1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPUTargetTransformInfo.h" 11 #include "AMDGPU.h" 12 #include "SIDefines.h" 13 #include "llvm/ADT/StringRef.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/CodeGen/MachineMemOperand.h" 17 #include "llvm/IR/Attributes.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GlobalValue.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/MC/MCContext.h" 25 #include "llvm/MC/MCInstrDesc.h" 26 #include "llvm/MC/MCInstrInfo.h" 27 #include "llvm/MC/MCRegisterInfo.h" 28 #include "llvm/MC/MCSectionELF.h" 29 #include "llvm/MC/MCSubtargetInfo.h" 30 #include "llvm/MC/SubtargetFeature.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <cstring> 38 #include <utility> 39 40 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 41 42 #define GET_INSTRINFO_NAMED_OPS 43 #define GET_INSTRMAP_INFO 44 #include "AMDGPUGenInstrInfo.inc" 45 #undef GET_INSTRMAP_INFO 46 #undef GET_INSTRINFO_NAMED_OPS 47 48 namespace { 49 50 /// \returns Bit mask for given bit \p Shift and bit \p Width. 51 unsigned getBitMask(unsigned Shift, unsigned Width) { 52 return ((1 << Width) - 1) << Shift; 53 } 54 55 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 56 /// 57 /// \returns Packed \p Dst. 58 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 59 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 60 Dst |= (Src << Shift) & getBitMask(Shift, Width); 61 return Dst; 62 } 63 64 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 65 /// 66 /// \returns Unpacked bits. 67 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 68 return (Src & getBitMask(Shift, Width)) >> Shift; 69 } 70 71 /// \returns Vmcnt bit shift (lower bits). 72 unsigned getVmcntBitShiftLo() { return 0; } 73 74 /// \returns Vmcnt bit width (lower bits). 75 unsigned getVmcntBitWidthLo() { return 4; } 76 77 /// \returns Expcnt bit shift. 78 unsigned getExpcntBitShift() { return 4; } 79 80 /// \returns Expcnt bit width. 81 unsigned getExpcntBitWidth() { return 3; } 82 83 /// \returns Lgkmcnt bit shift. 84 unsigned getLgkmcntBitShift() { return 8; } 85 86 /// \returns Lgkmcnt bit width. 87 unsigned getLgkmcntBitWidth() { return 4; } 88 89 /// \returns Vmcnt bit shift (higher bits). 90 unsigned getVmcntBitShiftHi() { return 14; } 91 92 /// \returns Vmcnt bit width (higher bits). 93 unsigned getVmcntBitWidthHi() { return 2; } 94 95 } // end namespace anonymous 96 97 namespace llvm { 98 99 namespace AMDGPU { 100 101 struct MIMGInfo { 102 uint16_t Opcode; 103 uint16_t BaseOpcode; 104 uint8_t MIMGEncoding; 105 uint8_t VDataDwords; 106 uint8_t VAddrDwords; 107 }; 108 109 #define GET_MIMGBaseOpcodesTable_IMPL 110 #define GET_MIMGDimInfoTable_IMPL 111 #define GET_MIMGInfoTable_IMPL 112 #define GET_MIMGLZMappingTable_IMPL 113 #include "AMDGPUGenSearchableTables.inc" 114 115 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 116 unsigned VDataDwords, unsigned VAddrDwords) { 117 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 118 VDataDwords, VAddrDwords); 119 return Info ? Info->Opcode : -1; 120 } 121 122 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 123 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 124 const MIMGInfo *NewInfo = 125 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 126 NewChannels, OrigInfo->VAddrDwords); 127 return NewInfo ? NewInfo->Opcode : -1; 128 } 129 130 struct MUBUFInfo { 131 uint16_t Opcode; 132 uint16_t BaseOpcode; 133 uint8_t dwords; 134 bool has_vaddr; 135 bool has_srsrc; 136 bool has_soffset; 137 }; 138 139 #define GET_MUBUFInfoTable_DECL 140 #define GET_MUBUFInfoTable_IMPL 141 #include "AMDGPUGenSearchableTables.inc" 142 143 int getMUBUFBaseOpcode(unsigned Opc) { 144 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 145 return Info ? Info->BaseOpcode : -1; 146 } 147 148 int getMUBUFOpcode(unsigned BaseOpc, unsigned Dwords) { 149 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndDwords(BaseOpc, Dwords); 150 return Info ? Info->Opcode : -1; 151 } 152 153 int getMUBUFDwords(unsigned Opc) { 154 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 155 return Info ? Info->dwords : 0; 156 } 157 158 bool getMUBUFHasVAddr(unsigned Opc) { 159 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 160 return Info ? Info->has_vaddr : false; 161 } 162 163 bool getMUBUFHasSrsrc(unsigned Opc) { 164 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 165 return Info ? Info->has_srsrc : false; 166 } 167 168 bool getMUBUFHasSoffset(unsigned Opc) { 169 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 170 return Info ? Info->has_soffset : false; 171 } 172 173 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 174 // header files, so we need to wrap it in a function that takes unsigned 175 // instead. 176 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 177 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 178 } 179 180 namespace IsaInfo { 181 182 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 183 auto TargetTriple = STI->getTargetTriple(); 184 auto Version = getIsaVersion(STI->getCPU()); 185 186 Stream << TargetTriple.getArchName() << '-' 187 << TargetTriple.getVendorName() << '-' 188 << TargetTriple.getOSName() << '-' 189 << TargetTriple.getEnvironmentName() << '-' 190 << "gfx" 191 << Version.Major 192 << Version.Minor 193 << Version.Stepping; 194 195 if (hasXNACK(*STI)) 196 Stream << "+xnack"; 197 if (hasSRAMECC(*STI)) 198 Stream << "+sram-ecc"; 199 200 Stream.flush(); 201 } 202 203 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 204 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 205 STI->getFeatureBits().test(FeatureCodeObjectV3); 206 } 207 208 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 209 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 210 return 16; 211 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 212 return 32; 213 214 return 64; 215 } 216 217 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 218 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 219 return 32768; 220 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 221 return 65536; 222 223 return 0; 224 } 225 226 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 227 return 4; 228 } 229 230 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 231 unsigned FlatWorkGroupSize) { 232 if (!STI->getFeatureBits().test(FeatureGCN)) 233 return 8; 234 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 235 if (N == 1) 236 return 40; 237 N = 40 / N; 238 return std::min(N, 16u); 239 } 240 241 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 242 return getMaxWavesPerEU() * getEUsPerCU(STI); 243 } 244 245 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 246 unsigned FlatWorkGroupSize) { 247 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 248 } 249 250 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 251 return 1; 252 } 253 254 unsigned getMaxWavesPerEU() { 255 // FIXME: Need to take scratch memory into account. 256 return 10; 257 } 258 259 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 260 unsigned FlatWorkGroupSize) { 261 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 262 getEUsPerCU(STI)) / getEUsPerCU(STI); 263 } 264 265 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 266 return 1; 267 } 268 269 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 270 return 2048; 271 } 272 273 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 274 unsigned FlatWorkGroupSize) { 275 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 276 getWavefrontSize(STI); 277 } 278 279 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 280 IsaVersion Version = getIsaVersion(STI->getCPU()); 281 if (Version.Major >= 8) 282 return 16; 283 return 8; 284 } 285 286 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 287 return 8; 288 } 289 290 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 291 IsaVersion Version = getIsaVersion(STI->getCPU()); 292 if (Version.Major >= 8) 293 return 800; 294 return 512; 295 } 296 297 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 298 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 299 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 300 301 IsaVersion Version = getIsaVersion(STI->getCPU()); 302 if (Version.Major >= 8) 303 return 102; 304 return 104; 305 } 306 307 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 308 assert(WavesPerEU != 0); 309 310 if (WavesPerEU >= getMaxWavesPerEU()) 311 return 0; 312 313 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 314 if (STI->getFeatureBits().test(FeatureTrapHandler)) 315 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 316 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 317 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 318 } 319 320 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 321 bool Addressable) { 322 assert(WavesPerEU != 0); 323 324 IsaVersion Version = getIsaVersion(STI->getCPU()); 325 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 326 if (Version.Major >= 8 && !Addressable) 327 AddressableNumSGPRs = 112; 328 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 329 if (STI->getFeatureBits().test(FeatureTrapHandler)) 330 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 331 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 332 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 333 } 334 335 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 336 bool FlatScrUsed, bool XNACKUsed) { 337 unsigned ExtraSGPRs = 0; 338 if (VCCUsed) 339 ExtraSGPRs = 2; 340 341 IsaVersion Version = getIsaVersion(STI->getCPU()); 342 if (Version.Major < 8) { 343 if (FlatScrUsed) 344 ExtraSGPRs = 4; 345 } else { 346 if (XNACKUsed) 347 ExtraSGPRs = 4; 348 349 if (FlatScrUsed) 350 ExtraSGPRs = 6; 351 } 352 353 return ExtraSGPRs; 354 } 355 356 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 357 bool FlatScrUsed) { 358 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 359 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 360 } 361 362 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 363 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 364 // SGPRBlocks is actual number of SGPR blocks minus 1. 365 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 366 } 367 368 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) { 369 return 4; 370 } 371 372 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) { 373 return getVGPRAllocGranule(STI); 374 } 375 376 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 377 return 256; 378 } 379 380 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 381 return getTotalNumVGPRs(STI); 382 } 383 384 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 385 assert(WavesPerEU != 0); 386 387 if (WavesPerEU >= getMaxWavesPerEU()) 388 return 0; 389 unsigned MinNumVGPRs = 390 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 391 getVGPRAllocGranule(STI)) + 1; 392 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 393 } 394 395 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 396 assert(WavesPerEU != 0); 397 398 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 399 getVGPRAllocGranule(STI)); 400 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 401 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 402 } 403 404 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) { 405 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI)); 406 // VGPRBlocks is actual number of VGPR blocks minus 1. 407 return NumVGPRs / getVGPREncodingGranule(STI) - 1; 408 } 409 410 } // end namespace IsaInfo 411 412 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 413 const MCSubtargetInfo *STI) { 414 IsaVersion Version = getIsaVersion(STI->getCPU()); 415 416 memset(&Header, 0, sizeof(Header)); 417 418 Header.amd_kernel_code_version_major = 1; 419 Header.amd_kernel_code_version_minor = 2; 420 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 421 Header.amd_machine_version_major = Version.Major; 422 Header.amd_machine_version_minor = Version.Minor; 423 Header.amd_machine_version_stepping = Version.Stepping; 424 Header.kernel_code_entry_byte_offset = sizeof(Header); 425 // wavefront_size is specified as a power of 2: 2^6 = 64 threads. 426 Header.wavefront_size = 6; 427 428 // If the code object does not support indirect functions, then the value must 429 // be 0xffffffff. 430 Header.call_convention = -1; 431 432 // These alignment values are specified in powers of two, so alignment = 433 // 2^n. The minimum alignment is 2^4 = 16. 434 Header.kernarg_segment_alignment = 4; 435 Header.group_segment_alignment = 4; 436 Header.private_segment_alignment = 4; 437 } 438 439 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() { 440 amdhsa::kernel_descriptor_t KD; 441 memset(&KD, 0, sizeof(KD)); 442 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 443 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 444 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 445 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 446 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 447 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 448 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 449 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 450 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 451 return KD; 452 } 453 454 bool isGroupSegment(const GlobalValue *GV) { 455 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 456 } 457 458 bool isGlobalSegment(const GlobalValue *GV) { 459 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 460 } 461 462 bool isReadOnlySegment(const GlobalValue *GV) { 463 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 464 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 465 } 466 467 bool shouldEmitConstantsToTextSection(const Triple &TT) { 468 return TT.getOS() != Triple::AMDHSA; 469 } 470 471 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 472 Attribute A = F.getFnAttribute(Name); 473 int Result = Default; 474 475 if (A.isStringAttribute()) { 476 StringRef Str = A.getValueAsString(); 477 if (Str.getAsInteger(0, Result)) { 478 LLVMContext &Ctx = F.getContext(); 479 Ctx.emitError("can't parse integer attribute " + Name); 480 } 481 } 482 483 return Result; 484 } 485 486 std::pair<int, int> getIntegerPairAttribute(const Function &F, 487 StringRef Name, 488 std::pair<int, int> Default, 489 bool OnlyFirstRequired) { 490 Attribute A = F.getFnAttribute(Name); 491 if (!A.isStringAttribute()) 492 return Default; 493 494 LLVMContext &Ctx = F.getContext(); 495 std::pair<int, int> Ints = Default; 496 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 497 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 498 Ctx.emitError("can't parse first integer attribute " + Name); 499 return Default; 500 } 501 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 502 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 503 Ctx.emitError("can't parse second integer attribute " + Name); 504 return Default; 505 } 506 } 507 508 return Ints; 509 } 510 511 unsigned getVmcntBitMask(const IsaVersion &Version) { 512 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 513 if (Version.Major < 9) 514 return VmcntLo; 515 516 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 517 return VmcntLo | VmcntHi; 518 } 519 520 unsigned getExpcntBitMask(const IsaVersion &Version) { 521 return (1 << getExpcntBitWidth()) - 1; 522 } 523 524 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 525 return (1 << getLgkmcntBitWidth()) - 1; 526 } 527 528 unsigned getWaitcntBitMask(const IsaVersion &Version) { 529 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 530 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 531 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth()); 532 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 533 if (Version.Major < 9) 534 return Waitcnt; 535 536 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 537 return Waitcnt | VmcntHi; 538 } 539 540 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 541 unsigned VmcntLo = 542 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 543 if (Version.Major < 9) 544 return VmcntLo; 545 546 unsigned VmcntHi = 547 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 548 VmcntHi <<= getVmcntBitWidthLo(); 549 return VmcntLo | VmcntHi; 550 } 551 552 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 553 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 554 } 555 556 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 557 return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 558 } 559 560 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 561 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 562 Vmcnt = decodeVmcnt(Version, Waitcnt); 563 Expcnt = decodeExpcnt(Version, Waitcnt); 564 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 565 } 566 567 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 568 Waitcnt Decoded; 569 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 570 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 571 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 572 return Decoded; 573 } 574 575 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 576 unsigned Vmcnt) { 577 Waitcnt = 578 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 579 if (Version.Major < 9) 580 return Waitcnt; 581 582 Vmcnt >>= getVmcntBitWidthLo(); 583 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 584 } 585 586 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 587 unsigned Expcnt) { 588 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 589 } 590 591 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 592 unsigned Lgkmcnt) { 593 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 594 } 595 596 unsigned encodeWaitcnt(const IsaVersion &Version, 597 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 598 unsigned Waitcnt = getWaitcntBitMask(Version); 599 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 600 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 601 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 602 return Waitcnt; 603 } 604 605 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 606 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 607 } 608 609 unsigned getInitialPSInputAddr(const Function &F) { 610 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 611 } 612 613 bool isShader(CallingConv::ID cc) { 614 switch(cc) { 615 case CallingConv::AMDGPU_VS: 616 case CallingConv::AMDGPU_LS: 617 case CallingConv::AMDGPU_HS: 618 case CallingConv::AMDGPU_ES: 619 case CallingConv::AMDGPU_GS: 620 case CallingConv::AMDGPU_PS: 621 case CallingConv::AMDGPU_CS: 622 return true; 623 default: 624 return false; 625 } 626 } 627 628 bool isCompute(CallingConv::ID cc) { 629 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 630 } 631 632 bool isEntryFunctionCC(CallingConv::ID CC) { 633 switch (CC) { 634 case CallingConv::AMDGPU_KERNEL: 635 case CallingConv::SPIR_KERNEL: 636 case CallingConv::AMDGPU_VS: 637 case CallingConv::AMDGPU_GS: 638 case CallingConv::AMDGPU_PS: 639 case CallingConv::AMDGPU_CS: 640 case CallingConv::AMDGPU_ES: 641 case CallingConv::AMDGPU_HS: 642 case CallingConv::AMDGPU_LS: 643 return true; 644 default: 645 return false; 646 } 647 } 648 649 bool hasXNACK(const MCSubtargetInfo &STI) { 650 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 651 } 652 653 bool hasSRAMECC(const MCSubtargetInfo &STI) { 654 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 655 } 656 657 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 658 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 659 } 660 661 bool hasPackedD16(const MCSubtargetInfo &STI) { 662 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 663 } 664 665 bool isSI(const MCSubtargetInfo &STI) { 666 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 667 } 668 669 bool isCI(const MCSubtargetInfo &STI) { 670 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 671 } 672 673 bool isVI(const MCSubtargetInfo &STI) { 674 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 675 } 676 677 bool isGFX9(const MCSubtargetInfo &STI) { 678 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 679 } 680 681 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 682 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 683 } 684 685 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 686 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 687 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 688 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 689 Reg == AMDGPU::SCC; 690 } 691 692 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 693 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 694 if (*R == Reg1) return true; 695 } 696 return false; 697 } 698 699 #define MAP_REG2REG \ 700 using namespace AMDGPU; \ 701 switch(Reg) { \ 702 default: return Reg; \ 703 CASE_CI_VI(FLAT_SCR) \ 704 CASE_CI_VI(FLAT_SCR_LO) \ 705 CASE_CI_VI(FLAT_SCR_HI) \ 706 CASE_VI_GFX9(TTMP0) \ 707 CASE_VI_GFX9(TTMP1) \ 708 CASE_VI_GFX9(TTMP2) \ 709 CASE_VI_GFX9(TTMP3) \ 710 CASE_VI_GFX9(TTMP4) \ 711 CASE_VI_GFX9(TTMP5) \ 712 CASE_VI_GFX9(TTMP6) \ 713 CASE_VI_GFX9(TTMP7) \ 714 CASE_VI_GFX9(TTMP8) \ 715 CASE_VI_GFX9(TTMP9) \ 716 CASE_VI_GFX9(TTMP10) \ 717 CASE_VI_GFX9(TTMP11) \ 718 CASE_VI_GFX9(TTMP12) \ 719 CASE_VI_GFX9(TTMP13) \ 720 CASE_VI_GFX9(TTMP14) \ 721 CASE_VI_GFX9(TTMP15) \ 722 CASE_VI_GFX9(TTMP0_TTMP1) \ 723 CASE_VI_GFX9(TTMP2_TTMP3) \ 724 CASE_VI_GFX9(TTMP4_TTMP5) \ 725 CASE_VI_GFX9(TTMP6_TTMP7) \ 726 CASE_VI_GFX9(TTMP8_TTMP9) \ 727 CASE_VI_GFX9(TTMP10_TTMP11) \ 728 CASE_VI_GFX9(TTMP12_TTMP13) \ 729 CASE_VI_GFX9(TTMP14_TTMP15) \ 730 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \ 731 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \ 732 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \ 733 CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \ 734 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 735 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 736 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 737 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 738 } 739 740 #define CASE_CI_VI(node) \ 741 assert(!isSI(STI)); \ 742 case node: return isCI(STI) ? node##_ci : node##_vi; 743 744 #define CASE_VI_GFX9(node) \ 745 case node: return isGFX9(STI) ? node##_gfx9 : node##_vi; 746 747 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 748 if (STI.getTargetTriple().getArch() == Triple::r600) 749 return Reg; 750 MAP_REG2REG 751 } 752 753 #undef CASE_CI_VI 754 #undef CASE_VI_GFX9 755 756 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 757 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node; 758 759 unsigned mc2PseudoReg(unsigned Reg) { 760 MAP_REG2REG 761 } 762 763 #undef CASE_CI_VI 764 #undef CASE_VI_GFX9 765 #undef MAP_REG2REG 766 767 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 768 assert(OpNo < Desc.NumOperands); 769 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 770 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 771 OpType <= AMDGPU::OPERAND_SRC_LAST; 772 } 773 774 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 775 assert(OpNo < Desc.NumOperands); 776 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 777 switch (OpType) { 778 case AMDGPU::OPERAND_REG_IMM_FP32: 779 case AMDGPU::OPERAND_REG_IMM_FP64: 780 case AMDGPU::OPERAND_REG_IMM_FP16: 781 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 782 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 783 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 784 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 785 return true; 786 default: 787 return false; 788 } 789 } 790 791 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 792 assert(OpNo < Desc.NumOperands); 793 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 794 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 795 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 796 } 797 798 // Avoid using MCRegisterClass::getSize, since that function will go away 799 // (move from MC* level to Target* level). Return size in bits. 800 unsigned getRegBitWidth(unsigned RCID) { 801 switch (RCID) { 802 case AMDGPU::SGPR_32RegClassID: 803 case AMDGPU::VGPR_32RegClassID: 804 case AMDGPU::VS_32RegClassID: 805 case AMDGPU::SReg_32RegClassID: 806 case AMDGPU::SReg_32_XM0RegClassID: 807 return 32; 808 case AMDGPU::SGPR_64RegClassID: 809 case AMDGPU::VS_64RegClassID: 810 case AMDGPU::SReg_64RegClassID: 811 case AMDGPU::VReg_64RegClassID: 812 case AMDGPU::SReg_64_XEXECRegClassID: 813 return 64; 814 case AMDGPU::VReg_96RegClassID: 815 return 96; 816 case AMDGPU::SGPR_128RegClassID: 817 case AMDGPU::SReg_128RegClassID: 818 case AMDGPU::VReg_128RegClassID: 819 return 128; 820 case AMDGPU::SReg_256RegClassID: 821 case AMDGPU::VReg_256RegClassID: 822 return 256; 823 case AMDGPU::SReg_512RegClassID: 824 case AMDGPU::VReg_512RegClassID: 825 return 512; 826 default: 827 llvm_unreachable("Unexpected register class"); 828 } 829 } 830 831 unsigned getRegBitWidth(const MCRegisterClass &RC) { 832 return getRegBitWidth(RC.getID()); 833 } 834 835 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 836 unsigned OpNo) { 837 assert(OpNo < Desc.NumOperands); 838 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 839 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 840 } 841 842 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 843 if (Literal >= -16 && Literal <= 64) 844 return true; 845 846 uint64_t Val = static_cast<uint64_t>(Literal); 847 return (Val == DoubleToBits(0.0)) || 848 (Val == DoubleToBits(1.0)) || 849 (Val == DoubleToBits(-1.0)) || 850 (Val == DoubleToBits(0.5)) || 851 (Val == DoubleToBits(-0.5)) || 852 (Val == DoubleToBits(2.0)) || 853 (Val == DoubleToBits(-2.0)) || 854 (Val == DoubleToBits(4.0)) || 855 (Val == DoubleToBits(-4.0)) || 856 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 857 } 858 859 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 860 if (Literal >= -16 && Literal <= 64) 861 return true; 862 863 // The actual type of the operand does not seem to matter as long 864 // as the bits match one of the inline immediate values. For example: 865 // 866 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 867 // so it is a legal inline immediate. 868 // 869 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 870 // floating-point, so it is a legal inline immediate. 871 872 uint32_t Val = static_cast<uint32_t>(Literal); 873 return (Val == FloatToBits(0.0f)) || 874 (Val == FloatToBits(1.0f)) || 875 (Val == FloatToBits(-1.0f)) || 876 (Val == FloatToBits(0.5f)) || 877 (Val == FloatToBits(-0.5f)) || 878 (Val == FloatToBits(2.0f)) || 879 (Val == FloatToBits(-2.0f)) || 880 (Val == FloatToBits(4.0f)) || 881 (Val == FloatToBits(-4.0f)) || 882 (Val == 0x3e22f983 && HasInv2Pi); 883 } 884 885 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 886 if (!HasInv2Pi) 887 return false; 888 889 if (Literal >= -16 && Literal <= 64) 890 return true; 891 892 uint16_t Val = static_cast<uint16_t>(Literal); 893 return Val == 0x3C00 || // 1.0 894 Val == 0xBC00 || // -1.0 895 Val == 0x3800 || // 0.5 896 Val == 0xB800 || // -0.5 897 Val == 0x4000 || // 2.0 898 Val == 0xC000 || // -2.0 899 Val == 0x4400 || // 4.0 900 Val == 0xC400 || // -4.0 901 Val == 0x3118; // 1/2pi 902 } 903 904 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 905 assert(HasInv2Pi); 906 907 int16_t Lo16 = static_cast<int16_t>(Literal); 908 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 909 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 910 } 911 912 bool isArgPassedInSGPR(const Argument *A) { 913 const Function *F = A->getParent(); 914 915 // Arguments to compute shaders are never a source of divergence. 916 CallingConv::ID CC = F->getCallingConv(); 917 switch (CC) { 918 case CallingConv::AMDGPU_KERNEL: 919 case CallingConv::SPIR_KERNEL: 920 return true; 921 case CallingConv::AMDGPU_VS: 922 case CallingConv::AMDGPU_LS: 923 case CallingConv::AMDGPU_HS: 924 case CallingConv::AMDGPU_ES: 925 case CallingConv::AMDGPU_GS: 926 case CallingConv::AMDGPU_PS: 927 case CallingConv::AMDGPU_CS: 928 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 929 // Everything else is in VGPRs. 930 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 931 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 932 default: 933 // TODO: Should calls support inreg for SGPR inputs? 934 return false; 935 } 936 } 937 938 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 939 if (isGCN3Encoding(ST)) 940 return ByteOffset; 941 return ByteOffset >> 2; 942 } 943 944 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 945 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 946 return isGCN3Encoding(ST) ? 947 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 948 } 949 950 // Given Imm, split it into the values to put into the SOffset and ImmOffset 951 // fields in an MUBUF instruction. Return false if it is not possible (due to a 952 // hardware bug needing a workaround). 953 // 954 // The required alignment ensures that individual address components remain 955 // aligned if they are aligned to begin with. It also ensures that additional 956 // offsets within the given alignment can be added to the resulting ImmOffset. 957 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 958 const GCNSubtarget *Subtarget, uint32_t Align) { 959 const uint32_t MaxImm = alignDown(4095, Align); 960 uint32_t Overflow = 0; 961 962 if (Imm > MaxImm) { 963 if (Imm <= MaxImm + 64) { 964 // Use an SOffset inline constant for 4..64 965 Overflow = Imm - MaxImm; 966 Imm = MaxImm; 967 } else { 968 // Try to keep the same value in SOffset for adjacent loads, so that 969 // the corresponding register contents can be re-used. 970 // 971 // Load values with all low-bits (except for alignment bits) set into 972 // SOffset, so that a larger range of values can be covered using 973 // s_movk_i32. 974 // 975 // Atomic operations fail to work correctly when individual address 976 // components are unaligned, even if their sum is aligned. 977 uint32_t High = (Imm + Align) & ~4095; 978 uint32_t Low = (Imm + Align) & 4095; 979 Imm = Low; 980 Overflow = High - Align; 981 } 982 } 983 984 // There is a hardware bug in SI and CI which prevents address clamping in 985 // MUBUF instructions from working correctly with SOffsets. The immediate 986 // offset is unaffected. 987 if (Overflow > 0 && 988 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 989 return false; 990 991 ImmOffset = Imm; 992 SOffset = Overflow; 993 return true; 994 } 995 996 namespace { 997 998 struct SourceOfDivergence { 999 unsigned Intr; 1000 }; 1001 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1002 1003 #define GET_SourcesOfDivergence_IMPL 1004 #include "AMDGPUGenSearchableTables.inc" 1005 1006 } // end anonymous namespace 1007 1008 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1009 return lookupSourceOfDivergence(IntrID); 1010 } 1011 } // namespace AMDGPU 1012 } // namespace llvm 1013