1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This pass adds instructions to enable whole quad mode for pixel 12 /// shaders, and whole wavefront mode for all programs. 13 /// 14 /// Whole quad mode is required for derivative computations, but it interferes 15 /// with shader side effects (stores and atomics). This pass is run on the 16 /// scheduled machine IR but before register coalescing, so that machine SSA is 17 /// available for analysis. It ensures that WQM is enabled when necessary, but 18 /// disabled around stores and atomics. 19 /// 20 /// When necessary, this pass creates a function prolog 21 /// 22 /// S_MOV_B64 LiveMask, EXEC 23 /// S_WQM_B64 EXEC, EXEC 24 /// 25 /// to enter WQM at the top of the function and surrounds blocks of Exact 26 /// instructions by 27 /// 28 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 29 /// ... 30 /// S_MOV_B64 EXEC, Tmp 31 /// 32 /// We also compute when a sequence of instructions requires Whole Wavefront 33 /// Mode (WWM) and insert instructions to save and restore it: 34 /// 35 /// S_OR_SAVEEXEC_B64 Tmp, -1 36 /// ... 37 /// S_MOV_B64 EXEC, Tmp 38 /// 39 /// In order to avoid excessive switching during sequences of Exact 40 /// instructions, the pass first analyzes which instructions must be run in WQM 41 /// (aka which instructions produce values that lead to derivative 42 /// computations). 43 /// 44 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 45 /// 46 /// There is room for improvement given better control flow analysis: 47 /// 48 /// (1) at the top level (outside of control flow statements, and as long as 49 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 50 /// the LiveMask (this is implemented for the entry block). 51 /// 52 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 53 /// consist of exact and don't-care instructions, the switch only has to 54 /// be done at the entry and exit points rather than potentially in each 55 /// block of the region. 56 /// 57 //===----------------------------------------------------------------------===// 58 59 #include "AMDGPU.h" 60 #include "AMDGPUSubtarget.h" 61 #include "SIInstrInfo.h" 62 #include "SIMachineFunctionInfo.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SmallVector.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/CodeGen/LiveInterval.h" 68 #include "llvm/CodeGen/LiveIntervals.h" 69 #include "llvm/CodeGen/MachineBasicBlock.h" 70 #include "llvm/CodeGen/MachineFunction.h" 71 #include "llvm/CodeGen/MachineFunctionPass.h" 72 #include "llvm/CodeGen/MachineInstr.h" 73 #include "llvm/CodeGen/MachineInstrBuilder.h" 74 #include "llvm/CodeGen/MachineOperand.h" 75 #include "llvm/CodeGen/MachineRegisterInfo.h" 76 #include "llvm/CodeGen/SlotIndexes.h" 77 #include "llvm/CodeGen/TargetRegisterInfo.h" 78 #include "llvm/IR/CallingConv.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/MC/MCRegisterInfo.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include <cassert> 85 #include <vector> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "si-wqm" 90 91 namespace { 92 93 enum { 94 StateWQM = 0x1, 95 StateWWM = 0x2, 96 StateExact = 0x4, 97 }; 98 99 struct PrintState { 100 public: 101 int State; 102 103 explicit PrintState(int State) : State(State) {} 104 }; 105 106 #ifndef NDEBUG 107 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 108 if (PS.State & StateWQM) 109 OS << "WQM"; 110 if (PS.State & StateWWM) { 111 if (PS.State & StateWQM) 112 OS << '|'; 113 OS << "WWM"; 114 } 115 if (PS.State & StateExact) { 116 if (PS.State & (StateWQM | StateWWM)) 117 OS << '|'; 118 OS << "Exact"; 119 } 120 121 return OS; 122 } 123 #endif 124 125 struct InstrInfo { 126 char Needs = 0; 127 char Disabled = 0; 128 char OutNeeds = 0; 129 }; 130 131 struct BlockInfo { 132 char Needs = 0; 133 char InNeeds = 0; 134 char OutNeeds = 0; 135 }; 136 137 struct WorkItem { 138 MachineBasicBlock *MBB = nullptr; 139 MachineInstr *MI = nullptr; 140 141 WorkItem() = default; 142 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 143 WorkItem(MachineInstr *MI) : MI(MI) {} 144 }; 145 146 class SIWholeQuadMode : public MachineFunctionPass { 147 private: 148 CallingConv::ID CallingConv; 149 const SIInstrInfo *TII; 150 const SIRegisterInfo *TRI; 151 MachineRegisterInfo *MRI; 152 LiveIntervals *LIS; 153 154 DenseMap<const MachineInstr *, InstrInfo> Instructions; 155 DenseMap<MachineBasicBlock *, BlockInfo> Blocks; 156 SmallVector<MachineInstr *, 1> LiveMaskQueries; 157 SmallVector<MachineInstr *, 4> LowerToCopyInstrs; 158 159 void printInfo(); 160 161 void markInstruction(MachineInstr &MI, char Flag, 162 std::vector<WorkItem> &Worklist); 163 void markInstructionUses(const MachineInstr &MI, char Flag, 164 std::vector<WorkItem> &Worklist); 165 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 166 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 167 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 168 char analyzeFunction(MachineFunction &MF); 169 170 bool requiresCorrectState(const MachineInstr &MI) const; 171 172 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 173 MachineBasicBlock::iterator Before); 174 MachineBasicBlock::iterator 175 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 176 MachineBasicBlock::iterator Last, bool PreferLast, 177 bool SaveSCC); 178 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 179 unsigned SaveWQM, unsigned LiveMaskReg); 180 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 181 unsigned SavedWQM); 182 void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 183 unsigned SaveOrig); 184 void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 185 unsigned SavedOrig); 186 void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry); 187 188 void lowerLiveMaskQueries(unsigned LiveMaskReg); 189 void lowerCopyInstrs(); 190 191 public: 192 static char ID; 193 194 SIWholeQuadMode() : 195 MachineFunctionPass(ID) { } 196 197 bool runOnMachineFunction(MachineFunction &MF) override; 198 199 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 200 201 void getAnalysisUsage(AnalysisUsage &AU) const override { 202 AU.addRequired<LiveIntervals>(); 203 AU.setPreservesCFG(); 204 MachineFunctionPass::getAnalysisUsage(AU); 205 } 206 }; 207 208 } // end anonymous namespace 209 210 char SIWholeQuadMode::ID = 0; 211 212 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 213 false) 214 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 215 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 216 false) 217 218 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 219 220 FunctionPass *llvm::createSIWholeQuadModePass() { 221 return new SIWholeQuadMode; 222 } 223 224 #ifndef NDEBUG 225 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 226 for (const auto &BII : Blocks) { 227 dbgs() << "\n" 228 << printMBBReference(*BII.first) << ":\n" 229 << " InNeeds = " << PrintState(BII.second.InNeeds) 230 << ", Needs = " << PrintState(BII.second.Needs) 231 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 232 233 for (const MachineInstr &MI : *BII.first) { 234 auto III = Instructions.find(&MI); 235 if (III == Instructions.end()) 236 continue; 237 238 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 239 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 240 } 241 } 242 } 243 #endif 244 245 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 246 std::vector<WorkItem> &Worklist) { 247 InstrInfo &II = Instructions[&MI]; 248 249 assert(!(Flag & StateExact) && Flag != 0); 250 251 // Remove any disabled states from the flag. The user that required it gets 252 // an undefined value in the helper lanes. For example, this can happen if 253 // the result of an atomic is used by instruction that requires WQM, where 254 // ignoring the request for WQM is correct as per the relevant specs. 255 Flag &= ~II.Disabled; 256 257 // Ignore if the flag is already encompassed by the existing needs, or we 258 // just disabled everything. 259 if ((II.Needs & Flag) == Flag) 260 return; 261 262 II.Needs |= Flag; 263 Worklist.push_back(&MI); 264 } 265 266 /// Mark all instructions defining the uses in \p MI with \p Flag. 267 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 268 std::vector<WorkItem> &Worklist) { 269 for (const MachineOperand &Use : MI.uses()) { 270 if (!Use.isReg() || !Use.isUse()) 271 continue; 272 273 unsigned Reg = Use.getReg(); 274 275 // Handle physical registers that we need to track; this is mostly relevant 276 // for VCC, which can appear as the (implicit) input of a uniform branch, 277 // e.g. when a loop counter is stored in a VGPR. 278 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 279 if (Reg == AMDGPU::EXEC) 280 continue; 281 282 for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) { 283 LiveRange &LR = LIS->getRegUnit(*RegUnit); 284 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 285 if (!Value) 286 continue; 287 288 // Since we're in machine SSA, we do not need to track physical 289 // registers across basic blocks. 290 if (Value->isPHIDef()) 291 continue; 292 293 markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag, 294 Worklist); 295 } 296 297 continue; 298 } 299 300 for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg())) 301 markInstruction(DefMI, Flag, Worklist); 302 } 303 } 304 305 // Scan instructions to determine which ones require an Exact execmask and 306 // which ones seed WQM requirements. 307 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 308 std::vector<WorkItem> &Worklist) { 309 char GlobalFlags = 0; 310 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 311 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 312 313 // We need to visit the basic blocks in reverse post-order so that we visit 314 // defs before uses, in particular so that we don't accidentally mark an 315 // instruction as needing e.g. WQM before visiting it and realizing it needs 316 // WQM disabled. 317 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 318 for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) { 319 MachineBasicBlock &MBB = **BI; 320 BlockInfo &BBI = Blocks[&MBB]; 321 322 for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) { 323 MachineInstr &MI = *II; 324 InstrInfo &III = Instructions[&MI]; 325 unsigned Opcode = MI.getOpcode(); 326 char Flags = 0; 327 328 if (TII->isWQM(Opcode)) { 329 // Sampling instructions don't need to produce results for all pixels 330 // in a quad, they just require all inputs of a quad to have been 331 // computed for derivatives. 332 markInstructionUses(MI, StateWQM, Worklist); 333 GlobalFlags |= StateWQM; 334 continue; 335 } else if (Opcode == AMDGPU::WQM) { 336 // The WQM intrinsic requires its output to have all the helper lanes 337 // correct, so we need it to be in WQM. 338 Flags = StateWQM; 339 LowerToCopyInstrs.push_back(&MI); 340 } else if (Opcode == AMDGPU::WWM) { 341 // The WWM intrinsic doesn't make the same guarantee, and plus it needs 342 // to be executed in WQM or Exact so that its copy doesn't clobber 343 // inactive lanes. 344 markInstructionUses(MI, StateWWM, Worklist); 345 GlobalFlags |= StateWWM; 346 LowerToCopyInstrs.push_back(&MI); 347 continue; 348 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 || 349 Opcode == AMDGPU::V_SET_INACTIVE_B64) { 350 III.Disabled = StateWWM; 351 MachineOperand &Inactive = MI.getOperand(2); 352 if (Inactive.isReg()) { 353 if (Inactive.isUndef()) { 354 LowerToCopyInstrs.push_back(&MI); 355 } else { 356 unsigned Reg = Inactive.getReg(); 357 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 358 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) 359 markInstruction(DefMI, StateWWM, Worklist); 360 } 361 } 362 } 363 SetInactiveInstrs.push_back(&MI); 364 continue; 365 } else if (TII->isDisableWQM(MI)) { 366 BBI.Needs |= StateExact; 367 if (!(BBI.InNeeds & StateExact)) { 368 BBI.InNeeds |= StateExact; 369 Worklist.push_back(&MBB); 370 } 371 GlobalFlags |= StateExact; 372 III.Disabled = StateWQM | StateWWM; 373 continue; 374 } else { 375 if (Opcode == AMDGPU::SI_PS_LIVE) { 376 LiveMaskQueries.push_back(&MI); 377 } else if (WQMOutputs) { 378 // The function is in machine SSA form, which means that physical 379 // VGPRs correspond to shader inputs and outputs. Inputs are 380 // only used, outputs are only defined. 381 for (const MachineOperand &MO : MI.defs()) { 382 if (!MO.isReg()) 383 continue; 384 385 unsigned Reg = MO.getReg(); 386 387 if (!TRI->isVirtualRegister(Reg) && 388 TRI->hasVGPRs(TRI->getPhysRegClass(Reg))) { 389 Flags = StateWQM; 390 break; 391 } 392 } 393 } 394 395 if (!Flags) 396 continue; 397 } 398 399 markInstruction(MI, Flags, Worklist); 400 GlobalFlags |= Flags; 401 } 402 } 403 404 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 405 // ever used anywhere in the function. This implements the corresponding 406 // semantics of @llvm.amdgcn.set.inactive. 407 if (GlobalFlags & StateWQM) { 408 for (MachineInstr *MI : SetInactiveInstrs) 409 markInstruction(*MI, StateWQM, Worklist); 410 } 411 412 return GlobalFlags; 413 } 414 415 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 416 std::vector<WorkItem>& Worklist) { 417 MachineBasicBlock *MBB = MI.getParent(); 418 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 419 BlockInfo &BI = Blocks[MBB]; 420 421 // Control flow-type instructions and stores to temporary memory that are 422 // followed by WQM computations must themselves be in WQM. 423 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 424 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 425 Instructions[&MI].Needs = StateWQM; 426 II.Needs = StateWQM; 427 } 428 429 // Propagate to block level 430 if (II.Needs & StateWQM) { 431 BI.Needs |= StateWQM; 432 if (!(BI.InNeeds & StateWQM)) { 433 BI.InNeeds |= StateWQM; 434 Worklist.push_back(MBB); 435 } 436 } 437 438 // Propagate backwards within block 439 if (MachineInstr *PrevMI = MI.getPrevNode()) { 440 char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds; 441 if (!PrevMI->isPHI()) { 442 InstrInfo &PrevII = Instructions[PrevMI]; 443 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 444 PrevII.OutNeeds |= InNeeds; 445 Worklist.push_back(PrevMI); 446 } 447 } 448 } 449 450 // Propagate WQM flag to instruction inputs 451 assert(!(II.Needs & StateExact)); 452 453 if (II.Needs != 0) 454 markInstructionUses(MI, II.Needs, Worklist); 455 } 456 457 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 458 std::vector<WorkItem>& Worklist) { 459 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 460 461 // Propagate through instructions 462 if (!MBB.empty()) { 463 MachineInstr *LastMI = &*MBB.rbegin(); 464 InstrInfo &LastII = Instructions[LastMI]; 465 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 466 LastII.OutNeeds |= BI.OutNeeds; 467 Worklist.push_back(LastMI); 468 } 469 } 470 471 // Predecessor blocks must provide for our WQM/Exact needs. 472 for (MachineBasicBlock *Pred : MBB.predecessors()) { 473 BlockInfo &PredBI = Blocks[Pred]; 474 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 475 continue; 476 477 PredBI.OutNeeds |= BI.InNeeds; 478 PredBI.InNeeds |= BI.InNeeds; 479 Worklist.push_back(Pred); 480 } 481 482 // All successors must be prepared to accept the same set of WQM/Exact data. 483 for (MachineBasicBlock *Succ : MBB.successors()) { 484 BlockInfo &SuccBI = Blocks[Succ]; 485 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 486 continue; 487 488 SuccBI.InNeeds |= BI.OutNeeds; 489 Worklist.push_back(Succ); 490 } 491 } 492 493 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 494 std::vector<WorkItem> Worklist; 495 char GlobalFlags = scanInstructions(MF, Worklist); 496 497 while (!Worklist.empty()) { 498 WorkItem WI = Worklist.back(); 499 Worklist.pop_back(); 500 501 if (WI.MI) 502 propagateInstruction(*WI.MI, Worklist); 503 else 504 propagateBlock(*WI.MBB, Worklist); 505 } 506 507 return GlobalFlags; 508 } 509 510 /// Whether \p MI really requires the exec state computed during analysis. 511 /// 512 /// Scalar instructions must occasionally be marked WQM for correct propagation 513 /// (e.g. thread masks leading up to branches), but when it comes to actual 514 /// execution, they don't care about EXEC. 515 bool SIWholeQuadMode::requiresCorrectState(const MachineInstr &MI) const { 516 if (MI.isTerminator()) 517 return true; 518 519 // Skip instructions that are not affected by EXEC 520 if (TII->isScalarUnit(MI)) 521 return false; 522 523 // Generic instructions such as COPY will either disappear by register 524 // coalescing or be lowered to SALU or VALU instructions. 525 if (MI.isTransient()) { 526 if (MI.getNumExplicitOperands() >= 1) { 527 const MachineOperand &Op = MI.getOperand(0); 528 if (Op.isReg()) { 529 if (TRI->isSGPRReg(*MRI, Op.getReg())) { 530 // SGPR instructions are not affected by EXEC 531 return false; 532 } 533 } 534 } 535 } 536 537 return true; 538 } 539 540 MachineBasicBlock::iterator 541 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 542 MachineBasicBlock::iterator Before) { 543 unsigned SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 544 545 MachineInstr *Save = 546 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 547 .addReg(AMDGPU::SCC); 548 MachineInstr *Restore = 549 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 550 .addReg(SaveReg); 551 552 LIS->InsertMachineInstrInMaps(*Save); 553 LIS->InsertMachineInstrInMaps(*Restore); 554 LIS->createAndComputeVirtRegInterval(SaveReg); 555 556 return Restore; 557 } 558 559 // Return an iterator in the (inclusive) range [First, Last] at which 560 // instructions can be safely inserted, keeping in mind that some of the 561 // instructions we want to add necessarily clobber SCC. 562 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 563 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 564 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 565 if (!SaveSCC) 566 return PreferLast ? Last : First; 567 568 LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); 569 auto MBBE = MBB.end(); 570 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 571 : LIS->getMBBEndIdx(&MBB); 572 SlotIndex LastIdx = 573 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 574 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 575 const LiveRange::Segment *S; 576 577 for (;;) { 578 S = LR.getSegmentContaining(Idx); 579 if (!S) 580 break; 581 582 if (PreferLast) { 583 SlotIndex Next = S->start.getBaseIndex(); 584 if (Next < FirstIdx) 585 break; 586 Idx = Next; 587 } else { 588 SlotIndex Next = S->end.getNextIndex().getBaseIndex(); 589 if (Next > LastIdx) 590 break; 591 Idx = Next; 592 } 593 } 594 595 MachineBasicBlock::iterator MBBI; 596 597 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 598 MBBI = MI; 599 else { 600 assert(Idx == LIS->getMBBEndIdx(&MBB)); 601 MBBI = MBB.end(); 602 } 603 604 if (S) 605 MBBI = saveSCC(MBB, MBBI); 606 607 return MBBI; 608 } 609 610 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 611 MachineBasicBlock::iterator Before, 612 unsigned SaveWQM, unsigned LiveMaskReg) { 613 MachineInstr *MI; 614 615 if (SaveWQM) { 616 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64), 617 SaveWQM) 618 .addReg(LiveMaskReg); 619 } else { 620 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64), 621 AMDGPU::EXEC) 622 .addReg(AMDGPU::EXEC) 623 .addReg(LiveMaskReg); 624 } 625 626 LIS->InsertMachineInstrInMaps(*MI); 627 } 628 629 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 630 MachineBasicBlock::iterator Before, 631 unsigned SavedWQM) { 632 MachineInstr *MI; 633 634 if (SavedWQM) { 635 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC) 636 .addReg(SavedWQM); 637 } else { 638 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64), 639 AMDGPU::EXEC) 640 .addReg(AMDGPU::EXEC); 641 } 642 643 LIS->InsertMachineInstrInMaps(*MI); 644 } 645 646 void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB, 647 MachineBasicBlock::iterator Before, 648 unsigned SaveOrig) { 649 MachineInstr *MI; 650 651 assert(SaveOrig); 652 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_OR_SAVEEXEC_B64), 653 SaveOrig) 654 .addImm(-1); 655 LIS->InsertMachineInstrInMaps(*MI); 656 } 657 658 void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB, 659 MachineBasicBlock::iterator Before, 660 unsigned SavedOrig) { 661 MachineInstr *MI; 662 663 assert(SavedOrig); 664 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM), AMDGPU::EXEC) 665 .addReg(SavedOrig); 666 LIS->InsertMachineInstrInMaps(*MI); 667 } 668 669 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, 670 bool isEntry) { 671 auto BII = Blocks.find(&MBB); 672 if (BII == Blocks.end()) 673 return; 674 675 const BlockInfo &BI = BII->second; 676 677 // This is a non-entry block that is WQM throughout, so no need to do 678 // anything. 679 if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) 680 return; 681 682 DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) << ":\n"); 683 684 unsigned SavedWQMReg = 0; 685 unsigned SavedNonWWMReg = 0; 686 bool WQMFromExec = isEntry; 687 char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 688 char NonWWMState = 0; 689 690 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 691 if (isEntry) 692 ++II; // Skip the instruction that saves LiveMask 693 694 // This stores the first instruction where it's safe to switch from WQM to 695 // Exact or vice versa. 696 MachineBasicBlock::iterator FirstWQM = IE; 697 698 // This stores the first instruction where it's safe to switch from WWM to 699 // Exact/WQM or to switch to WWM. It must always be the same as, or after, 700 // FirstWQM since if it's safe to switch to/from WWM, it must be safe to 701 // switch to/from WQM as well. 702 MachineBasicBlock::iterator FirstWWM = IE; 703 for (;;) { 704 MachineBasicBlock::iterator Next = II; 705 char Needs = StateExact | StateWQM; // WWM is disabled by default 706 char OutNeeds = 0; 707 708 if (FirstWQM == IE) 709 FirstWQM = II; 710 711 if (FirstWWM == IE) 712 FirstWWM = II; 713 714 // First, figure out the allowed states (Needs) based on the propagated 715 // flags. 716 if (II != IE) { 717 MachineInstr &MI = *II; 718 719 if (requiresCorrectState(MI)) { 720 auto III = Instructions.find(&MI); 721 if (III != Instructions.end()) { 722 if (III->second.Needs & StateWWM) 723 Needs = StateWWM; 724 else if (III->second.Needs & StateWQM) 725 Needs = StateWQM; 726 else 727 Needs &= ~III->second.Disabled; 728 OutNeeds = III->second.OutNeeds; 729 } 730 } else { 731 // If the instruction doesn't actually need a correct EXEC, then we can 732 // safely leave WWM enabled. 733 Needs = StateExact | StateWQM | StateWWM; 734 } 735 736 if (MI.isTerminator() && OutNeeds == StateExact) 737 Needs = StateExact; 738 739 if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact) 740 MI.getOperand(3).setImm(1); 741 742 ++Next; 743 } else { 744 // End of basic block 745 if (BI.OutNeeds & StateWQM) 746 Needs = StateWQM; 747 else if (BI.OutNeeds == StateExact) 748 Needs = StateExact; 749 else 750 Needs = StateWQM | StateExact; 751 } 752 753 // Now, transition if necessary. 754 if (!(Needs & State)) { 755 MachineBasicBlock::iterator First; 756 if (State == StateWWM || Needs == StateWWM) { 757 // We must switch to or from WWM 758 First = FirstWWM; 759 } else { 760 // We only need to switch to/from WQM, so we can use FirstWQM 761 First = FirstWQM; 762 } 763 764 MachineBasicBlock::iterator Before = 765 prepareInsertion(MBB, First, II, Needs == StateWQM, 766 Needs == StateExact || WQMFromExec); 767 768 if (State == StateWWM) { 769 assert(SavedNonWWMReg); 770 fromWWM(MBB, Before, SavedNonWWMReg); 771 State = NonWWMState; 772 } 773 774 if (Needs == StateWWM) { 775 NonWWMState = State; 776 SavedNonWWMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); 777 toWWM(MBB, Before, SavedNonWWMReg); 778 State = StateWWM; 779 } else { 780 if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) { 781 if (!WQMFromExec && (OutNeeds & StateWQM)) 782 SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); 783 784 toExact(MBB, Before, SavedWQMReg, LiveMaskReg); 785 State = StateExact; 786 } else if (State == StateExact && (Needs & StateWQM) && 787 !(Needs & StateExact)) { 788 assert(WQMFromExec == (SavedWQMReg == 0)); 789 790 toWQM(MBB, Before, SavedWQMReg); 791 792 if (SavedWQMReg) { 793 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 794 SavedWQMReg = 0; 795 } 796 State = StateWQM; 797 } else { 798 // We can get here if we transitioned from WWM to a non-WWM state that 799 // already matches our needs, but we shouldn't need to do anything. 800 assert(Needs & State); 801 } 802 } 803 } 804 805 if (Needs != (StateExact | StateWQM | StateWWM)) { 806 if (Needs != (StateExact | StateWQM)) 807 FirstWQM = IE; 808 FirstWWM = IE; 809 } 810 811 if (II == IE) 812 break; 813 II = Next; 814 } 815 } 816 817 void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) { 818 for (MachineInstr *MI : LiveMaskQueries) { 819 const DebugLoc &DL = MI->getDebugLoc(); 820 unsigned Dest = MI->getOperand(0).getReg(); 821 MachineInstr *Copy = 822 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 823 .addReg(LiveMaskReg); 824 825 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 826 MI->eraseFromParent(); 827 } 828 } 829 830 void SIWholeQuadMode::lowerCopyInstrs() { 831 for (MachineInstr *MI : LowerToCopyInstrs) { 832 for (unsigned i = MI->getNumExplicitOperands() - 1; i > 1; i--) 833 MI->RemoveOperand(i); 834 MI->setDesc(TII->get(AMDGPU::COPY)); 835 } 836 } 837 838 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 839 Instructions.clear(); 840 Blocks.clear(); 841 LiveMaskQueries.clear(); 842 LowerToCopyInstrs.clear(); 843 CallingConv = MF.getFunction().getCallingConv(); 844 845 const SISubtarget &ST = MF.getSubtarget<SISubtarget>(); 846 847 TII = ST.getInstrInfo(); 848 TRI = &TII->getRegisterInfo(); 849 MRI = &MF.getRegInfo(); 850 LIS = &getAnalysis<LiveIntervals>(); 851 852 char GlobalFlags = analyzeFunction(MF); 853 unsigned LiveMaskReg = 0; 854 if (!(GlobalFlags & StateWQM)) { 855 lowerLiveMaskQueries(AMDGPU::EXEC); 856 if (!(GlobalFlags & StateWWM)) 857 return !LiveMaskQueries.empty(); 858 } else { 859 // Store a copy of the original live mask when required 860 MachineBasicBlock &Entry = MF.front(); 861 MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI(); 862 863 if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) { 864 LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass); 865 MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(), 866 TII->get(AMDGPU::COPY), LiveMaskReg) 867 .addReg(AMDGPU::EXEC); 868 LIS->InsertMachineInstrInMaps(*MI); 869 } 870 871 lowerLiveMaskQueries(LiveMaskReg); 872 873 if (GlobalFlags == StateWQM) { 874 // For a shader that needs only WQM, we can just set it once. 875 BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64), 876 AMDGPU::EXEC) 877 .addReg(AMDGPU::EXEC); 878 879 lowerCopyInstrs(); 880 // EntryMI may become invalid here 881 return true; 882 } 883 } 884 885 DEBUG(printInfo()); 886 887 lowerCopyInstrs(); 888 889 // Handle the general case 890 for (auto BII : Blocks) 891 processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin()); 892 893 // Physical registers like SCC aren't tracked by default anyway, so just 894 // removing the ranges we computed is the simplest option for maintaining 895 // the analysis results. 896 LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI)); 897 898 return true; 899 } 900