1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPUTargetTransformInfo.h"
11 #include "AMDGPU.h"
12 #include "SIDefines.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/IR/Attributes.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/GlobalValue.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/MC/MCContext.h"
25 #include "llvm/MC/MCInstrDesc.h"
26 #include "llvm/MC/MCInstrInfo.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSubtargetInfo.h"
30 #include "llvm/MC/SubtargetFeature.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <cstring>
38 #include <utility>
39 
40 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
41 
42 #define GET_INSTRINFO_NAMED_OPS
43 #define GET_INSTRMAP_INFO
44 #include "AMDGPUGenInstrInfo.inc"
45 #undef GET_INSTRMAP_INFO
46 #undef GET_INSTRINFO_NAMED_OPS
47 
48 namespace {
49 
50 /// \returns Bit mask for given bit \p Shift and bit \p Width.
51 unsigned getBitMask(unsigned Shift, unsigned Width) {
52   return ((1 << Width) - 1) << Shift;
53 }
54 
55 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
56 ///
57 /// \returns Packed \p Dst.
58 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
59   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
60   Dst |= (Src << Shift) & getBitMask(Shift, Width);
61   return Dst;
62 }
63 
64 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
65 ///
66 /// \returns Unpacked bits.
67 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
68   return (Src & getBitMask(Shift, Width)) >> Shift;
69 }
70 
71 /// \returns Vmcnt bit shift (lower bits).
72 unsigned getVmcntBitShiftLo() { return 0; }
73 
74 /// \returns Vmcnt bit width (lower bits).
75 unsigned getVmcntBitWidthLo() { return 4; }
76 
77 /// \returns Expcnt bit shift.
78 unsigned getExpcntBitShift() { return 4; }
79 
80 /// \returns Expcnt bit width.
81 unsigned getExpcntBitWidth() { return 3; }
82 
83 /// \returns Lgkmcnt bit shift.
84 unsigned getLgkmcntBitShift() { return 8; }
85 
86 /// \returns Lgkmcnt bit width.
87 unsigned getLgkmcntBitWidth() { return 4; }
88 
89 /// \returns Vmcnt bit shift (higher bits).
90 unsigned getVmcntBitShiftHi() { return 14; }
91 
92 /// \returns Vmcnt bit width (higher bits).
93 unsigned getVmcntBitWidthHi() { return 2; }
94 
95 } // end namespace anonymous
96 
97 namespace llvm {
98 
99 namespace AMDGPU {
100 
101 struct MIMGInfo {
102   uint16_t Opcode;
103   uint16_t BaseOpcode;
104   uint8_t MIMGEncoding;
105   uint8_t VDataDwords;
106   uint8_t VAddrDwords;
107 };
108 
109 #define GET_MIMGBaseOpcodesTable_IMPL
110 #define GET_MIMGDimInfoTable_IMPL
111 #define GET_MIMGInfoTable_IMPL
112 #define GET_MIMGLZMappingTable_IMPL
113 #include "AMDGPUGenSearchableTables.inc"
114 
115 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
116                   unsigned VDataDwords, unsigned VAddrDwords) {
117   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
118                                              VDataDwords, VAddrDwords);
119   return Info ? Info->Opcode : -1;
120 }
121 
122 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
123   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
124   const MIMGInfo *NewInfo =
125       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
126                           NewChannels, OrigInfo->VAddrDwords);
127   return NewInfo ? NewInfo->Opcode : -1;
128 }
129 
130 struct MUBUFInfo {
131   uint16_t Opcode;
132   uint16_t BaseOpcode;
133   uint8_t dwords;
134   bool has_vaddr;
135   bool has_srsrc;
136   bool has_soffset;
137 };
138 
139 #define GET_MUBUFInfoTable_DECL
140 #define GET_MUBUFInfoTable_IMPL
141 #include "AMDGPUGenSearchableTables.inc"
142 
143 int getMUBUFBaseOpcode(unsigned Opc) {
144   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
145   return Info ? Info->BaseOpcode : -1;
146 }
147 
148 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) {
149   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords);
150   return Info ? Info->Opcode : -1;
151 }
152 
153 int getMUBUFDwords(unsigned Opc) {
154   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
155   return Info ? Info->dwords : 0;
156 }
157 
158 bool getMUBUFHasVAddr(unsigned Opc) {
159   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
160   return Info ? Info->has_vaddr : false;
161 }
162 
163 bool getMUBUFHasSrsrc(unsigned Opc) {
164   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
165   return Info ? Info->has_srsrc : false;
166 }
167 
168 bool getMUBUFHasSoffset(unsigned Opc) {
169   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
170   return Info ? Info->has_soffset : false;
171 }
172 
173 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
174 // header files, so we need to wrap it in a function that takes unsigned
175 // instead.
176 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
177   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
178 }
179 
180 namespace IsaInfo {
181 
182 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
183   auto TargetTriple = STI->getTargetTriple();
184   auto Version = getIsaVersion(STI->getCPU());
185 
186   Stream << TargetTriple.getArchName() << '-'
187          << TargetTriple.getVendorName() << '-'
188          << TargetTriple.getOSName() << '-'
189          << TargetTriple.getEnvironmentName() << '-'
190          << "gfx"
191          << Version.Major
192          << Version.Minor
193          << Version.Stepping;
194 
195   if (hasXNACK(*STI))
196     Stream << "+xnack";
197   if (hasSRAMECC(*STI))
198     Stream << "+sram-ecc";
199 
200   Stream.flush();
201 }
202 
203 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
204   return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
205              STI->getFeatureBits().test(FeatureCodeObjectV3);
206 }
207 
208 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
209   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
210     return 16;
211   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
212     return 32;
213 
214   return 64;
215 }
216 
217 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
218   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
219     return 32768;
220   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
221     return 65536;
222 
223   return 0;
224 }
225 
226 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
227   return 4;
228 }
229 
230 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
231                                unsigned FlatWorkGroupSize) {
232   assert(FlatWorkGroupSize != 0);
233   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
234     return 8;
235   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
236   if (N == 1)
237     return 40;
238   N = 40 / N;
239   return std::min(N, 16u);
240 }
241 
242 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) {
243   return getMaxWavesPerEU() * getEUsPerCU(STI);
244 }
245 
246 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI,
247                           unsigned FlatWorkGroupSize) {
248   return getWavesPerWorkGroup(STI, FlatWorkGroupSize);
249 }
250 
251 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
252   return 1;
253 }
254 
255 unsigned getMaxWavesPerEU() {
256   // FIXME: Need to take scratch memory into account.
257   return 10;
258 }
259 
260 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI,
261                           unsigned FlatWorkGroupSize) {
262   return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize),
263                  getEUsPerCU(STI)) / getEUsPerCU(STI);
264 }
265 
266 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
267   return 1;
268 }
269 
270 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
271   return 2048;
272 }
273 
274 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
275                               unsigned FlatWorkGroupSize) {
276   return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) /
277                  getWavefrontSize(STI);
278 }
279 
280 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
281   IsaVersion Version = getIsaVersion(STI->getCPU());
282   if (Version.Major >= 8)
283     return 16;
284   return 8;
285 }
286 
287 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
288   return 8;
289 }
290 
291 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
292   IsaVersion Version = getIsaVersion(STI->getCPU());
293   if (Version.Major >= 8)
294     return 800;
295   return 512;
296 }
297 
298 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
299   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
300     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
301 
302   IsaVersion Version = getIsaVersion(STI->getCPU());
303   if (Version.Major >= 8)
304     return 102;
305   return 104;
306 }
307 
308 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
309   assert(WavesPerEU != 0);
310 
311   if (WavesPerEU >= getMaxWavesPerEU())
312     return 0;
313 
314   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
315   if (STI->getFeatureBits().test(FeatureTrapHandler))
316     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
317   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
318   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
319 }
320 
321 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
322                         bool Addressable) {
323   assert(WavesPerEU != 0);
324 
325   IsaVersion Version = getIsaVersion(STI->getCPU());
326   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
327   if (Version.Major >= 8 && !Addressable)
328     AddressableNumSGPRs = 112;
329   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
330   if (STI->getFeatureBits().test(FeatureTrapHandler))
331     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
332   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
333   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
334 }
335 
336 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
337                           bool FlatScrUsed, bool XNACKUsed) {
338   unsigned ExtraSGPRs = 0;
339   if (VCCUsed)
340     ExtraSGPRs = 2;
341 
342   IsaVersion Version = getIsaVersion(STI->getCPU());
343   if (Version.Major < 8) {
344     if (FlatScrUsed)
345       ExtraSGPRs = 4;
346   } else {
347     if (XNACKUsed)
348       ExtraSGPRs = 4;
349 
350     if (FlatScrUsed)
351       ExtraSGPRs = 6;
352   }
353 
354   return ExtraSGPRs;
355 }
356 
357 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
358                           bool FlatScrUsed) {
359   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
360                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
361 }
362 
363 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
364   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
365   // SGPRBlocks is actual number of SGPR blocks minus 1.
366   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
367 }
368 
369 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) {
370   return 4;
371 }
372 
373 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) {
374   return getVGPRAllocGranule(STI);
375 }
376 
377 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
378   return 256;
379 }
380 
381 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
382   return getTotalNumVGPRs(STI);
383 }
384 
385 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
386   assert(WavesPerEU != 0);
387 
388   if (WavesPerEU >= getMaxWavesPerEU())
389     return 0;
390   unsigned MinNumVGPRs =
391       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
392                 getVGPRAllocGranule(STI)) + 1;
393   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
394 }
395 
396 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
397   assert(WavesPerEU != 0);
398 
399   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
400                                    getVGPRAllocGranule(STI));
401   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
402   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
403 }
404 
405 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) {
406   NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI));
407   // VGPRBlocks is actual number of VGPR blocks minus 1.
408   return NumVGPRs / getVGPREncodingGranule(STI) - 1;
409 }
410 
411 } // end namespace IsaInfo
412 
413 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
414                                const MCSubtargetInfo *STI) {
415   IsaVersion Version = getIsaVersion(STI->getCPU());
416 
417   memset(&Header, 0, sizeof(Header));
418 
419   Header.amd_kernel_code_version_major = 1;
420   Header.amd_kernel_code_version_minor = 2;
421   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
422   Header.amd_machine_version_major = Version.Major;
423   Header.amd_machine_version_minor = Version.Minor;
424   Header.amd_machine_version_stepping = Version.Stepping;
425   Header.kernel_code_entry_byte_offset = sizeof(Header);
426   // wavefront_size is specified as a power of 2: 2^6 = 64 threads.
427   Header.wavefront_size = 6;
428 
429   // If the code object does not support indirect functions, then the value must
430   // be 0xffffffff.
431   Header.call_convention = -1;
432 
433   // These alignment values are specified in powers of two, so alignment =
434   // 2^n.  The minimum alignment is 2^4 = 16.
435   Header.kernarg_segment_alignment = 4;
436   Header.group_segment_alignment = 4;
437   Header.private_segment_alignment = 4;
438 }
439 
440 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() {
441   amdhsa::kernel_descriptor_t KD;
442   memset(&KD, 0, sizeof(KD));
443   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
444                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
445                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
446   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
447                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
448   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
449                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
450   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
451                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
452   return KD;
453 }
454 
455 bool isGroupSegment(const GlobalValue *GV) {
456   return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
457 }
458 
459 bool isGlobalSegment(const GlobalValue *GV) {
460   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
461 }
462 
463 bool isReadOnlySegment(const GlobalValue *GV) {
464   return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
465          GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
466 }
467 
468 bool shouldEmitConstantsToTextSection(const Triple &TT) {
469   return TT.getOS() != Triple::AMDHSA;
470 }
471 
472 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
473   Attribute A = F.getFnAttribute(Name);
474   int Result = Default;
475 
476   if (A.isStringAttribute()) {
477     StringRef Str = A.getValueAsString();
478     if (Str.getAsInteger(0, Result)) {
479       LLVMContext &Ctx = F.getContext();
480       Ctx.emitError("can't parse integer attribute " + Name);
481     }
482   }
483 
484   return Result;
485 }
486 
487 std::pair<int, int> getIntegerPairAttribute(const Function &F,
488                                             StringRef Name,
489                                             std::pair<int, int> Default,
490                                             bool OnlyFirstRequired) {
491   Attribute A = F.getFnAttribute(Name);
492   if (!A.isStringAttribute())
493     return Default;
494 
495   LLVMContext &Ctx = F.getContext();
496   std::pair<int, int> Ints = Default;
497   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
498   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
499     Ctx.emitError("can't parse first integer attribute " + Name);
500     return Default;
501   }
502   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
503     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
504       Ctx.emitError("can't parse second integer attribute " + Name);
505       return Default;
506     }
507   }
508 
509   return Ints;
510 }
511 
512 unsigned getVmcntBitMask(const IsaVersion &Version) {
513   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
514   if (Version.Major < 9)
515     return VmcntLo;
516 
517   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
518   return VmcntLo | VmcntHi;
519 }
520 
521 unsigned getExpcntBitMask(const IsaVersion &Version) {
522   return (1 << getExpcntBitWidth()) - 1;
523 }
524 
525 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
526   return (1 << getLgkmcntBitWidth()) - 1;
527 }
528 
529 unsigned getWaitcntBitMask(const IsaVersion &Version) {
530   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
531   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
532   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth());
533   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
534   if (Version.Major < 9)
535     return Waitcnt;
536 
537   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
538   return Waitcnt | VmcntHi;
539 }
540 
541 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
542   unsigned VmcntLo =
543       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
544   if (Version.Major < 9)
545     return VmcntLo;
546 
547   unsigned VmcntHi =
548       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
549   VmcntHi <<= getVmcntBitWidthLo();
550   return VmcntLo | VmcntHi;
551 }
552 
553 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
554   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
555 }
556 
557 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
558   return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
559 }
560 
561 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
562                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
563   Vmcnt = decodeVmcnt(Version, Waitcnt);
564   Expcnt = decodeExpcnt(Version, Waitcnt);
565   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
566 }
567 
568 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
569   Waitcnt Decoded;
570   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
571   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
572   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
573   return Decoded;
574 }
575 
576 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
577                      unsigned Vmcnt) {
578   Waitcnt =
579       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
580   if (Version.Major < 9)
581     return Waitcnt;
582 
583   Vmcnt >>= getVmcntBitWidthLo();
584   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
585 }
586 
587 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
588                       unsigned Expcnt) {
589   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
590 }
591 
592 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
593                        unsigned Lgkmcnt) {
594   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth());
595 }
596 
597 unsigned encodeWaitcnt(const IsaVersion &Version,
598                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
599   unsigned Waitcnt = getWaitcntBitMask(Version);
600   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
601   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
602   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
603   return Waitcnt;
604 }
605 
606 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
607   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
608 }
609 
610 unsigned getInitialPSInputAddr(const Function &F) {
611   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
612 }
613 
614 bool isShader(CallingConv::ID cc) {
615   switch(cc) {
616     case CallingConv::AMDGPU_VS:
617     case CallingConv::AMDGPU_LS:
618     case CallingConv::AMDGPU_HS:
619     case CallingConv::AMDGPU_ES:
620     case CallingConv::AMDGPU_GS:
621     case CallingConv::AMDGPU_PS:
622     case CallingConv::AMDGPU_CS:
623       return true;
624     default:
625       return false;
626   }
627 }
628 
629 bool isCompute(CallingConv::ID cc) {
630   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
631 }
632 
633 bool isEntryFunctionCC(CallingConv::ID CC) {
634   switch (CC) {
635   case CallingConv::AMDGPU_KERNEL:
636   case CallingConv::SPIR_KERNEL:
637   case CallingConv::AMDGPU_VS:
638   case CallingConv::AMDGPU_GS:
639   case CallingConv::AMDGPU_PS:
640   case CallingConv::AMDGPU_CS:
641   case CallingConv::AMDGPU_ES:
642   case CallingConv::AMDGPU_HS:
643   case CallingConv::AMDGPU_LS:
644     return true;
645   default:
646     return false;
647   }
648 }
649 
650 bool hasXNACK(const MCSubtargetInfo &STI) {
651   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
652 }
653 
654 bool hasSRAMECC(const MCSubtargetInfo &STI) {
655   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
656 }
657 
658 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
659   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128];
660 }
661 
662 bool hasPackedD16(const MCSubtargetInfo &STI) {
663   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
664 }
665 
666 bool isSI(const MCSubtargetInfo &STI) {
667   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
668 }
669 
670 bool isCI(const MCSubtargetInfo &STI) {
671   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
672 }
673 
674 bool isVI(const MCSubtargetInfo &STI) {
675   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
676 }
677 
678 bool isGFX9(const MCSubtargetInfo &STI) {
679   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
680 }
681 
682 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
683   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
684 }
685 
686 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
687   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
688   const unsigned FirstSubReg = TRI->getSubReg(Reg, 1);
689   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
690     Reg == AMDGPU::SCC;
691 }
692 
693 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
694   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
695     if (*R == Reg1) return true;
696   }
697   return false;
698 }
699 
700 #define MAP_REG2REG \
701   using namespace AMDGPU; \
702   switch(Reg) { \
703   default: return Reg; \
704   CASE_CI_VI(FLAT_SCR) \
705   CASE_CI_VI(FLAT_SCR_LO) \
706   CASE_CI_VI(FLAT_SCR_HI) \
707   CASE_VI_GFX9(TTMP0) \
708   CASE_VI_GFX9(TTMP1) \
709   CASE_VI_GFX9(TTMP2) \
710   CASE_VI_GFX9(TTMP3) \
711   CASE_VI_GFX9(TTMP4) \
712   CASE_VI_GFX9(TTMP5) \
713   CASE_VI_GFX9(TTMP6) \
714   CASE_VI_GFX9(TTMP7) \
715   CASE_VI_GFX9(TTMP8) \
716   CASE_VI_GFX9(TTMP9) \
717   CASE_VI_GFX9(TTMP10) \
718   CASE_VI_GFX9(TTMP11) \
719   CASE_VI_GFX9(TTMP12) \
720   CASE_VI_GFX9(TTMP13) \
721   CASE_VI_GFX9(TTMP14) \
722   CASE_VI_GFX9(TTMP15) \
723   CASE_VI_GFX9(TTMP0_TTMP1) \
724   CASE_VI_GFX9(TTMP2_TTMP3) \
725   CASE_VI_GFX9(TTMP4_TTMP5) \
726   CASE_VI_GFX9(TTMP6_TTMP7) \
727   CASE_VI_GFX9(TTMP8_TTMP9) \
728   CASE_VI_GFX9(TTMP10_TTMP11) \
729   CASE_VI_GFX9(TTMP12_TTMP13) \
730   CASE_VI_GFX9(TTMP14_TTMP15) \
731   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \
732   CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \
733   CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \
734   CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \
735   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
736   CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
737   CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
738   CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
739   }
740 
741 #define CASE_CI_VI(node) \
742   assert(!isSI(STI)); \
743   case node: return isCI(STI) ? node##_ci : node##_vi;
744 
745 #define CASE_VI_GFX9(node) \
746   case node: return isGFX9(STI) ? node##_gfx9 : node##_vi;
747 
748 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
749   if (STI.getTargetTriple().getArch() == Triple::r600)
750     return Reg;
751   MAP_REG2REG
752 }
753 
754 #undef CASE_CI_VI
755 #undef CASE_VI_GFX9
756 
757 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
758 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node;
759 
760 unsigned mc2PseudoReg(unsigned Reg) {
761   MAP_REG2REG
762 }
763 
764 #undef CASE_CI_VI
765 #undef CASE_VI_GFX9
766 #undef MAP_REG2REG
767 
768 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
769   assert(OpNo < Desc.NumOperands);
770   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
771   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
772          OpType <= AMDGPU::OPERAND_SRC_LAST;
773 }
774 
775 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
776   assert(OpNo < Desc.NumOperands);
777   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
778   switch (OpType) {
779   case AMDGPU::OPERAND_REG_IMM_FP32:
780   case AMDGPU::OPERAND_REG_IMM_FP64:
781   case AMDGPU::OPERAND_REG_IMM_FP16:
782   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
783   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
784   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
785   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
786     return true;
787   default:
788     return false;
789   }
790 }
791 
792 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
793   assert(OpNo < Desc.NumOperands);
794   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
795   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
796          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
797 }
798 
799 // Avoid using MCRegisterClass::getSize, since that function will go away
800 // (move from MC* level to Target* level). Return size in bits.
801 unsigned getRegBitWidth(unsigned RCID) {
802   switch (RCID) {
803   case AMDGPU::SGPR_32RegClassID:
804   case AMDGPU::VGPR_32RegClassID:
805   case AMDGPU::VRegOrLds_32RegClassID:
806   case AMDGPU::VS_32RegClassID:
807   case AMDGPU::SReg_32RegClassID:
808   case AMDGPU::SReg_32_XM0RegClassID:
809   case AMDGPU::SRegOrLds_32RegClassID:
810     return 32;
811   case AMDGPU::SGPR_64RegClassID:
812   case AMDGPU::VS_64RegClassID:
813   case AMDGPU::SReg_64RegClassID:
814   case AMDGPU::VReg_64RegClassID:
815   case AMDGPU::SReg_64_XEXECRegClassID:
816     return 64;
817   case AMDGPU::VReg_96RegClassID:
818     return 96;
819   case AMDGPU::SGPR_128RegClassID:
820   case AMDGPU::SReg_128RegClassID:
821   case AMDGPU::VReg_128RegClassID:
822     return 128;
823   case AMDGPU::SReg_256RegClassID:
824   case AMDGPU::VReg_256RegClassID:
825     return 256;
826   case AMDGPU::SReg_512RegClassID:
827   case AMDGPU::VReg_512RegClassID:
828     return 512;
829   default:
830     llvm_unreachable("Unexpected register class");
831   }
832 }
833 
834 unsigned getRegBitWidth(const MCRegisterClass &RC) {
835   return getRegBitWidth(RC.getID());
836 }
837 
838 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
839                            unsigned OpNo) {
840   assert(OpNo < Desc.NumOperands);
841   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
842   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
843 }
844 
845 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
846   if (Literal >= -16 && Literal <= 64)
847     return true;
848 
849   uint64_t Val = static_cast<uint64_t>(Literal);
850   return (Val == DoubleToBits(0.0)) ||
851          (Val == DoubleToBits(1.0)) ||
852          (Val == DoubleToBits(-1.0)) ||
853          (Val == DoubleToBits(0.5)) ||
854          (Val == DoubleToBits(-0.5)) ||
855          (Val == DoubleToBits(2.0)) ||
856          (Val == DoubleToBits(-2.0)) ||
857          (Val == DoubleToBits(4.0)) ||
858          (Val == DoubleToBits(-4.0)) ||
859          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
860 }
861 
862 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
863   if (Literal >= -16 && Literal <= 64)
864     return true;
865 
866   // The actual type of the operand does not seem to matter as long
867   // as the bits match one of the inline immediate values.  For example:
868   //
869   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
870   // so it is a legal inline immediate.
871   //
872   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
873   // floating-point, so it is a legal inline immediate.
874 
875   uint32_t Val = static_cast<uint32_t>(Literal);
876   return (Val == FloatToBits(0.0f)) ||
877          (Val == FloatToBits(1.0f)) ||
878          (Val == FloatToBits(-1.0f)) ||
879          (Val == FloatToBits(0.5f)) ||
880          (Val == FloatToBits(-0.5f)) ||
881          (Val == FloatToBits(2.0f)) ||
882          (Val == FloatToBits(-2.0f)) ||
883          (Val == FloatToBits(4.0f)) ||
884          (Val == FloatToBits(-4.0f)) ||
885          (Val == 0x3e22f983 && HasInv2Pi);
886 }
887 
888 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
889   if (!HasInv2Pi)
890     return false;
891 
892   if (Literal >= -16 && Literal <= 64)
893     return true;
894 
895   uint16_t Val = static_cast<uint16_t>(Literal);
896   return Val == 0x3C00 || // 1.0
897          Val == 0xBC00 || // -1.0
898          Val == 0x3800 || // 0.5
899          Val == 0xB800 || // -0.5
900          Val == 0x4000 || // 2.0
901          Val == 0xC000 || // -2.0
902          Val == 0x4400 || // 4.0
903          Val == 0xC400 || // -4.0
904          Val == 0x3118;   // 1/2pi
905 }
906 
907 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
908   assert(HasInv2Pi);
909 
910   int16_t Lo16 = static_cast<int16_t>(Literal);
911   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
912   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
913 }
914 
915 bool isArgPassedInSGPR(const Argument *A) {
916   const Function *F = A->getParent();
917 
918   // Arguments to compute shaders are never a source of divergence.
919   CallingConv::ID CC = F->getCallingConv();
920   switch (CC) {
921   case CallingConv::AMDGPU_KERNEL:
922   case CallingConv::SPIR_KERNEL:
923     return true;
924   case CallingConv::AMDGPU_VS:
925   case CallingConv::AMDGPU_LS:
926   case CallingConv::AMDGPU_HS:
927   case CallingConv::AMDGPU_ES:
928   case CallingConv::AMDGPU_GS:
929   case CallingConv::AMDGPU_PS:
930   case CallingConv::AMDGPU_CS:
931     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
932     // Everything else is in VGPRs.
933     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
934            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
935   default:
936     // TODO: Should calls support inreg for SGPR inputs?
937     return false;
938   }
939 }
940 
941 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
942   if (isGCN3Encoding(ST))
943     return ByteOffset;
944   return ByteOffset >> 2;
945 }
946 
947 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) {
948   int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset);
949   return isGCN3Encoding(ST) ?
950     isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset);
951 }
952 
953 // Given Imm, split it into the values to put into the SOffset and ImmOffset
954 // fields in an MUBUF instruction. Return false if it is not possible (due to a
955 // hardware bug needing a workaround).
956 //
957 // The required alignment ensures that individual address components remain
958 // aligned if they are aligned to begin with. It also ensures that additional
959 // offsets within the given alignment can be added to the resulting ImmOffset.
960 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
961                       const GCNSubtarget *Subtarget, uint32_t Align) {
962   const uint32_t MaxImm = alignDown(4095, Align);
963   uint32_t Overflow = 0;
964 
965   if (Imm > MaxImm) {
966     if (Imm <= MaxImm + 64) {
967       // Use an SOffset inline constant for 4..64
968       Overflow = Imm - MaxImm;
969       Imm = MaxImm;
970     } else {
971       // Try to keep the same value in SOffset for adjacent loads, so that
972       // the corresponding register contents can be re-used.
973       //
974       // Load values with all low-bits (except for alignment bits) set into
975       // SOffset, so that a larger range of values can be covered using
976       // s_movk_i32.
977       //
978       // Atomic operations fail to work correctly when individual address
979       // components are unaligned, even if their sum is aligned.
980       uint32_t High = (Imm + Align) & ~4095;
981       uint32_t Low = (Imm + Align) & 4095;
982       Imm = Low;
983       Overflow = High - Align;
984     }
985   }
986 
987   // There is a hardware bug in SI and CI which prevents address clamping in
988   // MUBUF instructions from working correctly with SOffsets. The immediate
989   // offset is unaffected.
990   if (Overflow > 0 &&
991       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
992     return false;
993 
994   ImmOffset = Imm;
995   SOffset = Overflow;
996   return true;
997 }
998 
999 namespace {
1000 
1001 struct SourceOfDivergence {
1002   unsigned Intr;
1003 };
1004 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1005 
1006 #define GET_SourcesOfDivergence_IMPL
1007 #include "AMDGPUGenSearchableTables.inc"
1008 
1009 } // end anonymous namespace
1010 
1011 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1012   return lookupSourceOfDivergence(IntrID);
1013 }
1014 } // namespace AMDGPU
1015 } // namespace llvm
1016