1 //===-- SIOptimizeExecMasking.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "AMDGPU.h" 10 #include "GCNSubtarget.h" 11 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 12 #include "llvm/CodeGen/MachineFunctionPass.h" 13 #include "llvm/InitializePasses.h" 14 #include "llvm/CodeGen/LivePhysRegs.h" 15 16 using namespace llvm; 17 18 #define DEBUG_TYPE "si-optimize-exec-masking" 19 20 namespace { 21 22 class SIOptimizeExecMasking : public MachineFunctionPass { 23 public: 24 static char ID; 25 26 public: 27 SIOptimizeExecMasking() : MachineFunctionPass(ID) { 28 initializeSIOptimizeExecMaskingPass(*PassRegistry::getPassRegistry()); 29 } 30 31 bool runOnMachineFunction(MachineFunction &MF) override; 32 33 StringRef getPassName() const override { 34 return "SI optimize exec mask operations"; 35 } 36 37 void getAnalysisUsage(AnalysisUsage &AU) const override { 38 AU.setPreservesCFG(); 39 MachineFunctionPass::getAnalysisUsage(AU); 40 } 41 }; 42 43 } // End anonymous namespace. 44 45 INITIALIZE_PASS_BEGIN(SIOptimizeExecMasking, DEBUG_TYPE, 46 "SI optimize exec mask operations", false, false) 47 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 48 INITIALIZE_PASS_END(SIOptimizeExecMasking, DEBUG_TYPE, 49 "SI optimize exec mask operations", false, false) 50 51 char SIOptimizeExecMasking::ID = 0; 52 53 char &llvm::SIOptimizeExecMaskingID = SIOptimizeExecMasking::ID; 54 55 /// If \p MI is a copy from exec, return the register copied to. 56 static Register isCopyFromExec(const MachineInstr &MI, const GCNSubtarget &ST) { 57 switch (MI.getOpcode()) { 58 case AMDGPU::COPY: 59 case AMDGPU::S_MOV_B64: 60 case AMDGPU::S_MOV_B64_term: 61 case AMDGPU::S_MOV_B32: 62 case AMDGPU::S_MOV_B32_term: { 63 const MachineOperand &Src = MI.getOperand(1); 64 if (Src.isReg() && 65 Src.getReg() == (ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC)) 66 return MI.getOperand(0).getReg(); 67 } 68 } 69 70 return AMDGPU::NoRegister; 71 } 72 73 /// If \p MI is a copy to exec, return the register copied from. 74 static Register isCopyToExec(const MachineInstr &MI, const GCNSubtarget &ST) { 75 switch (MI.getOpcode()) { 76 case AMDGPU::COPY: 77 case AMDGPU::S_MOV_B64: 78 case AMDGPU::S_MOV_B32: { 79 const MachineOperand &Dst = MI.getOperand(0); 80 if (Dst.isReg() && 81 Dst.getReg() == (ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC) && 82 MI.getOperand(1).isReg()) 83 return MI.getOperand(1).getReg(); 84 break; 85 } 86 case AMDGPU::S_MOV_B64_term: 87 case AMDGPU::S_MOV_B32_term: 88 llvm_unreachable("should have been replaced"); 89 } 90 91 return Register(); 92 } 93 94 /// If \p MI is a logical operation on an exec value, 95 /// return the register copied to. 96 static Register isLogicalOpOnExec(const MachineInstr &MI) { 97 switch (MI.getOpcode()) { 98 case AMDGPU::S_AND_B64: 99 case AMDGPU::S_OR_B64: 100 case AMDGPU::S_XOR_B64: 101 case AMDGPU::S_ANDN2_B64: 102 case AMDGPU::S_ORN2_B64: 103 case AMDGPU::S_NAND_B64: 104 case AMDGPU::S_NOR_B64: 105 case AMDGPU::S_XNOR_B64: { 106 const MachineOperand &Src1 = MI.getOperand(1); 107 if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC) 108 return MI.getOperand(0).getReg(); 109 const MachineOperand &Src2 = MI.getOperand(2); 110 if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC) 111 return MI.getOperand(0).getReg(); 112 break; 113 } 114 case AMDGPU::S_AND_B32: 115 case AMDGPU::S_OR_B32: 116 case AMDGPU::S_XOR_B32: 117 case AMDGPU::S_ANDN2_B32: 118 case AMDGPU::S_ORN2_B32: 119 case AMDGPU::S_NAND_B32: 120 case AMDGPU::S_NOR_B32: 121 case AMDGPU::S_XNOR_B32: { 122 const MachineOperand &Src1 = MI.getOperand(1); 123 if (Src1.isReg() && Src1.getReg() == AMDGPU::EXEC_LO) 124 return MI.getOperand(0).getReg(); 125 const MachineOperand &Src2 = MI.getOperand(2); 126 if (Src2.isReg() && Src2.getReg() == AMDGPU::EXEC_LO) 127 return MI.getOperand(0).getReg(); 128 break; 129 } 130 } 131 132 return AMDGPU::NoRegister; 133 } 134 135 static unsigned getSaveExecOp(unsigned Opc) { 136 switch (Opc) { 137 case AMDGPU::S_AND_B64: 138 return AMDGPU::S_AND_SAVEEXEC_B64; 139 case AMDGPU::S_OR_B64: 140 return AMDGPU::S_OR_SAVEEXEC_B64; 141 case AMDGPU::S_XOR_B64: 142 return AMDGPU::S_XOR_SAVEEXEC_B64; 143 case AMDGPU::S_ANDN2_B64: 144 return AMDGPU::S_ANDN2_SAVEEXEC_B64; 145 case AMDGPU::S_ORN2_B64: 146 return AMDGPU::S_ORN2_SAVEEXEC_B64; 147 case AMDGPU::S_NAND_B64: 148 return AMDGPU::S_NAND_SAVEEXEC_B64; 149 case AMDGPU::S_NOR_B64: 150 return AMDGPU::S_NOR_SAVEEXEC_B64; 151 case AMDGPU::S_XNOR_B64: 152 return AMDGPU::S_XNOR_SAVEEXEC_B64; 153 case AMDGPU::S_AND_B32: 154 return AMDGPU::S_AND_SAVEEXEC_B32; 155 case AMDGPU::S_OR_B32: 156 return AMDGPU::S_OR_SAVEEXEC_B32; 157 case AMDGPU::S_XOR_B32: 158 return AMDGPU::S_XOR_SAVEEXEC_B32; 159 case AMDGPU::S_ANDN2_B32: 160 return AMDGPU::S_ANDN2_SAVEEXEC_B32; 161 case AMDGPU::S_ORN2_B32: 162 return AMDGPU::S_ORN2_SAVEEXEC_B32; 163 case AMDGPU::S_NAND_B32: 164 return AMDGPU::S_NAND_SAVEEXEC_B32; 165 case AMDGPU::S_NOR_B32: 166 return AMDGPU::S_NOR_SAVEEXEC_B32; 167 case AMDGPU::S_XNOR_B32: 168 return AMDGPU::S_XNOR_SAVEEXEC_B32; 169 default: 170 return AMDGPU::INSTRUCTION_LIST_END; 171 } 172 } 173 174 // These are only terminators to get correct spill code placement during 175 // register allocation, so turn them back into normal instructions. 176 static bool removeTerminatorBit(const SIInstrInfo &TII, MachineInstr &MI) { 177 switch (MI.getOpcode()) { 178 case AMDGPU::S_MOV_B32_term: { 179 bool RegSrc = MI.getOperand(1).isReg(); 180 MI.setDesc(TII.get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B32)); 181 return true; 182 } 183 case AMDGPU::S_MOV_B64_term: { 184 bool RegSrc = MI.getOperand(1).isReg(); 185 MI.setDesc(TII.get(RegSrc ? AMDGPU::COPY : AMDGPU::S_MOV_B64)); 186 return true; 187 } 188 case AMDGPU::S_XOR_B64_term: { 189 // This is only a terminator to get the correct spill code placement during 190 // register allocation. 191 MI.setDesc(TII.get(AMDGPU::S_XOR_B64)); 192 return true; 193 } 194 case AMDGPU::S_XOR_B32_term: { 195 // This is only a terminator to get the correct spill code placement during 196 // register allocation. 197 MI.setDesc(TII.get(AMDGPU::S_XOR_B32)); 198 return true; 199 } 200 case AMDGPU::S_OR_B64_term: { 201 // This is only a terminator to get the correct spill code placement during 202 // register allocation. 203 MI.setDesc(TII.get(AMDGPU::S_OR_B64)); 204 return true; 205 } 206 case AMDGPU::S_OR_B32_term: { 207 // This is only a terminator to get the correct spill code placement during 208 // register allocation. 209 MI.setDesc(TII.get(AMDGPU::S_OR_B32)); 210 return true; 211 } 212 case AMDGPU::S_ANDN2_B64_term: { 213 // This is only a terminator to get the correct spill code placement during 214 // register allocation. 215 MI.setDesc(TII.get(AMDGPU::S_ANDN2_B64)); 216 return true; 217 } 218 case AMDGPU::S_ANDN2_B32_term: { 219 // This is only a terminator to get the correct spill code placement during 220 // register allocation. 221 MI.setDesc(TII.get(AMDGPU::S_ANDN2_B32)); 222 return true; 223 } 224 case AMDGPU::S_AND_B64_term: { 225 // This is only a terminator to get the correct spill code placement during 226 // register allocation. 227 MI.setDesc(TII.get(AMDGPU::S_AND_B64)); 228 return true; 229 } 230 case AMDGPU::S_AND_B32_term: { 231 // This is only a terminator to get the correct spill code placement during 232 // register allocation. 233 MI.setDesc(TII.get(AMDGPU::S_AND_B32)); 234 return true; 235 } 236 default: 237 return false; 238 } 239 } 240 241 // Turn all pseudoterminators in the block into their equivalent non-terminator 242 // instructions. Returns the reverse iterator to the first non-terminator 243 // instruction in the block. 244 static MachineBasicBlock::reverse_iterator fixTerminators( 245 const SIInstrInfo &TII, 246 MachineBasicBlock &MBB) { 247 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend(); 248 249 bool Seen = false; 250 MachineBasicBlock::reverse_iterator FirstNonTerm = I; 251 for (; I != E; ++I) { 252 if (!I->isTerminator()) 253 return Seen ? FirstNonTerm : I; 254 255 if (removeTerminatorBit(TII, *I)) { 256 if (!Seen) { 257 FirstNonTerm = I; 258 Seen = true; 259 } 260 } 261 } 262 263 return FirstNonTerm; 264 } 265 266 static MachineBasicBlock::reverse_iterator findExecCopy( 267 const SIInstrInfo &TII, 268 const GCNSubtarget &ST, 269 MachineBasicBlock &MBB, 270 MachineBasicBlock::reverse_iterator I, 271 unsigned CopyToExec) { 272 const unsigned InstLimit = 25; 273 274 auto E = MBB.rend(); 275 for (unsigned N = 0; N <= InstLimit && I != E; ++I, ++N) { 276 Register CopyFromExec = isCopyFromExec(*I, ST); 277 if (CopyFromExec.isValid()) 278 return I; 279 } 280 281 return E; 282 } 283 284 // XXX - Seems LivePhysRegs doesn't work correctly since it will incorrectly 285 // report the register as unavailable because a super-register with a lane mask 286 // is unavailable. 287 static bool isLiveOut(const MachineBasicBlock &MBB, unsigned Reg) { 288 for (MachineBasicBlock *Succ : MBB.successors()) { 289 if (Succ->isLiveIn(Reg)) 290 return true; 291 } 292 293 return false; 294 } 295 296 // Backwards-iterate from Origin (for n=MaxInstructions iterations) until either 297 // the beginning of the BB is reached or Pred evaluates to true - which can be 298 // an arbitrary condition based on the current MachineInstr, for instance an 299 // target instruction. Breaks prematurely by returning nullptr if one of the 300 // registers given in NonModifiableRegs is modified by the current instruction. 301 static MachineInstr * 302 findInstrBackwards(MachineInstr &Origin, 303 std::function<bool(MachineInstr *)> Pred, 304 ArrayRef<MCRegister> NonModifiableRegs, 305 const SIRegisterInfo *TRI, unsigned MaxInstructions = 5) { 306 MachineBasicBlock::reverse_iterator A = Origin.getReverseIterator(), 307 E = Origin.getParent()->rend(); 308 unsigned CurrentIteration = 0; 309 310 for (++A; CurrentIteration < MaxInstructions && A != E; ++A) { 311 if (Pred(&*A)) 312 return &*A; 313 314 for (MCRegister Reg : NonModifiableRegs) { 315 if (A->modifiesRegister(Reg, TRI)) 316 return nullptr; 317 } 318 319 ++CurrentIteration; 320 } 321 322 return nullptr; 323 } 324 325 // Determine if a register Reg is not re-defined and still in use 326 // in the range (Stop..BB.end]. 327 // It does so by backwards calculating liveness from the end of the BB until 328 // either Stop or the beginning of the BB is reached. 329 // After liveness is calculated, we can determine if Reg is still in use and not 330 // defined inbetween the instructions. 331 static bool isRegisterInUseAfter(MachineInstr &Stop, MCRegister Reg, 332 const SIRegisterInfo *TRI, 333 MachineRegisterInfo &MRI) { 334 LivePhysRegs LR(*TRI); 335 LR.addLiveOuts(*Stop.getParent()); 336 337 for (auto A = Stop.getParent()->rbegin(); 338 A != Stop.getParent()->rend() && A != Stop; ++A) { 339 LR.stepBackward(*A); 340 } 341 342 return !LR.available(MRI, Reg); 343 } 344 345 // Tries to find a possibility to optimize a v_cmp ..., s_and_saveexec sequence 346 // by looking at an instance of a s_and_saveexec instruction. Returns a pointer 347 // to the v_cmp instruction if it is safe to replace the sequence (see the 348 // conditions in the function body). This is after register allocation, so some 349 // checks on operand dependencies need to be considered. 350 static MachineInstr *findPossibleVCMPVCMPXOptimization( 351 MachineInstr &SaveExec, MCRegister Exec, const SIRegisterInfo *TRI, 352 const SIInstrInfo *TII, MachineRegisterInfo &MRI) { 353 354 MachineInstr *VCmp = nullptr; 355 356 Register SaveExecDest = SaveExec.getOperand(0).getReg(); 357 if (!TRI->isSGPRReg(MRI, SaveExecDest)) 358 return nullptr; 359 360 MachineOperand *SaveExecSrc0 = 361 TII->getNamedOperand(SaveExec, AMDGPU::OpName::src0); 362 if (!SaveExecSrc0->isReg()) 363 return nullptr; 364 365 // Try to find the last v_cmp instruction that defs the saveexec input 366 // operand without any write to Exec inbetween. 367 VCmp = findInstrBackwards( 368 SaveExec, 369 [&](MachineInstr *Check) { 370 return AMDGPU::getVCMPXOpFromVCMP(Check->getOpcode()) != -1 && 371 Check->modifiesRegister(SaveExecSrc0->getReg(), TRI); 372 }, 373 {Exec, SaveExecSrc0->getReg()}, TRI); 374 375 if (!VCmp) 376 return nullptr; 377 378 MachineOperand *VCmpDest = TII->getNamedOperand(*VCmp, AMDGPU::OpName::sdst); 379 assert(VCmpDest && "Should have an sdst operand!"); 380 381 // Check if any of the v_cmp source operands is written by the saveexec. 382 MachineOperand *Src0 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src0); 383 if (Src0->isReg() && TRI->isSGPRReg(MRI, Src0->getReg()) && 384 SaveExec.modifiesRegister(Src0->getReg(), TRI)) 385 return nullptr; 386 387 MachineOperand *Src1 = TII->getNamedOperand(*VCmp, AMDGPU::OpName::src1); 388 if (Src1->isReg() && TRI->isSGPRReg(MRI, Src1->getReg()) && 389 SaveExec.modifiesRegister(Src1->getReg(), TRI)) 390 return nullptr; 391 392 // Don't do the transformation if the destination operand is included in 393 // it's MBB Live-outs, meaning it's used in any of it's successors, leading 394 // to incorrect code if the v_cmp and therefore the def of 395 // the dest operand is removed. 396 if (isLiveOut(*VCmp->getParent(), VCmpDest->getReg())) 397 return nullptr; 398 399 // If the v_cmp target is in use after the s_and_saveexec, skip the 400 // optimization. 401 if (isRegisterInUseAfter(SaveExec, VCmpDest->getReg(), TRI, 402 MRI)) 403 return nullptr; 404 405 // Try to determine if there is a write to any of the VCmp 406 // operands between the saveexec and the vcmp. 407 // If yes, additional VGPR spilling might need to be inserted. In this case, 408 // it's not worth replacing the instruction sequence. 409 SmallVector<MCRegister, 2> NonDefRegs; 410 if (Src0->isReg()) 411 NonDefRegs.push_back(Src0->getReg()); 412 413 if (Src1->isReg()) 414 NonDefRegs.push_back(Src1->getReg()); 415 416 if (!findInstrBackwards( 417 SaveExec, [&](MachineInstr *Check) { return Check == VCmp; }, 418 NonDefRegs, TRI)) 419 return nullptr; 420 421 return VCmp; 422 } 423 424 // Inserts the optimized s_mov_b32 / v_cmpx sequence based on the 425 // operands extracted from a v_cmp ..., s_and_saveexec pattern. 426 static bool optimizeVCMPSaveExecSequence(MachineInstr &SaveExecInstr, 427 MachineInstr &VCmp, MCRegister Exec, 428 const SIInstrInfo *TII, 429 const SIRegisterInfo *TRI, 430 MachineRegisterInfo &MRI) { 431 const int NewOpcode = AMDGPU::getVCMPXOpFromVCMP(VCmp.getOpcode()); 432 433 if (NewOpcode == -1) 434 return false; 435 436 MachineOperand *Src0 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src0); 437 MachineOperand *Src1 = TII->getNamedOperand(VCmp, AMDGPU::OpName::src1); 438 439 Register MoveDest = SaveExecInstr.getOperand(0).getReg(); 440 441 MachineBasicBlock::instr_iterator InsertPosIt = SaveExecInstr.getIterator(); 442 if (!SaveExecInstr.uses().empty()) { 443 bool isSGPR32 = TRI->getRegSizeInBits(MoveDest, MRI) == 32; 444 unsigned MovOpcode = isSGPR32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 445 BuildMI(*SaveExecInstr.getParent(), InsertPosIt, 446 SaveExecInstr.getDebugLoc(), TII->get(MovOpcode), MoveDest) 447 .addReg(Exec); 448 } 449 450 // Omit dst as V_CMPX is implicitly writing to EXEC. 451 // Add dummy src and clamp modifiers, if needed. 452 auto Builder = BuildMI(*VCmp.getParent(), std::next(InsertPosIt), 453 VCmp.getDebugLoc(), TII->get(NewOpcode)); 454 455 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src0_modifiers) != 456 -1) 457 Builder.addImm(0); 458 459 Builder.add(*Src0); 460 461 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src1_modifiers) != 462 -1) 463 Builder.addImm(0); 464 465 Builder.add(*Src1); 466 467 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::clamp) != -1) 468 Builder.addImm(0); 469 470 return true; 471 } 472 473 bool SIOptimizeExecMasking::runOnMachineFunction(MachineFunction &MF) { 474 if (skipFunction(MF.getFunction())) 475 return false; 476 477 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 478 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 479 const SIInstrInfo *TII = ST.getInstrInfo(); 480 MachineRegisterInfo *MRI = &MF.getRegInfo(); 481 MCRegister Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 482 483 // Optimize sequences emitted for control flow lowering. They are originally 484 // emitted as the separate operations because spill code may need to be 485 // inserted for the saved copy of exec. 486 // 487 // x = copy exec 488 // z = s_<op>_b64 x, y 489 // exec = copy z 490 // => 491 // x = s_<op>_saveexec_b64 y 492 // 493 494 bool Changed = false; 495 for (MachineBasicBlock &MBB : MF) { 496 MachineBasicBlock::reverse_iterator I = fixTerminators(*TII, MBB); 497 MachineBasicBlock::reverse_iterator E = MBB.rend(); 498 if (I == E) 499 continue; 500 501 // It's possible to see other terminator copies after the exec copy. This 502 // can happen if control flow pseudos had their outputs used by phis. 503 Register CopyToExec; 504 505 unsigned SearchCount = 0; 506 const unsigned SearchLimit = 5; 507 while (I != E && SearchCount++ < SearchLimit) { 508 CopyToExec = isCopyToExec(*I, ST); 509 if (CopyToExec) 510 break; 511 ++I; 512 } 513 514 if (!CopyToExec) 515 continue; 516 517 // Scan backwards to find the def. 518 auto CopyToExecInst = &*I; 519 auto CopyFromExecInst = findExecCopy(*TII, ST, MBB, I, CopyToExec); 520 if (CopyFromExecInst == E) { 521 auto PrepareExecInst = std::next(I); 522 if (PrepareExecInst == E) 523 continue; 524 // Fold exec = COPY (S_AND_B64 reg, exec) -> exec = S_AND_B64 reg, exec 525 if (CopyToExecInst->getOperand(1).isKill() && 526 isLogicalOpOnExec(*PrepareExecInst) == CopyToExec) { 527 LLVM_DEBUG(dbgs() << "Fold exec copy: " << *PrepareExecInst); 528 529 PrepareExecInst->getOperand(0).setReg(Exec); 530 531 LLVM_DEBUG(dbgs() << "into: " << *PrepareExecInst << '\n'); 532 533 CopyToExecInst->eraseFromParent(); 534 Changed = true; 535 } 536 537 continue; 538 } 539 540 if (isLiveOut(MBB, CopyToExec)) { 541 // The copied register is live out and has a second use in another block. 542 LLVM_DEBUG(dbgs() << "Exec copy source register is live out\n"); 543 continue; 544 } 545 546 Register CopyFromExec = CopyFromExecInst->getOperand(0).getReg(); 547 MachineInstr *SaveExecInst = nullptr; 548 SmallVector<MachineInstr *, 4> OtherUseInsts; 549 550 for (MachineBasicBlock::iterator J 551 = std::next(CopyFromExecInst->getIterator()), JE = I->getIterator(); 552 J != JE; ++J) { 553 if (SaveExecInst && J->readsRegister(Exec, TRI)) { 554 LLVM_DEBUG(dbgs() << "exec read prevents saveexec: " << *J << '\n'); 555 // Make sure this is inserted after any VALU ops that may have been 556 // scheduled in between. 557 SaveExecInst = nullptr; 558 break; 559 } 560 561 bool ReadsCopyFromExec = J->readsRegister(CopyFromExec, TRI); 562 563 if (J->modifiesRegister(CopyToExec, TRI)) { 564 if (SaveExecInst) { 565 LLVM_DEBUG(dbgs() << "Multiple instructions modify " 566 << printReg(CopyToExec, TRI) << '\n'); 567 SaveExecInst = nullptr; 568 break; 569 } 570 571 unsigned SaveExecOp = getSaveExecOp(J->getOpcode()); 572 if (SaveExecOp == AMDGPU::INSTRUCTION_LIST_END) 573 break; 574 575 if (ReadsCopyFromExec) { 576 SaveExecInst = &*J; 577 LLVM_DEBUG(dbgs() << "Found save exec op: " << *SaveExecInst << '\n'); 578 continue; 579 } else { 580 LLVM_DEBUG(dbgs() 581 << "Instruction does not read exec copy: " << *J << '\n'); 582 break; 583 } 584 } else if (ReadsCopyFromExec && !SaveExecInst) { 585 // Make sure no other instruction is trying to use this copy, before it 586 // will be rewritten by the saveexec, i.e. hasOneUse. There may have 587 // been another use, such as an inserted spill. For example: 588 // 589 // %sgpr0_sgpr1 = COPY %exec 590 // spill %sgpr0_sgpr1 591 // %sgpr2_sgpr3 = S_AND_B64 %sgpr0_sgpr1 592 // 593 LLVM_DEBUG(dbgs() << "Found second use of save inst candidate: " << *J 594 << '\n'); 595 break; 596 } 597 598 if (SaveExecInst && J->readsRegister(CopyToExec, TRI)) { 599 assert(SaveExecInst != &*J); 600 OtherUseInsts.push_back(&*J); 601 } 602 } 603 604 if (!SaveExecInst) 605 continue; 606 607 LLVM_DEBUG(dbgs() << "Insert save exec op: " << *SaveExecInst << '\n'); 608 609 MachineOperand &Src0 = SaveExecInst->getOperand(1); 610 MachineOperand &Src1 = SaveExecInst->getOperand(2); 611 612 MachineOperand *OtherOp = nullptr; 613 614 if (Src0.isReg() && Src0.getReg() == CopyFromExec) { 615 OtherOp = &Src1; 616 } else if (Src1.isReg() && Src1.getReg() == CopyFromExec) { 617 if (!SaveExecInst->isCommutable()) 618 break; 619 620 OtherOp = &Src0; 621 } else 622 llvm_unreachable("unexpected"); 623 624 CopyFromExecInst->eraseFromParent(); 625 626 auto InsPt = SaveExecInst->getIterator(); 627 const DebugLoc &DL = SaveExecInst->getDebugLoc(); 628 629 BuildMI(MBB, InsPt, DL, TII->get(getSaveExecOp(SaveExecInst->getOpcode())), 630 CopyFromExec) 631 .addReg(OtherOp->getReg()); 632 SaveExecInst->eraseFromParent(); 633 634 CopyToExecInst->eraseFromParent(); 635 636 for (MachineInstr *OtherInst : OtherUseInsts) { 637 OtherInst->substituteRegister(CopyToExec, Exec, 638 AMDGPU::NoSubRegister, *TRI); 639 } 640 641 Changed = true; 642 } 643 644 // After all s_op_saveexec instructions are inserted, 645 // replace (on GFX10.3 and later) 646 // v_cmp_* SGPR, IMM, VGPR 647 // s_and_saveexec_b32 EXEC_SGPR_DEST, SGPR 648 // with 649 // s_mov_b32 EXEC_SGPR_DEST, exec_lo 650 // v_cmpx_* IMM, VGPR 651 // to reduce pipeline stalls. 652 if (ST.hasGFX10_3Insts()) { 653 DenseMap<MachineInstr *, MachineInstr *> SaveExecVCmpMapping; 654 const unsigned AndSaveExecOpcode = 655 ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64; 656 657 for (MachineBasicBlock &MBB : MF) { 658 for (MachineInstr &MI : MBB) { 659 // Record relevant v_cmp / s_and_saveexec instruction pairs for 660 // replacement. 661 if (MI.getOpcode() != AndSaveExecOpcode) 662 continue; 663 664 if (MachineInstr *VCmp = 665 findPossibleVCMPVCMPXOptimization(MI, Exec, TRI, TII, *MRI)) 666 SaveExecVCmpMapping[&MI] = VCmp; 667 } 668 } 669 670 for (const auto &Entry : SaveExecVCmpMapping) { 671 MachineInstr *SaveExecInstr = Entry.getFirst(); 672 MachineInstr *VCmpInstr = Entry.getSecond(); 673 674 if (optimizeVCMPSaveExecSequence(*SaveExecInstr, *VCmpInstr, Exec, TII, 675 TRI, *MRI)) { 676 SaveExecInstr->eraseFromParent(); 677 VCmpInstr->eraseFromParent(); 678 679 Changed = true; 680 } 681 } 682 } 683 684 return Changed; 685 } 686