1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(4),
34   llvm::cl::ZeroOrMore);
35 
36 namespace {
37 
38 /// \returns Bit mask for given bit \p Shift and bit \p Width.
39 unsigned getBitMask(unsigned Shift, unsigned Width) {
40   return ((1 << Width) - 1) << Shift;
41 }
42 
43 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
44 ///
45 /// \returns Packed \p Dst.
46 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
47   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
48   Dst |= (Src << Shift) & getBitMask(Shift, Width);
49   return Dst;
50 }
51 
52 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
53 ///
54 /// \returns Unpacked bits.
55 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
56   return (Src & getBitMask(Shift, Width)) >> Shift;
57 }
58 
59 /// \returns Vmcnt bit shift (lower bits).
60 unsigned getVmcntBitShiftLo() { return 0; }
61 
62 /// \returns Vmcnt bit width (lower bits).
63 unsigned getVmcntBitWidthLo() { return 4; }
64 
65 /// \returns Expcnt bit shift.
66 unsigned getExpcntBitShift() { return 4; }
67 
68 /// \returns Expcnt bit width.
69 unsigned getExpcntBitWidth() { return 3; }
70 
71 /// \returns Lgkmcnt bit shift.
72 unsigned getLgkmcntBitShift() { return 8; }
73 
74 /// \returns Lgkmcnt bit width.
75 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
76   return (VersionMajor >= 10) ? 6 : 4;
77 }
78 
79 /// \returns Vmcnt bit shift (higher bits).
80 unsigned getVmcntBitShiftHi() { return 14; }
81 
82 /// \returns Vmcnt bit width (higher bits).
83 unsigned getVmcntBitWidthHi() { return 2; }
84 
85 } // end namespace anonymous
86 
87 namespace llvm {
88 
89 namespace AMDGPU {
90 
91 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
92   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
93     return None;
94 
95   switch (AmdhsaCodeObjectVersion) {
96   case 2:
97     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
98   case 3:
99     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
100   case 4:
101     return ELF::ELFABIVERSION_AMDGPU_HSA_V4;
102   case 5:
103     return ELF::ELFABIVERSION_AMDGPU_HSA_V5;
104   default:
105     report_fatal_error(Twine("Unsupported AMDHSA Code Object Version ") +
106                        Twine(AmdhsaCodeObjectVersion));
107   }
108 }
109 
110 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
111   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
112     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
113   return false;
114 }
115 
116 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
117   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
118     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
119   return false;
120 }
121 
122 bool isHsaAbiVersion4(const MCSubtargetInfo *STI) {
123   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
124     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V4;
125   return false;
126 }
127 
128 bool isHsaAbiVersion5(const MCSubtargetInfo *STI) {
129   if (Optional<uint8_t> HsaAbiVer = getHsaAbiVersion(STI))
130     return *HsaAbiVer == ELF::ELFABIVERSION_AMDGPU_HSA_V5;
131   return false;
132 }
133 
134 bool isHsaAbiVersion3AndAbove(const MCSubtargetInfo *STI) {
135   return isHsaAbiVersion3(STI) || isHsaAbiVersion4(STI) ||
136          isHsaAbiVersion5(STI);
137 }
138 
139 // FIXME: All such magic numbers about the ABI should be in a
140 // central TD file.
141 unsigned getHostcallImplicitArgPosition() {
142   switch (AmdhsaCodeObjectVersion) {
143   case 2:
144   case 3:
145   case 4:
146     return 24;
147   case 5:
148     return 80;
149   default:
150     llvm_unreachable("Unexpected code object version");
151     return 0;
152   }
153 }
154 
155 #define GET_MIMGBaseOpcodesTable_IMPL
156 #define GET_MIMGDimInfoTable_IMPL
157 #define GET_MIMGInfoTable_IMPL
158 #define GET_MIMGLZMappingTable_IMPL
159 #define GET_MIMGMIPMappingTable_IMPL
160 #define GET_MIMGBiasMappingTable_IMPL
161 #define GET_MIMGOffsetMappingTable_IMPL
162 #define GET_MIMGG16MappingTable_IMPL
163 #include "AMDGPUGenSearchableTables.inc"
164 
165 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
166                   unsigned VDataDwords, unsigned VAddrDwords) {
167   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
168                                              VDataDwords, VAddrDwords);
169   return Info ? Info->Opcode : -1;
170 }
171 
172 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
173   const MIMGInfo *Info = getMIMGInfo(Opc);
174   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
175 }
176 
177 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
178   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
179   const MIMGInfo *NewInfo =
180       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
181                           NewChannels, OrigInfo->VAddrDwords);
182   return NewInfo ? NewInfo->Opcode : -1;
183 }
184 
185 unsigned getAddrSizeMIMGOp(const MIMGBaseOpcodeInfo *BaseOpcode,
186                            const MIMGDimInfo *Dim, bool IsA16,
187                            bool IsG16Supported) {
188   unsigned AddrWords = BaseOpcode->NumExtraArgs;
189   unsigned AddrComponents = (BaseOpcode->Coordinates ? Dim->NumCoords : 0) +
190                             (BaseOpcode->LodOrClampOrMip ? 1 : 0);
191   if (IsA16)
192     AddrWords += divideCeil(AddrComponents, 2);
193   else
194     AddrWords += AddrComponents;
195 
196   // Note: For subtargets that support A16 but not G16, enabling A16 also
197   // enables 16 bit gradients.
198   // For subtargets that support A16 (operand) and G16 (done with a different
199   // instruction encoding), they are independent.
200 
201   if (BaseOpcode->Gradients) {
202     if ((IsA16 && !IsG16Supported) || BaseOpcode->G16)
203       // There are two gradients per coordinate, we pack them separately.
204       // For the 3d case,
205       // we get (dy/du, dx/du) (-, dz/du) (dy/dv, dx/dv) (-, dz/dv)
206       AddrWords += alignTo<2>(Dim->NumGradients / 2);
207     else
208       AddrWords += Dim->NumGradients;
209   }
210   return AddrWords;
211 }
212 
213 struct MUBUFInfo {
214   uint16_t Opcode;
215   uint16_t BaseOpcode;
216   uint8_t elements;
217   bool has_vaddr;
218   bool has_srsrc;
219   bool has_soffset;
220   bool IsBufferInv;
221 };
222 
223 struct MTBUFInfo {
224   uint16_t Opcode;
225   uint16_t BaseOpcode;
226   uint8_t elements;
227   bool has_vaddr;
228   bool has_srsrc;
229   bool has_soffset;
230 };
231 
232 struct SMInfo {
233   uint16_t Opcode;
234   bool IsBuffer;
235 };
236 
237 struct VOPInfo {
238   uint16_t Opcode;
239   bool IsSingle;
240 };
241 
242 #define GET_MTBUFInfoTable_DECL
243 #define GET_MTBUFInfoTable_IMPL
244 #define GET_MUBUFInfoTable_DECL
245 #define GET_MUBUFInfoTable_IMPL
246 #define GET_SMInfoTable_DECL
247 #define GET_SMInfoTable_IMPL
248 #define GET_VOP1InfoTable_DECL
249 #define GET_VOP1InfoTable_IMPL
250 #define GET_VOP2InfoTable_DECL
251 #define GET_VOP2InfoTable_IMPL
252 #define GET_VOP3InfoTable_DECL
253 #define GET_VOP3InfoTable_IMPL
254 #include "AMDGPUGenSearchableTables.inc"
255 
256 int getMTBUFBaseOpcode(unsigned Opc) {
257   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
258   return Info ? Info->BaseOpcode : -1;
259 }
260 
261 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
262   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
263   return Info ? Info->Opcode : -1;
264 }
265 
266 int getMTBUFElements(unsigned Opc) {
267   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
268   return Info ? Info->elements : 0;
269 }
270 
271 bool getMTBUFHasVAddr(unsigned Opc) {
272   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
273   return Info ? Info->has_vaddr : false;
274 }
275 
276 bool getMTBUFHasSrsrc(unsigned Opc) {
277   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
278   return Info ? Info->has_srsrc : false;
279 }
280 
281 bool getMTBUFHasSoffset(unsigned Opc) {
282   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
283   return Info ? Info->has_soffset : false;
284 }
285 
286 int getMUBUFBaseOpcode(unsigned Opc) {
287   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
288   return Info ? Info->BaseOpcode : -1;
289 }
290 
291 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
292   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
293   return Info ? Info->Opcode : -1;
294 }
295 
296 int getMUBUFElements(unsigned Opc) {
297   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
298   return Info ? Info->elements : 0;
299 }
300 
301 bool getMUBUFHasVAddr(unsigned Opc) {
302   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
303   return Info ? Info->has_vaddr : false;
304 }
305 
306 bool getMUBUFHasSrsrc(unsigned Opc) {
307   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
308   return Info ? Info->has_srsrc : false;
309 }
310 
311 bool getMUBUFHasSoffset(unsigned Opc) {
312   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
313   return Info ? Info->has_soffset : false;
314 }
315 
316 bool getMUBUFIsBufferInv(unsigned Opc) {
317   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
318   return Info ? Info->IsBufferInv : false;
319 }
320 
321 bool getSMEMIsBuffer(unsigned Opc) {
322   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
323   return Info ? Info->IsBuffer : false;
324 }
325 
326 bool getVOP1IsSingle(unsigned Opc) {
327   const VOPInfo *Info = getVOP1OpcodeHelper(Opc);
328   return Info ? Info->IsSingle : false;
329 }
330 
331 bool getVOP2IsSingle(unsigned Opc) {
332   const VOPInfo *Info = getVOP2OpcodeHelper(Opc);
333   return Info ? Info->IsSingle : false;
334 }
335 
336 bool getVOP3IsSingle(unsigned Opc) {
337   const VOPInfo *Info = getVOP3OpcodeHelper(Opc);
338   return Info ? Info->IsSingle : false;
339 }
340 
341 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
342 // header files, so we need to wrap it in a function that takes unsigned
343 // instead.
344 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
345   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
346 }
347 
348 namespace IsaInfo {
349 
350 AMDGPUTargetID::AMDGPUTargetID(const MCSubtargetInfo &STI)
351     : STI(STI), XnackSetting(TargetIDSetting::Any),
352       SramEccSetting(TargetIDSetting::Any) {
353   if (!STI.getFeatureBits().test(FeatureSupportsXNACK))
354     XnackSetting = TargetIDSetting::Unsupported;
355   if (!STI.getFeatureBits().test(FeatureSupportsSRAMECC))
356     SramEccSetting = TargetIDSetting::Unsupported;
357 }
358 
359 void AMDGPUTargetID::setTargetIDFromFeaturesString(StringRef FS) {
360   // Check if xnack or sramecc is explicitly enabled or disabled.  In the
361   // absence of the target features we assume we must generate code that can run
362   // in any environment.
363   SubtargetFeatures Features(FS);
364   Optional<bool> XnackRequested;
365   Optional<bool> SramEccRequested;
366 
367   for (const std::string &Feature : Features.getFeatures()) {
368     if (Feature == "+xnack")
369       XnackRequested = true;
370     else if (Feature == "-xnack")
371       XnackRequested = false;
372     else if (Feature == "+sramecc")
373       SramEccRequested = true;
374     else if (Feature == "-sramecc")
375       SramEccRequested = false;
376   }
377 
378   bool XnackSupported = isXnackSupported();
379   bool SramEccSupported = isSramEccSupported();
380 
381   if (XnackRequested) {
382     if (XnackSupported) {
383       XnackSetting =
384           *XnackRequested ? TargetIDSetting::On : TargetIDSetting::Off;
385     } else {
386       // If a specific xnack setting was requested and this GPU does not support
387       // xnack emit a warning. Setting will remain set to "Unsupported".
388       if (*XnackRequested) {
389         errs() << "warning: xnack 'On' was requested for a processor that does "
390                   "not support it!\n";
391       } else {
392         errs() << "warning: xnack 'Off' was requested for a processor that "
393                   "does not support it!\n";
394       }
395     }
396   }
397 
398   if (SramEccRequested) {
399     if (SramEccSupported) {
400       SramEccSetting =
401           *SramEccRequested ? TargetIDSetting::On : TargetIDSetting::Off;
402     } else {
403       // If a specific sramecc setting was requested and this GPU does not
404       // support sramecc emit a warning. Setting will remain set to
405       // "Unsupported".
406       if (*SramEccRequested) {
407         errs() << "warning: sramecc 'On' was requested for a processor that "
408                   "does not support it!\n";
409       } else {
410         errs() << "warning: sramecc 'Off' was requested for a processor that "
411                   "does not support it!\n";
412       }
413     }
414   }
415 }
416 
417 static TargetIDSetting
418 getTargetIDSettingFromFeatureString(StringRef FeatureString) {
419   if (FeatureString.endswith("-"))
420     return TargetIDSetting::Off;
421   if (FeatureString.endswith("+"))
422     return TargetIDSetting::On;
423 
424   llvm_unreachable("Malformed feature string");
425 }
426 
427 void AMDGPUTargetID::setTargetIDFromTargetIDStream(StringRef TargetID) {
428   SmallVector<StringRef, 3> TargetIDSplit;
429   TargetID.split(TargetIDSplit, ':');
430 
431   for (const auto &FeatureString : TargetIDSplit) {
432     if (FeatureString.startswith("xnack"))
433       XnackSetting = getTargetIDSettingFromFeatureString(FeatureString);
434     if (FeatureString.startswith("sramecc"))
435       SramEccSetting = getTargetIDSettingFromFeatureString(FeatureString);
436   }
437 }
438 
439 std::string AMDGPUTargetID::toString() const {
440   std::string StringRep;
441   raw_string_ostream StreamRep(StringRep);
442 
443   auto TargetTriple = STI.getTargetTriple();
444   auto Version = getIsaVersion(STI.getCPU());
445 
446   StreamRep << TargetTriple.getArchName() << '-'
447             << TargetTriple.getVendorName() << '-'
448             << TargetTriple.getOSName() << '-'
449             << TargetTriple.getEnvironmentName() << '-';
450 
451   std::string Processor;
452   // TODO: Following else statement is present here because we used various
453   // alias names for GPUs up until GFX9 (e.g. 'fiji' is same as 'gfx803').
454   // Remove once all aliases are removed from GCNProcessors.td.
455   if (Version.Major >= 9)
456     Processor = STI.getCPU().str();
457   else
458     Processor = (Twine("gfx") + Twine(Version.Major) + Twine(Version.Minor) +
459                  Twine(Version.Stepping))
460                     .str();
461 
462   std::string Features;
463   if (Optional<uint8_t> HsaAbiVersion = getHsaAbiVersion(&STI)) {
464     switch (*HsaAbiVersion) {
465     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
466       // Code object V2 only supported specific processors and had fixed
467       // settings for the XNACK.
468       if (Processor == "gfx600") {
469       } else if (Processor == "gfx601") {
470       } else if (Processor == "gfx602") {
471       } else if (Processor == "gfx700") {
472       } else if (Processor == "gfx701") {
473       } else if (Processor == "gfx702") {
474       } else if (Processor == "gfx703") {
475       } else if (Processor == "gfx704") {
476       } else if (Processor == "gfx705") {
477       } else if (Processor == "gfx801") {
478         if (!isXnackOnOrAny())
479           report_fatal_error(
480               "AMD GPU code object V2 does not support processor " +
481               Twine(Processor) + " without XNACK");
482       } else if (Processor == "gfx802") {
483       } else if (Processor == "gfx803") {
484       } else if (Processor == "gfx805") {
485       } else if (Processor == "gfx810") {
486         if (!isXnackOnOrAny())
487           report_fatal_error(
488               "AMD GPU code object V2 does not support processor " +
489               Twine(Processor) + " without XNACK");
490       } else if (Processor == "gfx900") {
491         if (isXnackOnOrAny())
492           Processor = "gfx901";
493       } else if (Processor == "gfx902") {
494         if (isXnackOnOrAny())
495           Processor = "gfx903";
496       } else if (Processor == "gfx904") {
497         if (isXnackOnOrAny())
498           Processor = "gfx905";
499       } else if (Processor == "gfx906") {
500         if (isXnackOnOrAny())
501           Processor = "gfx907";
502       } else if (Processor == "gfx90c") {
503         if (isXnackOnOrAny())
504           report_fatal_error(
505               "AMD GPU code object V2 does not support processor " +
506               Twine(Processor) + " with XNACK being ON or ANY");
507       } else {
508         report_fatal_error(
509             "AMD GPU code object V2 does not support processor " +
510             Twine(Processor));
511       }
512       break;
513     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
514       // xnack.
515       if (isXnackOnOrAny())
516         Features += "+xnack";
517       // In code object v2 and v3, "sramecc" feature was spelled with a
518       // hyphen ("sram-ecc").
519       if (isSramEccOnOrAny())
520         Features += "+sram-ecc";
521       break;
522     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
523     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
524       // sramecc.
525       if (getSramEccSetting() == TargetIDSetting::Off)
526         Features += ":sramecc-";
527       else if (getSramEccSetting() == TargetIDSetting::On)
528         Features += ":sramecc+";
529       // xnack.
530       if (getXnackSetting() == TargetIDSetting::Off)
531         Features += ":xnack-";
532       else if (getXnackSetting() == TargetIDSetting::On)
533         Features += ":xnack+";
534       break;
535     default:
536       break;
537     }
538   }
539 
540   StreamRep << Processor << Features;
541 
542   StreamRep.flush();
543   return StringRep;
544 }
545 
546 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
547   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
548     return 16;
549   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
550     return 32;
551 
552   return 64;
553 }
554 
555 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
556   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
557     return 32768;
558   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
559     return 65536;
560 
561   return 0;
562 }
563 
564 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
565   // "Per CU" really means "per whatever functional block the waves of a
566   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
567   // two SIMDs.
568   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
569     return 2;
570   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
571   // two CUs, so a total of four SIMDs.
572   return 4;
573 }
574 
575 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
576                                unsigned FlatWorkGroupSize) {
577   assert(FlatWorkGroupSize != 0);
578   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
579     return 8;
580   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
581   if (N == 1)
582     return 40;
583   N = 40 / N;
584   return std::min(N, 16u);
585 }
586 
587 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
588   return 1;
589 }
590 
591 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
592   // FIXME: Need to take scratch memory into account.
593   if (isGFX90A(*STI))
594     return 8;
595   if (!isGFX10Plus(*STI))
596     return 10;
597   return hasGFX10_3Insts(*STI) ? 16 : 20;
598 }
599 
600 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
601                                    unsigned FlatWorkGroupSize) {
602   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
603                     getEUsPerCU(STI));
604 }
605 
606 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
607   return 1;
608 }
609 
610 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
611   // Some subtargets allow encoding 2048, but this isn't tested or supported.
612   return 1024;
613 }
614 
615 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
616                               unsigned FlatWorkGroupSize) {
617   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
618 }
619 
620 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
621   IsaVersion Version = getIsaVersion(STI->getCPU());
622   if (Version.Major >= 10)
623     return getAddressableNumSGPRs(STI);
624   if (Version.Major >= 8)
625     return 16;
626   return 8;
627 }
628 
629 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
630   return 8;
631 }
632 
633 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
634   IsaVersion Version = getIsaVersion(STI->getCPU());
635   if (Version.Major >= 8)
636     return 800;
637   return 512;
638 }
639 
640 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
641   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
642     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
643 
644   IsaVersion Version = getIsaVersion(STI->getCPU());
645   if (Version.Major >= 10)
646     return 106;
647   if (Version.Major >= 8)
648     return 102;
649   return 104;
650 }
651 
652 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
653   assert(WavesPerEU != 0);
654 
655   IsaVersion Version = getIsaVersion(STI->getCPU());
656   if (Version.Major >= 10)
657     return 0;
658 
659   if (WavesPerEU >= getMaxWavesPerEU(STI))
660     return 0;
661 
662   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
663   if (STI->getFeatureBits().test(FeatureTrapHandler))
664     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
665   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
666   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
667 }
668 
669 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
670                         bool Addressable) {
671   assert(WavesPerEU != 0);
672 
673   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
674   IsaVersion Version = getIsaVersion(STI->getCPU());
675   if (Version.Major >= 10)
676     return Addressable ? AddressableNumSGPRs : 108;
677   if (Version.Major >= 8 && !Addressable)
678     AddressableNumSGPRs = 112;
679   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
680   if (STI->getFeatureBits().test(FeatureTrapHandler))
681     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
682   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
683   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
684 }
685 
686 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
687                           bool FlatScrUsed, bool XNACKUsed) {
688   unsigned ExtraSGPRs = 0;
689   if (VCCUsed)
690     ExtraSGPRs = 2;
691 
692   IsaVersion Version = getIsaVersion(STI->getCPU());
693   if (Version.Major >= 10)
694     return ExtraSGPRs;
695 
696   if (Version.Major < 8) {
697     if (FlatScrUsed)
698       ExtraSGPRs = 4;
699   } else {
700     if (XNACKUsed)
701       ExtraSGPRs = 4;
702 
703     if (FlatScrUsed ||
704         STI->getFeatureBits().test(AMDGPU::FeatureArchitectedFlatScratch))
705       ExtraSGPRs = 6;
706   }
707 
708   return ExtraSGPRs;
709 }
710 
711 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
712                           bool FlatScrUsed) {
713   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
714                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
715 }
716 
717 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
718   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
719   // SGPRBlocks is actual number of SGPR blocks minus 1.
720   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
721 }
722 
723 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
724                              Optional<bool> EnableWavefrontSize32) {
725   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
726     return 8;
727 
728   bool IsWave32 = EnableWavefrontSize32 ?
729       *EnableWavefrontSize32 :
730       STI->getFeatureBits().test(FeatureWavefrontSize32);
731 
732   if (hasGFX10_3Insts(*STI))
733     return IsWave32 ? 16 : 8;
734 
735   return IsWave32 ? 8 : 4;
736 }
737 
738 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
739                                 Optional<bool> EnableWavefrontSize32) {
740   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
741     return 8;
742 
743   bool IsWave32 = EnableWavefrontSize32 ?
744       *EnableWavefrontSize32 :
745       STI->getFeatureBits().test(FeatureWavefrontSize32);
746 
747   return IsWave32 ? 8 : 4;
748 }
749 
750 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
751   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
752     return 512;
753   if (!isGFX10Plus(*STI))
754     return 256;
755   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
756 }
757 
758 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
759   if (STI->getFeatureBits().test(FeatureGFX90AInsts))
760     return 512;
761   return 256;
762 }
763 
764 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
765   assert(WavesPerEU != 0);
766 
767   if (WavesPerEU >= getMaxWavesPerEU(STI))
768     return 0;
769   unsigned MinNumVGPRs =
770       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
771                 getVGPRAllocGranule(STI)) + 1;
772   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
773 }
774 
775 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
776   assert(WavesPerEU != 0);
777 
778   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
779                                    getVGPRAllocGranule(STI));
780   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
781   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
782 }
783 
784 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
785                           Optional<bool> EnableWavefrontSize32) {
786   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
787                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
788   // VGPRBlocks is actual number of VGPR blocks minus 1.
789   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
790 }
791 
792 } // end namespace IsaInfo
793 
794 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
795                                const MCSubtargetInfo *STI) {
796   IsaVersion Version = getIsaVersion(STI->getCPU());
797 
798   memset(&Header, 0, sizeof(Header));
799 
800   Header.amd_kernel_code_version_major = 1;
801   Header.amd_kernel_code_version_minor = 2;
802   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
803   Header.amd_machine_version_major = Version.Major;
804   Header.amd_machine_version_minor = Version.Minor;
805   Header.amd_machine_version_stepping = Version.Stepping;
806   Header.kernel_code_entry_byte_offset = sizeof(Header);
807   Header.wavefront_size = 6;
808 
809   // If the code object does not support indirect functions, then the value must
810   // be 0xffffffff.
811   Header.call_convention = -1;
812 
813   // These alignment values are specified in powers of two, so alignment =
814   // 2^n.  The minimum alignment is 2^4 = 16.
815   Header.kernarg_segment_alignment = 4;
816   Header.group_segment_alignment = 4;
817   Header.private_segment_alignment = 4;
818 
819   if (Version.Major >= 10) {
820     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
821       Header.wavefront_size = 5;
822       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
823     }
824     Header.compute_pgm_resource_registers |=
825       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
826       S_00B848_MEM_ORDERED(1);
827   }
828 }
829 
830 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
831     const MCSubtargetInfo *STI) {
832   IsaVersion Version = getIsaVersion(STI->getCPU());
833 
834   amdhsa::kernel_descriptor_t KD;
835   memset(&KD, 0, sizeof(KD));
836 
837   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
838                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
839                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
840   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
841                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
842   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
843                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
844   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
845                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
846   if (Version.Major >= 10) {
847     AMDHSA_BITS_SET(KD.kernel_code_properties,
848                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
849                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
850     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
851                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
852                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
853     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
854                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
855   }
856   if (AMDGPU::isGFX90A(*STI)) {
857     AMDHSA_BITS_SET(KD.compute_pgm_rsrc3,
858                     amdhsa::COMPUTE_PGM_RSRC3_GFX90A_TG_SPLIT,
859                     STI->getFeatureBits().test(FeatureTgSplit) ? 1 : 0);
860   }
861   return KD;
862 }
863 
864 bool isGroupSegment(const GlobalValue *GV) {
865   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
866 }
867 
868 bool isGlobalSegment(const GlobalValue *GV) {
869   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
870 }
871 
872 bool isReadOnlySegment(const GlobalValue *GV) {
873   unsigned AS = GV->getAddressSpace();
874   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
875          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
876 }
877 
878 bool shouldEmitConstantsToTextSection(const Triple &TT) {
879   return TT.getArch() == Triple::r600;
880 }
881 
882 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
883   Attribute A = F.getFnAttribute(Name);
884   int Result = Default;
885 
886   if (A.isStringAttribute()) {
887     StringRef Str = A.getValueAsString();
888     if (Str.getAsInteger(0, Result)) {
889       LLVMContext &Ctx = F.getContext();
890       Ctx.emitError("can't parse integer attribute " + Name);
891     }
892   }
893 
894   return Result;
895 }
896 
897 std::pair<int, int> getIntegerPairAttribute(const Function &F,
898                                             StringRef Name,
899                                             std::pair<int, int> Default,
900                                             bool OnlyFirstRequired) {
901   Attribute A = F.getFnAttribute(Name);
902   if (!A.isStringAttribute())
903     return Default;
904 
905   LLVMContext &Ctx = F.getContext();
906   std::pair<int, int> Ints = Default;
907   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
908   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
909     Ctx.emitError("can't parse first integer attribute " + Name);
910     return Default;
911   }
912   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
913     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
914       Ctx.emitError("can't parse second integer attribute " + Name);
915       return Default;
916     }
917   }
918 
919   return Ints;
920 }
921 
922 unsigned getVmcntBitMask(const IsaVersion &Version) {
923   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
924   if (Version.Major < 9)
925     return VmcntLo;
926 
927   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
928   return VmcntLo | VmcntHi;
929 }
930 
931 unsigned getExpcntBitMask(const IsaVersion &Version) {
932   return (1 << getExpcntBitWidth()) - 1;
933 }
934 
935 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
936   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
937 }
938 
939 unsigned getWaitcntBitMask(const IsaVersion &Version) {
940   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
941   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
942   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
943                                 getLgkmcntBitWidth(Version.Major));
944   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
945   if (Version.Major < 9)
946     return Waitcnt;
947 
948   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
949   return Waitcnt | VmcntHi;
950 }
951 
952 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
953   unsigned VmcntLo =
954       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
955   if (Version.Major < 9)
956     return VmcntLo;
957 
958   unsigned VmcntHi =
959       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
960   VmcntHi <<= getVmcntBitWidthLo();
961   return VmcntLo | VmcntHi;
962 }
963 
964 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
965   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
966 }
967 
968 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
969   return unpackBits(Waitcnt, getLgkmcntBitShift(),
970                     getLgkmcntBitWidth(Version.Major));
971 }
972 
973 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
974                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
975   Vmcnt = decodeVmcnt(Version, Waitcnt);
976   Expcnt = decodeExpcnt(Version, Waitcnt);
977   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
978 }
979 
980 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
981   Waitcnt Decoded;
982   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
983   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
984   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
985   return Decoded;
986 }
987 
988 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
989                      unsigned Vmcnt) {
990   Waitcnt =
991       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
992   if (Version.Major < 9)
993     return Waitcnt;
994 
995   Vmcnt >>= getVmcntBitWidthLo();
996   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
997 }
998 
999 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
1000                       unsigned Expcnt) {
1001   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
1002 }
1003 
1004 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
1005                        unsigned Lgkmcnt) {
1006   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
1007                                     getLgkmcntBitWidth(Version.Major));
1008 }
1009 
1010 unsigned encodeWaitcnt(const IsaVersion &Version,
1011                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
1012   unsigned Waitcnt = getWaitcntBitMask(Version);
1013   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
1014   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
1015   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
1016   return Waitcnt;
1017 }
1018 
1019 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
1020   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
1021 }
1022 
1023 //===----------------------------------------------------------------------===//
1024 // hwreg
1025 //===----------------------------------------------------------------------===//
1026 
1027 namespace Hwreg {
1028 
1029 int64_t getHwregId(const StringRef Name, const MCSubtargetInfo &STI) {
1030   if (isGFX10(STI) && Name == "HW_REG_HW_ID") // An alias
1031     return ID_HW_ID1;
1032   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
1033     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
1034       return Id;
1035   }
1036   return ID_UNKNOWN_;
1037 }
1038 
1039 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
1040   if (isSI(STI) || isCI(STI) || isVI(STI))
1041     return ID_SYMBOLIC_FIRST_GFX9_;
1042   else if (isGFX9(STI))
1043     return ID_SYMBOLIC_FIRST_GFX10_;
1044   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
1045     return ID_SYMBOLIC_FIRST_GFX1030_;
1046   else
1047     return ID_SYMBOLIC_LAST_;
1048 }
1049 
1050 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
1051   switch (Id) {
1052   case ID_HW_ID:
1053     return isSI(STI) || isCI(STI) || isVI(STI) || isGFX9(STI);
1054   case ID_HW_ID1:
1055   case ID_HW_ID2:
1056     return isGFX10Plus(STI);
1057   case ID_XNACK_MASK:
1058     return isGFX10(STI) && !AMDGPU::isGFX10_BEncoding(STI);
1059   default:
1060     return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
1061            IdSymbolic[Id];
1062   }
1063 }
1064 
1065 bool isValidHwreg(int64_t Id) {
1066   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
1067 }
1068 
1069 bool isValidHwregOffset(int64_t Offset) {
1070   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
1071 }
1072 
1073 bool isValidHwregWidth(int64_t Width) {
1074   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
1075 }
1076 
1077 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
1078   return (Id << ID_SHIFT_) |
1079          (Offset << OFFSET_SHIFT_) |
1080          ((Width - 1) << WIDTH_M1_SHIFT_);
1081 }
1082 
1083 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
1084   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
1085 }
1086 
1087 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
1088   Id = (Val & ID_MASK_) >> ID_SHIFT_;
1089   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
1090   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
1091 }
1092 
1093 } // namespace Hwreg
1094 
1095 //===----------------------------------------------------------------------===//
1096 // exp tgt
1097 //===----------------------------------------------------------------------===//
1098 
1099 namespace Exp {
1100 
1101 struct ExpTgt {
1102   StringLiteral Name;
1103   unsigned Tgt;
1104   unsigned MaxIndex;
1105 };
1106 
1107 static constexpr ExpTgt ExpTgtInfo[] = {
1108   {{"null"},  ET_NULL,   ET_NULL_MAX_IDX},
1109   {{"mrtz"},  ET_MRTZ,   ET_MRTZ_MAX_IDX},
1110   {{"prim"},  ET_PRIM,   ET_PRIM_MAX_IDX},
1111   {{"mrt"},   ET_MRT0,   ET_MRT_MAX_IDX},
1112   {{"pos"},   ET_POS0,   ET_POS_MAX_IDX},
1113   {{"param"}, ET_PARAM0, ET_PARAM_MAX_IDX},
1114 };
1115 
1116 bool getTgtName(unsigned Id, StringRef &Name, int &Index) {
1117   for (const ExpTgt &Val : ExpTgtInfo) {
1118     if (Val.Tgt <= Id && Id <= Val.Tgt + Val.MaxIndex) {
1119       Index = (Val.MaxIndex == 0) ? -1 : (Id - Val.Tgt);
1120       Name = Val.Name;
1121       return true;
1122     }
1123   }
1124   return false;
1125 }
1126 
1127 unsigned getTgtId(const StringRef Name) {
1128 
1129   for (const ExpTgt &Val : ExpTgtInfo) {
1130     if (Val.MaxIndex == 0 && Name == Val.Name)
1131       return Val.Tgt;
1132 
1133     if (Val.MaxIndex > 0 && Name.startswith(Val.Name)) {
1134       StringRef Suffix = Name.drop_front(Val.Name.size());
1135 
1136       unsigned Id;
1137       if (Suffix.getAsInteger(10, Id) || Id > Val.MaxIndex)
1138         return ET_INVALID;
1139 
1140       // Disable leading zeroes
1141       if (Suffix.size() > 1 && Suffix[0] == '0')
1142         return ET_INVALID;
1143 
1144       return Val.Tgt + Id;
1145     }
1146   }
1147   return ET_INVALID;
1148 }
1149 
1150 bool isSupportedTgtId(unsigned Id, const MCSubtargetInfo &STI) {
1151   return (Id != ET_POS4 && Id != ET_PRIM) || isGFX10Plus(STI);
1152 }
1153 
1154 } // namespace Exp
1155 
1156 //===----------------------------------------------------------------------===//
1157 // MTBUF Format
1158 //===----------------------------------------------------------------------===//
1159 
1160 namespace MTBUFFormat {
1161 
1162 int64_t getDfmt(const StringRef Name) {
1163   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
1164     if (Name == DfmtSymbolic[Id])
1165       return Id;
1166   }
1167   return DFMT_UNDEF;
1168 }
1169 
1170 StringRef getDfmtName(unsigned Id) {
1171   assert(Id <= DFMT_MAX);
1172   return DfmtSymbolic[Id];
1173 }
1174 
1175 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
1176   if (isSI(STI) || isCI(STI))
1177     return NfmtSymbolicSICI;
1178   if (isVI(STI) || isGFX9(STI))
1179     return NfmtSymbolicVI;
1180   return NfmtSymbolicGFX10;
1181 }
1182 
1183 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
1184   auto lookupTable = getNfmtLookupTable(STI);
1185   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
1186     if (Name == lookupTable[Id])
1187       return Id;
1188   }
1189   return NFMT_UNDEF;
1190 }
1191 
1192 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
1193   assert(Id <= NFMT_MAX);
1194   return getNfmtLookupTable(STI)[Id];
1195 }
1196 
1197 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1198   unsigned Dfmt;
1199   unsigned Nfmt;
1200   decodeDfmtNfmt(Id, Dfmt, Nfmt);
1201   return isValidNfmt(Nfmt, STI);
1202 }
1203 
1204 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
1205   return !getNfmtName(Id, STI).empty();
1206 }
1207 
1208 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
1209   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
1210 }
1211 
1212 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
1213   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
1214   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
1215 }
1216 
1217 int64_t getUnifiedFormat(const StringRef Name) {
1218   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1219     if (Name == UfmtSymbolic[Id])
1220       return Id;
1221   }
1222   return UFMT_UNDEF;
1223 }
1224 
1225 StringRef getUnifiedFormatName(unsigned Id) {
1226   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
1227 }
1228 
1229 bool isValidUnifiedFormat(unsigned Id) {
1230   return Id <= UFMT_LAST;
1231 }
1232 
1233 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
1234   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
1235   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
1236     if (Fmt == DfmtNfmt2UFmt[Id])
1237       return Id;
1238   }
1239   return UFMT_UNDEF;
1240 }
1241 
1242 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
1243   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
1244 }
1245 
1246 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
1247   if (isGFX10Plus(STI))
1248     return UFMT_DEFAULT;
1249   return DFMT_NFMT_DEFAULT;
1250 }
1251 
1252 } // namespace MTBUFFormat
1253 
1254 //===----------------------------------------------------------------------===//
1255 // SendMsg
1256 //===----------------------------------------------------------------------===//
1257 
1258 namespace SendMsg {
1259 
1260 int64_t getMsgId(const StringRef Name) {
1261   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
1262     if (IdSymbolic[i] && Name == IdSymbolic[i])
1263       return i;
1264   }
1265   return ID_UNKNOWN_;
1266 }
1267 
1268 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
1269   if (Strict) {
1270     switch (MsgId) {
1271     case ID_SAVEWAVE:
1272       return isVI(STI) || isGFX9Plus(STI);
1273     case ID_STALL_WAVE_GEN:
1274     case ID_HALT_WAVES:
1275     case ID_ORDERED_PS_DONE:
1276     case ID_GS_ALLOC_REQ:
1277     case ID_GET_DOORBELL:
1278       return isGFX9Plus(STI);
1279     case ID_EARLY_PRIM_DEALLOC:
1280       return isGFX9(STI);
1281     case ID_GET_DDID:
1282       return isGFX10Plus(STI);
1283     default:
1284       return 0 <= MsgId && MsgId < ID_GAPS_LAST_ && IdSymbolic[MsgId];
1285     }
1286   } else {
1287     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
1288   }
1289 }
1290 
1291 StringRef getMsgName(int64_t MsgId) {
1292   assert(0 <= MsgId && MsgId < ID_GAPS_LAST_);
1293   return IdSymbolic[MsgId];
1294 }
1295 
1296 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
1297   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
1298   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
1299   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
1300   for (int i = F; i < L; ++i) {
1301     if (Name == S[i]) {
1302       return i;
1303     }
1304   }
1305   return OP_UNKNOWN_;
1306 }
1307 
1308 bool isValidMsgOp(int64_t MsgId, int64_t OpId, const MCSubtargetInfo &STI,
1309                   bool Strict) {
1310   assert(isValidMsgId(MsgId, STI, Strict));
1311 
1312   if (!Strict)
1313     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
1314 
1315   switch(MsgId)
1316   {
1317   case ID_GS:
1318     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
1319   case ID_GS_DONE:
1320     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
1321   case ID_SYSMSG:
1322     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
1323   default:
1324     return OpId == OP_NONE_;
1325   }
1326 }
1327 
1328 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
1329   assert(msgRequiresOp(MsgId));
1330   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
1331 }
1332 
1333 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId,
1334                       const MCSubtargetInfo &STI, bool Strict) {
1335   assert(isValidMsgOp(MsgId, OpId, STI, Strict));
1336 
1337   if (!Strict)
1338     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
1339 
1340   switch(MsgId)
1341   {
1342   case ID_GS:
1343     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
1344   case ID_GS_DONE:
1345     return (OpId == OP_GS_NOP)?
1346            (StreamId == STREAM_ID_NONE_) :
1347            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
1348   default:
1349     return StreamId == STREAM_ID_NONE_;
1350   }
1351 }
1352 
1353 bool msgRequiresOp(int64_t MsgId) {
1354   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
1355 }
1356 
1357 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
1358   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
1359 }
1360 
1361 void decodeMsg(unsigned Val,
1362                uint16_t &MsgId,
1363                uint16_t &OpId,
1364                uint16_t &StreamId) {
1365   MsgId = Val & ID_MASK_;
1366   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
1367   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
1368 }
1369 
1370 uint64_t encodeMsg(uint64_t MsgId,
1371                    uint64_t OpId,
1372                    uint64_t StreamId) {
1373   return (MsgId << ID_SHIFT_) |
1374          (OpId << OP_SHIFT_) |
1375          (StreamId << STREAM_ID_SHIFT_);
1376 }
1377 
1378 } // namespace SendMsg
1379 
1380 //===----------------------------------------------------------------------===//
1381 //
1382 //===----------------------------------------------------------------------===//
1383 
1384 unsigned getInitialPSInputAddr(const Function &F) {
1385   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1386 }
1387 
1388 bool getHasColorExport(const Function &F) {
1389   // As a safe default always respond as if PS has color exports.
1390   return getIntegerAttribute(
1391              F, "amdgpu-color-export",
1392              F.getCallingConv() == CallingConv::AMDGPU_PS ? 1 : 0) != 0;
1393 }
1394 
1395 bool getHasDepthExport(const Function &F) {
1396   return getIntegerAttribute(F, "amdgpu-depth-export", 0) != 0;
1397 }
1398 
1399 bool isShader(CallingConv::ID cc) {
1400   switch(cc) {
1401     case CallingConv::AMDGPU_VS:
1402     case CallingConv::AMDGPU_LS:
1403     case CallingConv::AMDGPU_HS:
1404     case CallingConv::AMDGPU_ES:
1405     case CallingConv::AMDGPU_GS:
1406     case CallingConv::AMDGPU_PS:
1407     case CallingConv::AMDGPU_CS:
1408       return true;
1409     default:
1410       return false;
1411   }
1412 }
1413 
1414 bool isGraphics(CallingConv::ID cc) {
1415   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1416 }
1417 
1418 bool isCompute(CallingConv::ID cc) {
1419   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1420 }
1421 
1422 bool isEntryFunctionCC(CallingConv::ID CC) {
1423   switch (CC) {
1424   case CallingConv::AMDGPU_KERNEL:
1425   case CallingConv::SPIR_KERNEL:
1426   case CallingConv::AMDGPU_VS:
1427   case CallingConv::AMDGPU_GS:
1428   case CallingConv::AMDGPU_PS:
1429   case CallingConv::AMDGPU_CS:
1430   case CallingConv::AMDGPU_ES:
1431   case CallingConv::AMDGPU_HS:
1432   case CallingConv::AMDGPU_LS:
1433     return true;
1434   default:
1435     return false;
1436   }
1437 }
1438 
1439 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1440   switch (CC) {
1441   case CallingConv::AMDGPU_Gfx:
1442     return true;
1443   default:
1444     return isEntryFunctionCC(CC);
1445   }
1446 }
1447 
1448 bool isKernelCC(const Function *Func) {
1449   return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
1450 }
1451 
1452 bool hasXNACK(const MCSubtargetInfo &STI) {
1453   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1454 }
1455 
1456 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1457   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1458 }
1459 
1460 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1461   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1462 }
1463 
1464 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1465   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1466 }
1467 
1468 bool hasG16(const MCSubtargetInfo &STI) {
1469   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1470 }
1471 
1472 bool hasPackedD16(const MCSubtargetInfo &STI) {
1473   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1474 }
1475 
1476 bool isSI(const MCSubtargetInfo &STI) {
1477   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1478 }
1479 
1480 bool isCI(const MCSubtargetInfo &STI) {
1481   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1482 }
1483 
1484 bool isVI(const MCSubtargetInfo &STI) {
1485   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1486 }
1487 
1488 bool isGFX9(const MCSubtargetInfo &STI) {
1489   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1490 }
1491 
1492 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1493   return isGFX9(STI) || isGFX10Plus(STI);
1494 }
1495 
1496 bool isGFX10(const MCSubtargetInfo &STI) {
1497   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1498 }
1499 
1500 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1501 
1502 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1503   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1504 }
1505 
1506 bool isGFX10_AEncoding(const MCSubtargetInfo &STI) {
1507   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_AEncoding];
1508 }
1509 
1510 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1511   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1512 }
1513 
1514 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1515   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1516 }
1517 
1518 bool isGFX90A(const MCSubtargetInfo &STI) {
1519   return STI.getFeatureBits()[AMDGPU::FeatureGFX90AInsts];
1520 }
1521 
1522 bool hasArchitectedFlatScratch(const MCSubtargetInfo &STI) {
1523   return STI.getFeatureBits()[AMDGPU::FeatureArchitectedFlatScratch];
1524 }
1525 
1526 bool hasMAIInsts(const MCSubtargetInfo &STI) {
1527   return STI.getFeatureBits()[AMDGPU::FeatureMAIInsts];
1528 }
1529 
1530 int32_t getTotalNumVGPRs(bool has90AInsts, int32_t ArgNumAGPR,
1531                          int32_t ArgNumVGPR) {
1532   if (has90AInsts && ArgNumAGPR)
1533     return alignTo(ArgNumVGPR, 4) + ArgNumAGPR;
1534   return std::max(ArgNumVGPR, ArgNumAGPR);
1535 }
1536 
1537 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1538   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1539   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1540   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1541     Reg == AMDGPU::SCC;
1542 }
1543 
1544 #define MAP_REG2REG \
1545   using namespace AMDGPU; \
1546   switch(Reg) { \
1547   default: return Reg; \
1548   CASE_CI_VI(FLAT_SCR) \
1549   CASE_CI_VI(FLAT_SCR_LO) \
1550   CASE_CI_VI(FLAT_SCR_HI) \
1551   CASE_VI_GFX9PLUS(TTMP0) \
1552   CASE_VI_GFX9PLUS(TTMP1) \
1553   CASE_VI_GFX9PLUS(TTMP2) \
1554   CASE_VI_GFX9PLUS(TTMP3) \
1555   CASE_VI_GFX9PLUS(TTMP4) \
1556   CASE_VI_GFX9PLUS(TTMP5) \
1557   CASE_VI_GFX9PLUS(TTMP6) \
1558   CASE_VI_GFX9PLUS(TTMP7) \
1559   CASE_VI_GFX9PLUS(TTMP8) \
1560   CASE_VI_GFX9PLUS(TTMP9) \
1561   CASE_VI_GFX9PLUS(TTMP10) \
1562   CASE_VI_GFX9PLUS(TTMP11) \
1563   CASE_VI_GFX9PLUS(TTMP12) \
1564   CASE_VI_GFX9PLUS(TTMP13) \
1565   CASE_VI_GFX9PLUS(TTMP14) \
1566   CASE_VI_GFX9PLUS(TTMP15) \
1567   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1568   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1569   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1570   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1571   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1572   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1573   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1574   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1575   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1576   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1577   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1578   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1579   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1580   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1581   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1582   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1583   }
1584 
1585 #define CASE_CI_VI(node) \
1586   assert(!isSI(STI)); \
1587   case node: return isCI(STI) ? node##_ci : node##_vi;
1588 
1589 #define CASE_VI_GFX9PLUS(node) \
1590   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1591 
1592 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1593   if (STI.getTargetTriple().getArch() == Triple::r600)
1594     return Reg;
1595   MAP_REG2REG
1596 }
1597 
1598 #undef CASE_CI_VI
1599 #undef CASE_VI_GFX9PLUS
1600 
1601 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1602 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1603 
1604 unsigned mc2PseudoReg(unsigned Reg) {
1605   MAP_REG2REG
1606 }
1607 
1608 #undef CASE_CI_VI
1609 #undef CASE_VI_GFX9PLUS
1610 #undef MAP_REG2REG
1611 
1612 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1613   assert(OpNo < Desc.NumOperands);
1614   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1615   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1616          OpType <= AMDGPU::OPERAND_SRC_LAST;
1617 }
1618 
1619 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1620   assert(OpNo < Desc.NumOperands);
1621   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1622   switch (OpType) {
1623   case AMDGPU::OPERAND_REG_IMM_FP32:
1624   case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
1625   case AMDGPU::OPERAND_REG_IMM_FP64:
1626   case AMDGPU::OPERAND_REG_IMM_FP16:
1627   case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
1628   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1629   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1630   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1631   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1632   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1633   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1634   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1635   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1636   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1637   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1638   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1639   case AMDGPU::OPERAND_REG_IMM_V2FP32:
1640   case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
1641   case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
1642     return true;
1643   default:
1644     return false;
1645   }
1646 }
1647 
1648 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1649   assert(OpNo < Desc.NumOperands);
1650   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1651   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1652          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1653 }
1654 
1655 // Avoid using MCRegisterClass::getSize, since that function will go away
1656 // (move from MC* level to Target* level). Return size in bits.
1657 unsigned getRegBitWidth(unsigned RCID) {
1658   switch (RCID) {
1659   case AMDGPU::VGPR_LO16RegClassID:
1660   case AMDGPU::VGPR_HI16RegClassID:
1661   case AMDGPU::SGPR_LO16RegClassID:
1662   case AMDGPU::AGPR_LO16RegClassID:
1663     return 16;
1664   case AMDGPU::SGPR_32RegClassID:
1665   case AMDGPU::VGPR_32RegClassID:
1666   case AMDGPU::VRegOrLds_32RegClassID:
1667   case AMDGPU::AGPR_32RegClassID:
1668   case AMDGPU::VS_32RegClassID:
1669   case AMDGPU::AV_32RegClassID:
1670   case AMDGPU::SReg_32RegClassID:
1671   case AMDGPU::SReg_32_XM0RegClassID:
1672   case AMDGPU::SRegOrLds_32RegClassID:
1673     return 32;
1674   case AMDGPU::SGPR_64RegClassID:
1675   case AMDGPU::VS_64RegClassID:
1676   case AMDGPU::SReg_64RegClassID:
1677   case AMDGPU::VReg_64RegClassID:
1678   case AMDGPU::AReg_64RegClassID:
1679   case AMDGPU::SReg_64_XEXECRegClassID:
1680   case AMDGPU::VReg_64_Align2RegClassID:
1681   case AMDGPU::AReg_64_Align2RegClassID:
1682   case AMDGPU::AV_64RegClassID:
1683   case AMDGPU::AV_64_Align2RegClassID:
1684     return 64;
1685   case AMDGPU::SGPR_96RegClassID:
1686   case AMDGPU::SReg_96RegClassID:
1687   case AMDGPU::VReg_96RegClassID:
1688   case AMDGPU::AReg_96RegClassID:
1689   case AMDGPU::VReg_96_Align2RegClassID:
1690   case AMDGPU::AReg_96_Align2RegClassID:
1691   case AMDGPU::AV_96RegClassID:
1692   case AMDGPU::AV_96_Align2RegClassID:
1693     return 96;
1694   case AMDGPU::SGPR_128RegClassID:
1695   case AMDGPU::SReg_128RegClassID:
1696   case AMDGPU::VReg_128RegClassID:
1697   case AMDGPU::AReg_128RegClassID:
1698   case AMDGPU::VReg_128_Align2RegClassID:
1699   case AMDGPU::AReg_128_Align2RegClassID:
1700   case AMDGPU::AV_128RegClassID:
1701   case AMDGPU::AV_128_Align2RegClassID:
1702     return 128;
1703   case AMDGPU::SGPR_160RegClassID:
1704   case AMDGPU::SReg_160RegClassID:
1705   case AMDGPU::VReg_160RegClassID:
1706   case AMDGPU::AReg_160RegClassID:
1707   case AMDGPU::VReg_160_Align2RegClassID:
1708   case AMDGPU::AReg_160_Align2RegClassID:
1709   case AMDGPU::AV_160RegClassID:
1710   case AMDGPU::AV_160_Align2RegClassID:
1711     return 160;
1712   case AMDGPU::SGPR_192RegClassID:
1713   case AMDGPU::SReg_192RegClassID:
1714   case AMDGPU::VReg_192RegClassID:
1715   case AMDGPU::AReg_192RegClassID:
1716   case AMDGPU::VReg_192_Align2RegClassID:
1717   case AMDGPU::AReg_192_Align2RegClassID:
1718   case AMDGPU::AV_192RegClassID:
1719   case AMDGPU::AV_192_Align2RegClassID:
1720     return 192;
1721   case AMDGPU::SGPR_224RegClassID:
1722   case AMDGPU::SReg_224RegClassID:
1723   case AMDGPU::VReg_224RegClassID:
1724   case AMDGPU::AReg_224RegClassID:
1725   case AMDGPU::VReg_224_Align2RegClassID:
1726   case AMDGPU::AReg_224_Align2RegClassID:
1727   case AMDGPU::AV_224RegClassID:
1728   case AMDGPU::AV_224_Align2RegClassID:
1729     return 224;
1730   case AMDGPU::SGPR_256RegClassID:
1731   case AMDGPU::SReg_256RegClassID:
1732   case AMDGPU::VReg_256RegClassID:
1733   case AMDGPU::AReg_256RegClassID:
1734   case AMDGPU::VReg_256_Align2RegClassID:
1735   case AMDGPU::AReg_256_Align2RegClassID:
1736   case AMDGPU::AV_256RegClassID:
1737   case AMDGPU::AV_256_Align2RegClassID:
1738     return 256;
1739   case AMDGPU::SGPR_512RegClassID:
1740   case AMDGPU::SReg_512RegClassID:
1741   case AMDGPU::VReg_512RegClassID:
1742   case AMDGPU::AReg_512RegClassID:
1743   case AMDGPU::VReg_512_Align2RegClassID:
1744   case AMDGPU::AReg_512_Align2RegClassID:
1745   case AMDGPU::AV_512RegClassID:
1746   case AMDGPU::AV_512_Align2RegClassID:
1747     return 512;
1748   case AMDGPU::SGPR_1024RegClassID:
1749   case AMDGPU::SReg_1024RegClassID:
1750   case AMDGPU::VReg_1024RegClassID:
1751   case AMDGPU::AReg_1024RegClassID:
1752   case AMDGPU::VReg_1024_Align2RegClassID:
1753   case AMDGPU::AReg_1024_Align2RegClassID:
1754   case AMDGPU::AV_1024RegClassID:
1755   case AMDGPU::AV_1024_Align2RegClassID:
1756     return 1024;
1757   default:
1758     llvm_unreachable("Unexpected register class");
1759   }
1760 }
1761 
1762 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1763   return getRegBitWidth(RC.getID());
1764 }
1765 
1766 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1767                            unsigned OpNo) {
1768   assert(OpNo < Desc.NumOperands);
1769   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1770   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1771 }
1772 
1773 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1774   if (isInlinableIntLiteral(Literal))
1775     return true;
1776 
1777   uint64_t Val = static_cast<uint64_t>(Literal);
1778   return (Val == DoubleToBits(0.0)) ||
1779          (Val == DoubleToBits(1.0)) ||
1780          (Val == DoubleToBits(-1.0)) ||
1781          (Val == DoubleToBits(0.5)) ||
1782          (Val == DoubleToBits(-0.5)) ||
1783          (Val == DoubleToBits(2.0)) ||
1784          (Val == DoubleToBits(-2.0)) ||
1785          (Val == DoubleToBits(4.0)) ||
1786          (Val == DoubleToBits(-4.0)) ||
1787          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1788 }
1789 
1790 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1791   if (isInlinableIntLiteral(Literal))
1792     return true;
1793 
1794   // The actual type of the operand does not seem to matter as long
1795   // as the bits match one of the inline immediate values.  For example:
1796   //
1797   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1798   // so it is a legal inline immediate.
1799   //
1800   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1801   // floating-point, so it is a legal inline immediate.
1802 
1803   uint32_t Val = static_cast<uint32_t>(Literal);
1804   return (Val == FloatToBits(0.0f)) ||
1805          (Val == FloatToBits(1.0f)) ||
1806          (Val == FloatToBits(-1.0f)) ||
1807          (Val == FloatToBits(0.5f)) ||
1808          (Val == FloatToBits(-0.5f)) ||
1809          (Val == FloatToBits(2.0f)) ||
1810          (Val == FloatToBits(-2.0f)) ||
1811          (Val == FloatToBits(4.0f)) ||
1812          (Val == FloatToBits(-4.0f)) ||
1813          (Val == 0x3e22f983 && HasInv2Pi);
1814 }
1815 
1816 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1817   if (!HasInv2Pi)
1818     return false;
1819 
1820   if (isInlinableIntLiteral(Literal))
1821     return true;
1822 
1823   uint16_t Val = static_cast<uint16_t>(Literal);
1824   return Val == 0x3C00 || // 1.0
1825          Val == 0xBC00 || // -1.0
1826          Val == 0x3800 || // 0.5
1827          Val == 0xB800 || // -0.5
1828          Val == 0x4000 || // 2.0
1829          Val == 0xC000 || // -2.0
1830          Val == 0x4400 || // 4.0
1831          Val == 0xC400 || // -4.0
1832          Val == 0x3118;   // 1/2pi
1833 }
1834 
1835 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1836   assert(HasInv2Pi);
1837 
1838   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1839     int16_t Trunc = static_cast<int16_t>(Literal);
1840     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1841   }
1842   if (!(Literal & 0xffff))
1843     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1844 
1845   int16_t Lo16 = static_cast<int16_t>(Literal);
1846   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1847   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1848 }
1849 
1850 bool isInlinableIntLiteralV216(int32_t Literal) {
1851   int16_t Lo16 = static_cast<int16_t>(Literal);
1852   if (isInt<16>(Literal) || isUInt<16>(Literal))
1853     return isInlinableIntLiteral(Lo16);
1854 
1855   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1856   if (!(Literal & 0xffff))
1857     return isInlinableIntLiteral(Hi16);
1858   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1859 }
1860 
1861 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1862   assert(HasInv2Pi);
1863 
1864   int16_t Lo16 = static_cast<int16_t>(Literal);
1865   if (isInt<16>(Literal) || isUInt<16>(Literal))
1866     return true;
1867 
1868   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1869   if (!(Literal & 0xffff))
1870     return true;
1871   return Lo16 == Hi16;
1872 }
1873 
1874 bool isArgPassedInSGPR(const Argument *A) {
1875   const Function *F = A->getParent();
1876 
1877   // Arguments to compute shaders are never a source of divergence.
1878   CallingConv::ID CC = F->getCallingConv();
1879   switch (CC) {
1880   case CallingConv::AMDGPU_KERNEL:
1881   case CallingConv::SPIR_KERNEL:
1882     return true;
1883   case CallingConv::AMDGPU_VS:
1884   case CallingConv::AMDGPU_LS:
1885   case CallingConv::AMDGPU_HS:
1886   case CallingConv::AMDGPU_ES:
1887   case CallingConv::AMDGPU_GS:
1888   case CallingConv::AMDGPU_PS:
1889   case CallingConv::AMDGPU_CS:
1890   case CallingConv::AMDGPU_Gfx:
1891     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1892     // Everything else is in VGPRs.
1893     return F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::InReg) ||
1894            F->getAttributes().hasParamAttr(A->getArgNo(), Attribute::ByVal);
1895   default:
1896     // TODO: Should calls support inreg for SGPR inputs?
1897     return false;
1898   }
1899 }
1900 
1901 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1902   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1903 }
1904 
1905 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1906   return isGFX9Plus(ST);
1907 }
1908 
1909 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1910                                       int64_t EncodedOffset) {
1911   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1912                                : isUInt<8>(EncodedOffset);
1913 }
1914 
1915 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1916                                     int64_t EncodedOffset,
1917                                     bool IsBuffer) {
1918   return !IsBuffer &&
1919          hasSMRDSignedImmOffset(ST) &&
1920          isInt<21>(EncodedOffset);
1921 }
1922 
1923 static bool isDwordAligned(uint64_t ByteOffset) {
1924   return (ByteOffset & 3) == 0;
1925 }
1926 
1927 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1928                                 uint64_t ByteOffset) {
1929   if (hasSMEMByteOffset(ST))
1930     return ByteOffset;
1931 
1932   assert(isDwordAligned(ByteOffset));
1933   return ByteOffset >> 2;
1934 }
1935 
1936 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1937                                        int64_t ByteOffset, bool IsBuffer) {
1938   // The signed version is always a byte offset.
1939   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1940     assert(hasSMEMByteOffset(ST));
1941     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1942   }
1943 
1944   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1945     return None;
1946 
1947   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1948   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1949              ? Optional<int64_t>(EncodedOffset)
1950              : None;
1951 }
1952 
1953 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1954                                                 int64_t ByteOffset) {
1955   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1956     return None;
1957 
1958   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1959   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1960 }
1961 
1962 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1963   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1964   if (AMDGPU::isGFX10(ST))
1965     return Signed ? 12 : 11;
1966 
1967   return Signed ? 13 : 12;
1968 }
1969 
1970 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1971 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1972 // hardware bug needing a workaround).
1973 //
1974 // The required alignment ensures that individual address components remain
1975 // aligned if they are aligned to begin with. It also ensures that additional
1976 // offsets within the given alignment can be added to the resulting ImmOffset.
1977 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1978                       const GCNSubtarget *Subtarget, Align Alignment) {
1979   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1980   uint32_t Overflow = 0;
1981 
1982   if (Imm > MaxImm) {
1983     if (Imm <= MaxImm + 64) {
1984       // Use an SOffset inline constant for 4..64
1985       Overflow = Imm - MaxImm;
1986       Imm = MaxImm;
1987     } else {
1988       // Try to keep the same value in SOffset for adjacent loads, so that
1989       // the corresponding register contents can be re-used.
1990       //
1991       // Load values with all low-bits (except for alignment bits) set into
1992       // SOffset, so that a larger range of values can be covered using
1993       // s_movk_i32.
1994       //
1995       // Atomic operations fail to work correctly when individual address
1996       // components are unaligned, even if their sum is aligned.
1997       uint32_t High = (Imm + Alignment.value()) & ~4095;
1998       uint32_t Low = (Imm + Alignment.value()) & 4095;
1999       Imm = Low;
2000       Overflow = High - Alignment.value();
2001     }
2002   }
2003 
2004   // There is a hardware bug in SI and CI which prevents address clamping in
2005   // MUBUF instructions from working correctly with SOffsets. The immediate
2006   // offset is unaffected.
2007   if (Overflow > 0 &&
2008       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
2009     return false;
2010 
2011   ImmOffset = Imm;
2012   SOffset = Overflow;
2013   return true;
2014 }
2015 
2016 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
2017   *this = getDefaultForCallingConv(F.getCallingConv());
2018 
2019   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
2020   if (!IEEEAttr.empty())
2021     IEEE = IEEEAttr == "true";
2022 
2023   StringRef DX10ClampAttr
2024     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
2025   if (!DX10ClampAttr.empty())
2026     DX10Clamp = DX10ClampAttr == "true";
2027 
2028   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
2029   if (!DenormF32Attr.empty()) {
2030     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
2031     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2032     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2033   }
2034 
2035   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
2036   if (!DenormAttr.empty()) {
2037     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
2038 
2039     if (DenormF32Attr.empty()) {
2040       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2041       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2042     }
2043 
2044     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
2045     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
2046   }
2047 }
2048 
2049 namespace {
2050 
2051 struct SourceOfDivergence {
2052   unsigned Intr;
2053 };
2054 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
2055 
2056 #define GET_SourcesOfDivergence_IMPL
2057 #define GET_Gfx9BufferFormat_IMPL
2058 #define GET_Gfx10PlusBufferFormat_IMPL
2059 #include "AMDGPUGenSearchableTables.inc"
2060 
2061 } // end anonymous namespace
2062 
2063 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
2064   return lookupSourceOfDivergence(IntrID);
2065 }
2066 
2067 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
2068                                                   uint8_t NumComponents,
2069                                                   uint8_t NumFormat,
2070                                                   const MCSubtargetInfo &STI) {
2071   return isGFX10Plus(STI)
2072              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
2073                                             NumFormat)
2074              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
2075 }
2076 
2077 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
2078                                                   const MCSubtargetInfo &STI) {
2079   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
2080                           : getGfx9BufferFormatInfo(Format);
2081 }
2082 
2083 } // namespace AMDGPU
2084 
2085 raw_ostream &operator<<(raw_ostream &OS,
2086                         const AMDGPU::IsaInfo::TargetIDSetting S) {
2087   switch (S) {
2088   case (AMDGPU::IsaInfo::TargetIDSetting::Unsupported):
2089     OS << "Unsupported";
2090     break;
2091   case (AMDGPU::IsaInfo::TargetIDSetting::Any):
2092     OS << "Any";
2093     break;
2094   case (AMDGPU::IsaInfo::TargetIDSetting::Off):
2095     OS << "Off";
2096     break;
2097   case (AMDGPU::IsaInfo::TargetIDSetting::On):
2098     OS << "On";
2099     break;
2100   }
2101   return OS;
2102 }
2103 
2104 } // namespace llvm
2105