1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDKernelCodeT.h"
13 #include "GCNSubtarget.h"
14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/IR/Attributes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/GlobalValue.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/IR/IntrinsicsR600.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/MC/MCSubtargetInfo.h"
23 #include "llvm/Support/AMDHSAKernelDescriptor.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/TargetParser.h"
26 
27 #define GET_INSTRINFO_NAMED_OPS
28 #define GET_INSTRMAP_INFO
29 #include "AMDGPUGenInstrInfo.inc"
30 
31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion(
32   "amdhsa-code-object-version", llvm::cl::Hidden,
33   llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3));
34 
35 namespace {
36 
37 /// \returns Bit mask for given bit \p Shift and bit \p Width.
38 unsigned getBitMask(unsigned Shift, unsigned Width) {
39   return ((1 << Width) - 1) << Shift;
40 }
41 
42 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
43 ///
44 /// \returns Packed \p Dst.
45 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
46   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
47   Dst |= (Src << Shift) & getBitMask(Shift, Width);
48   return Dst;
49 }
50 
51 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
52 ///
53 /// \returns Unpacked bits.
54 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
55   return (Src & getBitMask(Shift, Width)) >> Shift;
56 }
57 
58 /// \returns Vmcnt bit shift (lower bits).
59 unsigned getVmcntBitShiftLo() { return 0; }
60 
61 /// \returns Vmcnt bit width (lower bits).
62 unsigned getVmcntBitWidthLo() { return 4; }
63 
64 /// \returns Expcnt bit shift.
65 unsigned getExpcntBitShift() { return 4; }
66 
67 /// \returns Expcnt bit width.
68 unsigned getExpcntBitWidth() { return 3; }
69 
70 /// \returns Lgkmcnt bit shift.
71 unsigned getLgkmcntBitShift() { return 8; }
72 
73 /// \returns Lgkmcnt bit width.
74 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
75   return (VersionMajor >= 10) ? 6 : 4;
76 }
77 
78 /// \returns Vmcnt bit shift (higher bits).
79 unsigned getVmcntBitShiftHi() { return 14; }
80 
81 /// \returns Vmcnt bit width (higher bits).
82 unsigned getVmcntBitWidthHi() { return 2; }
83 
84 } // end namespace anonymous
85 
86 namespace llvm {
87 
88 namespace AMDGPU {
89 
90 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) {
91   if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA)
92     return None;
93 
94   switch (AmdhsaCodeObjectVersion) {
95   case 2:
96     return ELF::ELFABIVERSION_AMDGPU_HSA_V2;
97   case 3:
98     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
99   default:
100     return ELF::ELFABIVERSION_AMDGPU_HSA_V3;
101   }
102 }
103 
104 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) {
105   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
106     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2;
107   return false;
108 }
109 
110 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) {
111   if (const auto &&HsaAbiVer = getHsaAbiVersion(STI))
112     return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3;
113   return false;
114 }
115 
116 #define GET_MIMGBaseOpcodesTable_IMPL
117 #define GET_MIMGDimInfoTable_IMPL
118 #define GET_MIMGInfoTable_IMPL
119 #define GET_MIMGLZMappingTable_IMPL
120 #define GET_MIMGMIPMappingTable_IMPL
121 #define GET_MIMGG16MappingTable_IMPL
122 #include "AMDGPUGenSearchableTables.inc"
123 
124 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
125                   unsigned VDataDwords, unsigned VAddrDwords) {
126   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
127                                              VDataDwords, VAddrDwords);
128   return Info ? Info->Opcode : -1;
129 }
130 
131 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
132   const MIMGInfo *Info = getMIMGInfo(Opc);
133   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
134 }
135 
136 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
137   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
138   const MIMGInfo *NewInfo =
139       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
140                           NewChannels, OrigInfo->VAddrDwords);
141   return NewInfo ? NewInfo->Opcode : -1;
142 }
143 
144 struct MUBUFInfo {
145   uint16_t Opcode;
146   uint16_t BaseOpcode;
147   uint8_t elements;
148   bool has_vaddr;
149   bool has_srsrc;
150   bool has_soffset;
151 };
152 
153 struct MTBUFInfo {
154   uint16_t Opcode;
155   uint16_t BaseOpcode;
156   uint8_t elements;
157   bool has_vaddr;
158   bool has_srsrc;
159   bool has_soffset;
160 };
161 
162 struct SMInfo {
163   uint16_t Opcode;
164   bool IsBuffer;
165 };
166 
167 #define GET_MTBUFInfoTable_DECL
168 #define GET_MTBUFInfoTable_IMPL
169 #define GET_MUBUFInfoTable_DECL
170 #define GET_MUBUFInfoTable_IMPL
171 #define GET_SMInfoTable_DECL
172 #define GET_SMInfoTable_IMPL
173 #include "AMDGPUGenSearchableTables.inc"
174 
175 int getMTBUFBaseOpcode(unsigned Opc) {
176   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
177   return Info ? Info->BaseOpcode : -1;
178 }
179 
180 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
181   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
182   return Info ? Info->Opcode : -1;
183 }
184 
185 int getMTBUFElements(unsigned Opc) {
186   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
187   return Info ? Info->elements : 0;
188 }
189 
190 bool getMTBUFHasVAddr(unsigned Opc) {
191   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
192   return Info ? Info->has_vaddr : false;
193 }
194 
195 bool getMTBUFHasSrsrc(unsigned Opc) {
196   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
197   return Info ? Info->has_srsrc : false;
198 }
199 
200 bool getMTBUFHasSoffset(unsigned Opc) {
201   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
202   return Info ? Info->has_soffset : false;
203 }
204 
205 int getMUBUFBaseOpcode(unsigned Opc) {
206   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
207   return Info ? Info->BaseOpcode : -1;
208 }
209 
210 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
211   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
212   return Info ? Info->Opcode : -1;
213 }
214 
215 int getMUBUFElements(unsigned Opc) {
216   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
217   return Info ? Info->elements : 0;
218 }
219 
220 bool getMUBUFHasVAddr(unsigned Opc) {
221   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
222   return Info ? Info->has_vaddr : false;
223 }
224 
225 bool getMUBUFHasSrsrc(unsigned Opc) {
226   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
227   return Info ? Info->has_srsrc : false;
228 }
229 
230 bool getMUBUFHasSoffset(unsigned Opc) {
231   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
232   return Info ? Info->has_soffset : false;
233 }
234 
235 bool getSMEMIsBuffer(unsigned Opc) {
236   const SMInfo *Info = getSMEMOpcodeHelper(Opc);
237   return Info ? Info->IsBuffer : false;
238 }
239 
240 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
241 // header files, so we need to wrap it in a function that takes unsigned
242 // instead.
243 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
244   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
245 }
246 
247 namespace IsaInfo {
248 
249 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
250   auto TargetTriple = STI->getTargetTriple();
251   auto Version = getIsaVersion(STI->getCPU());
252 
253   Stream << TargetTriple.getArchName() << '-'
254          << TargetTriple.getVendorName() << '-'
255          << TargetTriple.getOSName() << '-'
256          << TargetTriple.getEnvironmentName() << '-'
257          << "gfx"
258          << Version.Major
259          << Version.Minor
260          << Version.Stepping;
261 
262   if (hasXNACK(*STI))
263     Stream << "+xnack";
264   if (hasSRAMECC(*STI))
265     Stream << "+sram-ecc";
266 
267   Stream.flush();
268 }
269 
270 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
271   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
272     return 16;
273   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
274     return 32;
275 
276   return 64;
277 }
278 
279 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
280   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
281     return 32768;
282   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
283     return 65536;
284 
285   return 0;
286 }
287 
288 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
289   // "Per CU" really means "per whatever functional block the waves of a
290   // workgroup must share". For gfx10 in CU mode this is the CU, which contains
291   // two SIMDs.
292   if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode))
293     return 2;
294   // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains
295   // two CUs, so a total of four SIMDs.
296   return 4;
297 }
298 
299 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
300                                unsigned FlatWorkGroupSize) {
301   assert(FlatWorkGroupSize != 0);
302   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
303     return 8;
304   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
305   if (N == 1)
306     return 40;
307   N = 40 / N;
308   return std::min(N, 16u);
309 }
310 
311 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
312   return 1;
313 }
314 
315 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
316   // FIXME: Need to take scratch memory into account.
317   if (!isGFX10Plus(*STI))
318     return 10;
319   return hasGFX10_3Insts(*STI) ? 16 : 20;
320 }
321 
322 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
323                                    unsigned FlatWorkGroupSize) {
324   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
325                     getEUsPerCU(STI));
326 }
327 
328 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
329   return 1;
330 }
331 
332 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
333   // Some subtargets allow encoding 2048, but this isn't tested or supported.
334   return 1024;
335 }
336 
337 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
338                               unsigned FlatWorkGroupSize) {
339   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
340 }
341 
342 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
343   IsaVersion Version = getIsaVersion(STI->getCPU());
344   if (Version.Major >= 10)
345     return getAddressableNumSGPRs(STI);
346   if (Version.Major >= 8)
347     return 16;
348   return 8;
349 }
350 
351 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
352   return 8;
353 }
354 
355 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
356   IsaVersion Version = getIsaVersion(STI->getCPU());
357   if (Version.Major >= 8)
358     return 800;
359   return 512;
360 }
361 
362 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
363   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
364     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
365 
366   IsaVersion Version = getIsaVersion(STI->getCPU());
367   if (Version.Major >= 10)
368     return 106;
369   if (Version.Major >= 8)
370     return 102;
371   return 104;
372 }
373 
374 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
375   assert(WavesPerEU != 0);
376 
377   IsaVersion Version = getIsaVersion(STI->getCPU());
378   if (Version.Major >= 10)
379     return 0;
380 
381   if (WavesPerEU >= getMaxWavesPerEU(STI))
382     return 0;
383 
384   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
385   if (STI->getFeatureBits().test(FeatureTrapHandler))
386     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
387   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
388   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
389 }
390 
391 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
392                         bool Addressable) {
393   assert(WavesPerEU != 0);
394 
395   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
396   IsaVersion Version = getIsaVersion(STI->getCPU());
397   if (Version.Major >= 10)
398     return Addressable ? AddressableNumSGPRs : 108;
399   if (Version.Major >= 8 && !Addressable)
400     AddressableNumSGPRs = 112;
401   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
402   if (STI->getFeatureBits().test(FeatureTrapHandler))
403     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
404   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
405   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
406 }
407 
408 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
409                           bool FlatScrUsed, bool XNACKUsed) {
410   unsigned ExtraSGPRs = 0;
411   if (VCCUsed)
412     ExtraSGPRs = 2;
413 
414   IsaVersion Version = getIsaVersion(STI->getCPU());
415   if (Version.Major >= 10)
416     return ExtraSGPRs;
417 
418   if (Version.Major < 8) {
419     if (FlatScrUsed)
420       ExtraSGPRs = 4;
421   } else {
422     if (XNACKUsed)
423       ExtraSGPRs = 4;
424 
425     if (FlatScrUsed)
426       ExtraSGPRs = 6;
427   }
428 
429   return ExtraSGPRs;
430 }
431 
432 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
433                           bool FlatScrUsed) {
434   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
435                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
436 }
437 
438 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
439   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
440   // SGPRBlocks is actual number of SGPR blocks minus 1.
441   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
442 }
443 
444 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
445                              Optional<bool> EnableWavefrontSize32) {
446   bool IsWave32 = EnableWavefrontSize32 ?
447       *EnableWavefrontSize32 :
448       STI->getFeatureBits().test(FeatureWavefrontSize32);
449 
450   if (hasGFX10_3Insts(*STI))
451     return IsWave32 ? 16 : 8;
452 
453   return IsWave32 ? 8 : 4;
454 }
455 
456 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
457                                 Optional<bool> EnableWavefrontSize32) {
458 
459   bool IsWave32 = EnableWavefrontSize32 ?
460       *EnableWavefrontSize32 :
461       STI->getFeatureBits().test(FeatureWavefrontSize32);
462 
463   return IsWave32 ? 8 : 4;
464 }
465 
466 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
467   if (!isGFX10Plus(*STI))
468     return 256;
469   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
470 }
471 
472 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
473   return 256;
474 }
475 
476 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
477   assert(WavesPerEU != 0);
478 
479   if (WavesPerEU >= getMaxWavesPerEU(STI))
480     return 0;
481   unsigned MinNumVGPRs =
482       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
483                 getVGPRAllocGranule(STI)) + 1;
484   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
485 }
486 
487 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
488   assert(WavesPerEU != 0);
489 
490   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
491                                    getVGPRAllocGranule(STI));
492   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
493   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
494 }
495 
496 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
497                           Optional<bool> EnableWavefrontSize32) {
498   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
499                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
500   // VGPRBlocks is actual number of VGPR blocks minus 1.
501   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
502 }
503 
504 } // end namespace IsaInfo
505 
506 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
507                                const MCSubtargetInfo *STI) {
508   IsaVersion Version = getIsaVersion(STI->getCPU());
509 
510   memset(&Header, 0, sizeof(Header));
511 
512   Header.amd_kernel_code_version_major = 1;
513   Header.amd_kernel_code_version_minor = 2;
514   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
515   Header.amd_machine_version_major = Version.Major;
516   Header.amd_machine_version_minor = Version.Minor;
517   Header.amd_machine_version_stepping = Version.Stepping;
518   Header.kernel_code_entry_byte_offset = sizeof(Header);
519   Header.wavefront_size = 6;
520 
521   // If the code object does not support indirect functions, then the value must
522   // be 0xffffffff.
523   Header.call_convention = -1;
524 
525   // These alignment values are specified in powers of two, so alignment =
526   // 2^n.  The minimum alignment is 2^4 = 16.
527   Header.kernarg_segment_alignment = 4;
528   Header.group_segment_alignment = 4;
529   Header.private_segment_alignment = 4;
530 
531   if (Version.Major >= 10) {
532     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
533       Header.wavefront_size = 5;
534       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
535     }
536     Header.compute_pgm_resource_registers |=
537       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
538       S_00B848_MEM_ORDERED(1);
539   }
540 }
541 
542 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
543     const MCSubtargetInfo *STI) {
544   IsaVersion Version = getIsaVersion(STI->getCPU());
545 
546   amdhsa::kernel_descriptor_t KD;
547   memset(&KD, 0, sizeof(KD));
548 
549   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
550                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
551                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
552   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
553                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
554   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
555                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
556   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
557                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
558   if (Version.Major >= 10) {
559     AMDHSA_BITS_SET(KD.kernel_code_properties,
560                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
561                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
562     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
563                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
564                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
565     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
566                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
567   }
568   return KD;
569 }
570 
571 bool isGroupSegment(const GlobalValue *GV) {
572   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
573 }
574 
575 bool isGlobalSegment(const GlobalValue *GV) {
576   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
577 }
578 
579 bool isReadOnlySegment(const GlobalValue *GV) {
580   unsigned AS = GV->getAddressSpace();
581   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
582          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
583 }
584 
585 bool shouldEmitConstantsToTextSection(const Triple &TT) {
586   return TT.getArch() == Triple::r600;
587 }
588 
589 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
590   Attribute A = F.getFnAttribute(Name);
591   int Result = Default;
592 
593   if (A.isStringAttribute()) {
594     StringRef Str = A.getValueAsString();
595     if (Str.getAsInteger(0, Result)) {
596       LLVMContext &Ctx = F.getContext();
597       Ctx.emitError("can't parse integer attribute " + Name);
598     }
599   }
600 
601   return Result;
602 }
603 
604 std::pair<int, int> getIntegerPairAttribute(const Function &F,
605                                             StringRef Name,
606                                             std::pair<int, int> Default,
607                                             bool OnlyFirstRequired) {
608   Attribute A = F.getFnAttribute(Name);
609   if (!A.isStringAttribute())
610     return Default;
611 
612   LLVMContext &Ctx = F.getContext();
613   std::pair<int, int> Ints = Default;
614   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
615   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
616     Ctx.emitError("can't parse first integer attribute " + Name);
617     return Default;
618   }
619   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
620     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
621       Ctx.emitError("can't parse second integer attribute " + Name);
622       return Default;
623     }
624   }
625 
626   return Ints;
627 }
628 
629 unsigned getVmcntBitMask(const IsaVersion &Version) {
630   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
631   if (Version.Major < 9)
632     return VmcntLo;
633 
634   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
635   return VmcntLo | VmcntHi;
636 }
637 
638 unsigned getExpcntBitMask(const IsaVersion &Version) {
639   return (1 << getExpcntBitWidth()) - 1;
640 }
641 
642 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
643   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
644 }
645 
646 unsigned getWaitcntBitMask(const IsaVersion &Version) {
647   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
648   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
649   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
650                                 getLgkmcntBitWidth(Version.Major));
651   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
652   if (Version.Major < 9)
653     return Waitcnt;
654 
655   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
656   return Waitcnt | VmcntHi;
657 }
658 
659 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
660   unsigned VmcntLo =
661       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
662   if (Version.Major < 9)
663     return VmcntLo;
664 
665   unsigned VmcntHi =
666       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
667   VmcntHi <<= getVmcntBitWidthLo();
668   return VmcntLo | VmcntHi;
669 }
670 
671 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
672   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
673 }
674 
675 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
676   return unpackBits(Waitcnt, getLgkmcntBitShift(),
677                     getLgkmcntBitWidth(Version.Major));
678 }
679 
680 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
681                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
682   Vmcnt = decodeVmcnt(Version, Waitcnt);
683   Expcnt = decodeExpcnt(Version, Waitcnt);
684   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
685 }
686 
687 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
688   Waitcnt Decoded;
689   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
690   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
691   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
692   return Decoded;
693 }
694 
695 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
696                      unsigned Vmcnt) {
697   Waitcnt =
698       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
699   if (Version.Major < 9)
700     return Waitcnt;
701 
702   Vmcnt >>= getVmcntBitWidthLo();
703   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
704 }
705 
706 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
707                       unsigned Expcnt) {
708   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
709 }
710 
711 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
712                        unsigned Lgkmcnt) {
713   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
714                                     getLgkmcntBitWidth(Version.Major));
715 }
716 
717 unsigned encodeWaitcnt(const IsaVersion &Version,
718                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
719   unsigned Waitcnt = getWaitcntBitMask(Version);
720   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
721   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
722   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
723   return Waitcnt;
724 }
725 
726 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
727   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
728 }
729 
730 //===----------------------------------------------------------------------===//
731 // hwreg
732 //===----------------------------------------------------------------------===//
733 
734 namespace Hwreg {
735 
736 int64_t getHwregId(const StringRef Name) {
737   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
738     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
739       return Id;
740   }
741   return ID_UNKNOWN_;
742 }
743 
744 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
745   if (isSI(STI) || isCI(STI) || isVI(STI))
746     return ID_SYMBOLIC_FIRST_GFX9_;
747   else if (isGFX9(STI))
748     return ID_SYMBOLIC_FIRST_GFX10_;
749   else if (isGFX10(STI) && !isGFX10_BEncoding(STI))
750     return ID_SYMBOLIC_FIRST_GFX1030_;
751   else
752     return ID_SYMBOLIC_LAST_;
753 }
754 
755 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
756   return
757     ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
758     IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI));
759 }
760 
761 bool isValidHwreg(int64_t Id) {
762   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
763 }
764 
765 bool isValidHwregOffset(int64_t Offset) {
766   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
767 }
768 
769 bool isValidHwregWidth(int64_t Width) {
770   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
771 }
772 
773 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
774   return (Id << ID_SHIFT_) |
775          (Offset << OFFSET_SHIFT_) |
776          ((Width - 1) << WIDTH_M1_SHIFT_);
777 }
778 
779 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
780   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
781 }
782 
783 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
784   Id = (Val & ID_MASK_) >> ID_SHIFT_;
785   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
786   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
787 }
788 
789 } // namespace Hwreg
790 
791 //===----------------------------------------------------------------------===//
792 // MTBUF Format
793 //===----------------------------------------------------------------------===//
794 
795 namespace MTBUFFormat {
796 
797 int64_t getDfmt(const StringRef Name) {
798   for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) {
799     if (Name == DfmtSymbolic[Id])
800       return Id;
801   }
802   return DFMT_UNDEF;
803 }
804 
805 StringRef getDfmtName(unsigned Id) {
806   assert(Id <= DFMT_MAX);
807   return DfmtSymbolic[Id];
808 }
809 
810 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) {
811   if (isSI(STI) || isCI(STI))
812     return NfmtSymbolicSICI;
813   if (isVI(STI) || isGFX9(STI))
814     return NfmtSymbolicVI;
815   return NfmtSymbolicGFX10;
816 }
817 
818 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) {
819   auto lookupTable = getNfmtLookupTable(STI);
820   for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) {
821     if (Name == lookupTable[Id])
822       return Id;
823   }
824   return NFMT_UNDEF;
825 }
826 
827 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) {
828   assert(Id <= NFMT_MAX);
829   return getNfmtLookupTable(STI)[Id];
830 }
831 
832 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) {
833   unsigned Dfmt;
834   unsigned Nfmt;
835   decodeDfmtNfmt(Id, Dfmt, Nfmt);
836   return isValidNfmt(Nfmt, STI);
837 }
838 
839 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) {
840   return !getNfmtName(Id, STI).empty();
841 }
842 
843 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) {
844   return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT);
845 }
846 
847 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) {
848   Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK;
849   Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK;
850 }
851 
852 int64_t getUnifiedFormat(const StringRef Name) {
853   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
854     if (Name == UfmtSymbolic[Id])
855       return Id;
856   }
857   return UFMT_UNDEF;
858 }
859 
860 StringRef getUnifiedFormatName(unsigned Id) {
861   return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : "";
862 }
863 
864 bool isValidUnifiedFormat(unsigned Id) {
865   return Id <= UFMT_LAST;
866 }
867 
868 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) {
869   int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt);
870   for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) {
871     if (Fmt == DfmtNfmt2UFmt[Id])
872       return Id;
873   }
874   return UFMT_UNDEF;
875 }
876 
877 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) {
878   return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX);
879 }
880 
881 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) {
882   if (isGFX10Plus(STI))
883     return UFMT_DEFAULT;
884   return DFMT_NFMT_DEFAULT;
885 }
886 
887 } // namespace MTBUFFormat
888 
889 //===----------------------------------------------------------------------===//
890 // SendMsg
891 //===----------------------------------------------------------------------===//
892 
893 namespace SendMsg {
894 
895 int64_t getMsgId(const StringRef Name) {
896   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
897     if (IdSymbolic[i] && Name == IdSymbolic[i])
898       return i;
899   }
900   return ID_UNKNOWN_;
901 }
902 
903 static bool isValidMsgId(int64_t MsgId) {
904   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
905 }
906 
907 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
908   if (Strict) {
909     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
910       return isGFX9Plus(STI);
911     else
912       return isValidMsgId(MsgId);
913   } else {
914     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
915   }
916 }
917 
918 StringRef getMsgName(int64_t MsgId) {
919   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
920 }
921 
922 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
923   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
924   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
925   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
926   for (int i = F; i < L; ++i) {
927     if (Name == S[i]) {
928       return i;
929     }
930   }
931   return OP_UNKNOWN_;
932 }
933 
934 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
935 
936   if (!Strict)
937     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
938 
939   switch(MsgId)
940   {
941   case ID_GS:
942     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
943   case ID_GS_DONE:
944     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
945   case ID_SYSMSG:
946     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
947   default:
948     return OpId == OP_NONE_;
949   }
950 }
951 
952 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
953   assert(msgRequiresOp(MsgId));
954   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
955 }
956 
957 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
958 
959   if (!Strict)
960     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
961 
962   switch(MsgId)
963   {
964   case ID_GS:
965     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
966   case ID_GS_DONE:
967     return (OpId == OP_GS_NOP)?
968            (StreamId == STREAM_ID_NONE_) :
969            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
970   default:
971     return StreamId == STREAM_ID_NONE_;
972   }
973 }
974 
975 bool msgRequiresOp(int64_t MsgId) {
976   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
977 }
978 
979 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
980   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
981 }
982 
983 void decodeMsg(unsigned Val,
984                uint16_t &MsgId,
985                uint16_t &OpId,
986                uint16_t &StreamId) {
987   MsgId = Val & ID_MASK_;
988   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
989   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
990 }
991 
992 uint64_t encodeMsg(uint64_t MsgId,
993                    uint64_t OpId,
994                    uint64_t StreamId) {
995   return (MsgId << ID_SHIFT_) |
996          (OpId << OP_SHIFT_) |
997          (StreamId << STREAM_ID_SHIFT_);
998 }
999 
1000 } // namespace SendMsg
1001 
1002 //===----------------------------------------------------------------------===//
1003 //
1004 //===----------------------------------------------------------------------===//
1005 
1006 unsigned getInitialPSInputAddr(const Function &F) {
1007   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
1008 }
1009 
1010 bool isShader(CallingConv::ID cc) {
1011   switch(cc) {
1012     case CallingConv::AMDGPU_VS:
1013     case CallingConv::AMDGPU_LS:
1014     case CallingConv::AMDGPU_HS:
1015     case CallingConv::AMDGPU_ES:
1016     case CallingConv::AMDGPU_GS:
1017     case CallingConv::AMDGPU_PS:
1018     case CallingConv::AMDGPU_CS:
1019       return true;
1020     default:
1021       return false;
1022   }
1023 }
1024 
1025 bool isGraphics(CallingConv::ID cc) {
1026   return isShader(cc) || cc == CallingConv::AMDGPU_Gfx;
1027 }
1028 
1029 bool isCompute(CallingConv::ID cc) {
1030   return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS;
1031 }
1032 
1033 bool isEntryFunctionCC(CallingConv::ID CC) {
1034   switch (CC) {
1035   case CallingConv::AMDGPU_KERNEL:
1036   case CallingConv::SPIR_KERNEL:
1037   case CallingConv::AMDGPU_VS:
1038   case CallingConv::AMDGPU_GS:
1039   case CallingConv::AMDGPU_PS:
1040   case CallingConv::AMDGPU_CS:
1041   case CallingConv::AMDGPU_ES:
1042   case CallingConv::AMDGPU_HS:
1043   case CallingConv::AMDGPU_LS:
1044     return true;
1045   default:
1046     return false;
1047   }
1048 }
1049 
1050 bool isModuleEntryFunctionCC(CallingConv::ID CC) {
1051   switch (CC) {
1052   case CallingConv::AMDGPU_Gfx:
1053     return true;
1054   default:
1055     return isEntryFunctionCC(CC);
1056   }
1057 }
1058 
1059 bool hasXNACK(const MCSubtargetInfo &STI) {
1060   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
1061 }
1062 
1063 bool hasSRAMECC(const MCSubtargetInfo &STI) {
1064   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
1065 }
1066 
1067 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
1068   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
1069 }
1070 
1071 bool hasGFX10A16(const MCSubtargetInfo &STI) {
1072   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
1073 }
1074 
1075 bool hasG16(const MCSubtargetInfo &STI) {
1076   return STI.getFeatureBits()[AMDGPU::FeatureG16];
1077 }
1078 
1079 bool hasPackedD16(const MCSubtargetInfo &STI) {
1080   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
1081 }
1082 
1083 bool isSI(const MCSubtargetInfo &STI) {
1084   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
1085 }
1086 
1087 bool isCI(const MCSubtargetInfo &STI) {
1088   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
1089 }
1090 
1091 bool isVI(const MCSubtargetInfo &STI) {
1092   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
1093 }
1094 
1095 bool isGFX9(const MCSubtargetInfo &STI) {
1096   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
1097 }
1098 
1099 bool isGFX9Plus(const MCSubtargetInfo &STI) {
1100   return isGFX9(STI) || isGFX10Plus(STI);
1101 }
1102 
1103 bool isGFX10(const MCSubtargetInfo &STI) {
1104   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
1105 }
1106 
1107 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); }
1108 
1109 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
1110   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
1111 }
1112 
1113 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) {
1114   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding];
1115 }
1116 
1117 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) {
1118   return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts];
1119 }
1120 
1121 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
1122   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
1123   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
1124   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
1125     Reg == AMDGPU::SCC;
1126 }
1127 
1128 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
1129   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
1130     if (*R == Reg1) return true;
1131   }
1132   return false;
1133 }
1134 
1135 #define MAP_REG2REG \
1136   using namespace AMDGPU; \
1137   switch(Reg) { \
1138   default: return Reg; \
1139   CASE_CI_VI(FLAT_SCR) \
1140   CASE_CI_VI(FLAT_SCR_LO) \
1141   CASE_CI_VI(FLAT_SCR_HI) \
1142   CASE_VI_GFX9PLUS(TTMP0) \
1143   CASE_VI_GFX9PLUS(TTMP1) \
1144   CASE_VI_GFX9PLUS(TTMP2) \
1145   CASE_VI_GFX9PLUS(TTMP3) \
1146   CASE_VI_GFX9PLUS(TTMP4) \
1147   CASE_VI_GFX9PLUS(TTMP5) \
1148   CASE_VI_GFX9PLUS(TTMP6) \
1149   CASE_VI_GFX9PLUS(TTMP7) \
1150   CASE_VI_GFX9PLUS(TTMP8) \
1151   CASE_VI_GFX9PLUS(TTMP9) \
1152   CASE_VI_GFX9PLUS(TTMP10) \
1153   CASE_VI_GFX9PLUS(TTMP11) \
1154   CASE_VI_GFX9PLUS(TTMP12) \
1155   CASE_VI_GFX9PLUS(TTMP13) \
1156   CASE_VI_GFX9PLUS(TTMP14) \
1157   CASE_VI_GFX9PLUS(TTMP15) \
1158   CASE_VI_GFX9PLUS(TTMP0_TTMP1) \
1159   CASE_VI_GFX9PLUS(TTMP2_TTMP3) \
1160   CASE_VI_GFX9PLUS(TTMP4_TTMP5) \
1161   CASE_VI_GFX9PLUS(TTMP6_TTMP7) \
1162   CASE_VI_GFX9PLUS(TTMP8_TTMP9) \
1163   CASE_VI_GFX9PLUS(TTMP10_TTMP11) \
1164   CASE_VI_GFX9PLUS(TTMP12_TTMP13) \
1165   CASE_VI_GFX9PLUS(TTMP14_TTMP15) \
1166   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \
1167   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \
1168   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \
1169   CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \
1170   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1171   CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1172   CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1173   CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1174   }
1175 
1176 #define CASE_CI_VI(node) \
1177   assert(!isSI(STI)); \
1178   case node: return isCI(STI) ? node##_ci : node##_vi;
1179 
1180 #define CASE_VI_GFX9PLUS(node) \
1181   case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi;
1182 
1183 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1184   if (STI.getTargetTriple().getArch() == Triple::r600)
1185     return Reg;
1186   MAP_REG2REG
1187 }
1188 
1189 #undef CASE_CI_VI
1190 #undef CASE_VI_GFX9PLUS
1191 
1192 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1193 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node;
1194 
1195 unsigned mc2PseudoReg(unsigned Reg) {
1196   MAP_REG2REG
1197 }
1198 
1199 #undef CASE_CI_VI
1200 #undef CASE_VI_GFX9PLUS
1201 #undef MAP_REG2REG
1202 
1203 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1204   assert(OpNo < Desc.NumOperands);
1205   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1206   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1207          OpType <= AMDGPU::OPERAND_SRC_LAST;
1208 }
1209 
1210 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1211   assert(OpNo < Desc.NumOperands);
1212   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1213   switch (OpType) {
1214   case AMDGPU::OPERAND_REG_IMM_FP32:
1215   case AMDGPU::OPERAND_REG_IMM_FP64:
1216   case AMDGPU::OPERAND_REG_IMM_FP16:
1217   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1218   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1219   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1220   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1221   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1222   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1223   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1224   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1225   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1226   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1227   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1228     return true;
1229   default:
1230     return false;
1231   }
1232 }
1233 
1234 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1235   assert(OpNo < Desc.NumOperands);
1236   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1237   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1238          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1239 }
1240 
1241 // Avoid using MCRegisterClass::getSize, since that function will go away
1242 // (move from MC* level to Target* level). Return size in bits.
1243 unsigned getRegBitWidth(unsigned RCID) {
1244   switch (RCID) {
1245   case AMDGPU::VGPR_LO16RegClassID:
1246   case AMDGPU::VGPR_HI16RegClassID:
1247   case AMDGPU::SGPR_LO16RegClassID:
1248   case AMDGPU::AGPR_LO16RegClassID:
1249     return 16;
1250   case AMDGPU::SGPR_32RegClassID:
1251   case AMDGPU::VGPR_32RegClassID:
1252   case AMDGPU::VRegOrLds_32RegClassID:
1253   case AMDGPU::AGPR_32RegClassID:
1254   case AMDGPU::VS_32RegClassID:
1255   case AMDGPU::AV_32RegClassID:
1256   case AMDGPU::SReg_32RegClassID:
1257   case AMDGPU::SReg_32_XM0RegClassID:
1258   case AMDGPU::SRegOrLds_32RegClassID:
1259     return 32;
1260   case AMDGPU::SGPR_64RegClassID:
1261   case AMDGPU::VS_64RegClassID:
1262   case AMDGPU::AV_64RegClassID:
1263   case AMDGPU::SReg_64RegClassID:
1264   case AMDGPU::VReg_64RegClassID:
1265   case AMDGPU::AReg_64RegClassID:
1266   case AMDGPU::SReg_64_XEXECRegClassID:
1267     return 64;
1268   case AMDGPU::SGPR_96RegClassID:
1269   case AMDGPU::SReg_96RegClassID:
1270   case AMDGPU::VReg_96RegClassID:
1271   case AMDGPU::AReg_96RegClassID:
1272     return 96;
1273   case AMDGPU::SGPR_128RegClassID:
1274   case AMDGPU::SReg_128RegClassID:
1275   case AMDGPU::VReg_128RegClassID:
1276   case AMDGPU::AReg_128RegClassID:
1277     return 128;
1278   case AMDGPU::SGPR_160RegClassID:
1279   case AMDGPU::SReg_160RegClassID:
1280   case AMDGPU::VReg_160RegClassID:
1281   case AMDGPU::AReg_160RegClassID:
1282     return 160;
1283   case AMDGPU::SGPR_192RegClassID:
1284   case AMDGPU::SReg_192RegClassID:
1285   case AMDGPU::VReg_192RegClassID:
1286   case AMDGPU::AReg_192RegClassID:
1287     return 192;
1288   case AMDGPU::SGPR_256RegClassID:
1289   case AMDGPU::SReg_256RegClassID:
1290   case AMDGPU::VReg_256RegClassID:
1291   case AMDGPU::AReg_256RegClassID:
1292     return 256;
1293   case AMDGPU::SGPR_512RegClassID:
1294   case AMDGPU::SReg_512RegClassID:
1295   case AMDGPU::VReg_512RegClassID:
1296   case AMDGPU::AReg_512RegClassID:
1297     return 512;
1298   case AMDGPU::SGPR_1024RegClassID:
1299   case AMDGPU::SReg_1024RegClassID:
1300   case AMDGPU::VReg_1024RegClassID:
1301   case AMDGPU::AReg_1024RegClassID:
1302     return 1024;
1303   default:
1304     llvm_unreachable("Unexpected register class");
1305   }
1306 }
1307 
1308 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1309   return getRegBitWidth(RC.getID());
1310 }
1311 
1312 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1313                            unsigned OpNo) {
1314   assert(OpNo < Desc.NumOperands);
1315   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1316   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1317 }
1318 
1319 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1320   if (isInlinableIntLiteral(Literal))
1321     return true;
1322 
1323   uint64_t Val = static_cast<uint64_t>(Literal);
1324   return (Val == DoubleToBits(0.0)) ||
1325          (Val == DoubleToBits(1.0)) ||
1326          (Val == DoubleToBits(-1.0)) ||
1327          (Val == DoubleToBits(0.5)) ||
1328          (Val == DoubleToBits(-0.5)) ||
1329          (Val == DoubleToBits(2.0)) ||
1330          (Val == DoubleToBits(-2.0)) ||
1331          (Val == DoubleToBits(4.0)) ||
1332          (Val == DoubleToBits(-4.0)) ||
1333          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1334 }
1335 
1336 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1337   if (isInlinableIntLiteral(Literal))
1338     return true;
1339 
1340   // The actual type of the operand does not seem to matter as long
1341   // as the bits match one of the inline immediate values.  For example:
1342   //
1343   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1344   // so it is a legal inline immediate.
1345   //
1346   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1347   // floating-point, so it is a legal inline immediate.
1348 
1349   uint32_t Val = static_cast<uint32_t>(Literal);
1350   return (Val == FloatToBits(0.0f)) ||
1351          (Val == FloatToBits(1.0f)) ||
1352          (Val == FloatToBits(-1.0f)) ||
1353          (Val == FloatToBits(0.5f)) ||
1354          (Val == FloatToBits(-0.5f)) ||
1355          (Val == FloatToBits(2.0f)) ||
1356          (Val == FloatToBits(-2.0f)) ||
1357          (Val == FloatToBits(4.0f)) ||
1358          (Val == FloatToBits(-4.0f)) ||
1359          (Val == 0x3e22f983 && HasInv2Pi);
1360 }
1361 
1362 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1363   if (!HasInv2Pi)
1364     return false;
1365 
1366   if (isInlinableIntLiteral(Literal))
1367     return true;
1368 
1369   uint16_t Val = static_cast<uint16_t>(Literal);
1370   return Val == 0x3C00 || // 1.0
1371          Val == 0xBC00 || // -1.0
1372          Val == 0x3800 || // 0.5
1373          Val == 0xB800 || // -0.5
1374          Val == 0x4000 || // 2.0
1375          Val == 0xC000 || // -2.0
1376          Val == 0x4400 || // 4.0
1377          Val == 0xC400 || // -4.0
1378          Val == 0x3118;   // 1/2pi
1379 }
1380 
1381 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1382   assert(HasInv2Pi);
1383 
1384   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1385     int16_t Trunc = static_cast<int16_t>(Literal);
1386     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1387   }
1388   if (!(Literal & 0xffff))
1389     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1390 
1391   int16_t Lo16 = static_cast<int16_t>(Literal);
1392   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1393   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1394 }
1395 
1396 bool isInlinableIntLiteralV216(int32_t Literal) {
1397   int16_t Lo16 = static_cast<int16_t>(Literal);
1398   if (isInt<16>(Literal) || isUInt<16>(Literal))
1399     return isInlinableIntLiteral(Lo16);
1400 
1401   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1402   if (!(Literal & 0xffff))
1403     return isInlinableIntLiteral(Hi16);
1404   return Lo16 == Hi16 && isInlinableIntLiteral(Lo16);
1405 }
1406 
1407 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1408   assert(HasInv2Pi);
1409 
1410   int16_t Lo16 = static_cast<int16_t>(Literal);
1411   if (isInt<16>(Literal) || isUInt<16>(Literal))
1412     return true;
1413 
1414   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1415   if (!(Literal & 0xffff))
1416     return true;
1417   return Lo16 == Hi16;
1418 }
1419 
1420 bool isArgPassedInSGPR(const Argument *A) {
1421   const Function *F = A->getParent();
1422 
1423   // Arguments to compute shaders are never a source of divergence.
1424   CallingConv::ID CC = F->getCallingConv();
1425   switch (CC) {
1426   case CallingConv::AMDGPU_KERNEL:
1427   case CallingConv::SPIR_KERNEL:
1428     return true;
1429   case CallingConv::AMDGPU_VS:
1430   case CallingConv::AMDGPU_LS:
1431   case CallingConv::AMDGPU_HS:
1432   case CallingConv::AMDGPU_ES:
1433   case CallingConv::AMDGPU_GS:
1434   case CallingConv::AMDGPU_PS:
1435   case CallingConv::AMDGPU_CS:
1436   case CallingConv::AMDGPU_Gfx:
1437     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1438     // Everything else is in VGPRs.
1439     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1440            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1441   default:
1442     // TODO: Should calls support inreg for SGPR inputs?
1443     return false;
1444   }
1445 }
1446 
1447 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1448   return isGCN3Encoding(ST) || isGFX10Plus(ST);
1449 }
1450 
1451 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) {
1452   return isGFX9Plus(ST);
1453 }
1454 
1455 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST,
1456                                       int64_t EncodedOffset) {
1457   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1458                                : isUInt<8>(EncodedOffset);
1459 }
1460 
1461 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST,
1462                                     int64_t EncodedOffset,
1463                                     bool IsBuffer) {
1464   return !IsBuffer &&
1465          hasSMRDSignedImmOffset(ST) &&
1466          isInt<21>(EncodedOffset);
1467 }
1468 
1469 static bool isDwordAligned(uint64_t ByteOffset) {
1470   return (ByteOffset & 3) == 0;
1471 }
1472 
1473 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1474                                 uint64_t ByteOffset) {
1475   if (hasSMEMByteOffset(ST))
1476     return ByteOffset;
1477 
1478   assert(isDwordAligned(ByteOffset));
1479   return ByteOffset >> 2;
1480 }
1481 
1482 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1483                                        int64_t ByteOffset, bool IsBuffer) {
1484   // The signed version is always a byte offset.
1485   if (!IsBuffer && hasSMRDSignedImmOffset(ST)) {
1486     assert(hasSMEMByteOffset(ST));
1487     return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None;
1488   }
1489 
1490   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1491     return None;
1492 
1493   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1494   return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset)
1495              ? Optional<int64_t>(EncodedOffset)
1496              : None;
1497 }
1498 
1499 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1500                                                 int64_t ByteOffset) {
1501   if (!isCI(ST) || !isDwordAligned(ByteOffset))
1502     return None;
1503 
1504   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1505   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1506 }
1507 
1508 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) {
1509   // Address offset is 12-bit signed for GFX10, 13-bit for GFX9.
1510   if (AMDGPU::isGFX10(ST))
1511     return Signed ? 12 : 11;
1512 
1513   return Signed ? 13 : 12;
1514 }
1515 
1516 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1517 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1518 // hardware bug needing a workaround).
1519 //
1520 // The required alignment ensures that individual address components remain
1521 // aligned if they are aligned to begin with. It also ensures that additional
1522 // offsets within the given alignment can be added to the resulting ImmOffset.
1523 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1524                       const GCNSubtarget *Subtarget, Align Alignment) {
1525   const uint32_t MaxImm = alignDown(4095, Alignment.value());
1526   uint32_t Overflow = 0;
1527 
1528   if (Imm > MaxImm) {
1529     if (Imm <= MaxImm + 64) {
1530       // Use an SOffset inline constant for 4..64
1531       Overflow = Imm - MaxImm;
1532       Imm = MaxImm;
1533     } else {
1534       // Try to keep the same value in SOffset for adjacent loads, so that
1535       // the corresponding register contents can be re-used.
1536       //
1537       // Load values with all low-bits (except for alignment bits) set into
1538       // SOffset, so that a larger range of values can be covered using
1539       // s_movk_i32.
1540       //
1541       // Atomic operations fail to work correctly when individual address
1542       // components are unaligned, even if their sum is aligned.
1543       uint32_t High = (Imm + Alignment.value()) & ~4095;
1544       uint32_t Low = (Imm + Alignment.value()) & 4095;
1545       Imm = Low;
1546       Overflow = High - Alignment.value();
1547     }
1548   }
1549 
1550   // There is a hardware bug in SI and CI which prevents address clamping in
1551   // MUBUF instructions from working correctly with SOffsets. The immediate
1552   // offset is unaffected.
1553   if (Overflow > 0 &&
1554       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1555     return false;
1556 
1557   ImmOffset = Imm;
1558   SOffset = Overflow;
1559   return true;
1560 }
1561 
1562 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) {
1563   *this = getDefaultForCallingConv(F.getCallingConv());
1564 
1565   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1566   if (!IEEEAttr.empty())
1567     IEEE = IEEEAttr == "true";
1568 
1569   StringRef DX10ClampAttr
1570     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1571   if (!DX10ClampAttr.empty())
1572     DX10Clamp = DX10ClampAttr == "true";
1573 
1574   StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString();
1575   if (!DenormF32Attr.empty()) {
1576     DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr);
1577     FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1578     FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1579   }
1580 
1581   StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString();
1582   if (!DenormAttr.empty()) {
1583     DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr);
1584 
1585     if (DenormF32Attr.empty()) {
1586       FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1587       FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1588     }
1589 
1590     FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE;
1591     FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE;
1592   }
1593 }
1594 
1595 namespace {
1596 
1597 struct SourceOfDivergence {
1598   unsigned Intr;
1599 };
1600 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1601 
1602 #define GET_SourcesOfDivergence_IMPL
1603 #define GET_Gfx9BufferFormat_IMPL
1604 #define GET_Gfx10PlusBufferFormat_IMPL
1605 #include "AMDGPUGenSearchableTables.inc"
1606 
1607 } // end anonymous namespace
1608 
1609 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1610   return lookupSourceOfDivergence(IntrID);
1611 }
1612 
1613 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1614                                                   uint8_t NumComponents,
1615                                                   uint8_t NumFormat,
1616                                                   const MCSubtargetInfo &STI) {
1617   return isGFX10Plus(STI)
1618              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1619                                             NumFormat)
1620              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1621 }
1622 
1623 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1624                                                   const MCSubtargetInfo &STI) {
1625   return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format)
1626                           : getGfx9BufferFormatInfo(Format);
1627 }
1628 
1629 } // namespace AMDGPU
1630 } // namespace llvm
1631