1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "AMDGPUBaseInfo.h" 11 #include "AMDGPUTargetTransformInfo.h" 12 #include "AMDGPU.h" 13 #include "SIDefines.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/BinaryFormat/ELF.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/IR/Attributes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/SubtargetFeature.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstdint> 38 #include <cstring> 39 #include <utility> 40 41 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 42 43 #define GET_INSTRINFO_NAMED_OPS 44 #define GET_INSTRMAP_INFO 45 #include "AMDGPUGenInstrInfo.inc" 46 #undef GET_INSTRMAP_INFO 47 #undef GET_INSTRINFO_NAMED_OPS 48 49 namespace { 50 51 /// \returns Bit mask for given bit \p Shift and bit \p Width. 52 unsigned getBitMask(unsigned Shift, unsigned Width) { 53 return ((1 << Width) - 1) << Shift; 54 } 55 56 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 57 /// 58 /// \returns Packed \p Dst. 59 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 60 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 61 Dst |= (Src << Shift) & getBitMask(Shift, Width); 62 return Dst; 63 } 64 65 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 66 /// 67 /// \returns Unpacked bits. 68 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 69 return (Src & getBitMask(Shift, Width)) >> Shift; 70 } 71 72 /// \returns Vmcnt bit shift (lower bits). 73 unsigned getVmcntBitShiftLo() { return 0; } 74 75 /// \returns Vmcnt bit width (lower bits). 76 unsigned getVmcntBitWidthLo() { return 4; } 77 78 /// \returns Expcnt bit shift. 79 unsigned getExpcntBitShift() { return 4; } 80 81 /// \returns Expcnt bit width. 82 unsigned getExpcntBitWidth() { return 3; } 83 84 /// \returns Lgkmcnt bit shift. 85 unsigned getLgkmcntBitShift() { return 8; } 86 87 /// \returns Lgkmcnt bit width. 88 unsigned getLgkmcntBitWidth() { return 4; } 89 90 /// \returns Vmcnt bit shift (higher bits). 91 unsigned getVmcntBitShiftHi() { return 14; } 92 93 /// \returns Vmcnt bit width (higher bits). 94 unsigned getVmcntBitWidthHi() { return 2; } 95 96 } // end namespace anonymous 97 98 namespace llvm { 99 100 namespace AMDGPU { 101 102 struct MIMGInfo { 103 uint16_t Opcode; 104 uint16_t BaseOpcode; 105 uint8_t MIMGEncoding; 106 uint8_t VDataDwords; 107 uint8_t VAddrDwords; 108 }; 109 110 #define GET_MIMGBaseOpcodesTable_IMPL 111 #define GET_MIMGDimInfoTable_IMPL 112 #define GET_MIMGInfoTable_IMPL 113 #define GET_MIMGLZMappingTable_IMPL 114 #include "AMDGPUGenSearchableTables.inc" 115 116 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 117 unsigned VDataDwords, unsigned VAddrDwords) { 118 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 119 VDataDwords, VAddrDwords); 120 return Info ? Info->Opcode : -1; 121 } 122 123 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 124 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 125 const MIMGInfo *NewInfo = 126 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 127 NewChannels, OrigInfo->VAddrDwords); 128 return NewInfo ? NewInfo->Opcode : -1; 129 } 130 131 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 132 // header files, so we need to wrap it in a function that takes unsigned 133 // instead. 134 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 135 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 136 } 137 138 namespace IsaInfo { 139 140 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 141 auto TargetTriple = STI->getTargetTriple(); 142 auto Version = getIsaVersion(STI->getCPU()); 143 144 Stream << TargetTriple.getArchName() << '-' 145 << TargetTriple.getVendorName() << '-' 146 << TargetTriple.getOSName() << '-' 147 << TargetTriple.getEnvironmentName() << '-' 148 << "gfx" 149 << Version.Major 150 << Version.Minor 151 << Version.Stepping; 152 153 if (hasXNACK(*STI)) 154 Stream << "+xnack"; 155 if (hasSRAMECC(*STI)) 156 Stream << "+sram-ecc"; 157 158 Stream.flush(); 159 } 160 161 bool hasCodeObjectV3(const MCSubtargetInfo *STI) { 162 return STI->getTargetTriple().getOS() == Triple::AMDHSA && 163 STI->getFeatureBits().test(FeatureCodeObjectV3); 164 } 165 166 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 167 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 168 return 16; 169 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 170 return 32; 171 172 return 64; 173 } 174 175 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 176 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 177 return 32768; 178 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 179 return 65536; 180 181 return 0; 182 } 183 184 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 185 return 4; 186 } 187 188 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 189 unsigned FlatWorkGroupSize) { 190 if (!STI->getFeatureBits().test(FeatureGCN)) 191 return 8; 192 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 193 if (N == 1) 194 return 40; 195 N = 40 / N; 196 return std::min(N, 16u); 197 } 198 199 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI) { 200 return getMaxWavesPerEU() * getEUsPerCU(STI); 201 } 202 203 unsigned getMaxWavesPerCU(const MCSubtargetInfo *STI, 204 unsigned FlatWorkGroupSize) { 205 return getWavesPerWorkGroup(STI, FlatWorkGroupSize); 206 } 207 208 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 209 return 1; 210 } 211 212 unsigned getMaxWavesPerEU() { 213 // FIXME: Need to take scratch memory into account. 214 return 10; 215 } 216 217 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI, 218 unsigned FlatWorkGroupSize) { 219 return alignTo(getMaxWavesPerCU(STI, FlatWorkGroupSize), 220 getEUsPerCU(STI)) / getEUsPerCU(STI); 221 } 222 223 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 224 return 1; 225 } 226 227 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 228 return 2048; 229 } 230 231 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 232 unsigned FlatWorkGroupSize) { 233 return alignTo(FlatWorkGroupSize, getWavefrontSize(STI)) / 234 getWavefrontSize(STI); 235 } 236 237 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 238 IsaVersion Version = getIsaVersion(STI->getCPU()); 239 if (Version.Major >= 8) 240 return 16; 241 return 8; 242 } 243 244 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 245 return 8; 246 } 247 248 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 249 IsaVersion Version = getIsaVersion(STI->getCPU()); 250 if (Version.Major >= 8) 251 return 800; 252 return 512; 253 } 254 255 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 256 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 257 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 258 259 IsaVersion Version = getIsaVersion(STI->getCPU()); 260 if (Version.Major >= 8) 261 return 102; 262 return 104; 263 } 264 265 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 266 assert(WavesPerEU != 0); 267 268 if (WavesPerEU >= getMaxWavesPerEU()) 269 return 0; 270 271 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 272 if (STI->getFeatureBits().test(FeatureTrapHandler)) 273 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 274 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 275 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 276 } 277 278 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 279 bool Addressable) { 280 assert(WavesPerEU != 0); 281 282 IsaVersion Version = getIsaVersion(STI->getCPU()); 283 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 284 if (Version.Major >= 8 && !Addressable) 285 AddressableNumSGPRs = 112; 286 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 287 if (STI->getFeatureBits().test(FeatureTrapHandler)) 288 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 289 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 290 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 291 } 292 293 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 294 bool FlatScrUsed, bool XNACKUsed) { 295 unsigned ExtraSGPRs = 0; 296 if (VCCUsed) 297 ExtraSGPRs = 2; 298 299 IsaVersion Version = getIsaVersion(STI->getCPU()); 300 if (Version.Major < 8) { 301 if (FlatScrUsed) 302 ExtraSGPRs = 4; 303 } else { 304 if (XNACKUsed) 305 ExtraSGPRs = 4; 306 307 if (FlatScrUsed) 308 ExtraSGPRs = 6; 309 } 310 311 return ExtraSGPRs; 312 } 313 314 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 315 bool FlatScrUsed) { 316 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 317 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 318 } 319 320 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 321 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 322 // SGPRBlocks is actual number of SGPR blocks minus 1. 323 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 324 } 325 326 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI) { 327 return 4; 328 } 329 330 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI) { 331 return getVGPRAllocGranule(STI); 332 } 333 334 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 335 return 256; 336 } 337 338 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 339 return getTotalNumVGPRs(STI); 340 } 341 342 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 343 assert(WavesPerEU != 0); 344 345 if (WavesPerEU >= getMaxWavesPerEU()) 346 return 0; 347 unsigned MinNumVGPRs = 348 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 349 getVGPRAllocGranule(STI)) + 1; 350 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 351 } 352 353 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 354 assert(WavesPerEU != 0); 355 356 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 357 getVGPRAllocGranule(STI)); 358 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 359 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 360 } 361 362 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs) { 363 NumVGPRs = alignTo(std::max(1u, NumVGPRs), getVGPREncodingGranule(STI)); 364 // VGPRBlocks is actual number of VGPR blocks minus 1. 365 return NumVGPRs / getVGPREncodingGranule(STI) - 1; 366 } 367 368 } // end namespace IsaInfo 369 370 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 371 const MCSubtargetInfo *STI) { 372 IsaVersion Version = getIsaVersion(STI->getCPU()); 373 374 memset(&Header, 0, sizeof(Header)); 375 376 Header.amd_kernel_code_version_major = 1; 377 Header.amd_kernel_code_version_minor = 2; 378 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 379 Header.amd_machine_version_major = Version.Major; 380 Header.amd_machine_version_minor = Version.Minor; 381 Header.amd_machine_version_stepping = Version.Stepping; 382 Header.kernel_code_entry_byte_offset = sizeof(Header); 383 // wavefront_size is specified as a power of 2: 2^6 = 64 threads. 384 Header.wavefront_size = 6; 385 386 // If the code object does not support indirect functions, then the value must 387 // be 0xffffffff. 388 Header.call_convention = -1; 389 390 // These alignment values are specified in powers of two, so alignment = 391 // 2^n. The minimum alignment is 2^4 = 16. 392 Header.kernarg_segment_alignment = 4; 393 Header.group_segment_alignment = 4; 394 Header.private_segment_alignment = 4; 395 } 396 397 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor() { 398 amdhsa::kernel_descriptor_t KD; 399 memset(&KD, 0, sizeof(KD)); 400 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 401 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 402 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 403 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 404 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 405 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 406 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 407 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 408 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 409 return KD; 410 } 411 412 bool isGroupSegment(const GlobalValue *GV) { 413 return GV->getType()->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 414 } 415 416 bool isGlobalSegment(const GlobalValue *GV) { 417 return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 418 } 419 420 bool isReadOnlySegment(const GlobalValue *GV) { 421 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 422 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 423 } 424 425 bool shouldEmitConstantsToTextSection(const Triple &TT) { 426 return TT.getOS() != Triple::AMDHSA; 427 } 428 429 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 430 Attribute A = F.getFnAttribute(Name); 431 int Result = Default; 432 433 if (A.isStringAttribute()) { 434 StringRef Str = A.getValueAsString(); 435 if (Str.getAsInteger(0, Result)) { 436 LLVMContext &Ctx = F.getContext(); 437 Ctx.emitError("can't parse integer attribute " + Name); 438 } 439 } 440 441 return Result; 442 } 443 444 std::pair<int, int> getIntegerPairAttribute(const Function &F, 445 StringRef Name, 446 std::pair<int, int> Default, 447 bool OnlyFirstRequired) { 448 Attribute A = F.getFnAttribute(Name); 449 if (!A.isStringAttribute()) 450 return Default; 451 452 LLVMContext &Ctx = F.getContext(); 453 std::pair<int, int> Ints = Default; 454 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 455 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 456 Ctx.emitError("can't parse first integer attribute " + Name); 457 return Default; 458 } 459 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 460 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 461 Ctx.emitError("can't parse second integer attribute " + Name); 462 return Default; 463 } 464 } 465 466 return Ints; 467 } 468 469 unsigned getVmcntBitMask(const IsaVersion &Version) { 470 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 471 if (Version.Major < 9) 472 return VmcntLo; 473 474 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 475 return VmcntLo | VmcntHi; 476 } 477 478 unsigned getExpcntBitMask(const IsaVersion &Version) { 479 return (1 << getExpcntBitWidth()) - 1; 480 } 481 482 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 483 return (1 << getLgkmcntBitWidth()) - 1; 484 } 485 486 unsigned getWaitcntBitMask(const IsaVersion &Version) { 487 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 488 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 489 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), getLgkmcntBitWidth()); 490 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 491 if (Version.Major < 9) 492 return Waitcnt; 493 494 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 495 return Waitcnt | VmcntHi; 496 } 497 498 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 499 unsigned VmcntLo = 500 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 501 if (Version.Major < 9) 502 return VmcntLo; 503 504 unsigned VmcntHi = 505 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 506 VmcntHi <<= getVmcntBitWidthLo(); 507 return VmcntLo | VmcntHi; 508 } 509 510 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 511 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 512 } 513 514 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 515 return unpackBits(Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 516 } 517 518 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 519 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 520 Vmcnt = decodeVmcnt(Version, Waitcnt); 521 Expcnt = decodeExpcnt(Version, Waitcnt); 522 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 523 } 524 525 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 526 unsigned Vmcnt) { 527 Waitcnt = 528 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 529 if (Version.Major < 9) 530 return Waitcnt; 531 532 Vmcnt >>= getVmcntBitWidthLo(); 533 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 534 } 535 536 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 537 unsigned Expcnt) { 538 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 539 } 540 541 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 542 unsigned Lgkmcnt) { 543 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), getLgkmcntBitWidth()); 544 } 545 546 unsigned encodeWaitcnt(const IsaVersion &Version, 547 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 548 unsigned Waitcnt = getWaitcntBitMask(Version); 549 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 550 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 551 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 552 return Waitcnt; 553 } 554 555 unsigned getInitialPSInputAddr(const Function &F) { 556 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 557 } 558 559 bool isShader(CallingConv::ID cc) { 560 switch(cc) { 561 case CallingConv::AMDGPU_VS: 562 case CallingConv::AMDGPU_LS: 563 case CallingConv::AMDGPU_HS: 564 case CallingConv::AMDGPU_ES: 565 case CallingConv::AMDGPU_GS: 566 case CallingConv::AMDGPU_PS: 567 case CallingConv::AMDGPU_CS: 568 return true; 569 default: 570 return false; 571 } 572 } 573 574 bool isCompute(CallingConv::ID cc) { 575 return !isShader(cc) || cc == CallingConv::AMDGPU_CS; 576 } 577 578 bool isEntryFunctionCC(CallingConv::ID CC) { 579 switch (CC) { 580 case CallingConv::AMDGPU_KERNEL: 581 case CallingConv::SPIR_KERNEL: 582 case CallingConv::AMDGPU_VS: 583 case CallingConv::AMDGPU_GS: 584 case CallingConv::AMDGPU_PS: 585 case CallingConv::AMDGPU_CS: 586 case CallingConv::AMDGPU_ES: 587 case CallingConv::AMDGPU_HS: 588 case CallingConv::AMDGPU_LS: 589 return true; 590 default: 591 return false; 592 } 593 } 594 595 bool hasXNACK(const MCSubtargetInfo &STI) { 596 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 597 } 598 599 bool hasSRAMECC(const MCSubtargetInfo &STI) { 600 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 601 } 602 603 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 604 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128]; 605 } 606 607 bool hasPackedD16(const MCSubtargetInfo &STI) { 608 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 609 } 610 611 bool isSI(const MCSubtargetInfo &STI) { 612 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 613 } 614 615 bool isCI(const MCSubtargetInfo &STI) { 616 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 617 } 618 619 bool isVI(const MCSubtargetInfo &STI) { 620 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 621 } 622 623 bool isGFX9(const MCSubtargetInfo &STI) { 624 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 625 } 626 627 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 628 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 629 } 630 631 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 632 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 633 const unsigned FirstSubReg = TRI->getSubReg(Reg, 1); 634 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 635 Reg == AMDGPU::SCC; 636 } 637 638 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 639 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 640 if (*R == Reg1) return true; 641 } 642 return false; 643 } 644 645 #define MAP_REG2REG \ 646 using namespace AMDGPU; \ 647 switch(Reg) { \ 648 default: return Reg; \ 649 CASE_CI_VI(FLAT_SCR) \ 650 CASE_CI_VI(FLAT_SCR_LO) \ 651 CASE_CI_VI(FLAT_SCR_HI) \ 652 CASE_VI_GFX9(TTMP0) \ 653 CASE_VI_GFX9(TTMP1) \ 654 CASE_VI_GFX9(TTMP2) \ 655 CASE_VI_GFX9(TTMP3) \ 656 CASE_VI_GFX9(TTMP4) \ 657 CASE_VI_GFX9(TTMP5) \ 658 CASE_VI_GFX9(TTMP6) \ 659 CASE_VI_GFX9(TTMP7) \ 660 CASE_VI_GFX9(TTMP8) \ 661 CASE_VI_GFX9(TTMP9) \ 662 CASE_VI_GFX9(TTMP10) \ 663 CASE_VI_GFX9(TTMP11) \ 664 CASE_VI_GFX9(TTMP12) \ 665 CASE_VI_GFX9(TTMP13) \ 666 CASE_VI_GFX9(TTMP14) \ 667 CASE_VI_GFX9(TTMP15) \ 668 CASE_VI_GFX9(TTMP0_TTMP1) \ 669 CASE_VI_GFX9(TTMP2_TTMP3) \ 670 CASE_VI_GFX9(TTMP4_TTMP5) \ 671 CASE_VI_GFX9(TTMP6_TTMP7) \ 672 CASE_VI_GFX9(TTMP8_TTMP9) \ 673 CASE_VI_GFX9(TTMP10_TTMP11) \ 674 CASE_VI_GFX9(TTMP12_TTMP13) \ 675 CASE_VI_GFX9(TTMP14_TTMP15) \ 676 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3) \ 677 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7) \ 678 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11) \ 679 CASE_VI_GFX9(TTMP12_TTMP13_TTMP14_TTMP15) \ 680 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 681 CASE_VI_GFX9(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 682 CASE_VI_GFX9(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 683 CASE_VI_GFX9(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 684 } 685 686 #define CASE_CI_VI(node) \ 687 assert(!isSI(STI)); \ 688 case node: return isCI(STI) ? node##_ci : node##_vi; 689 690 #define CASE_VI_GFX9(node) \ 691 case node: return isGFX9(STI) ? node##_gfx9 : node##_vi; 692 693 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 694 if (STI.getTargetTriple().getArch() == Triple::r600) 695 return Reg; 696 MAP_REG2REG 697 } 698 699 #undef CASE_CI_VI 700 #undef CASE_VI_GFX9 701 702 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 703 #define CASE_VI_GFX9(node) case node##_vi: case node##_gfx9: return node; 704 705 unsigned mc2PseudoReg(unsigned Reg) { 706 MAP_REG2REG 707 } 708 709 #undef CASE_CI_VI 710 #undef CASE_VI_GFX9 711 #undef MAP_REG2REG 712 713 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 714 assert(OpNo < Desc.NumOperands); 715 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 716 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 717 OpType <= AMDGPU::OPERAND_SRC_LAST; 718 } 719 720 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 721 assert(OpNo < Desc.NumOperands); 722 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 723 switch (OpType) { 724 case AMDGPU::OPERAND_REG_IMM_FP32: 725 case AMDGPU::OPERAND_REG_IMM_FP64: 726 case AMDGPU::OPERAND_REG_IMM_FP16: 727 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 728 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 729 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 730 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 731 return true; 732 default: 733 return false; 734 } 735 } 736 737 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 738 assert(OpNo < Desc.NumOperands); 739 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 740 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 741 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 742 } 743 744 // Avoid using MCRegisterClass::getSize, since that function will go away 745 // (move from MC* level to Target* level). Return size in bits. 746 unsigned getRegBitWidth(unsigned RCID) { 747 switch (RCID) { 748 case AMDGPU::SGPR_32RegClassID: 749 case AMDGPU::VGPR_32RegClassID: 750 case AMDGPU::VS_32RegClassID: 751 case AMDGPU::SReg_32RegClassID: 752 case AMDGPU::SReg_32_XM0RegClassID: 753 return 32; 754 case AMDGPU::SGPR_64RegClassID: 755 case AMDGPU::VS_64RegClassID: 756 case AMDGPU::SReg_64RegClassID: 757 case AMDGPU::VReg_64RegClassID: 758 case AMDGPU::SReg_64_XEXECRegClassID: 759 return 64; 760 case AMDGPU::VReg_96RegClassID: 761 return 96; 762 case AMDGPU::SGPR_128RegClassID: 763 case AMDGPU::SReg_128RegClassID: 764 case AMDGPU::VReg_128RegClassID: 765 return 128; 766 case AMDGPU::SReg_256RegClassID: 767 case AMDGPU::VReg_256RegClassID: 768 return 256; 769 case AMDGPU::SReg_512RegClassID: 770 case AMDGPU::VReg_512RegClassID: 771 return 512; 772 default: 773 llvm_unreachable("Unexpected register class"); 774 } 775 } 776 777 unsigned getRegBitWidth(const MCRegisterClass &RC) { 778 return getRegBitWidth(RC.getID()); 779 } 780 781 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 782 unsigned OpNo) { 783 assert(OpNo < Desc.NumOperands); 784 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 785 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 786 } 787 788 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 789 if (Literal >= -16 && Literal <= 64) 790 return true; 791 792 uint64_t Val = static_cast<uint64_t>(Literal); 793 return (Val == DoubleToBits(0.0)) || 794 (Val == DoubleToBits(1.0)) || 795 (Val == DoubleToBits(-1.0)) || 796 (Val == DoubleToBits(0.5)) || 797 (Val == DoubleToBits(-0.5)) || 798 (Val == DoubleToBits(2.0)) || 799 (Val == DoubleToBits(-2.0)) || 800 (Val == DoubleToBits(4.0)) || 801 (Val == DoubleToBits(-4.0)) || 802 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 803 } 804 805 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 806 if (Literal >= -16 && Literal <= 64) 807 return true; 808 809 // The actual type of the operand does not seem to matter as long 810 // as the bits match one of the inline immediate values. For example: 811 // 812 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 813 // so it is a legal inline immediate. 814 // 815 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 816 // floating-point, so it is a legal inline immediate. 817 818 uint32_t Val = static_cast<uint32_t>(Literal); 819 return (Val == FloatToBits(0.0f)) || 820 (Val == FloatToBits(1.0f)) || 821 (Val == FloatToBits(-1.0f)) || 822 (Val == FloatToBits(0.5f)) || 823 (Val == FloatToBits(-0.5f)) || 824 (Val == FloatToBits(2.0f)) || 825 (Val == FloatToBits(-2.0f)) || 826 (Val == FloatToBits(4.0f)) || 827 (Val == FloatToBits(-4.0f)) || 828 (Val == 0x3e22f983 && HasInv2Pi); 829 } 830 831 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 832 if (!HasInv2Pi) 833 return false; 834 835 if (Literal >= -16 && Literal <= 64) 836 return true; 837 838 uint16_t Val = static_cast<uint16_t>(Literal); 839 return Val == 0x3C00 || // 1.0 840 Val == 0xBC00 || // -1.0 841 Val == 0x3800 || // 0.5 842 Val == 0xB800 || // -0.5 843 Val == 0x4000 || // 2.0 844 Val == 0xC000 || // -2.0 845 Val == 0x4400 || // 4.0 846 Val == 0xC400 || // -4.0 847 Val == 0x3118; // 1/2pi 848 } 849 850 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 851 assert(HasInv2Pi); 852 853 int16_t Lo16 = static_cast<int16_t>(Literal); 854 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 855 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 856 } 857 858 bool isArgPassedInSGPR(const Argument *A) { 859 const Function *F = A->getParent(); 860 861 // Arguments to compute shaders are never a source of divergence. 862 CallingConv::ID CC = F->getCallingConv(); 863 switch (CC) { 864 case CallingConv::AMDGPU_KERNEL: 865 case CallingConv::SPIR_KERNEL: 866 return true; 867 case CallingConv::AMDGPU_VS: 868 case CallingConv::AMDGPU_LS: 869 case CallingConv::AMDGPU_HS: 870 case CallingConv::AMDGPU_ES: 871 case CallingConv::AMDGPU_GS: 872 case CallingConv::AMDGPU_PS: 873 case CallingConv::AMDGPU_CS: 874 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 875 // Everything else is in VGPRs. 876 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 877 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 878 default: 879 // TODO: Should calls support inreg for SGPR inputs? 880 return false; 881 } 882 } 883 884 int64_t getSMRDEncodedOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 885 if (isGCN3Encoding(ST)) 886 return ByteOffset; 887 return ByteOffset >> 2; 888 } 889 890 bool isLegalSMRDImmOffset(const MCSubtargetInfo &ST, int64_t ByteOffset) { 891 int64_t EncodedOffset = getSMRDEncodedOffset(ST, ByteOffset); 892 return isGCN3Encoding(ST) ? 893 isUInt<20>(EncodedOffset) : isUInt<8>(EncodedOffset); 894 } 895 896 // Given Imm, split it into the values to put into the SOffset and ImmOffset 897 // fields in an MUBUF instruction. Return false if it is not possible (due to a 898 // hardware bug needing a workaround). 899 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 900 const GCNSubtarget *Subtarget) { 901 const uint32_t Align = 4; 902 const uint32_t MaxImm = alignDown(4095, Align); 903 uint32_t Overflow = 0; 904 905 if (Imm > MaxImm) { 906 if (Imm <= MaxImm + 64) { 907 // Use an SOffset inline constant for 4..64 908 Overflow = Imm - MaxImm; 909 Imm = MaxImm; 910 } else { 911 // Try to keep the same value in SOffset for adjacent loads, so that 912 // the corresponding register contents can be re-used. 913 // 914 // Load values with all low-bits (except for alignment bits) set into 915 // SOffset, so that a larger range of values can be covered using 916 // s_movk_i32. 917 // 918 // Atomic operations fail to work correctly when individual address 919 // components are unaligned, even if their sum is aligned. 920 uint32_t High = (Imm + Align) & ~4095; 921 uint32_t Low = (Imm + Align) & 4095; 922 Imm = Low; 923 Overflow = High - Align; 924 } 925 } 926 927 // There is a hardware bug in SI and CI which prevents address clamping in 928 // MUBUF instructions from working correctly with SOffsets. The immediate 929 // offset is unaffected. 930 if (Overflow > 0 && 931 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 932 return false; 933 934 ImmOffset = Imm; 935 SOffset = Overflow; 936 return true; 937 } 938 939 namespace { 940 941 struct SourceOfDivergence { 942 unsigned Intr; 943 }; 944 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 945 946 #define GET_SourcesOfDivergence_IMPL 947 #include "AMDGPUGenSearchableTables.inc" 948 949 } // end anonymous namespace 950 951 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 952 return lookupSourceOfDivergence(IntrID); 953 } 954 } // namespace AMDGPU 955 } // namespace llvm 956