode : -1; 277 } 278 279 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 280 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 281 return Info ? Info->Opcode : -1; 282 } 283 284 int getMTBUFElements(unsigned Opc) { 285 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 286 return Info ? Info->elements : 0; 287 } 288 289 bool getMTBUFHasVAddr(unsigned Opc) { 290 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 291 return Info ? Info->has_vaddr : false; 292 } 293 294 bool getMTBUFHasSrsrc(unsigned Opc) { 295 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 296 return Info ? Info->has_srsrc : false; 297 } 298 299 bool getMTBUFHasSoffset(unsigned Opc) { 300 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 301 return Info ? Info->has_soffset : false; 302 } 303 304 int getMUBUFBaseOpcode(unsigned Opc) { 305 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 306 return Info ? Info->BaseOpcode : -1; 307 } 308 309 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 310 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 311 return Info ? Info->Opcode : -1; 312 } 313 314 int getMUBUFElements(unsigned Opc) { 315 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 316 return Info ? Info->elements : 0; 317 } 318 319 bool getMUBUFHasVAddr(unsigned Opc) { 320 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 321 return Info ? Info->has_vaddr : false; 322 } 323 324 bool getMUBUFHasSrsrc(unsigned Opc) { 325 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 326 return Info ? Info->has_srsrc : false; 327 } 328 329 bool getMUBUFHasSoffset(unsigned Opc) { 330 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 331 return Info ? Info->has_soffset : false; 332 } 333 334 bool getMUBUFIsBufferInv(unsigned Opc) { 335 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 336 return Info ? Info->IsBufferInv : false; 337 } 338 339 bool getSMEMIsBuffer(unsigned Opc) { 340 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 341 return Info ? Info->IsBuffer : false; 342 } 343 344 bool getVOP1IsSingle(unsigned Opc) { 345 const VOPInfo *Info = getVOP1OpcodeHelper(Opc); 346 return Info ? Info->IsSingle : false; 347 } 348 349 bool getVOP2IsSingle(unsigned Opc) { 350 const VOPInfo *Info = getVOP2OpcodeHelper(Opc); 351 return Info ? Info->IsSingle : false; 352 } 353 354 bool getVOP3IsSingle(unsigned Opc) { 355 const VOPInfo *Info = getVOP3OpcodeHelper(Opc); 356 return Info ? Info->IsSingle : false; 357 } 358 359 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 360 // header files, so we need to wrap it in a function that takes unsigned 361 // instead. 362 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 363 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 364 } 365 366 namespace IsaInfo { 367 368 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI) 369 : STI(STI), XnackSetting(TargetIDSetting::Any), 370 SramEccSetting(TargetIDSetting::Any) { 371 if (!STI.getFeatureBits().test(FeatureSupportsXNACK)) 372 XnackSetting = TargetIDSetting::Unsupported; 373 if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC)) 374 SramEccSetting = TargetIDSetting::Unsupported; 375 } 376 377 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) { 378 // Check if xnack or sramecc is explicitly enabled or disabled. In the 379 // absence of the target features we assume we must generate code that can run 380 // in any environment. 381 SubtargetFeatures Features(FS); 382 Optional<bool> XnackRequested; 383 Optional<bool> SramEccRequested; 384 385 for (const std::string &Feature : Features.getFeatures()) { 386 if (Feature == "+xnack") 387 XnackRequested = true; 388 else if (Feature == "-xnack") 389 XnackRequested = false; 390 else if (Feature == "+sramecc") 391 SramEccRequested = true; 392 else if (Feature == "-sramecc") 393 SramEccRequested = false; 394 } 395 396 bool XnackSupported = isXnackSupported(); 397 bool SramEccSupported = isSramEccSupported(); 398 399 if (XnackRequested) { 400 if (XnackSupported) { 401 XnackSetting = 402 *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off; 403 } else { 404 // If a specific xnack setting was requested and this GPU does not support 405 // xnack emit a warning. Setting will remain set to "Unsupported". 406 if (*XnackRequested) { 407 errs() << "warning: xnack 'On' was requested for a processor that does " 408 "not support it!\n"; 409 } else { 410 errs() << "warning: xnack 'Off' was requested for a processor that " 411 "does not support it!\n"; 412 } 413 } 414 } 415 416 if (SramEccRequested) { 417 if (SramEccSupported) { 418 SramEccSetting = 419 *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off; 420 } else { 421 // If a specific sramecc setting was requested and this GPU does not 422 // support sramecc emit a warning. Setting will remain set to 423 // "Unsupported". 424 if (*SramEccRequested) { 425 errs() << "warning: sramecc 'On' was requested for a processor that " 426 "does not support it!\n"; 427 } else { 428 errs() << "warning: sramecc 'Off' was requested for a processor that " 429 "does not support it!\n"; 430 } 431 } 432 } 433 } 434 435 static TargetIDSetting 436 getTargetIDSettingFromFeatureString(StringRef FeatureString) { 437 if (FeatureString.endswith("-")) 438 return TargetIDSetting::Off; 439 if (FeatureString.endswith("+")) 440 return TargetIDSetting::On; 441 442 llvm_unreachable("Malformed feature string"); 443 } 444 445 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) { 446 SmallVector<StringRef, 3> TargetIDSplit; 447 TargetID.split(TargetIDSplit, ':'); 448 449 for (const auto &FeatureString : TargetIDSplit) { 450 if (FeatureString.startswith("xnack")) 451 XnackSetting = getTargetIDSettingFromFeatureString(FeatureString); 452 if (FeatureString.startswith("sramecc")) 453 SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString); 454 } 455 } 456 457 std::string AMDGPUTargetID::toString() const { 458 std::string StringRep; 459 raw_string_ostream StreamRep(StringRep); 460 461 auto TargetTriple = STI.getTargetTriple(); 462 auto Version = getIsaVersion(STI.getCPU()); 463 464 StreamRep << TargetTriple.getArchName() << '-' 465 << TargetTriple.getVendorName() << '-' 466 << TargetTriple.getOSName() << '-' 467 << TargetTriple.getEnvironmentName() << '-'; 468 469 std::string Processor; 470 // TODO: Following else statement is present here because we used various 471 // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803'). 472 // Remove once all aliases are removed from GCNProcessors.td. 473 if (Version.Major >= 9) 474 Processor = STI.getCPU().str(); 475 else 476 Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) + 477 Twine(Version.Stepping)) 478 .str(); 479 480 std::string Features; 481 if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) { 482 switch (*HsaAbiVersion) { 483 case ELF::ELFABIVERSION_AMDGPU_HSA_V2: 484 // Code object V2 only supported specific processors and had fixed 485 // settings for the XNACK. 486 if (Processor == "gfx600") { 487 } else if (Processor == "gfx601") { 488 } else if (Processor == "gfx602") { 489 } else if (Processor == "gfx700") { 490 } else if (Processor == "gfx701") { 491 } else if (Processor == "gfx702") { 492 } else if (Processor == "gfx703") { 493 } else if (Processor == "gfx704") { 494 } else if (Processor == "gfx705") { 495 } else if (Processor == "gfx801") { 496 if (!isXnackOnOrAny()) 497 report_fatal_error( 498 "AMD GPU code object V2 does not support processor " + 499 Twine(Processor) + " without XNACK"); 500 } else if (Processor == "gfx802") { 501 } else if (Processor == "gfx803") { 502 } else if (Processor == "gfx805") { 503 } else if (Processor == "gfx810") { 504 if (!isXnackOnOrAny()) 505 report_fatal_error( 506 "AMD GPU code object V2 does not support processor " + 507 Twine(Processor) + " without XNACK"); 508 } else if (Processor == "gfx900") { 509 if (isXnackOnOrAny()) 510 Processor = "gfx901"; 511 } else if (Processor == "gfx902") { 512 if (isXnackOnOrAny()) 513 Processor = "gfx903"; 514 } else if (Processor == "gfx904") { 515 if (isXnackOnOrAny()) 516 Processor = "gfx905"; 517 } else if (Processor == "gfx906") { 518 if (isXnackOnOrAny()) 519 Processor = "gfx907"; 520 } else if (Processor == "gfx90c") { 521 if (isXnackOnOrAny()) 522 report_fatal_error( 523 "AMD GPU code object V2 does not support processor " + 524 Twine(Processor) + " with XNACK being ON or ANY"); 525 } else { 526 report_fatal_error( 527 "AMD GPU code object V2 does not support processor " + 528 Twine(Processor)); 529 } 530 break; 531 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 532 // xnack. 533 if (isXnackOnOrAny()) 534 Features += "+xnack"; 535 // In code object v2 and v3, "sramecc" feature was spelled with a 536 // hyphen ("sram-ecc"). 537 if (isSramEccOnOrAny()) 538 Features += "+sram-ecc"; 539 break; 540 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 541 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 542 // sramecc. 543 if (getSramEccSetting() == TargetIDSetting::Off) 544 Features += ":sramecc-"; 545 else if (getSramEccSetting() == TargetIDSetting::On) 546 Features += ":sramecc+"; 547 // xnack. 548 if (getXnackSetting() == TargetIDSetting::Off) 549 Features += ":xnack-"; 550 else if (getXnackSetting() == TargetIDSetting::On) 551 Features += ":xnack+"; 552 break; 553 default: 554 break; 555 } 556 } 557 558 StreamRep << Processor << Features; 559 560 StreamRep.flush(); 561 return StringRep; 562 } 563 564 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 565 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 566 return 16; 567 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 568 return 32; 569 570 return 64; 571 } 572 573 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 574 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 575 return 32768; 576 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 577 return 65536; 578 579 return 0; 580 } 581 582 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 583 // "Per CU" really means "per whatever functional block the waves of a 584 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 585 // two SIMDs. 586 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 587 return 2; 588 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 589 // two CUs, so a total of four SIMDs. 590 return 4; 591 } 592 593 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 594 unsigned FlatWorkGroupSize) { 595 assert(FlatWorkGroupSize != 0); 596 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 597 return 8; 598 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 599 if (N == 1) 600 return 40; 601 N = 40 / N; 602 return std::min(N, 16u); 603 } 604 605 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 606 return 1; 607 } 608 609 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 610 // FIXME: Need to take scratch memory into account. 611 if (isGFX90A(*STI)) 612 return 8; 613 if (!isGFX10Plus(*STI)) 614 return 10; 615 return hasGFX10_3Insts(*STI) ? 16 : 20; 616 } 617 618 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 619 unsigned FlatWorkGroupSize) { 620 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 621 getEUsPerCU(STI)); 622 } 623 624 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 625 return 1; 626 } 627 628 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 629 // Some subtargets allow encoding 2048, but this isn't tested or supported. 630 return 1024; 631 } 632 633 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 634 unsigned FlatWorkGroupSize) { 635 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 636 } 637 638 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 639 IsaVersion Version = getIsaVersion(STI->getCPU()); 640 if (Version.Major >= 10) 641 return getAddressableNumSGPRs(STI); 642 if (Version.Major >= 8) 643 return 16; 644 return 8; 645 } 646 647 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 648 return 8; 649 } 650 651 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 652 IsaVersion Version = getIsaVersion(STI->getCPU()); 653 if (Version.Major >= 8) 654 return 800; 655 return 512; 656 } 657 658 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 659 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 660 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 661 662 IsaVersion Version = getIsaVersion(STI->getCPU()); 663 if (Version.Major >= 10) 664 return 106; 665 if (Version.Major >= 8) 666 return 102; 667 return 104; 668 } 669 670 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 671 assert(WavesPerEU != 0); 672 673 IsaVersion Version = getIsaVersion(STI->getCPU()); 674 if (Version.Major >= 10) 675 return 0; 676 677 if (WavesPerEU >= getMaxWavesPerEU(STI)) 678 return 0; 679 680 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 681 if (STI->getFeatureBits().test(FeatureTrapHandler)) 682 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 683 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 684 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 685 } 686 687 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 688 bool Addressable) { 689 assert(WavesPerEU != 0); 690 691 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 692 IsaVersion Version = getIsaVersion(STI->getCPU()); 693 if (Version.Major >= 10) 694 return Addressable ? AddressableNumSGPRs : 108; 695 if (Version.Major >= 8 && !Addressable) 696 AddressableNumSGPRs = 112; 697 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 698 if (STI->getFeatureBits().test(FeatureTrapHandler)) 699 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 700 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 701 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 702 } 703 704 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 705 bool FlatScrUsed, bool XNACKUsed) { 706 unsigned ExtraSGPRs = 0; 707 if (VCCUsed) 708 ExtraSGPRs = 2; 709 710 IsaVersion Version = getIsaVersion(STI->getCPU()); 711 if (Version.Major >= 10) 712 return ExtraSGPRs; 713 714 if (Version.Major < 8) { 715 if (FlatScrUsed) 716 ExtraSGPRs = 4; 717 } else { 718 if (XNACKUsed) 719 ExtraSGPRs = 4; 720 721 if (FlatScrUsed || 722 STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch)) 723 ExtraSGPRs = 6; 724 } 725 726 return ExtraSGPRs; 727 } 728 729 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 730 bool FlatScrUsed) { 731 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 732 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 733 } 734 735 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 736 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 737 // SGPRBlocks is actual number of SGPR blocks minus 1. 738 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 739 } 740 741 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 742 Optional<bool> EnableWavefrontSize32) { 743 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 744 return 8; 745 746 bool IsWave32 = EnableWavefrontSize32 ? 747 *EnableWavefrontSize32 : 748 STI->getFeatureBits().test(FeatureWavefrontSize32); 749 750 if (hasGFX10_3Insts(*STI)) 751 return IsWave32 ? 16 : 8; 752 753 return IsWave32 ? 8 : 4; 754 } 755 756 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 757 Optional<bool> EnableWavefrontSize32) { 758 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 759 return 8; 760 761 bool IsWave32 = EnableWavefrontSize32 ? 762 *EnableWavefrontSize32 : 763 STI->getFeatureBits().test(FeatureWavefrontSize32); 764 765 return IsWave32 ? 8 : 4; 766 } 767 768 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 769 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 770 return 512; 771 if (!isGFX10Plus(*STI)) 772 return 256; 773 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 774 } 775 776 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 777 if (STI->getFeatureBits().test(FeatureGFX90AInsts)) 778 return 512; 779 return 256; 780 } 781 782 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 783 assert(WavesPerEU != 0); 784 785 if (WavesPerEU >= getMaxWavesPerEU(STI)) 786 return 0; 787 unsigned MinNumVGPRs = 788 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 789 getVGPRAllocGranule(STI)) + 1; 790 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 791 } 792 793 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 794 assert(WavesPerEU != 0); 795 796 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 797 getVGPRAllocGranule(STI)); 798 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 799 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 800 } 801 802 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 803 Optional<bool> EnableWavefrontSize32) { 804 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 805 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 806 // VGPRBlocks is actual number of VGPR blocks minus 1. 807 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 808 } 809 810 } // end namespace IsaInfo 811 812 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 813 const MCSubtargetInfo *STI) { 814 IsaVersion Version = getIsaVersion(STI->getCPU()); 815 816 memset(&Header, 0, sizeof(Header)); 817 818 Header.amd_kernel_code_version_major = 1; 819 Header.amd_kernel_code_version_minor = 2; 820 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 821 Header.amd_machine_version_major = Version.Major; 822 Header.amd_machine_version_minor = Version.Minor; 823 Header.amd_machine_version_stepping = Version.Stepping; 824 Header.kernel_code_entry_byte_offset = sizeof(Header); 825 Header.wavefront_size = 6; 826 827 // If the code object does not support indirect functions, then the value must 828 // be 0xffffffff. 829 Header.call_convention = -1; 830 831 // These alignment values are specified in powers of two, so alignment = 832 // 2^n. The minimum alignment is 2^4 = 16. 833 Header.kernarg_segment_alignment = 4; 834 Header.group_segment_alignment = 4; 835 Header.private_segment_alignment = 4; 836 837 if (Version.Major >= 10) { 838 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 839 Header.wavefront_size = 5; 840 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 841 } 842 Header.compute_pgm_resource_registers |= 843 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 844 S_00B848_MEM_ORDERED(1); 845 } 846 } 847 848 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 849 const MCSubtargetInfo *STI) { 850 IsaVersion Version = getIsaVersion(STI->getCPU()); 851 852 amdhsa::kernel_descriptor_t KD; 853 memset(&KD, 0, sizeof(KD)); 854 855 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 856 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 857 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 858 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 859 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 860 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 861 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 862 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 863 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 864 if (Version.Major >= 10) { 865 AMDHSA_BITS_SET(KD.kernel_code_properties, 866 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 867 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 868 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 869 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 870 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 871 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 872 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 873 } 874 if (AMDGPU::isGFX90A(*STI)) { 875 AMDHSA_BITS_SET(KD.compute_pgm_rsrc3, 876 amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT, 877 STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0); 878 } 879 return KD; 880 } 881 882 bool isGroupSegment(const GlobalValue *GV) { 883 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 884 } 885 886 bool isGlobalSegment(const GlobalValue *GV) { 887 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 888 } 889 890 bool isReadOnlySegment(const GlobalValue *GV) { 891 unsigned AS = GV->getAddressSpace(); 892 return AS == AMDGPUAS::CONSTANT_ADDRESS || 893 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 894 } 895 896 bool shouldEmitConstantsToTextSection(const Triple &TT) { 897 return TT.getArch() == Triple::r600; 898 } 899 900 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 901 Attribute A = F.getFnAttribute(Name); 902 int Result = Default; 903 904 if (A.isStringAttribute()) { 905 StringRef Str = A.getValueAsString(); 906 if (Str.getAsInteger(0, Result)) { 907 LLVMContext &Ctx = F.getContext(); 908 Ctx.emitError("can't parse integer attribute " + Name); 909 } 910 } 911 912 return Result; 913 } 914 915 std::pair<int, int> getIntegerPairAttribute(const Function &F, 916 StringRef Name, 917 std::pair<int, int> Default, 918 bool OnlyFirstRequired) { 919 Attribute A = F.getFnAttribute(Name); 920 if (!A.isStringAttribute()) 921 return Default; 922 923 LLVMContext &Ctx = F.getContext(); 924 std::pair<int, int> Ints = Default; 925 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 926 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 927 Ctx.emitError("can't parse first integer attribute " + Name); 928 return Default; 929 } 930 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 931 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 932 Ctx.emitError("can't parse second integer attribute " + Name); 933 return Default; 934 } 935 } 936 937 return Ints; 938 } 939 940 unsigned getVmcntBitMask(const IsaVersion &Version) { 941 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 942 if (Version.Major < 9) 943 return VmcntLo; 944 945 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 946 return VmcntLo | VmcntHi; 947 } 948 949 unsigned getExpcntBitMask(const IsaVersion &Version) { 950 return (1 << getExpcntBitWidth()) - 1; 951 } 952 953 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 954 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 955 } 956 957 unsigned getWaitcntBitMask(const IsaVersion &Version) { 958 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 959 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 960 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 961 getLgkmcntBitWidth(Version.Major)); 962 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 963 if (Version.Major < 9) 964 return Waitcnt; 965 966 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 967 return Waitcnt | VmcntHi; 968 } 969 970 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 971 unsigned VmcntLo = 972 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 973 if (Version.Major < 9) 974 return VmcntLo; 975 976 unsigned VmcntHi = 977 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 978 VmcntHi <<= getVmcntBitWidthLo(); 979 return VmcntLo | VmcntHi; 980 } 981 982 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 983 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 984 } 985 986 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 987 return unpackBits(Waitcnt, getLgkmcntBitShift(), 988 getLgkmcntBitWidth(Version.Major)); 989 } 990 991 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 992 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 993 Vmcnt = decodeVmcnt(Version, Waitcnt); 994 Expcnt = decodeExpcnt(Version, Waitcnt); 995 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 996 } 997 998 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 999 Waitcnt Decoded; 1000 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 1001 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 1002 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 1003 return Decoded; 1004 } 1005 1006 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 1007 unsigned Vmcnt) { 1008 Waitcnt = 1009 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 1010 if (Version.Major < 9) 1011 return Waitcnt; 1012 1013 Vmcnt >>= getVmcntBitWidthLo(); 1014 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 1015 } 1016 1017 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 1018 unsigned Expcnt) { 1019 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 1020 } 1021 1022 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 1023 unsigned Lgkmcnt) { 1024 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 1025 getLgkmcntBitWidth(Version.Major)); 1026 } 1027 1028 unsigned encodeWaitcnt(const IsaVersion &Version, 1029 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 1030 unsigned Waitcnt = getWaitcntBitMask(Version); 1031 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 1032 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 1033 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 1034 return Waitcnt; 1035 } 1036 1037 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 1038 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 1039 } 1040 1041 //===----------------------------------------------------------------------===// 1042 // Custom Operands. 1043 // 1044 // A table of custom operands shall describe "primary" operand names 1045 // first followed by aliases if any. It is not required but recommended 1046 // to arrange operands so that operand encoding match operand position 1047 // in the table. This will make disassembly a bit more efficient. 1048 // Unused slots in the table shall have an empty name. 1049 // 1050 //===----------------------------------------------------------------------===// 1051 1052 template <class T> 1053 static bool isValidOpr(int Idx, const CustomOperand<T> OpInfo[], int OpInfoSize, 1054 T Context) { 1055 return 0 <= Idx && Idx < OpInfoSize && !OpInfo[Idx].Name.empty() && 1056 (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context)); 1057 } 1058 1059 template <class T> 1060 static int getOprIdx(std::function<bool(const CustomOperand<T> &)> Test, 1061 const CustomOperand<T> OpInfo[], int OpInfoSize, 1062 T Context) { 1063 int InvalidIdx = OPR_ID_UNKNOWN; 1064 for (int Idx = 0; Idx < OpInfoSize; ++Idx) { 1065 if (Test(OpInfo[Idx])) { 1066 if (!OpInfo[Idx].Cond || OpInfo[Idx].Cond(Context)) 1067 return Idx; 1068 InvalidIdx = OPR_ID_UNSUPPORTED; 1069 } 1070 } 1071 return InvalidIdx; 1072 } 1073 1074 template <class T> 1075 static int getOprIdx(const StringRef Name, const CustomOperand<T> OpInfo[], 1076 int OpInfoSize, T Context) { 1077 auto Test = [=](const CustomOperand<T> &Op) { return Op.Name == Name; }; 1078 return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context); 1079 } 1080 1081 template <class T> 1082 static int getOprIdx(int Id, const CustomOperand<T> OpInfo[], int OpInfoSize, 1083 T Context, bool QuickCheck = true) { 1084 auto Test = [=](const CustomOperand<T> &Op) { 1085 return Op.Encoding == Id && !Op.Name.empty(); 1086 }; 1087 // This is an optimization that should work in most cases. 1088 // As a side effect, it may cause selection of an alias 1089 // instead of a primary operand name in case of sparse tables. 1090 if (QuickCheck && isValidOpr<T>(Id, OpInfo, OpInfoSize, Context) && 1091 OpInfo[Id].Encoding == Id) { 1092 return Id; 1093 } 1094 return getOprIdx<T>(Test, OpInfo, OpInfoSize, Context); 1095 } 1096 1097 //===----------------------------------------------------------------------===// 1098 // hwreg 1099 //===----------------------------------------------------------------------===// 1100 1101 namespace Hwreg { 1102 1103 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) { 1104 int Idx = getOprIdx<const MCSubtargetInfo &>(Name, Opr, OPR_SIZE, STI); 1105 return (Idx < 0) ? Idx : Opr[Idx].Encoding; 1106 } 1107 1108 bool isValidHwreg(int64_t Id) { 1109 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 1110 } 1111 1112 bool isValidHwregOffset(int64_t Offset) { 1113 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 1114 } 1115 1116 bool isValidHwregWidth(int64_t Width) { 1117 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 1118 } 1119 1120 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 1121 return (Id << ID_SHIFT_) | 1122 (Offset << OFFSET_SHIFT_) | 1123 ((Width - 1) << WIDTH_M1_SHIFT_); 1124 } 1125 1126 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 1127 int Idx = getOprIdx<const MCSubtargetInfo &>(Id, Opr, OPR_SIZE, STI); 1128 return (Idx < 0) ? "" : Opr[Idx].Name; 1129 } 1130 1131 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 1132 Id = (Val & ID_MASK_) >> ID_SHIFT_; 1133 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 1134 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 1135 } 1136 1137 } // namespace Hwreg 1138 1139 //===----------------------------------------------------------------------===// 1140 // exp tgt 1141 //===----------------------------------------------------------------------===// 1142 1143 namespace Exp { 1144 1145 struct ExpTgt { 1146 StringLiteral Name; 1147 unsigned Tgt; 1148 unsigned MaxIndex; 1149 }; 1150 1151 static constexpr ExpTgt ExpTgtInfo[] = { 1152 {{"null"}, ET_NULL, ET_NULL_MAX_IDX}, 1153 {{"mrtz"}, ET_MRTZ, ET_MRTZ_MAX_IDX}, 1154 {{"prim"}, ET_PRIM, ET_PRIM_MAX_IDX}, 1155 {{"mrt"}, ET_MRT0, ET_MRT_MAX_IDX}, 1156 {{"pos"}, ET_POS0, ET_POS_MAX_IDX}, 1157 {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX}, 1158 }; 1159 1160 bool getTgtName(unsigned Id, StringRef &Name, int &Index) { 1161 for (const ExpTgt &Val : ExpTgtInfo) { 1162 if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) { 1163 Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt); 1164 Name = Val.Name; 1165 return true; 1166 } 1167 } 1168 return false; 1169 } 1170 1171 unsigned getTgtId(const StringRef Name) { 1172 1173 for (const ExpTgt &Val : ExpTgtInfo) { 1174 if (Val.MaxIndex == 0 && Name == Val.Name) 1175 return Val.Tgt; 1176 1177 if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) { 1178 StringRef Suffix = Name.drop_front(Val.Name.size()); 1179 1180 unsigned Id; 1181 if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex) 1182 return ET_INVALID; 1183 1184 // Disable leading zeroes 1185 if (Suffix.size() > 1 && Suffix[0] == '0') 1186 return ET_INVALID; 1187 1188 return Val.Tgt + Id; 1189 } 1190 } 1191 return ET_INVALID; 1192 } 1193 1194 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) { 1195 return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI); 1196 } 1197 1198 } // namespace Exp 1199 1200 //===----------------------------------------------------------------------===// 1201 // MTBUF Format 1202 //===----------------------------------------------------------------------===// 1203 1204 namespace MTBUFFormat { 1205 1206 int64_t getDfmt(const StringRef Name) { 1207 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 1208 if (Name == DfmtSymbolic[Id]) 1209 return Id; 1210 } 1211 return DFMT_UNDEF; 1212 } 1213 1214 StringRef getDfmtName(unsigned Id) { 1215 assert(Id <= DFMT_MAX); 1216 return DfmtSymbolic[Id]; 1217 } 1218 1219 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 1220 if (isSI(STI) || isCI(STI)) 1221 return NfmtSymbolicSICI; 1222 if (isVI(STI) || isGFX9(STI)) 1223 return NfmtSymbolicVI; 1224 return NfmtSymbolicGFX10; 1225 } 1226 1227 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 1228 auto lookupTable = getNfmtLookupTable(STI); 1229 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 1230 if (Name == lookupTable[Id]) 1231 return Id; 1232 } 1233 return NFMT_UNDEF; 1234 } 1235 1236 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 1237 assert(Id <= NFMT_MAX); 1238 return getNfmtLookupTable(STI)[Id]; 1239 } 1240 1241 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1242 unsigned Dfmt; 1243 unsigned Nfmt; 1244 decodeDfmtNfmt(Id, Dfmt, Nfmt); 1245 return isValidNfmt(Nfmt, STI); 1246 } 1247 1248 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 1249 return !getNfmtName(Id, STI).empty(); 1250 } 1251 1252 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 1253 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 1254 } 1255 1256 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 1257 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 1258 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 1259 } 1260 1261 int64_t getUnifiedFormat(const StringRef Name) { 1262 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1263 if (Name == UfmtSymbolic[Id]) 1264 return Id; 1265 } 1266 return UFMT_UNDEF; 1267 } 1268 1269 StringRef getUnifiedFormatName(unsigned Id) { 1270 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 1271 } 1272 1273 bool isValidUnifiedFormat(unsigned Id) { 1274 return Id <= UFMT_LAST; 1275 } 1276 1277 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 1278 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 1279 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 1280 if (Fmt == DfmtNfmt2UFmt[Id]) 1281 return Id; 1282 } 1283 return UFMT_UNDEF; 1284 } 1285 1286 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 1287 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 1288 } 1289 1290 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 1291 if (isGFX10Plus(STI)) 1292 return UFMT_DEFAULT; 1293 return DFMT_NFMT_DEFAULT; 1294 } 1295 1296 } // namespace MTBUFFormat 1297 1298 //===----------------------------------------------------------------------===// 1299 // SendMsg 1300 //===----------------------------------------------------------------------===// 1301 1302 namespace SendMsg { 1303 1304 int64_t getMsgId(const StringRef Name) { 1305 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 1306 if (IdSymbolic[i] && Name == IdSymbolic[i]) 1307 return i; 1308 } 1309 return ID_UNKNOWN_; 1310 } 1311 1312 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 1313 if (Strict) { 1314 switch (MsgId) { 1315 case ID_SAVEWAVE: 1316 return isVI(STI) || isGFX9Plus(STI); 1317 case ID_STALL_WAVE_GEN: 1318 case ID_HALT_WAVES: 1319 case ID_ORDERED_PS_DONE: 1320 case ID_GS_ALLOC_REQ: 1321 case ID_GET_DOORBELL: 1322 return isGFX9Plus(STI); 1323 case ID_EARLY_PRIM_DEALLOC: 1324 return isGFX9(STI); 1325 case ID_GET_DDID: 1326 return isGFX10Plus(STI); 1327 default: 1328 return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId]; 1329 } 1330 } else { 1331 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 1332 } 1333 } 1334 1335 StringRef getMsgName(int64_t MsgId) { 1336 assert(0 <= MsgId && MsgId < ID_GAPS_LAST_); 1337 return IdSymbolic[MsgId]; 1338 } 1339 1340 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 1341 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 1342 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 1343 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 1344 for (int i = F; i < L; ++i) { 1345 if (Name == S[i]) { 1346 return i; 1347 } 1348 } 1349 return OP_UNKNOWN_; 1350 } 1351 1352 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI, 1353 bool Strict) { 1354 assert(isValidMsgId(MsgId, STI, Strict)); 1355 1356 if (!Strict) 1357 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 1358 1359 switch(MsgId) 1360 { 1361 case ID_GS: 1362 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 1363 case ID_GS_DONE: 1364 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 1365 case ID_SYSMSG: 1366 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 1367 default: 1368 return OpId == OP_NONE_; 1369 } 1370 } 1371 1372 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 1373 assert(msgRequiresOp(MsgId)); 1374 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 1375 } 1376 1377 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, 1378 const MCSubtargetInfo &STI, bool Strict) { 1379 assert(isValidMsgOp(MsgId, OpId, STI, Strict)); 1380 1381 if (!Strict) 1382 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 1383 1384 switch(MsgId) 1385 { 1386 case ID_GS: 1387 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 1388 case ID_GS_DONE: 1389 return (OpId == OP_GS_NOP)? 1390 (StreamId == STREAM_ID_NONE_) : 1391 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 1392 default: 1393 return StreamId == STREAM_ID_NONE_; 1394 } 1395 } 1396 1397 bool msgRequiresOp(int64_t MsgId) { 1398 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 1399 } 1400 1401 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 1402 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 1403 } 1404 1405 void decodeMsg(unsigned Val, 1406 uint16_t &MsgId, 1407 uint16_t &OpId, 1408 uint16_t &StreamId) { 1409 MsgId = Val & ID_MASK_; 1410 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 1411 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 1412 } 1413 1414 uint64_t encodeMsg(uint64_t MsgId, 1415 uint64_t OpId, 1416 uint64_t StreamId) { 1417 return (MsgId << ID_SHIFT_) | 1418 (OpId << OP_SHIFT_) | 1419 (StreamId << STREAM_ID_SHIFT_); 1420 } 1421 1422 } // namespace SendMsg 1423 1424 //===----------------------------------------------------------------------===// 1425 // 1426 //===----------------------------------------------------------------------===// 1427 1428 unsigned getInitialPSInputAddr(const Function &F) { 1429 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1430 } 1431 1432 bool getHasColorExport(const Function &F) { 1433 // As a safe default always respond as if PS has color exports. 1434 return getIntegerAttribute( 1435 F, "amdgpu-color-export", 1436 F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0; 1437 } 1438 1439 bool getHasDepthExport(const Function &F) { 1440 return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0; 1441 } 1442 1443 bool isShader(CallingConv::ID cc) { 1444 switch(cc) { 1445 case CallingConv::AMDGPU_VS: 1446 case CallingConv::AMDGPU_LS: 1447 case CallingConv::AMDGPU_HS: 1448 case CallingConv::AMDGPU_ES: 1449 case CallingConv::AMDGPU_GS: 1450 case CallingConv::AMDGPU_PS: 1451 case CallingConv::AMDGPU_CS: 1452 return true; 1453 default: 1454 return false; 1455 } 1456 } 1457 1458 bool isGraphics(CallingConv::ID cc) { 1459 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; 1460 } 1461 1462 bool isCompute(CallingConv::ID cc) { 1463 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; 1464 } 1465 1466 bool isEntryFunctionCC(CallingConv::ID CC) { 1467 switch (CC) { 1468 case CallingConv::AMDGPU_KERNEL: 1469 case CallingConv::SPIR_KERNEL: 1470 case CallingConv::AMDGPU_VS: 1471 case CallingConv::AMDGPU_GS: 1472 case CallingConv::AMDGPU_PS: 1473 case CallingConv::AMDGPU_CS: 1474 case CallingConv::AMDGPU_ES: 1475 case CallingConv::AMDGPU_HS: 1476 case CallingConv::AMDGPU_LS: 1477 return true; 1478 default: 1479 return false; 1480 } 1481 } 1482 1483 bool isModuleEntryFunctionCC(CallingConv::ID CC) { 1484 switch (CC) { 1485 case CallingConv::AMDGPU_Gfx: 1486 return true; 1487 default: 1488 return isEntryFunctionCC(CC); 1489 } 1490 } 1491 1492 bool isKernelCC(const Function *Func) { 1493 return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv()); 1494 } 1495 1496 bool hasXNACK(const MCSubtargetInfo &STI) { 1497 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1498 } 1499 1500 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1501 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1502 } 1503 1504 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1505 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1506 } 1507 1508 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1509 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1510 } 1511 1512 bool hasG16(const MCSubtargetInfo &STI) { 1513 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1514 } 1515 1516 bool hasPackedD16(const MCSubtargetInfo &STI) { 1517 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1518 } 1519 1520 bool isSI(const MCSubtargetInfo &STI) { 1521 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1522 } 1523 1524 bool isCI(const MCSubtargetInfo &STI) { 1525 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1526 } 1527 1528 bool isVI(const MCSubtargetInfo &STI) { 1529 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1530 } 1531 1532 bool isGFX9(const MCSubtargetInfo &STI) { 1533 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1534 } 1535 1536 bool isGFX9_GFX10(const MCSubtargetInfo &STI) { 1537 return isGFX9(STI) || isGFX10(STI); 1538 } 1539 1540 bool isGFX9Plus(const MCSubtargetInfo &STI) { 1541 return isGFX9(STI) || isGFX10Plus(STI); 1542 } 1543 1544 bool isGFX10(const MCSubtargetInfo &STI) { 1545 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1546 } 1547 1548 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } 1549 1550 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1551 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1552 } 1553 1554 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) { 1555 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding]; 1556 } 1557 1558 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1559 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1560 } 1561 1562 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1563 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1564 } 1565 1566 bool isGFX90A(const MCSubtargetInfo &STI) { 1567 return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts]; 1568 } 1569 1570 bool isGFX940(const MCSubtargetInfo &STI) { 1571 return STI.getFeatureBits()[AMDGPU::FeatureGFX940Insts]; 1572 } 1573 1574 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) { 1575 return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch]; 1576 } 1577 1578 bool hasMAIInsts(const MCSubtargetInfo &STI) { 1579 return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts]; 1580 } 1581 1582 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR, 1583 int32_t ArgNumVGPR) { 1584 if (has90AInsts && ArgNumAGPR) 1585 return alignTo(ArgNumVGPR, 4) + ArgNumAGPR; 1586 return std::max(ArgNumVGPR, ArgNumAGPR); 1587 } 1588 1589 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1590 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1591 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1592 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1593 Reg == AMDGPU::SCC; 1594 } 1595 1596 #define MAP_REG2REG \ 1597 using namespace AMDGPU; \ 1598 switch(Reg) { \ 1599 default: return Reg; \ 1600 CASE_CI_VI(FLAT_SCR) \ 1601 CASE_CI_VI(FLAT_SCR_LO) \ 1602 CASE_CI_VI(FLAT_SCR_HI) \ 1603 CASE_VI_GFX9PLUS(TTMP0) \ 1604 CASE_VI_GFX9PLUS(TTMP1) \ 1605 CASE_VI_GFX9PLUS(TTMP2) \ 1606 CASE_VI_GFX9PLUS(TTMP3) \ 1607 CASE_VI_GFX9PLUS(TTMP4) \ 1608 CASE_VI_GFX9PLUS(TTMP5) \ 1609 CASE_VI_GFX9PLUS(TTMP6) \ 1610 CASE_VI_GFX9PLUS(TTMP7) \ 1611 CASE_VI_GFX9PLUS(TTMP8) \ 1612 CASE_VI_GFX9PLUS(TTMP9) \ 1613 CASE_VI_GFX9PLUS(TTMP10) \ 1614 CASE_VI_GFX9PLUS(TTMP11) \ 1615 CASE_VI_GFX9PLUS(TTMP12) \ 1616 CASE_VI_GFX9PLUS(TTMP13) \ 1617 CASE_VI_GFX9PLUS(TTMP14) \ 1618 CASE_VI_GFX9PLUS(TTMP15) \ 1619 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \ 1620 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \ 1621 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \ 1622 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \ 1623 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \ 1624 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \ 1625 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \ 1626 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \ 1627 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \ 1628 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \ 1629 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \ 1630 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \ 1631 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1632 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1633 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1634 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1635 } 1636 1637 #define CASE_CI_VI(node) \ 1638 assert(!isSI(STI)); \ 1639 case node: return isCI(STI) ? node##_ci : node##_vi; 1640 1641 #define CASE_VI_GFX9PLUS(node) \ 1642 case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi; 1643 1644 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1645 if (STI.getTargetTriple().getArch() == Triple::r600) 1646 return Reg; 1647 MAP_REG2REG 1648 } 1649 1650 #undef CASE_CI_VI 1651 #undef CASE_VI_GFX9PLUS 1652 1653 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1654 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node; 1655 1656 unsigned mc2PseudoReg(unsigned Reg) { 1657 MAP_REG2REG 1658 } 1659 1660 #undef CASE_CI_VI 1661 #undef CASE_VI_GFX9PLUS 1662 #undef MAP_REG2REG 1663 1664 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1665 assert(OpNo < Desc.NumOperands); 1666 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1667 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1668 OpType <= AMDGPU::OPERAND_SRC_LAST; 1669 } 1670 1671 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1672 assert(OpNo < Desc.NumOperands); 1673 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1674 switch (OpType) { 1675 case AMDGPU::OPERAND_REG_IMM_FP32: 1676 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 1677 case AMDGPU::OPERAND_REG_IMM_FP64: 1678 case AMDGPU::OPERAND_REG_IMM_FP16: 1679 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: 1680 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1681 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1682 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1683 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1684 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1685 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1686 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1687 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1688 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1689 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1690 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1691 case AMDGPU::OPERAND_REG_IMM_V2FP32: 1692 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 1693 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 1694 return true; 1695 default: 1696 return false; 1697 } 1698 } 1699 1700 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1701 assert(OpNo < Desc.NumOperands); 1702 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1703 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1704 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1705 } 1706 1707 // Avoid using MCRegisterClass::getSize, since that function will go away 1708 // (move from MC* level to Target* level). Return size in bits. 1709 unsigned getRegBitWidth(unsigned RCID) { 1710 switch (RCID) { 1711 case AMDGPU::VGPR_LO16RegClassID: 1712 case AMDGPU::VGPR_HI16RegClassID: 1713 case AMDGPU::SGPR_LO16RegClassID: 1714 case AMDGPU::AGPR_LO16RegClassID: 1715 return 16; 1716 case AMDGPU::SGPR_32RegClassID: 1717 case AMDGPU::VGPR_32RegClassID: 1718 case AMDGPU::VRegOrLds_32RegClassID: 1719 case AMDGPU::AGPR_32RegClassID: 1720 case AMDGPU::VS_32RegClassID: 1721 case AMDGPU::AV_32RegClassID: 1722 case AMDGPU::SReg_32RegClassID: 1723 case AMDGPU::SReg_32_XM0RegClassID: 1724 case AMDGPU::SRegOrLds_32RegClassID: 1725 return 32; 1726 case AMDGPU::SGPR_64RegClassID: 1727 case AMDGPU::VS_64RegClassID: 1728 case AMDGPU::SReg_64RegClassID: 1729 case AMDGPU::VReg_64RegClassID: 1730 case AMDGPU::AReg_64RegClassID: 1731 case AMDGPU::SReg_64_XEXECRegClassID: 1732 case AMDGPU::VReg_64_Align2RegClassID: 1733 case AMDGPU::AReg_64_Align2RegClassID: 1734 case AMDGPU::AV_64RegClassID: 1735 case AMDGPU::AV_64_Align2RegClassID: 1736 return 64; 1737 case AMDGPU::SGPR_96RegClassID: 1738 case AMDGPU::SReg_96RegClassID: 1739 case AMDGPU::VReg_96RegClassID: 1740 case AMDGPU::AReg_96RegClassID: 1741 case AMDGPU::VReg_96_Align2RegClassID: 1742 case AMDGPU::AReg_96_Align2RegClassID: 1743 case AMDGPU::AV_96RegClassID: 1744 case AMDGPU::AV_96_Align2RegClassID: 1745 return 96; 1746 case AMDGPU::SGPR_128RegClassID: 1747 case AMDGPU::SReg_128RegClassID: 1748 case AMDGPU::VReg_128RegClassID: 1749 case AMDGPU::AReg_128RegClassID: 1750 case AMDGPU::VReg_128_Align2RegClassID: 1751 case AMDGPU::AReg_128_Align2RegClassID: 1752 case AMDGPU::AV_128RegClassID: 1753 case AMDGPU::AV_128_Align2RegClassID: 1754 return 128; 1755 case AMDGPU::SGPR_160RegClassID: 1756 case AMDGPU::SReg_160RegClassID: 1757 case AMDGPU::VReg_160RegClassID: 1758 case AMDGPU::AReg_160RegClassID: 1759 case AMDGPU::VReg_160_Align2RegClassID: 1760 case AMDGPU::AReg_160_Align2RegClassID: 1761 case AMDGPU::AV_160RegClassID: 1762 case AMDGPU::AV_160_Align2RegClassID: 1763 return 160; 1764 case AMDGPU::SGPR_192RegClassID: 1765 case AMDGPU::SReg_192RegClassID: 1766 case AMDGPU::VReg_192RegClassID: 1767 case AMDGPU::AReg_192RegClassID: 1768 case AMDGPU::VReg_192_Align2RegClassID: 1769 case AMDGPU::AReg_192_Align2RegClassID: 1770 case AMDGPU::AV_192RegClassID: 1771 case AMDGPU::AV_192_Align2RegClassID: 1772 return 192; 1773 case AMDGPU::SGPR_224RegClassID: 1774 case AMDGPU::SReg_224RegClassID: 1775 case AMDGPU::VReg_224RegClassID: 1776 case AMDGPU::AReg_224RegClassID: 1777 case AMDGPU::VReg_224_Align2RegClassID: 1778 case AMDGPU::AReg_224_Align2RegClassID: 1779 case AMDGPU::AV_224RegClassID: 1780 case AMDGPU::AV_224_Align2RegClassID: 1781 return 224; 1782 case AMDGPU::SGPR_256RegClassID: 1783 case AMDGPU::SReg_256RegClassID: 1784 case AMDGPU::VReg_256RegClassID: 1785 case AMDGPU::AReg_256RegClassID: 1786 case AMDGPU::VReg_256_Align2RegClassID: 1787 case AMDGPU::AReg_256_Align2RegClassID: 1788 case AMDGPU::AV_256RegClassID: 1789 case AMDGPU::AV_256_Align2RegClassID: 1790 return 256; 1791 case AMDGPU::SGPR_512RegClassID: 1792 case AMDGPU::SReg_512RegClassID: 1793 case AMDGPU::VReg_512RegClassID: 1794 case AMDGPU::AReg_512RegClassID: 1795 case AMDGPU::VReg_512_Align2RegClassID: 1796 case AMDGPU::AReg_512_Align2RegClassID: 1797 case AMDGPU::AV_512RegClassID: 1798 case AMDGPU::AV_512_Align2RegClassID: 1799 return 512; 1800 case AMDGPU::SGPR_1024RegClassID: 1801 case AMDGPU::SReg_1024RegClassID: 1802 case AMDGPU::VReg_1024RegClassID: 1803 case AMDGPU::AReg_1024RegClassID: 1804 case AMDGPU::VReg_1024_Align2RegClassID: 1805 case AMDGPU::AReg_1024_Align2RegClassID: 1806 case AMDGPU::AV_1024RegClassID: 1807 case AMDGPU::AV_1024_Align2RegClassID: 1808 return 1024; 1809 default: 1810 llvm_unreachable("Unexpected register class"); 1811 } 1812 } 1813 1814 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1815 return getRegBitWidth(RC.getID()); 1816 } 1817 1818 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1819 unsigned OpNo) { 1820 assert(OpNo < Desc.NumOperands); 1821 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1822 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1823 } 1824 1825 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1826 if (isInlinableIntLiteral(Literal)) 1827 return true; 1828 1829 uint64_t Val = static_cast<uint64_t>(Literal); 1830 return (Val == DoubleToBits(0.0)) || 1831 (Val == DoubleToBits(1.0)) || 1832 (Val == DoubleToBits(-1.0)) || 1833 (Val == DoubleToBits(0.5)) || 1834 (Val == DoubleToBits(-0.5)) || 1835 (Val == DoubleToBits(2.0)) || 1836 (Val == DoubleToBits(-2.0)) || 1837 (Val == DoubleToBits(4.0)) || 1838 (Val == DoubleToBits(-4.0)) || 1839 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1840 } 1841 1842 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1843 if (isInlinableIntLiteral(Literal)) 1844 return true; 1845 1846 // The actual type of the operand does not seem to matter as long 1847 // as the bits match one of the inline immediate values. For example: 1848 // 1849 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1850 // so it is a legal inline immediate. 1851 // 1852 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1853 // floating-point, so it is a legal inline immediate. 1854 1855 uint32_t Val = static_cast<uint32_t>(Literal); 1856 return (Val == FloatToBits(0.0f)) || 1857 (Val == FloatToBits(1.0f)) || 1858 (Val == FloatToBits(-1.0f)) || 1859 (Val == FloatToBits(0.5f)) || 1860 (Val == FloatToBits(-0.5f)) || 1861 (Val == FloatToBits(2.0f)) || 1862 (Val == FloatToBits(-2.0f)) || 1863 (Val == FloatToBits(4.0f)) || 1864 (Val == FloatToBits(-4.0f)) || 1865 (Val == 0x3e22f983 && HasInv2Pi); 1866 } 1867 1868 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1869 if (!HasInv2Pi) 1870 return false; 1871 1872 if (isInlinableIntLiteral(Literal)) 1873 return true; 1874 1875 uint16_t Val = static_cast<uint16_t>(Literal); 1876 return Val == 0x3C00 || // 1.0 1877 Val == 0xBC00 || // -1.0 1878 Val == 0x3800 || // 0.5 1879 Val == 0xB800 || // -0.5 1880 Val == 0x4000 || // 2.0 1881 Val == 0xC000 || // -2.0 1882 Val == 0x4400 || // 4.0 1883 Val == 0xC400 || // -4.0 1884 Val == 0x3118; // 1/2pi 1885 } 1886 1887 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1888 assert(HasInv2Pi); 1889 1890 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1891 int16_t Trunc = static_cast<int16_t>(Literal); 1892 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1893 } 1894 if (!(Literal & 0xffff)) 1895 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1896 1897 int16_t Lo16 = static_cast<int16_t>(Literal); 1898 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1899 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1900 } 1901 1902 bool isInlinableIntLiteralV216(int32_t Literal) { 1903 int16_t Lo16 = static_cast<int16_t>(Literal); 1904 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1905 return isInlinableIntLiteral(Lo16); 1906 1907 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1908 if (!(Literal & 0xffff)) 1909 return isInlinableIntLiteral(Hi16); 1910 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1911 } 1912 1913 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1914 assert(HasInv2Pi); 1915 1916 int16_t Lo16 = static_cast<int16_t>(Literal); 1917 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1918 return true; 1919 1920 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1921 if (!(Literal & 0xffff)) 1922 return true; 1923 return Lo16 == Hi16; 1924 } 1925 1926 bool isArgPassedInSGPR(const Argument *A) { 1927 const Function *F = A->getParent(); 1928 1929 // Arguments to compute shaders are never a source of divergence. 1930 CallingConv::ID CC = F->getCallingConv(); 1931 switch (CC) { 1932 case CallingConv::AMDGPU_KERNEL: 1933 case CallingConv::SPIR_KERNEL: 1934 return true; 1935 case CallingConv::AMDGPU_VS: 1936 case CallingConv::AMDGPU_LS: 1937 case CallingConv::AMDGPU_HS: 1938 case CallingConv::AMDGPU_ES: 1939 case CallingConv::AMDGPU_GS: 1940 case CallingConv::AMDGPU_PS: 1941 case CallingConv::AMDGPU_CS: 1942 case CallingConv::AMDGPU_Gfx: 1943 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1944 // Everything else is in VGPRs. 1945 return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) || 1946 F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal); 1947 default: 1948 // TODO: Should calls support inreg for SGPR inputs? 1949 return false; 1950 } 1951 } 1952 1953 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1954 return isGCN3Encoding(ST) || isGFX10Plus(ST); 1955 } 1956 1957 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1958 return isGFX9Plus(ST); 1959 } 1960 1961 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1962 int64_t EncodedOffset) { 1963 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1964 : isUInt<8>(EncodedOffset); 1965 } 1966 1967 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1968 int64_t EncodedOffset, 1969 bool IsBuffer) { 1970 return !IsBuffer && 1971 hasSMRDSignedImmOffset(ST) && 1972 isInt<21>(EncodedOffset); 1973 } 1974 1975 static bool isDwordAligned(uint64_t ByteOffset) { 1976 return (ByteOffset & 3) == 0; 1977 } 1978 1979 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1980 uint64_t ByteOffset) { 1981 if (hasSMEMByteOffset(ST)) 1982 return ByteOffset; 1983 1984 assert(isDwordAligned(ByteOffset)); 1985 return ByteOffset >> 2; 1986 } 1987 1988 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1989 int64_t ByteOffset, bool IsBuffer) { 1990 // The signed version is always a byte offset. 1991 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1992 assert(hasSMEMByteOffset(ST)); 1993 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1994 } 1995 1996 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1997 return None; 1998 1999 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 2000 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 2001 ? Optional<int64_t>(EncodedOffset) 2002 : None; 2003 } 2004 2005 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 2006 int64_t ByteOffset) { 2007 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 2008 return None; 2009 2010 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 2011 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 2012 } 2013 2014 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { 2015 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. 2016 if (AMDGPU::isGFX10(ST)) 2017 return Signed ? 12 : 11; 2018 2019 return Signed ? 13 : 12; 2020 } 2021 2022 // Given Imm, split it into the values to put into the SOffset and ImmOffset 2023 // fields in an MUBUF instruction. Return false if it is not possible (due to a 2024 // hardware bug needing a workaround). 2025 // 2026 // The required alignment ensures that individual address components remain 2027 // aligned if they are aligned to begin with. It also ensures that additional 2028 // offsets within the given alignment can be added to the resulting ImmOffset. 2029 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 2030 const GCNSubtarget *Subtarget, Align Alignment) { 2031 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 2032 uint32_t Overflow = 0; 2033 2034 if (Imm > MaxImm) { 2035 if (Imm <= MaxImm + 64) { 2036 // Use an SOffset inline constant for 4..64 2037 Overflow = Imm - MaxImm; 2038 Imm = MaxImm; 2039 } else { 2040 // Try to keep the same value in SOffset for adjacent loads, so that 2041 // the corresponding register contents can be re-used. 2042 // 2043 // Load values with all low-bits (except for alignment bits) set into 2044 // SOffset, so that a larger range of values can be covered using 2045 // s_movk_i32. 2046 // 2047 // Atomic operations fail to work correctly when individual address 2048 // components are unaligned, even if their sum is aligned. 2049 uint32_t High = (Imm + Alignment.value()) & ~4095; 2050 uint32_t Low = (Imm + Alignment.value()) & 4095; 2051 Imm = Low; 2052 Overflow = High - Alignment.value(); 2053 } 2054 } 2055 2056 // There is a hardware bug in SI and CI which prevents address clamping in 2057 // MUBUF instructions from working correctly with SOffsets. The immediate 2058 // offset is unaffected. 2059 if (Overflow > 0 && 2060 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 2061 return false; 2062 2063 ImmOffset = Imm; 2064 SOffset = Overflow; 2065 return true; 2066 } 2067 2068 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 2069 *this = getDefaultForCallingConv(F.getCallingConv()); 2070 2071 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 2072 if (!IEEEAttr.empty()) 2073 IEEE = IEEEAttr == "true"; 2074 2075 StringRef DX10ClampAttr 2076 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 2077 if (!DX10ClampAttr.empty()) 2078 DX10Clamp = DX10ClampAttr == "true"; 2079 2080 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 2081 if (!DenormF32Attr.empty()) { 2082 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 2083 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2084 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2085 } 2086 2087 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 2088 if (!DenormAttr.empty()) { 2089 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 2090 2091 if (DenormF32Attr.empty()) { 2092 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2093 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2094 } 2095 2096 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 2097 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 2098 } 2099 } 2100 2101 namespace { 2102 2103 struct SourceOfDivergence { 2104 unsigned Intr; 2105 }; 2106 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 2107 2108 #define GET_SourcesOfDivergence_IMPL 2109 #define GET_Gfx9BufferFormat_IMPL 2110 #define GET_Gfx10PlusBufferFormat_IMPL 2111 #include "AMDGPUGenSearchableTables.inc" 2112 2113 } // end anonymous namespace 2114 2115 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 2116 return lookupSourceOfDivergence(IntrID); 2117 } 2118 2119 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 2120 uint8_t NumComponents, 2121 uint8_t NumFormat, 2122 const MCSubtargetInfo &STI) { 2123 return isGFX10Plus(STI) 2124 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 2125 NumFormat) 2126 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 2127 } 2128 2129 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 2130 const MCSubtargetInfo &STI) { 2131 return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) 2132 : getGfx9BufferFormatInfo(Format); 2133 } 2134 2135 } // namespace AMDGPU 2136 2137 raw_ostream &operator<<(raw_ostream &OS, 2138 const AMDGPU::IsaInfo::TargetIDSetting S) { 2139 switch (S) { 2140 case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported): 2141 OS << "Unsupported"; 2142 break; 2143 case (AMDGPU::IsaInfo::TargetIDSetting::Any): 2144 OS << "Any"; 2145 break; 2146 case (AMDGPU::IsaInfo::TargetIDSetting::Off): 2147 OS << "Off"; 2148 break; 2149 case (AMDGPU::IsaInfo::TargetIDSetting::On): 2150 OS << "On"; 2151 break; 2152 } 2153 return OS; 2154 } 2155 2156 } // namespace llvm 2157