1 //===- AMDGPUBaseInfo.cpp - AMDGPU Base encoding information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "AMDGPUBaseInfo.h"
10 #include "AMDGPU.h"
11 #include "AMDGPUAsmUtils.h"
12 #include "AMDGPUTargetTransformInfo.h"
13 #include "SIDefines.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/IR/IntrinsicsR600.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCInstrDesc.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/MC/MCSectionELF.h"
32 #include "llvm/MC/MCSubtargetInfo.h"
33 #include "llvm/MC/SubtargetFeature.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <cstring>
41 #include <utility>
42 
43 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
44 
45 #define GET_INSTRINFO_NAMED_OPS
46 #define GET_INSTRMAP_INFO
47 #include "AMDGPUGenInstrInfo.inc"
48 #undef GET_INSTRMAP_INFO
49 #undef GET_INSTRINFO_NAMED_OPS
50 
51 namespace {
52 
53 /// \returns Bit mask for given bit \p Shift and bit \p Width.
54 unsigned getBitMask(unsigned Shift, unsigned Width) {
55   return ((1 << Width) - 1) << Shift;
56 }
57 
58 /// Packs \p Src into \p Dst for given bit \p Shift and bit \p Width.
59 ///
60 /// \returns Packed \p Dst.
61 unsigned packBits(unsigned Src, unsigned Dst, unsigned Shift, unsigned Width) {
62   Dst &= ~(1 << Shift) & ~getBitMask(Shift, Width);
63   Dst |= (Src << Shift) & getBitMask(Shift, Width);
64   return Dst;
65 }
66 
67 /// Unpacks bits from \p Src for given bit \p Shift and bit \p Width.
68 ///
69 /// \returns Unpacked bits.
70 unsigned unpackBits(unsigned Src, unsigned Shift, unsigned Width) {
71   return (Src & getBitMask(Shift, Width)) >> Shift;
72 }
73 
74 /// \returns Vmcnt bit shift (lower bits).
75 unsigned getVmcntBitShiftLo() { return 0; }
76 
77 /// \returns Vmcnt bit width (lower bits).
78 unsigned getVmcntBitWidthLo() { return 4; }
79 
80 /// \returns Expcnt bit shift.
81 unsigned getExpcntBitShift() { return 4; }
82 
83 /// \returns Expcnt bit width.
84 unsigned getExpcntBitWidth() { return 3; }
85 
86 /// \returns Lgkmcnt bit shift.
87 unsigned getLgkmcntBitShift() { return 8; }
88 
89 /// \returns Lgkmcnt bit width.
90 unsigned getLgkmcntBitWidth(unsigned VersionMajor) {
91   return (VersionMajor >= 10) ? 6 : 4;
92 }
93 
94 /// \returns Vmcnt bit shift (higher bits).
95 unsigned getVmcntBitShiftHi() { return 14; }
96 
97 /// \returns Vmcnt bit width (higher bits).
98 unsigned getVmcntBitWidthHi() { return 2; }
99 
100 } // end namespace anonymous
101 
102 namespace llvm {
103 
104 namespace AMDGPU {
105 
106 #define GET_MIMGBaseOpcodesTable_IMPL
107 #define GET_MIMGDimInfoTable_IMPL
108 #define GET_MIMGInfoTable_IMPL
109 #define GET_MIMGLZMappingTable_IMPL
110 #define GET_MIMGMIPMappingTable_IMPL
111 #include "AMDGPUGenSearchableTables.inc"
112 
113 int getMIMGOpcode(unsigned BaseOpcode, unsigned MIMGEncoding,
114                   unsigned VDataDwords, unsigned VAddrDwords) {
115   const MIMGInfo *Info = getMIMGOpcodeHelper(BaseOpcode, MIMGEncoding,
116                                              VDataDwords, VAddrDwords);
117   return Info ? Info->Opcode : -1;
118 }
119 
120 const MIMGBaseOpcodeInfo *getMIMGBaseOpcode(unsigned Opc) {
121   const MIMGInfo *Info = getMIMGInfo(Opc);
122   return Info ? getMIMGBaseOpcodeInfo(Info->BaseOpcode) : nullptr;
123 }
124 
125 int getMaskedMIMGOp(unsigned Opc, unsigned NewChannels) {
126   const MIMGInfo *OrigInfo = getMIMGInfo(Opc);
127   const MIMGInfo *NewInfo =
128       getMIMGOpcodeHelper(OrigInfo->BaseOpcode, OrigInfo->MIMGEncoding,
129                           NewChannels, OrigInfo->VAddrDwords);
130   return NewInfo ? NewInfo->Opcode : -1;
131 }
132 
133 struct MUBUFInfo {
134   uint16_t Opcode;
135   uint16_t BaseOpcode;
136   uint8_t elements;
137   bool has_vaddr;
138   bool has_srsrc;
139   bool has_soffset;
140 };
141 
142 struct MTBUFInfo {
143   uint16_t Opcode;
144   uint16_t BaseOpcode;
145   uint8_t elements;
146   bool has_vaddr;
147   bool has_srsrc;
148   bool has_soffset;
149 };
150 
151 #define GET_MTBUFInfoTable_DECL
152 #define GET_MTBUFInfoTable_IMPL
153 #define GET_MUBUFInfoTable_DECL
154 #define GET_MUBUFInfoTable_IMPL
155 #include "AMDGPUGenSearchableTables.inc"
156 
157 int getMTBUFBaseOpcode(unsigned Opc) {
158   const MTBUFInfo *Info = getMTBUFInfoFromOpcode(Opc);
159   return Info ? Info->BaseOpcode : -1;
160 }
161 
162 int getMTBUFOpcode(unsigned BaseOpc, unsigned Elements) {
163   const MTBUFInfo *Info = getMTBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
164   return Info ? Info->Opcode : -1;
165 }
166 
167 int getMTBUFElements(unsigned Opc) {
168   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
169   return Info ? Info->elements : 0;
170 }
171 
172 bool getMTBUFHasVAddr(unsigned Opc) {
173   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
174   return Info ? Info->has_vaddr : false;
175 }
176 
177 bool getMTBUFHasSrsrc(unsigned Opc) {
178   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
179   return Info ? Info->has_srsrc : false;
180 }
181 
182 bool getMTBUFHasSoffset(unsigned Opc) {
183   const MTBUFInfo *Info = getMTBUFOpcodeHelper(Opc);
184   return Info ? Info->has_soffset : false;
185 }
186 
187 int getMUBUFBaseOpcode(unsigned Opc) {
188   const MUBUFInfo *Info = getMUBUFInfoFromOpcode(Opc);
189   return Info ? Info->BaseOpcode : -1;
190 }
191 
192 int getMUBUFOpcode(unsigned BaseOpc, unsigned Elements) {
193   const MUBUFInfo *Info = getMUBUFInfoFromBaseOpcodeAndElements(BaseOpc, Elements);
194   return Info ? Info->Opcode : -1;
195 }
196 
197 int getMUBUFElements(unsigned Opc) {
198   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
199   return Info ? Info->elements : 0;
200 }
201 
202 bool getMUBUFHasVAddr(unsigned Opc) {
203   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
204   return Info ? Info->has_vaddr : false;
205 }
206 
207 bool getMUBUFHasSrsrc(unsigned Opc) {
208   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
209   return Info ? Info->has_srsrc : false;
210 }
211 
212 bool getMUBUFHasSoffset(unsigned Opc) {
213   const MUBUFInfo *Info = getMUBUFOpcodeHelper(Opc);
214   return Info ? Info->has_soffset : false;
215 }
216 
217 // Wrapper for Tablegen'd function.  enum Subtarget is not defined in any
218 // header files, so we need to wrap it in a function that takes unsigned
219 // instead.
220 int getMCOpcode(uint16_t Opcode, unsigned Gen) {
221   return getMCOpcodeGen(Opcode, static_cast<Subtarget>(Gen));
222 }
223 
224 namespace IsaInfo {
225 
226 void streamIsaVersion(const MCSubtargetInfo *STI, raw_ostream &Stream) {
227   auto TargetTriple = STI->getTargetTriple();
228   auto Version = getIsaVersion(STI->getCPU());
229 
230   Stream << TargetTriple.getArchName() << '-'
231          << TargetTriple.getVendorName() << '-'
232          << TargetTriple.getOSName() << '-'
233          << TargetTriple.getEnvironmentName() << '-'
234          << "gfx"
235          << Version.Major
236          << Version.Minor
237          << Version.Stepping;
238 
239   if (hasXNACK(*STI))
240     Stream << "+xnack";
241   if (hasSRAMECC(*STI))
242     Stream << "+sram-ecc";
243 
244   Stream.flush();
245 }
246 
247 bool hasCodeObjectV3(const MCSubtargetInfo *STI) {
248   return STI->getTargetTriple().getOS() == Triple::AMDHSA &&
249              STI->getFeatureBits().test(FeatureCodeObjectV3);
250 }
251 
252 unsigned getWavefrontSize(const MCSubtargetInfo *STI) {
253   if (STI->getFeatureBits().test(FeatureWavefrontSize16))
254     return 16;
255   if (STI->getFeatureBits().test(FeatureWavefrontSize32))
256     return 32;
257 
258   return 64;
259 }
260 
261 unsigned getLocalMemorySize(const MCSubtargetInfo *STI) {
262   if (STI->getFeatureBits().test(FeatureLocalMemorySize32768))
263     return 32768;
264   if (STI->getFeatureBits().test(FeatureLocalMemorySize65536))
265     return 65536;
266 
267   return 0;
268 }
269 
270 unsigned getEUsPerCU(const MCSubtargetInfo *STI) {
271   return 4;
272 }
273 
274 unsigned getMaxWorkGroupsPerCU(const MCSubtargetInfo *STI,
275                                unsigned FlatWorkGroupSize) {
276   assert(FlatWorkGroupSize != 0);
277   if (STI->getTargetTriple().getArch() != Triple::amdgcn)
278     return 8;
279   unsigned N = getWavesPerWorkGroup(STI, FlatWorkGroupSize);
280   if (N == 1)
281     return 40;
282   N = 40 / N;
283   return std::min(N, 16u);
284 }
285 
286 unsigned getMinWavesPerEU(const MCSubtargetInfo *STI) {
287   return 1;
288 }
289 
290 unsigned getMaxWavesPerEU(const MCSubtargetInfo *STI) {
291   // FIXME: Need to take scratch memory into account.
292   if (!isGFX10(*STI))
293     return 10;
294   return 20;
295 }
296 
297 unsigned getWavesPerEUForWorkGroup(const MCSubtargetInfo *STI,
298                                    unsigned FlatWorkGroupSize) {
299   return divideCeil(getWavesPerWorkGroup(STI, FlatWorkGroupSize),
300                     getEUsPerCU(STI));
301 }
302 
303 unsigned getMinFlatWorkGroupSize(const MCSubtargetInfo *STI) {
304   return 1;
305 }
306 
307 unsigned getMaxFlatWorkGroupSize(const MCSubtargetInfo *STI) {
308   // Some subtargets allow encoding 2048, but this isn't tested or supported.
309   return 1024;
310 }
311 
312 unsigned getWavesPerWorkGroup(const MCSubtargetInfo *STI,
313                               unsigned FlatWorkGroupSize) {
314   return divideCeil(FlatWorkGroupSize, getWavefrontSize(STI));
315 }
316 
317 unsigned getSGPRAllocGranule(const MCSubtargetInfo *STI) {
318   IsaVersion Version = getIsaVersion(STI->getCPU());
319   if (Version.Major >= 10)
320     return getAddressableNumSGPRs(STI);
321   if (Version.Major >= 8)
322     return 16;
323   return 8;
324 }
325 
326 unsigned getSGPREncodingGranule(const MCSubtargetInfo *STI) {
327   return 8;
328 }
329 
330 unsigned getTotalNumSGPRs(const MCSubtargetInfo *STI) {
331   IsaVersion Version = getIsaVersion(STI->getCPU());
332   if (Version.Major >= 8)
333     return 800;
334   return 512;
335 }
336 
337 unsigned getAddressableNumSGPRs(const MCSubtargetInfo *STI) {
338   if (STI->getFeatureBits().test(FeatureSGPRInitBug))
339     return FIXED_NUM_SGPRS_FOR_INIT_BUG;
340 
341   IsaVersion Version = getIsaVersion(STI->getCPU());
342   if (Version.Major >= 10)
343     return 106;
344   if (Version.Major >= 8)
345     return 102;
346   return 104;
347 }
348 
349 unsigned getMinNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
350   assert(WavesPerEU != 0);
351 
352   IsaVersion Version = getIsaVersion(STI->getCPU());
353   if (Version.Major >= 10)
354     return 0;
355 
356   if (WavesPerEU >= getMaxWavesPerEU(STI))
357     return 0;
358 
359   unsigned MinNumSGPRs = getTotalNumSGPRs(STI) / (WavesPerEU + 1);
360   if (STI->getFeatureBits().test(FeatureTrapHandler))
361     MinNumSGPRs -= std::min(MinNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
362   MinNumSGPRs = alignDown(MinNumSGPRs, getSGPRAllocGranule(STI)) + 1;
363   return std::min(MinNumSGPRs, getAddressableNumSGPRs(STI));
364 }
365 
366 unsigned getMaxNumSGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU,
367                         bool Addressable) {
368   assert(WavesPerEU != 0);
369 
370   unsigned AddressableNumSGPRs = getAddressableNumSGPRs(STI);
371   IsaVersion Version = getIsaVersion(STI->getCPU());
372   if (Version.Major >= 10)
373     return Addressable ? AddressableNumSGPRs : 108;
374   if (Version.Major >= 8 && !Addressable)
375     AddressableNumSGPRs = 112;
376   unsigned MaxNumSGPRs = getTotalNumSGPRs(STI) / WavesPerEU;
377   if (STI->getFeatureBits().test(FeatureTrapHandler))
378     MaxNumSGPRs -= std::min(MaxNumSGPRs, (unsigned)TRAP_NUM_SGPRS);
379   MaxNumSGPRs = alignDown(MaxNumSGPRs, getSGPRAllocGranule(STI));
380   return std::min(MaxNumSGPRs, AddressableNumSGPRs);
381 }
382 
383 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
384                           bool FlatScrUsed, bool XNACKUsed) {
385   unsigned ExtraSGPRs = 0;
386   if (VCCUsed)
387     ExtraSGPRs = 2;
388 
389   IsaVersion Version = getIsaVersion(STI->getCPU());
390   if (Version.Major >= 10)
391     return ExtraSGPRs;
392 
393   if (Version.Major < 8) {
394     if (FlatScrUsed)
395       ExtraSGPRs = 4;
396   } else {
397     if (XNACKUsed)
398       ExtraSGPRs = 4;
399 
400     if (FlatScrUsed)
401       ExtraSGPRs = 6;
402   }
403 
404   return ExtraSGPRs;
405 }
406 
407 unsigned getNumExtraSGPRs(const MCSubtargetInfo *STI, bool VCCUsed,
408                           bool FlatScrUsed) {
409   return getNumExtraSGPRs(STI, VCCUsed, FlatScrUsed,
410                           STI->getFeatureBits().test(AMDGPU::FeatureXNACK));
411 }
412 
413 unsigned getNumSGPRBlocks(const MCSubtargetInfo *STI, unsigned NumSGPRs) {
414   NumSGPRs = alignTo(std::max(1u, NumSGPRs), getSGPREncodingGranule(STI));
415   // SGPRBlocks is actual number of SGPR blocks minus 1.
416   return NumSGPRs / getSGPREncodingGranule(STI) - 1;
417 }
418 
419 unsigned getVGPRAllocGranule(const MCSubtargetInfo *STI,
420                              Optional<bool> EnableWavefrontSize32) {
421   bool IsWave32 = EnableWavefrontSize32 ?
422       *EnableWavefrontSize32 :
423       STI->getFeatureBits().test(FeatureWavefrontSize32);
424   return IsWave32 ? 8 : 4;
425 }
426 
427 unsigned getVGPREncodingGranule(const MCSubtargetInfo *STI,
428                                 Optional<bool> EnableWavefrontSize32) {
429   return getVGPRAllocGranule(STI, EnableWavefrontSize32);
430 }
431 
432 unsigned getTotalNumVGPRs(const MCSubtargetInfo *STI) {
433   if (!isGFX10(*STI))
434     return 256;
435   return STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1024 : 512;
436 }
437 
438 unsigned getAddressableNumVGPRs(const MCSubtargetInfo *STI) {
439   return 256;
440 }
441 
442 unsigned getMinNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
443   assert(WavesPerEU != 0);
444 
445   if (WavesPerEU >= getMaxWavesPerEU(STI))
446     return 0;
447   unsigned MinNumVGPRs =
448       alignDown(getTotalNumVGPRs(STI) / (WavesPerEU + 1),
449                 getVGPRAllocGranule(STI)) + 1;
450   return std::min(MinNumVGPRs, getAddressableNumVGPRs(STI));
451 }
452 
453 unsigned getMaxNumVGPRs(const MCSubtargetInfo *STI, unsigned WavesPerEU) {
454   assert(WavesPerEU != 0);
455 
456   unsigned MaxNumVGPRs = alignDown(getTotalNumVGPRs(STI) / WavesPerEU,
457                                    getVGPRAllocGranule(STI));
458   unsigned AddressableNumVGPRs = getAddressableNumVGPRs(STI);
459   return std::min(MaxNumVGPRs, AddressableNumVGPRs);
460 }
461 
462 unsigned getNumVGPRBlocks(const MCSubtargetInfo *STI, unsigned NumVGPRs,
463                           Optional<bool> EnableWavefrontSize32) {
464   NumVGPRs = alignTo(std::max(1u, NumVGPRs),
465                      getVGPREncodingGranule(STI, EnableWavefrontSize32));
466   // VGPRBlocks is actual number of VGPR blocks minus 1.
467   return NumVGPRs / getVGPREncodingGranule(STI, EnableWavefrontSize32) - 1;
468 }
469 
470 } // end namespace IsaInfo
471 
472 void initDefaultAMDKernelCodeT(amd_kernel_code_t &Header,
473                                const MCSubtargetInfo *STI) {
474   IsaVersion Version = getIsaVersion(STI->getCPU());
475 
476   memset(&Header, 0, sizeof(Header));
477 
478   Header.amd_kernel_code_version_major = 1;
479   Header.amd_kernel_code_version_minor = 2;
480   Header.amd_machine_kind = 1; // AMD_MACHINE_KIND_AMDGPU
481   Header.amd_machine_version_major = Version.Major;
482   Header.amd_machine_version_minor = Version.Minor;
483   Header.amd_machine_version_stepping = Version.Stepping;
484   Header.kernel_code_entry_byte_offset = sizeof(Header);
485   Header.wavefront_size = 6;
486 
487   // If the code object does not support indirect functions, then the value must
488   // be 0xffffffff.
489   Header.call_convention = -1;
490 
491   // These alignment values are specified in powers of two, so alignment =
492   // 2^n.  The minimum alignment is 2^4 = 16.
493   Header.kernarg_segment_alignment = 4;
494   Header.group_segment_alignment = 4;
495   Header.private_segment_alignment = 4;
496 
497   if (Version.Major >= 10) {
498     if (STI->getFeatureBits().test(FeatureWavefrontSize32)) {
499       Header.wavefront_size = 5;
500       Header.code_properties |= AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32;
501     }
502     Header.compute_pgm_resource_registers |=
503       S_00B848_WGP_MODE(STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1) |
504       S_00B848_MEM_ORDERED(1);
505   }
506 }
507 
508 amdhsa::kernel_descriptor_t getDefaultAmdhsaKernelDescriptor(
509     const MCSubtargetInfo *STI) {
510   IsaVersion Version = getIsaVersion(STI->getCPU());
511 
512   amdhsa::kernel_descriptor_t KD;
513   memset(&KD, 0, sizeof(KD));
514 
515   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
516                   amdhsa::COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64,
517                   amdhsa::FLOAT_DENORM_MODE_FLUSH_NONE);
518   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
519                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP, 1);
520   AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
521                   amdhsa::COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE, 1);
522   AMDHSA_BITS_SET(KD.compute_pgm_rsrc2,
523                   amdhsa::COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X, 1);
524   if (Version.Major >= 10) {
525     AMDHSA_BITS_SET(KD.kernel_code_properties,
526                     amdhsa::KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32,
527                     STI->getFeatureBits().test(FeatureWavefrontSize32) ? 1 : 0);
528     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
529                     amdhsa::COMPUTE_PGM_RSRC1_WGP_MODE,
530                     STI->getFeatureBits().test(FeatureCuMode) ? 0 : 1);
531     AMDHSA_BITS_SET(KD.compute_pgm_rsrc1,
532                     amdhsa::COMPUTE_PGM_RSRC1_MEM_ORDERED, 1);
533   }
534   return KD;
535 }
536 
537 bool isGroupSegment(const GlobalValue *GV) {
538   return GV->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
539 }
540 
541 bool isGlobalSegment(const GlobalValue *GV) {
542   return GV->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS;
543 }
544 
545 bool isReadOnlySegment(const GlobalValue *GV) {
546   unsigned AS = GV->getAddressSpace();
547   return AS == AMDGPUAS::CONSTANT_ADDRESS ||
548          AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
549 }
550 
551 bool shouldEmitConstantsToTextSection(const Triple &TT) {
552   return TT.getOS() == Triple::AMDPAL || TT.getArch() == Triple::r600;
553 }
554 
555 int getIntegerAttribute(const Function &F, StringRef Name, int Default) {
556   Attribute A = F.getFnAttribute(Name);
557   int Result = Default;
558 
559   if (A.isStringAttribute()) {
560     StringRef Str = A.getValueAsString();
561     if (Str.getAsInteger(0, Result)) {
562       LLVMContext &Ctx = F.getContext();
563       Ctx.emitError("can't parse integer attribute " + Name);
564     }
565   }
566 
567   return Result;
568 }
569 
570 std::pair<int, int> getIntegerPairAttribute(const Function &F,
571                                             StringRef Name,
572                                             std::pair<int, int> Default,
573                                             bool OnlyFirstRequired) {
574   Attribute A = F.getFnAttribute(Name);
575   if (!A.isStringAttribute())
576     return Default;
577 
578   LLVMContext &Ctx = F.getContext();
579   std::pair<int, int> Ints = Default;
580   std::pair<StringRef, StringRef> Strs = A.getValueAsString().split(',');
581   if (Strs.first.trim().getAsInteger(0, Ints.first)) {
582     Ctx.emitError("can't parse first integer attribute " + Name);
583     return Default;
584   }
585   if (Strs.second.trim().getAsInteger(0, Ints.second)) {
586     if (!OnlyFirstRequired || !Strs.second.trim().empty()) {
587       Ctx.emitError("can't parse second integer attribute " + Name);
588       return Default;
589     }
590   }
591 
592   return Ints;
593 }
594 
595 unsigned getVmcntBitMask(const IsaVersion &Version) {
596   unsigned VmcntLo = (1 << getVmcntBitWidthLo()) - 1;
597   if (Version.Major < 9)
598     return VmcntLo;
599 
600   unsigned VmcntHi = ((1 << getVmcntBitWidthHi()) - 1) << getVmcntBitWidthLo();
601   return VmcntLo | VmcntHi;
602 }
603 
604 unsigned getExpcntBitMask(const IsaVersion &Version) {
605   return (1 << getExpcntBitWidth()) - 1;
606 }
607 
608 unsigned getLgkmcntBitMask(const IsaVersion &Version) {
609   return (1 << getLgkmcntBitWidth(Version.Major)) - 1;
610 }
611 
612 unsigned getWaitcntBitMask(const IsaVersion &Version) {
613   unsigned VmcntLo = getBitMask(getVmcntBitShiftLo(), getVmcntBitWidthLo());
614   unsigned Expcnt = getBitMask(getExpcntBitShift(), getExpcntBitWidth());
615   unsigned Lgkmcnt = getBitMask(getLgkmcntBitShift(),
616                                 getLgkmcntBitWidth(Version.Major));
617   unsigned Waitcnt = VmcntLo | Expcnt | Lgkmcnt;
618   if (Version.Major < 9)
619     return Waitcnt;
620 
621   unsigned VmcntHi = getBitMask(getVmcntBitShiftHi(), getVmcntBitWidthHi());
622   return Waitcnt | VmcntHi;
623 }
624 
625 unsigned decodeVmcnt(const IsaVersion &Version, unsigned Waitcnt) {
626   unsigned VmcntLo =
627       unpackBits(Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
628   if (Version.Major < 9)
629     return VmcntLo;
630 
631   unsigned VmcntHi =
632       unpackBits(Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
633   VmcntHi <<= getVmcntBitWidthLo();
634   return VmcntLo | VmcntHi;
635 }
636 
637 unsigned decodeExpcnt(const IsaVersion &Version, unsigned Waitcnt) {
638   return unpackBits(Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
639 }
640 
641 unsigned decodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt) {
642   return unpackBits(Waitcnt, getLgkmcntBitShift(),
643                     getLgkmcntBitWidth(Version.Major));
644 }
645 
646 void decodeWaitcnt(const IsaVersion &Version, unsigned Waitcnt,
647                    unsigned &Vmcnt, unsigned &Expcnt, unsigned &Lgkmcnt) {
648   Vmcnt = decodeVmcnt(Version, Waitcnt);
649   Expcnt = decodeExpcnt(Version, Waitcnt);
650   Lgkmcnt = decodeLgkmcnt(Version, Waitcnt);
651 }
652 
653 Waitcnt decodeWaitcnt(const IsaVersion &Version, unsigned Encoded) {
654   Waitcnt Decoded;
655   Decoded.VmCnt = decodeVmcnt(Version, Encoded);
656   Decoded.ExpCnt = decodeExpcnt(Version, Encoded);
657   Decoded.LgkmCnt = decodeLgkmcnt(Version, Encoded);
658   return Decoded;
659 }
660 
661 unsigned encodeVmcnt(const IsaVersion &Version, unsigned Waitcnt,
662                      unsigned Vmcnt) {
663   Waitcnt =
664       packBits(Vmcnt, Waitcnt, getVmcntBitShiftLo(), getVmcntBitWidthLo());
665   if (Version.Major < 9)
666     return Waitcnt;
667 
668   Vmcnt >>= getVmcntBitWidthLo();
669   return packBits(Vmcnt, Waitcnt, getVmcntBitShiftHi(), getVmcntBitWidthHi());
670 }
671 
672 unsigned encodeExpcnt(const IsaVersion &Version, unsigned Waitcnt,
673                       unsigned Expcnt) {
674   return packBits(Expcnt, Waitcnt, getExpcntBitShift(), getExpcntBitWidth());
675 }
676 
677 unsigned encodeLgkmcnt(const IsaVersion &Version, unsigned Waitcnt,
678                        unsigned Lgkmcnt) {
679   return packBits(Lgkmcnt, Waitcnt, getLgkmcntBitShift(),
680                                     getLgkmcntBitWidth(Version.Major));
681 }
682 
683 unsigned encodeWaitcnt(const IsaVersion &Version,
684                        unsigned Vmcnt, unsigned Expcnt, unsigned Lgkmcnt) {
685   unsigned Waitcnt = getWaitcntBitMask(Version);
686   Waitcnt = encodeVmcnt(Version, Waitcnt, Vmcnt);
687   Waitcnt = encodeExpcnt(Version, Waitcnt, Expcnt);
688   Waitcnt = encodeLgkmcnt(Version, Waitcnt, Lgkmcnt);
689   return Waitcnt;
690 }
691 
692 unsigned encodeWaitcnt(const IsaVersion &Version, const Waitcnt &Decoded) {
693   return encodeWaitcnt(Version, Decoded.VmCnt, Decoded.ExpCnt, Decoded.LgkmCnt);
694 }
695 
696 //===----------------------------------------------------------------------===//
697 // hwreg
698 //===----------------------------------------------------------------------===//
699 
700 namespace Hwreg {
701 
702 int64_t getHwregId(const StringRef Name) {
703   for (int Id = ID_SYMBOLIC_FIRST_; Id < ID_SYMBOLIC_LAST_; ++Id) {
704     if (IdSymbolic[Id] && Name == IdSymbolic[Id])
705       return Id;
706   }
707   return ID_UNKNOWN_;
708 }
709 
710 static unsigned getLastSymbolicHwreg(const MCSubtargetInfo &STI) {
711   if (isSI(STI) || isCI(STI) || isVI(STI))
712     return ID_SYMBOLIC_FIRST_GFX9_;
713   else if (isGFX9(STI))
714     return ID_SYMBOLIC_FIRST_GFX10_;
715   else
716     return ID_SYMBOLIC_LAST_;
717 }
718 
719 bool isValidHwreg(int64_t Id, const MCSubtargetInfo &STI) {
720   return ID_SYMBOLIC_FIRST_ <= Id && Id < getLastSymbolicHwreg(STI) &&
721          IdSymbolic[Id];
722 }
723 
724 bool isValidHwreg(int64_t Id) {
725   return 0 <= Id && isUInt<ID_WIDTH_>(Id);
726 }
727 
728 bool isValidHwregOffset(int64_t Offset) {
729   return 0 <= Offset && isUInt<OFFSET_WIDTH_>(Offset);
730 }
731 
732 bool isValidHwregWidth(int64_t Width) {
733   return 0 <= (Width - 1) && isUInt<WIDTH_M1_WIDTH_>(Width - 1);
734 }
735 
736 uint64_t encodeHwreg(uint64_t Id, uint64_t Offset, uint64_t Width) {
737   return (Id << ID_SHIFT_) |
738          (Offset << OFFSET_SHIFT_) |
739          ((Width - 1) << WIDTH_M1_SHIFT_);
740 }
741 
742 StringRef getHwreg(unsigned Id, const MCSubtargetInfo &STI) {
743   return isValidHwreg(Id, STI) ? IdSymbolic[Id] : "";
744 }
745 
746 void decodeHwreg(unsigned Val, unsigned &Id, unsigned &Offset, unsigned &Width) {
747   Id = (Val & ID_MASK_) >> ID_SHIFT_;
748   Offset = (Val & OFFSET_MASK_) >> OFFSET_SHIFT_;
749   Width = ((Val & WIDTH_M1_MASK_) >> WIDTH_M1_SHIFT_) + 1;
750 }
751 
752 } // namespace Hwreg
753 
754 //===----------------------------------------------------------------------===//
755 // SendMsg
756 //===----------------------------------------------------------------------===//
757 
758 namespace SendMsg {
759 
760 int64_t getMsgId(const StringRef Name) {
761   for (int i = ID_GAPS_FIRST_; i < ID_GAPS_LAST_; ++i) {
762     if (IdSymbolic[i] && Name == IdSymbolic[i])
763       return i;
764   }
765   return ID_UNKNOWN_;
766 }
767 
768 static bool isValidMsgId(int64_t MsgId) {
769   return (ID_GAPS_FIRST_ <= MsgId && MsgId < ID_GAPS_LAST_) && IdSymbolic[MsgId];
770 }
771 
772 bool isValidMsgId(int64_t MsgId, const MCSubtargetInfo &STI, bool Strict) {
773   if (Strict) {
774     if (MsgId == ID_GS_ALLOC_REQ || MsgId == ID_GET_DOORBELL)
775       return isGFX9(STI) || isGFX10(STI);
776     else
777       return isValidMsgId(MsgId);
778   } else {
779     return 0 <= MsgId && isUInt<ID_WIDTH_>(MsgId);
780   }
781 }
782 
783 StringRef getMsgName(int64_t MsgId) {
784   return isValidMsgId(MsgId)? IdSymbolic[MsgId] : "";
785 }
786 
787 int64_t getMsgOpId(int64_t MsgId, const StringRef Name) {
788   const char* const *S = (MsgId == ID_SYSMSG) ? OpSysSymbolic : OpGsSymbolic;
789   const int F = (MsgId == ID_SYSMSG) ? OP_SYS_FIRST_ : OP_GS_FIRST_;
790   const int L = (MsgId == ID_SYSMSG) ? OP_SYS_LAST_ : OP_GS_LAST_;
791   for (int i = F; i < L; ++i) {
792     if (Name == S[i]) {
793       return i;
794     }
795   }
796   return OP_UNKNOWN_;
797 }
798 
799 bool isValidMsgOp(int64_t MsgId, int64_t OpId, bool Strict) {
800 
801   if (!Strict)
802     return 0 <= OpId && isUInt<OP_WIDTH_>(OpId);
803 
804   switch(MsgId)
805   {
806   case ID_GS:
807     return (OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_) && OpId != OP_GS_NOP;
808   case ID_GS_DONE:
809     return OP_GS_FIRST_ <= OpId && OpId < OP_GS_LAST_;
810   case ID_SYSMSG:
811     return OP_SYS_FIRST_ <= OpId && OpId < OP_SYS_LAST_;
812   default:
813     return OpId == OP_NONE_;
814   }
815 }
816 
817 StringRef getMsgOpName(int64_t MsgId, int64_t OpId) {
818   assert(msgRequiresOp(MsgId));
819   return (MsgId == ID_SYSMSG)? OpSysSymbolic[OpId] : OpGsSymbolic[OpId];
820 }
821 
822 bool isValidMsgStream(int64_t MsgId, int64_t OpId, int64_t StreamId, bool Strict) {
823 
824   if (!Strict)
825     return 0 <= StreamId && isUInt<STREAM_ID_WIDTH_>(StreamId);
826 
827   switch(MsgId)
828   {
829   case ID_GS:
830     return STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_;
831   case ID_GS_DONE:
832     return (OpId == OP_GS_NOP)?
833            (StreamId == STREAM_ID_NONE_) :
834            (STREAM_ID_FIRST_ <= StreamId && StreamId < STREAM_ID_LAST_);
835   default:
836     return StreamId == STREAM_ID_NONE_;
837   }
838 }
839 
840 bool msgRequiresOp(int64_t MsgId) {
841   return MsgId == ID_GS || MsgId == ID_GS_DONE || MsgId == ID_SYSMSG;
842 }
843 
844 bool msgSupportsStream(int64_t MsgId, int64_t OpId) {
845   return (MsgId == ID_GS || MsgId == ID_GS_DONE) && OpId != OP_GS_NOP;
846 }
847 
848 void decodeMsg(unsigned Val,
849                uint16_t &MsgId,
850                uint16_t &OpId,
851                uint16_t &StreamId) {
852   MsgId = Val & ID_MASK_;
853   OpId = (Val & OP_MASK_) >> OP_SHIFT_;
854   StreamId = (Val & STREAM_ID_MASK_) >> STREAM_ID_SHIFT_;
855 }
856 
857 uint64_t encodeMsg(uint64_t MsgId,
858                    uint64_t OpId,
859                    uint64_t StreamId) {
860   return (MsgId << ID_SHIFT_) |
861          (OpId << OP_SHIFT_) |
862          (StreamId << STREAM_ID_SHIFT_);
863 }
864 
865 } // namespace SendMsg
866 
867 //===----------------------------------------------------------------------===//
868 //
869 //===----------------------------------------------------------------------===//
870 
871 unsigned getInitialPSInputAddr(const Function &F) {
872   return getIntegerAttribute(F, "InitialPSInputAddr", 0);
873 }
874 
875 bool isShader(CallingConv::ID cc) {
876   switch(cc) {
877     case CallingConv::AMDGPU_VS:
878     case CallingConv::AMDGPU_LS:
879     case CallingConv::AMDGPU_HS:
880     case CallingConv::AMDGPU_ES:
881     case CallingConv::AMDGPU_GS:
882     case CallingConv::AMDGPU_PS:
883     case CallingConv::AMDGPU_CS:
884       return true;
885     default:
886       return false;
887   }
888 }
889 
890 bool isCompute(CallingConv::ID cc) {
891   return !isShader(cc) || cc == CallingConv::AMDGPU_CS;
892 }
893 
894 bool isEntryFunctionCC(CallingConv::ID CC) {
895   switch (CC) {
896   case CallingConv::AMDGPU_KERNEL:
897   case CallingConv::SPIR_KERNEL:
898   case CallingConv::AMDGPU_VS:
899   case CallingConv::AMDGPU_GS:
900   case CallingConv::AMDGPU_PS:
901   case CallingConv::AMDGPU_CS:
902   case CallingConv::AMDGPU_ES:
903   case CallingConv::AMDGPU_HS:
904   case CallingConv::AMDGPU_LS:
905     return true;
906   default:
907     return false;
908   }
909 }
910 
911 bool hasXNACK(const MCSubtargetInfo &STI) {
912   return STI.getFeatureBits()[AMDGPU::FeatureXNACK];
913 }
914 
915 bool hasSRAMECC(const MCSubtargetInfo &STI) {
916   return STI.getFeatureBits()[AMDGPU::FeatureSRAMECC];
917 }
918 
919 bool hasMIMG_R128(const MCSubtargetInfo &STI) {
920   return STI.getFeatureBits()[AMDGPU::FeatureMIMG_R128] && !STI.getFeatureBits()[AMDGPU::FeatureR128A16];
921 }
922 
923 bool hasGFX10A16(const MCSubtargetInfo &STI) {
924   return STI.getFeatureBits()[AMDGPU::FeatureGFX10A16];
925 }
926 
927 bool hasPackedD16(const MCSubtargetInfo &STI) {
928   return !STI.getFeatureBits()[AMDGPU::FeatureUnpackedD16VMem];
929 }
930 
931 bool isSI(const MCSubtargetInfo &STI) {
932   return STI.getFeatureBits()[AMDGPU::FeatureSouthernIslands];
933 }
934 
935 bool isCI(const MCSubtargetInfo &STI) {
936   return STI.getFeatureBits()[AMDGPU::FeatureSeaIslands];
937 }
938 
939 bool isVI(const MCSubtargetInfo &STI) {
940   return STI.getFeatureBits()[AMDGPU::FeatureVolcanicIslands];
941 }
942 
943 bool isGFX9(const MCSubtargetInfo &STI) {
944   return STI.getFeatureBits()[AMDGPU::FeatureGFX9];
945 }
946 
947 bool isGFX10(const MCSubtargetInfo &STI) {
948   return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
949 }
950 
951 bool isGCN3Encoding(const MCSubtargetInfo &STI) {
952   return STI.getFeatureBits()[AMDGPU::FeatureGCN3Encoding];
953 }
954 
955 bool isSGPR(unsigned Reg, const MCRegisterInfo* TRI) {
956   const MCRegisterClass SGPRClass = TRI->getRegClass(AMDGPU::SReg_32RegClassID);
957   const unsigned FirstSubReg = TRI->getSubReg(Reg, AMDGPU::sub0);
958   return SGPRClass.contains(FirstSubReg != 0 ? FirstSubReg : Reg) ||
959     Reg == AMDGPU::SCC;
960 }
961 
962 bool isRegIntersect(unsigned Reg0, unsigned Reg1, const MCRegisterInfo* TRI) {
963   for (MCRegAliasIterator R(Reg0, TRI, true); R.isValid(); ++R) {
964     if (*R == Reg1) return true;
965   }
966   return false;
967 }
968 
969 #define MAP_REG2REG \
970   using namespace AMDGPU; \
971   switch(Reg) { \
972   default: return Reg; \
973   CASE_CI_VI(FLAT_SCR) \
974   CASE_CI_VI(FLAT_SCR_LO) \
975   CASE_CI_VI(FLAT_SCR_HI) \
976   CASE_VI_GFX9_GFX10(TTMP0) \
977   CASE_VI_GFX9_GFX10(TTMP1) \
978   CASE_VI_GFX9_GFX10(TTMP2) \
979   CASE_VI_GFX9_GFX10(TTMP3) \
980   CASE_VI_GFX9_GFX10(TTMP4) \
981   CASE_VI_GFX9_GFX10(TTMP5) \
982   CASE_VI_GFX9_GFX10(TTMP6) \
983   CASE_VI_GFX9_GFX10(TTMP7) \
984   CASE_VI_GFX9_GFX10(TTMP8) \
985   CASE_VI_GFX9_GFX10(TTMP9) \
986   CASE_VI_GFX9_GFX10(TTMP10) \
987   CASE_VI_GFX9_GFX10(TTMP11) \
988   CASE_VI_GFX9_GFX10(TTMP12) \
989   CASE_VI_GFX9_GFX10(TTMP13) \
990   CASE_VI_GFX9_GFX10(TTMP14) \
991   CASE_VI_GFX9_GFX10(TTMP15) \
992   CASE_VI_GFX9_GFX10(TTMP0_TTMP1) \
993   CASE_VI_GFX9_GFX10(TTMP2_TTMP3) \
994   CASE_VI_GFX9_GFX10(TTMP4_TTMP5) \
995   CASE_VI_GFX9_GFX10(TTMP6_TTMP7) \
996   CASE_VI_GFX9_GFX10(TTMP8_TTMP9) \
997   CASE_VI_GFX9_GFX10(TTMP10_TTMP11) \
998   CASE_VI_GFX9_GFX10(TTMP12_TTMP13) \
999   CASE_VI_GFX9_GFX10(TTMP14_TTMP15) \
1000   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3) \
1001   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7) \
1002   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11) \
1003   CASE_VI_GFX9_GFX10(TTMP12_TTMP13_TTMP14_TTMP15) \
1004   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7) \
1005   CASE_VI_GFX9_GFX10(TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11) \
1006   CASE_VI_GFX9_GFX10(TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1007   CASE_VI_GFX9_GFX10(TTMP0_TTMP1_TTMP2_TTMP3_TTMP4_TTMP5_TTMP6_TTMP7_TTMP8_TTMP9_TTMP10_TTMP11_TTMP12_TTMP13_TTMP14_TTMP15) \
1008   }
1009 
1010 #define CASE_CI_VI(node) \
1011   assert(!isSI(STI)); \
1012   case node: return isCI(STI) ? node##_ci : node##_vi;
1013 
1014 #define CASE_VI_GFX9_GFX10(node) \
1015   case node: return (isGFX9(STI) || isGFX10(STI)) ? node##_gfx9_gfx10 : node##_vi;
1016 
1017 unsigned getMCReg(unsigned Reg, const MCSubtargetInfo &STI) {
1018   if (STI.getTargetTriple().getArch() == Triple::r600)
1019     return Reg;
1020   MAP_REG2REG
1021 }
1022 
1023 #undef CASE_CI_VI
1024 #undef CASE_VI_GFX9_GFX10
1025 
1026 #define CASE_CI_VI(node)   case node##_ci: case node##_vi:   return node;
1027 #define CASE_VI_GFX9_GFX10(node) case node##_vi: case node##_gfx9_gfx10: return node;
1028 
1029 unsigned mc2PseudoReg(unsigned Reg) {
1030   MAP_REG2REG
1031 }
1032 
1033 #undef CASE_CI_VI
1034 #undef CASE_VI_GFX9_GFX10
1035 #undef MAP_REG2REG
1036 
1037 bool isSISrcOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1038   assert(OpNo < Desc.NumOperands);
1039   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1040   return OpType >= AMDGPU::OPERAND_SRC_FIRST &&
1041          OpType <= AMDGPU::OPERAND_SRC_LAST;
1042 }
1043 
1044 bool isSISrcFPOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1045   assert(OpNo < Desc.NumOperands);
1046   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1047   switch (OpType) {
1048   case AMDGPU::OPERAND_REG_IMM_FP32:
1049   case AMDGPU::OPERAND_REG_IMM_FP64:
1050   case AMDGPU::OPERAND_REG_IMM_FP16:
1051   case AMDGPU::OPERAND_REG_IMM_V2FP16:
1052   case AMDGPU::OPERAND_REG_IMM_V2INT16:
1053   case AMDGPU::OPERAND_REG_INLINE_C_FP32:
1054   case AMDGPU::OPERAND_REG_INLINE_C_FP64:
1055   case AMDGPU::OPERAND_REG_INLINE_C_FP16:
1056   case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
1057   case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
1058   case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
1059   case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
1060   case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
1061   case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
1062     return true;
1063   default:
1064     return false;
1065   }
1066 }
1067 
1068 bool isSISrcInlinableOperand(const MCInstrDesc &Desc, unsigned OpNo) {
1069   assert(OpNo < Desc.NumOperands);
1070   unsigned OpType = Desc.OpInfo[OpNo].OperandType;
1071   return OpType >= AMDGPU::OPERAND_REG_INLINE_C_FIRST &&
1072          OpType <= AMDGPU::OPERAND_REG_INLINE_C_LAST;
1073 }
1074 
1075 // Avoid using MCRegisterClass::getSize, since that function will go away
1076 // (move from MC* level to Target* level). Return size in bits.
1077 unsigned getRegBitWidth(unsigned RCID) {
1078   switch (RCID) {
1079   case AMDGPU::SGPR_32RegClassID:
1080   case AMDGPU::VGPR_32RegClassID:
1081   case AMDGPU::VRegOrLds_32RegClassID:
1082   case AMDGPU::AGPR_32RegClassID:
1083   case AMDGPU::VS_32RegClassID:
1084   case AMDGPU::AV_32RegClassID:
1085   case AMDGPU::SReg_32RegClassID:
1086   case AMDGPU::SReg_32_XM0RegClassID:
1087   case AMDGPU::SRegOrLds_32RegClassID:
1088     return 32;
1089   case AMDGPU::SGPR_64RegClassID:
1090   case AMDGPU::VS_64RegClassID:
1091   case AMDGPU::AV_64RegClassID:
1092   case AMDGPU::SReg_64RegClassID:
1093   case AMDGPU::VReg_64RegClassID:
1094   case AMDGPU::AReg_64RegClassID:
1095   case AMDGPU::SReg_64_XEXECRegClassID:
1096     return 64;
1097   case AMDGPU::SGPR_96RegClassID:
1098   case AMDGPU::SReg_96RegClassID:
1099   case AMDGPU::VReg_96RegClassID:
1100     return 96;
1101   case AMDGPU::SGPR_128RegClassID:
1102   case AMDGPU::SReg_128RegClassID:
1103   case AMDGPU::VReg_128RegClassID:
1104   case AMDGPU::AReg_128RegClassID:
1105     return 128;
1106   case AMDGPU::SGPR_160RegClassID:
1107   case AMDGPU::SReg_160RegClassID:
1108   case AMDGPU::VReg_160RegClassID:
1109     return 160;
1110   case AMDGPU::SReg_256RegClassID:
1111   case AMDGPU::VReg_256RegClassID:
1112     return 256;
1113   case AMDGPU::SReg_512RegClassID:
1114   case AMDGPU::VReg_512RegClassID:
1115   case AMDGPU::AReg_512RegClassID:
1116     return 512;
1117   case AMDGPU::SReg_1024RegClassID:
1118   case AMDGPU::VReg_1024RegClassID:
1119   case AMDGPU::AReg_1024RegClassID:
1120     return 1024;
1121   default:
1122     llvm_unreachable("Unexpected register class");
1123   }
1124 }
1125 
1126 unsigned getRegBitWidth(const MCRegisterClass &RC) {
1127   return getRegBitWidth(RC.getID());
1128 }
1129 
1130 unsigned getRegOperandSize(const MCRegisterInfo *MRI, const MCInstrDesc &Desc,
1131                            unsigned OpNo) {
1132   assert(OpNo < Desc.NumOperands);
1133   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1134   return getRegBitWidth(MRI->getRegClass(RCID)) / 8;
1135 }
1136 
1137 bool isInlinableLiteral64(int64_t Literal, bool HasInv2Pi) {
1138   if (Literal >= -16 && Literal <= 64)
1139     return true;
1140 
1141   uint64_t Val = static_cast<uint64_t>(Literal);
1142   return (Val == DoubleToBits(0.0)) ||
1143          (Val == DoubleToBits(1.0)) ||
1144          (Val == DoubleToBits(-1.0)) ||
1145          (Val == DoubleToBits(0.5)) ||
1146          (Val == DoubleToBits(-0.5)) ||
1147          (Val == DoubleToBits(2.0)) ||
1148          (Val == DoubleToBits(-2.0)) ||
1149          (Val == DoubleToBits(4.0)) ||
1150          (Val == DoubleToBits(-4.0)) ||
1151          (Val == 0x3fc45f306dc9c882 && HasInv2Pi);
1152 }
1153 
1154 bool isInlinableLiteral32(int32_t Literal, bool HasInv2Pi) {
1155   if (Literal >= -16 && Literal <= 64)
1156     return true;
1157 
1158   // The actual type of the operand does not seem to matter as long
1159   // as the bits match one of the inline immediate values.  For example:
1160   //
1161   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1162   // so it is a legal inline immediate.
1163   //
1164   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1165   // floating-point, so it is a legal inline immediate.
1166 
1167   uint32_t Val = static_cast<uint32_t>(Literal);
1168   return (Val == FloatToBits(0.0f)) ||
1169          (Val == FloatToBits(1.0f)) ||
1170          (Val == FloatToBits(-1.0f)) ||
1171          (Val == FloatToBits(0.5f)) ||
1172          (Val == FloatToBits(-0.5f)) ||
1173          (Val == FloatToBits(2.0f)) ||
1174          (Val == FloatToBits(-2.0f)) ||
1175          (Val == FloatToBits(4.0f)) ||
1176          (Val == FloatToBits(-4.0f)) ||
1177          (Val == 0x3e22f983 && HasInv2Pi);
1178 }
1179 
1180 bool isInlinableLiteral16(int16_t Literal, bool HasInv2Pi) {
1181   if (!HasInv2Pi)
1182     return false;
1183 
1184   if (Literal >= -16 && Literal <= 64)
1185     return true;
1186 
1187   uint16_t Val = static_cast<uint16_t>(Literal);
1188   return Val == 0x3C00 || // 1.0
1189          Val == 0xBC00 || // -1.0
1190          Val == 0x3800 || // 0.5
1191          Val == 0xB800 || // -0.5
1192          Val == 0x4000 || // 2.0
1193          Val == 0xC000 || // -2.0
1194          Val == 0x4400 || // 4.0
1195          Val == 0xC400 || // -4.0
1196          Val == 0x3118;   // 1/2pi
1197 }
1198 
1199 bool isInlinableLiteralV216(int32_t Literal, bool HasInv2Pi) {
1200   assert(HasInv2Pi);
1201 
1202   if (isInt<16>(Literal) || isUInt<16>(Literal)) {
1203     int16_t Trunc = static_cast<int16_t>(Literal);
1204     return AMDGPU::isInlinableLiteral16(Trunc, HasInv2Pi);
1205   }
1206   if (!(Literal & 0xffff))
1207     return AMDGPU::isInlinableLiteral16(Literal >> 16, HasInv2Pi);
1208 
1209   int16_t Lo16 = static_cast<int16_t>(Literal);
1210   int16_t Hi16 = static_cast<int16_t>(Literal >> 16);
1211   return Lo16 == Hi16 && isInlinableLiteral16(Lo16, HasInv2Pi);
1212 }
1213 
1214 bool isArgPassedInSGPR(const Argument *A) {
1215   const Function *F = A->getParent();
1216 
1217   // Arguments to compute shaders are never a source of divergence.
1218   CallingConv::ID CC = F->getCallingConv();
1219   switch (CC) {
1220   case CallingConv::AMDGPU_KERNEL:
1221   case CallingConv::SPIR_KERNEL:
1222     return true;
1223   case CallingConv::AMDGPU_VS:
1224   case CallingConv::AMDGPU_LS:
1225   case CallingConv::AMDGPU_HS:
1226   case CallingConv::AMDGPU_ES:
1227   case CallingConv::AMDGPU_GS:
1228   case CallingConv::AMDGPU_PS:
1229   case CallingConv::AMDGPU_CS:
1230     // For non-compute shaders, SGPR inputs are marked with either inreg or byval.
1231     // Everything else is in VGPRs.
1232     return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
1233            F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
1234   default:
1235     // TODO: Should calls support inreg for SGPR inputs?
1236     return false;
1237   }
1238 }
1239 
1240 static bool hasSMEMByteOffset(const MCSubtargetInfo &ST) {
1241   return isGCN3Encoding(ST) || isGFX10(ST);
1242 }
1243 
1244 static bool isLegalSMRDEncodedImmOffset(const MCSubtargetInfo &ST,
1245                                         int64_t EncodedOffset) {
1246   return hasSMEMByteOffset(ST) ? isUInt<20>(EncodedOffset)
1247                                : isUInt<8>(EncodedOffset);
1248 }
1249 
1250 static bool isDwordAligned(uint64_t ByteOffset) {
1251   return (ByteOffset & 3) == 0;
1252 }
1253 
1254 uint64_t convertSMRDOffsetUnits(const MCSubtargetInfo &ST,
1255                                 uint64_t ByteOffset) {
1256   if (hasSMEMByteOffset(ST))
1257     return ByteOffset;
1258 
1259   assert(isDwordAligned(ByteOffset));
1260   return ByteOffset >> 2;
1261 }
1262 
1263 Optional<int64_t> getSMRDEncodedOffset(const MCSubtargetInfo &ST,
1264                                        int64_t ByteOffset) {
1265   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1266     return None;
1267 
1268   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1269   return isLegalSMRDEncodedImmOffset(ST, EncodedOffset) ?
1270     Optional<int64_t>(EncodedOffset) : None;
1271 }
1272 
1273 Optional<int64_t> getSMRDEncodedLiteralOffset32(const MCSubtargetInfo &ST,
1274                                                 int64_t ByteOffset) {
1275   if (!isDwordAligned(ByteOffset) && !hasSMEMByteOffset(ST))
1276     return None;
1277 
1278   assert(isCI(ST));
1279   int64_t EncodedOffset = convertSMRDOffsetUnits(ST, ByteOffset);
1280   return isUInt<32>(EncodedOffset) ? Optional<int64_t>(EncodedOffset) : None;
1281 }
1282 
1283 // Given Imm, split it into the values to put into the SOffset and ImmOffset
1284 // fields in an MUBUF instruction. Return false if it is not possible (due to a
1285 // hardware bug needing a workaround).
1286 //
1287 // The required alignment ensures that individual address components remain
1288 // aligned if they are aligned to begin with. It also ensures that additional
1289 // offsets within the given alignment can be added to the resulting ImmOffset.
1290 bool splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset, uint32_t &ImmOffset,
1291                       const GCNSubtarget *Subtarget, uint32_t Align) {
1292   const uint32_t MaxImm = alignDown(4095, Align);
1293   uint32_t Overflow = 0;
1294 
1295   if (Imm > MaxImm) {
1296     if (Imm <= MaxImm + 64) {
1297       // Use an SOffset inline constant for 4..64
1298       Overflow = Imm - MaxImm;
1299       Imm = MaxImm;
1300     } else {
1301       // Try to keep the same value in SOffset for adjacent loads, so that
1302       // the corresponding register contents can be re-used.
1303       //
1304       // Load values with all low-bits (except for alignment bits) set into
1305       // SOffset, so that a larger range of values can be covered using
1306       // s_movk_i32.
1307       //
1308       // Atomic operations fail to work correctly when individual address
1309       // components are unaligned, even if their sum is aligned.
1310       uint32_t High = (Imm + Align) & ~4095;
1311       uint32_t Low = (Imm + Align) & 4095;
1312       Imm = Low;
1313       Overflow = High - Align;
1314     }
1315   }
1316 
1317   // There is a hardware bug in SI and CI which prevents address clamping in
1318   // MUBUF instructions from working correctly with SOffsets. The immediate
1319   // offset is unaffected.
1320   if (Overflow > 0 &&
1321       Subtarget->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1322     return false;
1323 
1324   ImmOffset = Imm;
1325   SOffset = Overflow;
1326   return true;
1327 }
1328 
1329 SIModeRegisterDefaults::SIModeRegisterDefaults(const Function &F,
1330                                                const GCNSubtarget &ST) {
1331   *this = getDefaultForCallingConv(F.getCallingConv());
1332 
1333   StringRef IEEEAttr = F.getFnAttribute("amdgpu-ieee").getValueAsString();
1334   if (!IEEEAttr.empty())
1335     IEEE = IEEEAttr == "true";
1336 
1337   StringRef DX10ClampAttr
1338     = F.getFnAttribute("amdgpu-dx10-clamp").getValueAsString();
1339   if (!DX10ClampAttr.empty())
1340     DX10Clamp = DX10ClampAttr == "true";
1341 
1342   // FIXME: Split this when denormal-fp-math is used
1343   FP32InputDenormals = ST.hasFP32Denormals(F);
1344   FP32OutputDenormals = FP32InputDenormals;
1345   FP64FP16InputDenormals = ST.hasFP64FP16Denormals(F);
1346   FP64FP16OutputDenormals = FP64FP16InputDenormals;
1347 }
1348 
1349 namespace {
1350 
1351 struct SourceOfDivergence {
1352   unsigned Intr;
1353 };
1354 const SourceOfDivergence *lookupSourceOfDivergence(unsigned Intr);
1355 
1356 #define GET_SourcesOfDivergence_IMPL
1357 #define GET_Gfx9BufferFormat_IMPL
1358 #define GET_Gfx10PlusBufferFormat_IMPL
1359 #include "AMDGPUGenSearchableTables.inc"
1360 
1361 } // end anonymous namespace
1362 
1363 bool isIntrinsicSourceOfDivergence(unsigned IntrID) {
1364   return lookupSourceOfDivergence(IntrID);
1365 }
1366 
1367 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t BitsPerComp,
1368                                                   uint8_t NumComponents,
1369                                                   uint8_t NumFormat,
1370                                                   const MCSubtargetInfo &STI) {
1371   return isGFX10(STI)
1372              ? getGfx10PlusBufferFormatInfo(BitsPerComp, NumComponents,
1373                                             NumFormat)
1374              : getGfx9BufferFormatInfo(BitsPerComp, NumComponents, NumFormat);
1375 }
1376 
1377 const GcnBufferFormatInfo *getGcnBufferFormatInfo(uint8_t Format,
1378                                                   const MCSubtargetInfo &STI) {
1379   return isGFX10(STI) ? getGfx10PlusBufferFormatInfo(Format)
1380                       : getGfx9BufferFormatInfo(Format);
1381 }
1382 
1383 } // namespace AMDGPU
1384 } // namespace llvm
1385