1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPUBaseInfo.h" 10 #include "AMDGPU.h" 11 #include "AMDGPUAsmUtils.h" 12 #include "AMDKernelCodeT.h" 13 #include "GCNSubtarget.h" 14 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 15 #include "llvm/BinaryFormat/ELF.h" 16 #include "llvm/IR/Attributes.h" 17 #include "llvm/IR/Function.h" 18 #include "llvm/IR/GlobalValue.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IntrinsicsR600.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/MC/MCSubtargetInfo.h" 23 #include "llvm/Support/AMDHSAKernelDescriptor.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/TargetParser.h" 26 27 #define GET_INSTRINFO_NAMED_OPS 28 #define GET_INSTRMAP_INFO 29 #include "AMDGPUGenInstrInfo.inc" 30 31 static llvm::cl::opt<unsigned> AmdhsaCodeObjectVersion( 32 "amdhsa-code-object-version", llvm::cl::Hidden, 33 llvm::cl::desc("AMDHSA Code Object Version"), llvm::cl::init(3)); 34 35 namespace { 36 37 /// \returns Bit mask for given bit \p Shift and bit \p Width. 38 unsigned getBitMask(unsigned Shift, unsigned Width) { 39 return ((1 << Width) - 1) << Shift; 40 } 41 42 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width. 43 /// 44 /// \returns Packed \p Dst. 45 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) { 46 Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width); 47 Dst |= (Src << Shift) & getBitMask(Shift, Width); 48 return Dst; 49 } 50 51 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width. 52 /// 53 /// \returns Unpacked bits. 54 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) { 55 return (Src & getBitMask(Shift, Width)) >> Shift; 56 } 57 58 /// \returns Vmcnt bit shift (lower bits). 59 unsigned getVmcntBitShiftLo() { return 0; } 60 61 /// \returns Vmcnt bit width (lower bits). 62 unsigned getVmcntBitWidthLo() { return 4; } 63 64 /// \returns Expcnt bit shift. 65 unsigned getExpcntBitShift() { return 4; } 66 67 /// \returns Expcnt bit width. 68 unsigned getExpcntBitWidth() { return 3; } 69 70 /// \returns Lgkmcnt bit shift. 71 unsigned getLgkmcntBitShift() { return 8; } 72 73 /// \returns Lgkmcnt bit width. 74 unsigned getLgkmcntBitWidth(unsigned VersionMajor) { 75 return (VersionMajor >= 10) ? 6 : 4; 76 } 77 78 /// \returns Vmcnt bit shift (higher bits). 79 unsigned getVmcntBitShiftHi() { return 14; } 80 81 /// \returns Vmcnt bit width (higher bits). 82 unsigned getVmcntBitWidthHi() { return 2; } 83 84 } // end namespace anonymous 85 86 namespace llvm { 87 88 namespace AMDGPU { 89 90 Optional<uint8_t> getHsaAbiVersion(const MCSubtargetInfo *STI) { 91 if (STI && STI->getTargetTriple().getOS() != Triple::AMDHSA) 92 return None; 93 94 switch (AmdhsaCodeObjectVersion) { 95 case 2: 96 return ELF::ELFABIVERSION_AMDGPU_HSA_V2; 97 case 3: 98 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 99 default: 100 return ELF::ELFABIVERSION_AMDGPU_HSA_V3; 101 } 102 } 103 104 bool isHsaAbiVersion2(const MCSubtargetInfo *STI) { 105 if (const auto &&HsaAbiVer = getHsaAbiVersion(STI)) 106 return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V2; 107 return false; 108 } 109 110 bool isHsaAbiVersion3(const MCSubtargetInfo *STI) { 111 if (const auto &&HsaAbiVer = getHsaAbiVersion(STI)) 112 return HsaAbiVer.getValue() == ELF::ELFABIVERSION_AMDGPU_HSA_V3; 113 return false; 114 } 115 116 #define GET_MIMGBaseOpcodesTable_IMPL 117 #define GET_MIMGDimInfoTable_IMPL 118 #define GET_MIMGInfoTable_IMPL 119 #define GET_MIMGLZMappingTable_IMPL 120 #define GET_MIMGMIPMappingTable_IMPL 121 #define GET_MIMGG16MappingTable_IMPL 122 #include "AMDGPUGenSearchableTables.inc" 123 124 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding, 125 unsigned VDataDwords, unsigned VAddrDwords) { 126 const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding, 127 VDataDwords, VAddrDwords); 128 return Info ? Info->Opcode : -1; 129 } 130 131 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) { 132 const MIMGInfo *Info = getMIMGInfo(Opc); 133 return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr; 134 } 135 136 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) { 137 const MIMGInfo *OrigInfo = getMIMGInfo(Opc); 138 const MIMGInfo *NewInfo = 139 getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding, 140 NewChannels, OrigInfo->VAddrDwords); 141 return NewInfo ? NewInfo->Opcode : -1; 142 } 143 144 struct MUBUFInfo { 145 uint16_t Opcode; 146 uint16_t BaseOpcode; 147 uint8_t elements; 148 bool has_vaddr; 149 bool has_srsrc; 150 bool has_soffset; 151 }; 152 153 struct MTBUFInfo { 154 uint16_t Opcode; 155 uint16_t BaseOpcode; 156 uint8_t elements; 157 bool has_vaddr; 158 bool has_srsrc; 159 bool has_soffset; 160 }; 161 162 struct SMInfo { 163 uint16_t Opcode; 164 bool IsBuffer; 165 }; 166 167 #define GET_MTBUFInfoTable_DECL 168 #define GET_MTBUFInfoTable_IMPL 169 #define GET_MUBUFInfoTable_DECL 170 #define GET_MUBUFInfoTable_IMPL 171 #define GET_SMInfoTable_DECL 172 #define GET_SMInfoTable_IMPL 173 #include "AMDGPUGenSearchableTables.inc" 174 175 int getMTBUFBaseOpcode(unsigned Opc) { 176 const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc); 177 return Info ? Info->BaseOpcode : -1; 178 } 179 180 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) { 181 const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 182 return Info ? Info->Opcode : -1; 183 } 184 185 int getMTBUFElements(unsigned Opc) { 186 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 187 return Info ? Info->elements : 0; 188 } 189 190 bool getMTBUFHasVAddr(unsigned Opc) { 191 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 192 return Info ? Info->has_vaddr : false; 193 } 194 195 bool getMTBUFHasSrsrc(unsigned Opc) { 196 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 197 return Info ? Info->has_srsrc : false; 198 } 199 200 bool getMTBUFHasSoffset(unsigned Opc) { 201 const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc); 202 return Info ? Info->has_soffset : false; 203 } 204 205 int getMUBUFBaseOpcode(unsigned Opc) { 206 const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc); 207 return Info ? Info->BaseOpcode : -1; 208 } 209 210 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) { 211 const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements); 212 return Info ? Info->Opcode : -1; 213 } 214 215 int getMUBUFElements(unsigned Opc) { 216 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 217 return Info ? Info->elements : 0; 218 } 219 220 bool getMUBUFHasVAddr(unsigned Opc) { 221 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 222 return Info ? Info->has_vaddr : false; 223 } 224 225 bool getMUBUFHasSrsrc(unsigned Opc) { 226 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 227 return Info ? Info->has_srsrc : false; 228 } 229 230 bool getMUBUFHasSoffset(unsigned Opc) { 231 const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc); 232 return Info ? Info->has_soffset : false; 233 } 234 235 bool getSMEMIsBuffer(unsigned Opc) { 236 const SMInfo *Info = getSMEMOpcodeHelper(Opc); 237 return Info ? Info->IsBuffer : false; 238 } 239 240 // Wrapper for Tablegen'd function. enum Subtarget is not defined in any 241 // header files, so we need to wrap it in a function that takes unsigned 242 // instead. 243 int getMCOpcode(uint16_t Opcode, unsigned Gen) { 244 return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen)); 245 } 246 247 namespace IsaInfo { 248 249 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) { 250 auto TargetTriple = STI->getTargetTriple(); 251 auto Version = getIsaVersion(STI->getCPU()); 252 253 Stream << TargetTriple.getArchName() << '-' 254 << TargetTriple.getVendorName() << '-' 255 << TargetTriple.getOSName() << '-' 256 << TargetTriple.getEnvironmentName() << '-' 257 << "gfx" 258 << Version.Major 259 << Version.Minor 260 << Version.Stepping; 261 262 if (hasXNACK(*STI)) 263 Stream << "+xnack"; 264 if (hasSRAMECC(*STI)) 265 Stream << "+sram-ecc"; 266 267 Stream.flush(); 268 } 269 270 unsigned getWavefrontSize(const MCSubtargetInfo *STI) { 271 if (STI->getFeatureBits().test(FeatureWavefrontSize16)) 272 return 16; 273 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) 274 return 32; 275 276 return 64; 277 } 278 279 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) { 280 if (STI->getFeatureBits().test(FeatureLocalMemorySize32768)) 281 return 32768; 282 if (STI->getFeatureBits().test(FeatureLocalMemorySize65536)) 283 return 65536; 284 285 return 0; 286 } 287 288 unsigned getEUsPerCU(const MCSubtargetInfo *STI) { 289 // "Per CU" really means "per whatever functional block the waves of a 290 // workgroup must share". For gfx10 in CU mode this is the CU, which contains 291 // two SIMDs. 292 if (isGFX10Plus(*STI) && STI->getFeatureBits().test(FeatureCuMode)) 293 return 2; 294 // Pre-gfx10 a CU contains four SIMDs. For gfx10 in WGP mode the WGP contains 295 // two CUs, so a total of four SIMDs. 296 return 4; 297 } 298 299 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI, 300 unsigned FlatWorkGroupSize) { 301 assert(FlatWorkGroupSize != 0); 302 if (STI->getTargetTriple().getArch() != Triple::amdgcn) 303 return 8; 304 unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize); 305 if (N == 1) 306 return 40; 307 N = 40 / N; 308 return std::min(N, 16u); 309 } 310 311 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) { 312 return 1; 313 } 314 315 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) { 316 // FIXME: Need to take scratch memory into account. 317 if (!isGFX10Plus(*STI)) 318 return 10; 319 return hasGFX10_3Insts(*STI) ? 16 : 20; 320 } 321 322 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI, 323 unsigned FlatWorkGroupSize) { 324 return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize), 325 getEUsPerCU(STI)); 326 } 327 328 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) { 329 return 1; 330 } 331 332 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) { 333 // Some subtargets allow encoding 2048, but this isn't tested or supported. 334 return 1024; 335 } 336 337 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI, 338 unsigned FlatWorkGroupSize) { 339 return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI)); 340 } 341 342 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) { 343 IsaVersion Version = getIsaVersion(STI->getCPU()); 344 if (Version.Major >= 10) 345 return getAddressableNumSGPRs(STI); 346 if (Version.Major >= 8) 347 return 16; 348 return 8; 349 } 350 351 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) { 352 return 8; 353 } 354 355 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) { 356 IsaVersion Version = getIsaVersion(STI->getCPU()); 357 if (Version.Major >= 8) 358 return 800; 359 return 512; 360 } 361 362 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) { 363 if (STI->getFeatureBits().test(FeatureSGPRInitBug)) 364 return FIXED_NUM_SGPRS_FOR_INIT_BUG; 365 366 IsaVersion Version = getIsaVersion(STI->getCPU()); 367 if (Version.Major >= 10) 368 return 106; 369 if (Version.Major >= 8) 370 return 102; 371 return 104; 372 } 373 374 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 375 assert(WavesPerEU != 0); 376 377 IsaVersion Version = getIsaVersion(STI->getCPU()); 378 if (Version.Major >= 10) 379 return 0; 380 381 if (WavesPerEU >= getMaxWavesPerEU(STI)) 382 return 0; 383 384 unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1); 385 if (STI->getFeatureBits().test(FeatureTrapHandler)) 386 MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 387 MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1; 388 return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI)); 389 } 390 391 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU, 392 bool Addressable) { 393 assert(WavesPerEU != 0); 394 395 unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI); 396 IsaVersion Version = getIsaVersion(STI->getCPU()); 397 if (Version.Major >= 10) 398 return Addressable ? AddressableNumSGPRs : 108; 399 if (Version.Major >= 8 && !Addressable) 400 AddressableNumSGPRs = 112; 401 unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU; 402 if (STI->getFeatureBits().test(FeatureTrapHandler)) 403 MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS); 404 MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI)); 405 return std::min(MaxNumSGPRs, AddressableNumSGPRs); 406 } 407 408 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 409 bool FlatScrUsed, bool XNACKUsed) { 410 unsigned ExtraSGPRs = 0; 411 if (VCCUsed) 412 ExtraSGPRs = 2; 413 414 IsaVersion Version = getIsaVersion(STI->getCPU()); 415 if (Version.Major >= 10) 416 return ExtraSGPRs; 417 418 if (Version.Major < 8) { 419 if (FlatScrUsed) 420 ExtraSGPRs = 4; 421 } else { 422 if (XNACKUsed) 423 ExtraSGPRs = 4; 424 425 if (FlatScrUsed) 426 ExtraSGPRs = 6; 427 } 428 429 return ExtraSGPRs; 430 } 431 432 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed, 433 bool FlatScrUsed) { 434 return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed, 435 STI->getFeatureBits().test(AMDGPU::FeatureXNACK)); 436 } 437 438 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) { 439 NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI)); 440 // SGPRBlocks is actual number of SGPR blocks minus 1. 441 return NumSGPRs / getSGPREncodingGranule(STI) - 1; 442 } 443 444 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI, 445 Optional<bool> EnableWavefrontSize32) { 446 bool IsWave32 = EnableWavefrontSize32 ? 447 *EnableWavefrontSize32 : 448 STI->getFeatureBits().test(FeatureWavefrontSize32); 449 450 if (hasGFX10_3Insts(*STI)) 451 return IsWave32 ? 16 : 8; 452 453 return IsWave32 ? 8 : 4; 454 } 455 456 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI, 457 Optional<bool> EnableWavefrontSize32) { 458 459 bool IsWave32 = EnableWavefrontSize32 ? 460 *EnableWavefrontSize32 : 461 STI->getFeatureBits().test(FeatureWavefrontSize32); 462 463 return IsWave32 ? 8 : 4; 464 } 465 466 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) { 467 if (!isGFX10Plus(*STI)) 468 return 256; 469 return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512; 470 } 471 472 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) { 473 return 256; 474 } 475 476 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 477 assert(WavesPerEU != 0); 478 479 if (WavesPerEU >= getMaxWavesPerEU(STI)) 480 return 0; 481 unsigned MinNumVGPRs = 482 alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1), 483 getVGPRAllocGranule(STI)) + 1; 484 return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI)); 485 } 486 487 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) { 488 assert(WavesPerEU != 0); 489 490 unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU, 491 getVGPRAllocGranule(STI)); 492 unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI); 493 return std::min(MaxNumVGPRs, AddressableNumVGPRs); 494 } 495 496 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs, 497 Optional<bool> EnableWavefrontSize32) { 498 NumVGPRs = alignTo(std::max(1u, NumVGPRs), 499 getVGPREncodingGranule(STI, EnableWavefrontSize32)); 500 // VGPRBlocks is actual number of VGPR blocks minus 1. 501 return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1; 502 } 503 504 } // end namespace IsaInfo 505 506 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header, 507 const MCSubtargetInfo *STI) { 508 IsaVersion Version = getIsaVersion(STI->getCPU()); 509 510 memset(&Header, 0, sizeof(Header)); 511 512 Header.amd_kernel_code_version_major = 1; 513 Header.amd_kernel_code_version_minor = 2; 514 Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU 515 Header.amd_machine_version_major = Version.Major; 516 Header.amd_machine_version_minor = Version.Minor; 517 Header.amd_machine_version_stepping = Version.Stepping; 518 Header.kernel_code_entry_byte_offset = sizeof(Header); 519 Header.wavefront_size = 6; 520 521 // If the code object does not support indirect functions, then the value must 522 // be 0xffffffff. 523 Header.call_convention = -1; 524 525 // These alignment values are specified in powers of two, so alignment = 526 // 2^n. The minimum alignment is 2^4 = 16. 527 Header.kernarg_segment_alignment = 4; 528 Header.group_segment_alignment = 4; 529 Header.private_segment_alignment = 4; 530 531 if (Version.Major >= 10) { 532 if (STI->getFeatureBits().test(FeatureWavefrontSize32)) { 533 Header.wavefront_size = 5; 534 Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32; 535 } 536 Header.compute_pgm_resource_registers |= 537 S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) | 538 S_00B848_MEM_ORDERED(1); 539 } 540 } 541 542 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor( 543 const MCSubtargetInfo *STI) { 544 IsaVersion Version = getIsaVersion(STI->getCPU()); 545 546 amdhsa::kernel_descriptor_t KD; 547 memset(&KD, 0, sizeof(KD)); 548 549 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 550 amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64, 551 amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE); 552 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 553 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1); 554 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 555 amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1); 556 AMDHSA_BITS_SET(KD.compute_pgm_rsrc2, 557 amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1); 558 if (Version.Major >= 10) { 559 AMDHSA_BITS_SET(KD.kernel_code_properties, 560 amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32, 561 STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0); 562 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 563 amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE, 564 STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1); 565 AMDHSA_BITS_SET(KD.compute_pgm_rsrc1, 566 amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1); 567 } 568 return KD; 569 } 570 571 bool isGroupSegment(const GlobalValue *GV) { 572 return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 573 } 574 575 bool isGlobalSegment(const GlobalValue *GV) { 576 return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; 577 } 578 579 bool isReadOnlySegment(const GlobalValue *GV) { 580 unsigned AS = GV->getAddressSpace(); 581 return AS == AMDGPUAS::CONSTANT_ADDRESS || 582 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 583 } 584 585 bool shouldEmitConstantsToTextSection(const Triple &TT) { 586 return TT.getArch() == Triple::r600; 587 } 588 589 int getIntegerAttribute(const Function &F, StringRef Name, int Default) { 590 Attribute A = F.getFnAttribute(Name); 591 int Result = Default; 592 593 if (A.isStringAttribute()) { 594 StringRef Str = A.getValueAsString(); 595 if (Str.getAsInteger(0, Result)) { 596 LLVMContext &Ctx = F.getContext(); 597 Ctx.emitError("can't parse integer attribute " + Name); 598 } 599 } 600 601 return Result; 602 } 603 604 std::pair<int, int> getIntegerPairAttribute(const Function &F, 605 StringRef Name, 606 std::pair<int, int> Default, 607 bool OnlyFirstRequired) { 608 Attribute A = F.getFnAttribute(Name); 609 if (!A.isStringAttribute()) 610 return Default; 611 612 LLVMContext &Ctx = F.getContext(); 613 std::pair<int, int> Ints = Default; 614 std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(','); 615 if (Strs.first.trim().getAsInteger(0, Ints.first)) { 616 Ctx.emitError("can't parse first integer attribute " + Name); 617 return Default; 618 } 619 if (Strs.second.trim().getAsInteger(0, Ints.second)) { 620 if (!OnlyFirstRequired || !Strs.second.trim().empty()) { 621 Ctx.emitError("can't parse second integer attribute " + Name); 622 return Default; 623 } 624 } 625 626 return Ints; 627 } 628 629 unsigned getVmcntBitMask(const IsaVersion &Version) { 630 unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1; 631 if (Version.Major < 9) 632 return VmcntLo; 633 634 unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo(); 635 return VmcntLo | VmcntHi; 636 } 637 638 unsigned getExpcntBitMask(const IsaVersion &Version) { 639 return (1 << getExpcntBitWidth()) - 1; 640 } 641 642 unsigned getLgkmcntBitMask(const IsaVersion &Version) { 643 return (1 << getLgkmcntBitWidth(Version.Major)) - 1; 644 } 645 646 unsigned getWaitcntBitMask(const IsaVersion &Version) { 647 unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo()); 648 unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth()); 649 unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(), 650 getLgkmcntBitWidth(Version.Major)); 651 unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt; 652 if (Version.Major < 9) 653 return Waitcnt; 654 655 unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi()); 656 return Waitcnt | VmcntHi; 657 } 658 659 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) { 660 unsigned VmcntLo = 661 unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 662 if (Version.Major < 9) 663 return VmcntLo; 664 665 unsigned VmcntHi = 666 unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 667 VmcntHi <<= getVmcntBitWidthLo(); 668 return VmcntLo | VmcntHi; 669 } 670 671 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) { 672 return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 673 } 674 675 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) { 676 return unpackBits(Waitcnt, getLgkmcntBitShift(), 677 getLgkmcntBitWidth(Version.Major)); 678 } 679 680 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt, 681 unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) { 682 Vmcnt = decodeVmcnt(Version, Waitcnt); 683 Expcnt = decodeExpcnt(Version, Waitcnt); 684 Lgkmcnt = decodeLgkmcnt(Version, Waitcnt); 685 } 686 687 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) { 688 Waitcnt Decoded; 689 Decoded.VmCnt = decodeVmcnt(Version, Encoded); 690 Decoded.ExpCnt = decodeExpcnt(Version, Encoded); 691 Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded); 692 return Decoded; 693 } 694 695 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt, 696 unsigned Vmcnt) { 697 Waitcnt = 698 packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo()); 699 if (Version.Major < 9) 700 return Waitcnt; 701 702 Vmcnt >>= getVmcntBitWidthLo(); 703 return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi()); 704 } 705 706 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt, 707 unsigned Expcnt) { 708 return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth()); 709 } 710 711 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt, 712 unsigned Lgkmcnt) { 713 return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(), 714 getLgkmcntBitWidth(Version.Major)); 715 } 716 717 unsigned encodeWaitcnt(const IsaVersion &Version, 718 unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) { 719 unsigned Waitcnt = getWaitcntBitMask(Version); 720 Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt); 721 Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt); 722 Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt); 723 return Waitcnt; 724 } 725 726 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) { 727 return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt); 728 } 729 730 //===----------------------------------------------------------------------===// 731 // hwreg 732 //===----------------------------------------------------------------------===// 733 734 namespace Hwreg { 735 736 int64_t getHwregId(const StringRef Name) { 737 for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) { 738 if (IdSymbolic[Id] && Name == IdSymbolic[Id]) 739 return Id; 740 } 741 return ID_UNKNOWN_; 742 } 743 744 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) { 745 if (isSI(STI) || isCI(STI) || isVI(STI)) 746 return ID_SYMBOLIC_FIRST_GFX9_; 747 else if (isGFX9(STI)) 748 return ID_SYMBOLIC_FIRST_GFX10_; 749 else if (isGFX10(STI) && !isGFX10_BEncoding(STI)) 750 return ID_SYMBOLIC_FIRST_GFX1030_; 751 else 752 return ID_SYMBOLIC_LAST_; 753 } 754 755 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) { 756 return 757 ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) && 758 IdSymbolic[Id] && (Id != ID_XNACK_MASK || !AMDGPU::isGFX10_BEncoding(STI)); 759 } 760 761 bool isValidHwreg(int64_t Id) { 762 return 0 <= Id && isUInt<ID_WIDTH_>(Id); 763 } 764 765 bool isValidHwregOffset(int64_t Offset) { 766 return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset); 767 } 768 769 bool isValidHwregWidth(int64_t Width) { 770 return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1); 771 } 772 773 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) { 774 return (Id << ID_SHIFT_) | 775 (Offset << OFFSET_SHIFT_) | 776 ((Width - 1) << WIDTH_M1_SHIFT_); 777 } 778 779 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) { 780 return isValidHwreg(Id, STI) ? IdSymbolic[Id] : ""; 781 } 782 783 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) { 784 Id = (Val & ID_MASK_) >> ID_SHIFT_; 785 Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_; 786 Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1; 787 } 788 789 } // namespace Hwreg 790 791 //===----------------------------------------------------------------------===// 792 // MTBUF Format 793 //===----------------------------------------------------------------------===// 794 795 namespace MTBUFFormat { 796 797 int64_t getDfmt(const StringRef Name) { 798 for (int Id = DFMT_MIN; Id <= DFMT_MAX; ++Id) { 799 if (Name == DfmtSymbolic[Id]) 800 return Id; 801 } 802 return DFMT_UNDEF; 803 } 804 805 StringRef getDfmtName(unsigned Id) { 806 assert(Id <= DFMT_MAX); 807 return DfmtSymbolic[Id]; 808 } 809 810 static StringLiteral const *getNfmtLookupTable(const MCSubtargetInfo &STI) { 811 if (isSI(STI) || isCI(STI)) 812 return NfmtSymbolicSICI; 813 if (isVI(STI) || isGFX9(STI)) 814 return NfmtSymbolicVI; 815 return NfmtSymbolicGFX10; 816 } 817 818 int64_t getNfmt(const StringRef Name, const MCSubtargetInfo &STI) { 819 auto lookupTable = getNfmtLookupTable(STI); 820 for (int Id = NFMT_MIN; Id <= NFMT_MAX; ++Id) { 821 if (Name == lookupTable[Id]) 822 return Id; 823 } 824 return NFMT_UNDEF; 825 } 826 827 StringRef getNfmtName(unsigned Id, const MCSubtargetInfo &STI) { 828 assert(Id <= NFMT_MAX); 829 return getNfmtLookupTable(STI)[Id]; 830 } 831 832 bool isValidDfmtNfmt(unsigned Id, const MCSubtargetInfo &STI) { 833 unsigned Dfmt; 834 unsigned Nfmt; 835 decodeDfmtNfmt(Id, Dfmt, Nfmt); 836 return isValidNfmt(Nfmt, STI); 837 } 838 839 bool isValidNfmt(unsigned Id, const MCSubtargetInfo &STI) { 840 return !getNfmtName(Id, STI).empty(); 841 } 842 843 int64_t encodeDfmtNfmt(unsigned Dfmt, unsigned Nfmt) { 844 return (Dfmt << DFMT_SHIFT) | (Nfmt << NFMT_SHIFT); 845 } 846 847 void decodeDfmtNfmt(unsigned Format, unsigned &Dfmt, unsigned &Nfmt) { 848 Dfmt = (Format >> DFMT_SHIFT) & DFMT_MASK; 849 Nfmt = (Format >> NFMT_SHIFT) & NFMT_MASK; 850 } 851 852 int64_t getUnifiedFormat(const StringRef Name) { 853 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 854 if (Name == UfmtSymbolic[Id]) 855 return Id; 856 } 857 return UFMT_UNDEF; 858 } 859 860 StringRef getUnifiedFormatName(unsigned Id) { 861 return isValidUnifiedFormat(Id) ? UfmtSymbolic[Id] : ""; 862 } 863 864 bool isValidUnifiedFormat(unsigned Id) { 865 return Id <= UFMT_LAST; 866 } 867 868 int64_t convertDfmtNfmt2Ufmt(unsigned Dfmt, unsigned Nfmt) { 869 int64_t Fmt = encodeDfmtNfmt(Dfmt, Nfmt); 870 for (int Id = UFMT_FIRST; Id <= UFMT_LAST; ++Id) { 871 if (Fmt == DfmtNfmt2UFmt[Id]) 872 return Id; 873 } 874 return UFMT_UNDEF; 875 } 876 877 bool isValidFormatEncoding(unsigned Val, const MCSubtargetInfo &STI) { 878 return isGFX10Plus(STI) ? (Val <= UFMT_MAX) : (Val <= DFMT_NFMT_MAX); 879 } 880 881 unsigned getDefaultFormatEncoding(const MCSubtargetInfo &STI) { 882 if (isGFX10Plus(STI)) 883 return UFMT_DEFAULT; 884 return DFMT_NFMT_DEFAULT; 885 } 886 887 } // namespace MTBUFFormat 888 889 //===----------------------------------------------------------------------===// 890 // SendMsg 891 //===----------------------------------------------------------------------===// 892 893 namespace SendMsg { 894 895 int64_t getMsgId(const StringRef Name) { 896 for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) { 897 if (IdSymbolic[i] && Name == IdSymbolic[i]) 898 return i; 899 } 900 return ID_UNKNOWN_; 901 } 902 903 static bool isValidMsgId(int64_t MsgId) { 904 return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId]; 905 } 906 907 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) { 908 if (Strict) { 909 if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL) 910 return isGFX9Plus(STI); 911 else 912 return isValidMsgId(MsgId); 913 } else { 914 return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId); 915 } 916 } 917 918 StringRef getMsgName(int64_t MsgId) { 919 return isValidMsgId(MsgId)? IdSymbolic[MsgId] : ""; 920 } 921 922 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) { 923 const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic; 924 const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_; 925 const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_; 926 for (int i = F; i < L; ++i) { 927 if (Name == S[i]) { 928 return i; 929 } 930 } 931 return OP_UNKNOWN_; 932 } 933 934 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) { 935 936 if (!Strict) 937 return 0 <= OpId && isUInt<OP_WIDTH_>(OpId); 938 939 switch(MsgId) 940 { 941 case ID_GS: 942 return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP; 943 case ID_GS_DONE: 944 return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_; 945 case ID_SYSMSG: 946 return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_; 947 default: 948 return OpId == OP_NONE_; 949 } 950 } 951 952 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) { 953 assert(msgRequiresOp(MsgId)); 954 return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId]; 955 } 956 957 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) { 958 959 if (!Strict) 960 return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId); 961 962 switch(MsgId) 963 { 964 case ID_GS: 965 return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_; 966 case ID_GS_DONE: 967 return (OpId == OP_GS_NOP)? 968 (StreamId == STREAM_ID_NONE_) : 969 (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_); 970 default: 971 return StreamId == STREAM_ID_NONE_; 972 } 973 } 974 975 bool msgRequiresOp(int64_t MsgId) { 976 return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG; 977 } 978 979 bool msgSupportsStream(int64_t MsgId, int64_t OpId) { 980 return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP; 981 } 982 983 void decodeMsg(unsigned Val, 984 uint16_t &MsgId, 985 uint16_t &OpId, 986 uint16_t &StreamId) { 987 MsgId = Val & ID_MASK_; 988 OpId = (Val & OP_MASK_) >> OP_SHIFT_; 989 StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_; 990 } 991 992 uint64_t encodeMsg(uint64_t MsgId, 993 uint64_t OpId, 994 uint64_t StreamId) { 995 return (MsgId << ID_SHIFT_) | 996 (OpId << OP_SHIFT_) | 997 (StreamId << STREAM_ID_SHIFT_); 998 } 999 1000 } // namespace SendMsg 1001 1002 //===----------------------------------------------------------------------===// 1003 // 1004 //===----------------------------------------------------------------------===// 1005 1006 unsigned getInitialPSInputAddr(const Function &F) { 1007 return getIntegerAttribute(F, "InitialPSInputAddr", 0); 1008 } 1009 1010 bool isShader(CallingConv::ID cc) { 1011 switch(cc) { 1012 case CallingConv::AMDGPU_VS: 1013 case CallingConv::AMDGPU_LS: 1014 case CallingConv::AMDGPU_HS: 1015 case CallingConv::AMDGPU_ES: 1016 case CallingConv::AMDGPU_GS: 1017 case CallingConv::AMDGPU_PS: 1018 case CallingConv::AMDGPU_CS: 1019 return true; 1020 default: 1021 return false; 1022 } 1023 } 1024 1025 bool isGraphics(CallingConv::ID cc) { 1026 return isShader(cc) || cc == CallingConv::AMDGPU_Gfx; 1027 } 1028 1029 bool isCompute(CallingConv::ID cc) { 1030 return !isGraphics(cc) || cc == CallingConv::AMDGPU_CS; 1031 } 1032 1033 bool isEntryFunctionCC(CallingConv::ID CC) { 1034 switch (CC) { 1035 case CallingConv::AMDGPU_KERNEL: 1036 case CallingConv::SPIR_KERNEL: 1037 case CallingConv::AMDGPU_VS: 1038 case CallingConv::AMDGPU_GS: 1039 case CallingConv::AMDGPU_PS: 1040 case CallingConv::AMDGPU_CS: 1041 case CallingConv::AMDGPU_ES: 1042 case CallingConv::AMDGPU_HS: 1043 case CallingConv::AMDGPU_LS: 1044 return true; 1045 default: 1046 return false; 1047 } 1048 } 1049 1050 bool isModuleEntryFunctionCC(CallingConv::ID CC) { 1051 switch (CC) { 1052 case CallingConv::AMDGPU_Gfx: 1053 return true; 1054 default: 1055 return isEntryFunctionCC(CC); 1056 } 1057 } 1058 1059 bool hasXNACK(const MCSubtargetInfo &STI) { 1060 return STI.getFeatureBits()[AMDGPU::FeatureXNACK]; 1061 } 1062 1063 bool hasSRAMECC(const MCSubtargetInfo &STI) { 1064 return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC]; 1065 } 1066 1067 bool hasMIMG_R128(const MCSubtargetInfo &STI) { 1068 return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16]; 1069 } 1070 1071 bool hasGFX10A16(const MCSubtargetInfo &STI) { 1072 return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16]; 1073 } 1074 1075 bool hasG16(const MCSubtargetInfo &STI) { 1076 return STI.getFeatureBits()[AMDGPU::FeatureG16]; 1077 } 1078 1079 bool hasPackedD16(const MCSubtargetInfo &STI) { 1080 return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem]; 1081 } 1082 1083 bool isSI(const MCSubtargetInfo &STI) { 1084 return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands]; 1085 } 1086 1087 bool isCI(const MCSubtargetInfo &STI) { 1088 return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands]; 1089 } 1090 1091 bool isVI(const MCSubtargetInfo &STI) { 1092 return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands]; 1093 } 1094 1095 bool isGFX9(const MCSubtargetInfo &STI) { 1096 return STI.getFeatureBits()[AMDGPU::FeatureGFX9]; 1097 } 1098 1099 bool isGFX9Plus(const MCSubtargetInfo &STI) { 1100 return isGFX9(STI) || isGFX10Plus(STI); 1101 } 1102 1103 bool isGFX10(const MCSubtargetInfo &STI) { 1104 return STI.getFeatureBits()[AMDGPU::FeatureGFX10]; 1105 } 1106 1107 bool isGFX10Plus(const MCSubtargetInfo &STI) { return isGFX10(STI); } 1108 1109 bool isGCN3Encoding(const MCSubtargetInfo &STI) { 1110 return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding]; 1111 } 1112 1113 bool isGFX10_BEncoding(const MCSubtargetInfo &STI) { 1114 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_BEncoding]; 1115 } 1116 1117 bool hasGFX10_3Insts(const MCSubtargetInfo &STI) { 1118 return STI.getFeatureBits()[AMDGPU::FeatureGFX10_3Insts]; 1119 } 1120 1121 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) { 1122 const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID); 1123 const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0); 1124 return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) || 1125 Reg == AMDGPU::SCC; 1126 } 1127 1128 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) { 1129 for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) { 1130 if (*R == Reg1) return true; 1131 } 1132 return false; 1133 } 1134 1135 #define MAP_REG2REG \ 1136 using namespace AMDGPU; \ 1137 switch(Reg) { \ 1138 default: return Reg; \ 1139 CASE_CI_VI(FLAT_SCR) \ 1140 CASE_CI_VI(FLAT_SCR_LO) \ 1141 CASE_CI_VI(FLAT_SCR_HI) \ 1142 CASE_VI_GFX9PLUS(TTMP0) \ 1143 CASE_VI_GFX9PLUS(TTMP1) \ 1144 CASE_VI_GFX9PLUS(TTMP2) \ 1145 CASE_VI_GFX9PLUS(TTMP3) \ 1146 CASE_VI_GFX9PLUS(TTMP4) \ 1147 CASE_VI_GFX9PLUS(TTMP5) \ 1148 CASE_VI_GFX9PLUS(TTMP6) \ 1149 CASE_VI_GFX9PLUS(TTMP7) \ 1150 CASE_VI_GFX9PLUS(TTMP8) \ 1151 CASE_VI_GFX9PLUS(TTMP9) \ 1152 CASE_VI_GFX9PLUS(TTMP10) \ 1153 CASE_VI_GFX9PLUS(TTMP11) \ 1154 CASE_VI_GFX9PLUS(TTMP12) \ 1155 CASE_VI_GFX9PLUS(TTMP13) \ 1156 CASE_VI_GFX9PLUS(TTMP14) \ 1157 CASE_VI_GFX9PLUS(TTMP15) \ 1158 CASE_VI_GFX9PLUS(TTMP0_TTMP1) \ 1159 CASE_VI_GFX9PLUS(TTMP2_TTMP3) \ 1160 CASE_VI_GFX9PLUS(TTMP4_TTMP5) \ 1161 CASE_VI_GFX9PLUS(TTMP6_TTMP7) \ 1162 CASE_VI_GFX9PLUS(TTMP8_TTMP9) \ 1163 CASE_VI_GFX9PLUS(TTMP10_TTMP11) \ 1164 CASE_VI_GFX9PLUS(TTMP12_TTMP13) \ 1165 CASE_VI_GFX9PLUS(TTMP14_TTMP15) \ 1166 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3) \ 1167 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7) \ 1168 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11) \ 1169 CASE_VI_GFX9PLUS(TTMP12_TTMP13_TTMP14_TTMP15) \ 1170 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \ 1171 CASE_VI_GFX9PLUS(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \ 1172 CASE_VI_GFX9PLUS(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1173 CASE_VI_GFX9PLUS(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \ 1174 } 1175 1176 #define CASE_CI_VI(node) \ 1177 assert(!isSI(STI)); \ 1178 case node: return isCI(STI) ? node##_ci : node##_vi; 1179 1180 #define CASE_VI_GFX9PLUS(node) \ 1181 case node: return isGFX9Plus(STI) ? node##_gfx9plus : node##_vi; 1182 1183 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) { 1184 if (STI.getTargetTriple().getArch() == Triple::r600) 1185 return Reg; 1186 MAP_REG2REG 1187 } 1188 1189 #undef CASE_CI_VI 1190 #undef CASE_VI_GFX9PLUS 1191 1192 #define CASE_CI_VI(node) case node##_ci: case node##_vi: return node; 1193 #define CASE_VI_GFX9PLUS(node) case node##_vi: case node##_gfx9plus: return node; 1194 1195 unsigned mc2PseudoReg(unsigned Reg) { 1196 MAP_REG2REG 1197 } 1198 1199 #undef CASE_CI_VI 1200 #undef CASE_VI_GFX9PLUS 1201 #undef MAP_REG2REG 1202 1203 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1204 assert(OpNo < Desc.NumOperands); 1205 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1206 return OpType >= AMDGPU::OPERAND_SRC_FIRST && 1207 OpType <= AMDGPU::OPERAND_SRC_LAST; 1208 } 1209 1210 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1211 assert(OpNo < Desc.NumOperands); 1212 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1213 switch (OpType) { 1214 case AMDGPU::OPERAND_REG_IMM_FP32: 1215 case AMDGPU::OPERAND_REG_IMM_FP64: 1216 case AMDGPU::OPERAND_REG_IMM_FP16: 1217 case AMDGPU::OPERAND_REG_IMM_V2FP16: 1218 case AMDGPU::OPERAND_REG_IMM_V2INT16: 1219 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 1220 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 1221 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 1222 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 1223 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 1224 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 1225 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 1226 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: 1227 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 1228 return true; 1229 default: 1230 return false; 1231 } 1232 } 1233 1234 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) { 1235 assert(OpNo < Desc.NumOperands); 1236 unsigned OpType = Desc.OpInfo[OpNo].OperandType; 1237 return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST && 1238 OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST; 1239 } 1240 1241 // Avoid using MCRegisterClass::getSize, since that function will go away 1242 // (move from MC* level to Target* level). Return size in bits. 1243 unsigned getRegBitWidth(unsigned RCID) { 1244 switch (RCID) { 1245 case AMDGPU::VGPR_LO16RegClassID: 1246 case AMDGPU::VGPR_HI16RegClassID: 1247 case AMDGPU::SGPR_LO16RegClassID: 1248 case AMDGPU::AGPR_LO16RegClassID: 1249 return 16; 1250 case AMDGPU::SGPR_32RegClassID: 1251 case AMDGPU::VGPR_32RegClassID: 1252 case AMDGPU::VRegOrLds_32RegClassID: 1253 case AMDGPU::AGPR_32RegClassID: 1254 case AMDGPU::VS_32RegClassID: 1255 case AMDGPU::AV_32RegClassID: 1256 case AMDGPU::SReg_32RegClassID: 1257 case AMDGPU::SReg_32_XM0RegClassID: 1258 case AMDGPU::SRegOrLds_32RegClassID: 1259 return 32; 1260 case AMDGPU::SGPR_64RegClassID: 1261 case AMDGPU::VS_64RegClassID: 1262 case AMDGPU::AV_64RegClassID: 1263 case AMDGPU::SReg_64RegClassID: 1264 case AMDGPU::VReg_64RegClassID: 1265 case AMDGPU::AReg_64RegClassID: 1266 case AMDGPU::SReg_64_XEXECRegClassID: 1267 return 64; 1268 case AMDGPU::SGPR_96RegClassID: 1269 case AMDGPU::SReg_96RegClassID: 1270 case AMDGPU::VReg_96RegClassID: 1271 case AMDGPU::AReg_96RegClassID: 1272 return 96; 1273 case AMDGPU::SGPR_128RegClassID: 1274 case AMDGPU::SReg_128RegClassID: 1275 case AMDGPU::VReg_128RegClassID: 1276 case AMDGPU::AReg_128RegClassID: 1277 return 128; 1278 case AMDGPU::SGPR_160RegClassID: 1279 case AMDGPU::SReg_160RegClassID: 1280 case AMDGPU::VReg_160RegClassID: 1281 case AMDGPU::AReg_160RegClassID: 1282 return 160; 1283 case AMDGPU::SGPR_192RegClassID: 1284 case AMDGPU::SReg_192RegClassID: 1285 case AMDGPU::VReg_192RegClassID: 1286 case AMDGPU::AReg_192RegClassID: 1287 return 192; 1288 case AMDGPU::SGPR_256RegClassID: 1289 case AMDGPU::SReg_256RegClassID: 1290 case AMDGPU::VReg_256RegClassID: 1291 case AMDGPU::AReg_256RegClassID: 1292 return 256; 1293 case AMDGPU::SGPR_512RegClassID: 1294 case AMDGPU::SReg_512RegClassID: 1295 case AMDGPU::VReg_512RegClassID: 1296 case AMDGPU::AReg_512RegClassID: 1297 return 512; 1298 case AMDGPU::SGPR_1024RegClassID: 1299 case AMDGPU::SReg_1024RegClassID: 1300 case AMDGPU::VReg_1024RegClassID: 1301 case AMDGPU::AReg_1024RegClassID: 1302 return 1024; 1303 default: 1304 llvm_unreachable("Unexpected register class"); 1305 } 1306 } 1307 1308 unsigned getRegBitWidth(const MCRegisterClass &RC) { 1309 return getRegBitWidth(RC.getID()); 1310 } 1311 1312 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc, 1313 unsigned OpNo) { 1314 assert(OpNo < Desc.NumOperands); 1315 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1316 return getRegBitWidth(MRI->getRegClass(RCID)) / 8; 1317 } 1318 1319 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) { 1320 if (isInlinableIntLiteral(Literal)) 1321 return true; 1322 1323 uint64_t Val = static_cast<uint64_t>(Literal); 1324 return (Val == DoubleToBits(0.0)) || 1325 (Val == DoubleToBits(1.0)) || 1326 (Val == DoubleToBits(-1.0)) || 1327 (Val == DoubleToBits(0.5)) || 1328 (Val == DoubleToBits(-0.5)) || 1329 (Val == DoubleToBits(2.0)) || 1330 (Val == DoubleToBits(-2.0)) || 1331 (Val == DoubleToBits(4.0)) || 1332 (Val == DoubleToBits(-4.0)) || 1333 (Val == 0x3fc45f306dc9c882 && HasInv2Pi); 1334 } 1335 1336 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) { 1337 if (isInlinableIntLiteral(Literal)) 1338 return true; 1339 1340 // The actual type of the operand does not seem to matter as long 1341 // as the bits match one of the inline immediate values. For example: 1342 // 1343 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1344 // so it is a legal inline immediate. 1345 // 1346 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1347 // floating-point, so it is a legal inline immediate. 1348 1349 uint32_t Val = static_cast<uint32_t>(Literal); 1350 return (Val == FloatToBits(0.0f)) || 1351 (Val == FloatToBits(1.0f)) || 1352 (Val == FloatToBits(-1.0f)) || 1353 (Val == FloatToBits(0.5f)) || 1354 (Val == FloatToBits(-0.5f)) || 1355 (Val == FloatToBits(2.0f)) || 1356 (Val == FloatToBits(-2.0f)) || 1357 (Val == FloatToBits(4.0f)) || 1358 (Val == FloatToBits(-4.0f)) || 1359 (Val == 0x3e22f983 && HasInv2Pi); 1360 } 1361 1362 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) { 1363 if (!HasInv2Pi) 1364 return false; 1365 1366 if (isInlinableIntLiteral(Literal)) 1367 return true; 1368 1369 uint16_t Val = static_cast<uint16_t>(Literal); 1370 return Val == 0x3C00 || // 1.0 1371 Val == 0xBC00 || // -1.0 1372 Val == 0x3800 || // 0.5 1373 Val == 0xB800 || // -0.5 1374 Val == 0x4000 || // 2.0 1375 Val == 0xC000 || // -2.0 1376 Val == 0x4400 || // 4.0 1377 Val == 0xC400 || // -4.0 1378 Val == 0x3118; // 1/2pi 1379 } 1380 1381 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1382 assert(HasInv2Pi); 1383 1384 if (isInt<16>(Literal) || isUInt<16>(Literal)) { 1385 int16_t Trunc = static_cast<int16_t>(Literal); 1386 return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi); 1387 } 1388 if (!(Literal & 0xffff)) 1389 return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi); 1390 1391 int16_t Lo16 = static_cast<int16_t>(Literal); 1392 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1393 return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi); 1394 } 1395 1396 bool isInlinableIntLiteralV216(int32_t Literal) { 1397 int16_t Lo16 = static_cast<int16_t>(Literal); 1398 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1399 return isInlinableIntLiteral(Lo16); 1400 1401 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1402 if (!(Literal & 0xffff)) 1403 return isInlinableIntLiteral(Hi16); 1404 return Lo16 == Hi16 && isInlinableIntLiteral(Lo16); 1405 } 1406 1407 bool isFoldableLiteralV216(int32_t Literal, bool HasInv2Pi) { 1408 assert(HasInv2Pi); 1409 1410 int16_t Lo16 = static_cast<int16_t>(Literal); 1411 if (isInt<16>(Literal) || isUInt<16>(Literal)) 1412 return true; 1413 1414 int16_t Hi16 = static_cast<int16_t>(Literal >> 16); 1415 if (!(Literal & 0xffff)) 1416 return true; 1417 return Lo16 == Hi16; 1418 } 1419 1420 bool isArgPassedInSGPR(const Argument *A) { 1421 const Function *F = A->getParent(); 1422 1423 // Arguments to compute shaders are never a source of divergence. 1424 CallingConv::ID CC = F->getCallingConv(); 1425 switch (CC) { 1426 case CallingConv::AMDGPU_KERNEL: 1427 case CallingConv::SPIR_KERNEL: 1428 return true; 1429 case CallingConv::AMDGPU_VS: 1430 case CallingConv::AMDGPU_LS: 1431 case CallingConv::AMDGPU_HS: 1432 case CallingConv::AMDGPU_ES: 1433 case CallingConv::AMDGPU_GS: 1434 case CallingConv::AMDGPU_PS: 1435 case CallingConv::AMDGPU_CS: 1436 case CallingConv::AMDGPU_Gfx: 1437 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 1438 // Everything else is in VGPRs. 1439 return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) || 1440 F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal); 1441 default: 1442 // TODO: Should calls support inreg for SGPR inputs? 1443 return false; 1444 } 1445 } 1446 1447 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) { 1448 return isGCN3Encoding(ST) || isGFX10Plus(ST); 1449 } 1450 1451 static bool hasSMRDSignedImmOffset(const MCSubtargetInfo &ST) { 1452 return isGFX9Plus(ST); 1453 } 1454 1455 bool isLegalSMRDEncodedUnsignedOffset(const MCSubtargetInfo &ST, 1456 int64_t EncodedOffset) { 1457 return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset) 1458 : isUInt<8>(EncodedOffset); 1459 } 1460 1461 bool isLegalSMRDEncodedSignedOffset(const MCSubtargetInfo &ST, 1462 int64_t EncodedOffset, 1463 bool IsBuffer) { 1464 return !IsBuffer && 1465 hasSMRDSignedImmOffset(ST) && 1466 isInt<21>(EncodedOffset); 1467 } 1468 1469 static bool isDwordAligned(uint64_t ByteOffset) { 1470 return (ByteOffset & 3) == 0; 1471 } 1472 1473 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST, 1474 uint64_t ByteOffset) { 1475 if (hasSMEMByteOffset(ST)) 1476 return ByteOffset; 1477 1478 assert(isDwordAligned(ByteOffset)); 1479 return ByteOffset >> 2; 1480 } 1481 1482 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST, 1483 int64_t ByteOffset, bool IsBuffer) { 1484 // The signed version is always a byte offset. 1485 if (!IsBuffer && hasSMRDSignedImmOffset(ST)) { 1486 assert(hasSMEMByteOffset(ST)); 1487 return isInt<20>(ByteOffset) ? Optional<int64_t>(ByteOffset) : None; 1488 } 1489 1490 if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST)) 1491 return None; 1492 1493 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1494 return isLegalSMRDEncodedUnsignedOffset(ST, EncodedOffset) 1495 ? Optional<int64_t>(EncodedOffset) 1496 : None; 1497 } 1498 1499 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST, 1500 int64_t ByteOffset) { 1501 if (!isCI(ST) || !isDwordAligned(ByteOffset)) 1502 return None; 1503 1504 int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset); 1505 return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None; 1506 } 1507 1508 unsigned getNumFlatOffsetBits(const MCSubtargetInfo &ST, bool Signed) { 1509 // Address offset is 12-bit signed for GFX10, 13-bit for GFX9. 1510 if (AMDGPU::isGFX10(ST)) 1511 return Signed ? 12 : 11; 1512 1513 return Signed ? 13 : 12; 1514 } 1515 1516 // Given Imm, split it into the values to put into the SOffset and ImmOffset 1517 // fields in an MUBUF instruction. Return false if it is not possible (due to a 1518 // hardware bug needing a workaround). 1519 // 1520 // The required alignment ensures that individual address components remain 1521 // aligned if they are aligned to begin with. It also ensures that additional 1522 // offsets within the given alignment can be added to the resulting ImmOffset. 1523 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset, 1524 const GCNSubtarget *Subtarget, Align Alignment) { 1525 const uint32_t MaxImm = alignDown(4095, Alignment.value()); 1526 uint32_t Overflow = 0; 1527 1528 if (Imm > MaxImm) { 1529 if (Imm <= MaxImm + 64) { 1530 // Use an SOffset inline constant for 4..64 1531 Overflow = Imm - MaxImm; 1532 Imm = MaxImm; 1533 } else { 1534 // Try to keep the same value in SOffset for adjacent loads, so that 1535 // the corresponding register contents can be re-used. 1536 // 1537 // Load values with all low-bits (except for alignment bits) set into 1538 // SOffset, so that a larger range of values can be covered using 1539 // s_movk_i32. 1540 // 1541 // Atomic operations fail to work correctly when individual address 1542 // components are unaligned, even if their sum is aligned. 1543 uint32_t High = (Imm + Alignment.value()) & ~4095; 1544 uint32_t Low = (Imm + Alignment.value()) & 4095; 1545 Imm = Low; 1546 Overflow = High - Alignment.value(); 1547 } 1548 } 1549 1550 // There is a hardware bug in SI and CI which prevents address clamping in 1551 // MUBUF instructions from working correctly with SOffsets. The immediate 1552 // offset is unaffected. 1553 if (Overflow > 0 && 1554 Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1555 return false; 1556 1557 ImmOffset = Imm; 1558 SOffset = Overflow; 1559 return true; 1560 } 1561 1562 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F) { 1563 *this = getDefaultForCallingConv(F.getCallingConv()); 1564 1565 StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString(); 1566 if (!IEEEAttr.empty()) 1567 IEEE = IEEEAttr == "true"; 1568 1569 StringRef DX10ClampAttr 1570 = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString(); 1571 if (!DX10ClampAttr.empty()) 1572 DX10Clamp = DX10ClampAttr == "true"; 1573 1574 StringRef DenormF32Attr = F.getFnAttribute("denormal-fp-math-f32").getValueAsString(); 1575 if (!DenormF32Attr.empty()) { 1576 DenormalMode DenormMode = parseDenormalFPAttribute(DenormF32Attr); 1577 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1578 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1579 } 1580 1581 StringRef DenormAttr = F.getFnAttribute("denormal-fp-math").getValueAsString(); 1582 if (!DenormAttr.empty()) { 1583 DenormalMode DenormMode = parseDenormalFPAttribute(DenormAttr); 1584 1585 if (DenormF32Attr.empty()) { 1586 FP32InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1587 FP32OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1588 } 1589 1590 FP64FP16InputDenormals = DenormMode.Input == DenormalMode::IEEE; 1591 FP64FP16OutputDenormals = DenormMode.Output == DenormalMode::IEEE; 1592 } 1593 } 1594 1595 namespace { 1596 1597 struct SourceOfDivergence { 1598 unsigned Intr; 1599 }; 1600 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr); 1601 1602 #define GET_SourcesOfDivergence_IMPL 1603 #define GET_Gfx9BufferFormat_IMPL 1604 #define GET_Gfx10PlusBufferFormat_IMPL 1605 #include "AMDGPUGenSearchableTables.inc" 1606 1607 } // end anonymous namespace 1608 1609 bool isIntrinsicSourceOfDivergence(unsigned IntrID) { 1610 return lookupSourceOfDivergence(IntrID); 1611 } 1612 1613 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp, 1614 uint8_t NumComponents, 1615 uint8_t NumFormat, 1616 const MCSubtargetInfo &STI) { 1617 return isGFX10Plus(STI) 1618 ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents, 1619 NumFormat) 1620 : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat); 1621 } 1622 1623 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format, 1624 const MCSubtargetInfo &STI) { 1625 return isGFX10Plus(STI) ? getGfx10PlusBufferFormatInfo(Format) 1626 : getGfx9BufferFormatInfo(Format); 1627 } 1628 1629 } // namespace AMDGPU 1630 } // namespace llvm 1631