1 //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// SI Machine Scheduler interface 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIMachineScheduler.h" 15 #include "AMDGPU.h" 16 #include "SIInstrInfo.h" 17 #include "SIRegisterInfo.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/RegisterPressure.h" 27 #include "llvm/CodeGen/SlotIndexes.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <map> 35 #include <set> 36 #include <utility> 37 #include <vector> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-scheduler" 42 43 // This scheduler implements a different scheduling algorithm than 44 // GenericScheduler. 45 // 46 // There are several specific architecture behaviours that can't be modelled 47 // for GenericScheduler: 48 // . When accessing the result of an SGPR load instruction, you have to wait 49 // for all the SGPR load instructions before your current instruction to 50 // have finished. 51 // . When accessing the result of an VGPR load instruction, you have to wait 52 // for all the VGPR load instructions previous to the VGPR load instruction 53 // you are interested in to finish. 54 // . The less the register pressure, the best load latencies are hidden 55 // 56 // Moreover some specifities (like the fact a lot of instructions in the shader 57 // have few dependencies) makes the generic scheduler have some unpredictable 58 // behaviours. For example when register pressure becomes high, it can either 59 // manage to prevent register pressure from going too high, or it can 60 // increase register pressure even more than if it hadn't taken register 61 // pressure into account. 62 // 63 // Also some other bad behaviours are generated, like loading at the beginning 64 // of the shader a constant in VGPR you won't need until the end of the shader. 65 // 66 // The scheduling problem for SI can distinguish three main parts: 67 // . Hiding high latencies (texture sampling, etc) 68 // . Hiding low latencies (SGPR constant loading, etc) 69 // . Keeping register usage low for better latency hiding and general 70 // performance 71 // 72 // Some other things can also affect performance, but are hard to predict 73 // (cache usage, the fact the HW can issue several instructions from different 74 // wavefronts if different types, etc) 75 // 76 // This scheduler tries to solve the scheduling problem by dividing it into 77 // simpler sub-problems. It divides the instructions into blocks, schedules 78 // locally inside the blocks where it takes care of low latencies, and then 79 // chooses the order of the blocks by taking care of high latencies. 80 // Dividing the instructions into blocks helps control keeping register 81 // usage low. 82 // 83 // First the instructions are put into blocks. 84 // We want the blocks help control register usage and hide high latencies 85 // later. To help control register usage, we typically want all local 86 // computations, when for example you create a result that can be comsummed 87 // right away, to be contained in a block. Block inputs and outputs would 88 // typically be important results that are needed in several locations of 89 // the shader. Since we do want blocks to help hide high latencies, we want 90 // the instructions inside the block to have a minimal set of dependencies 91 // on high latencies. It will make it easy to pick blocks to hide specific 92 // high latencies. 93 // The block creation algorithm is divided into several steps, and several 94 // variants can be tried during the scheduling process. 95 // 96 // Second the order of the instructions inside the blocks is chosen. 97 // At that step we do take into account only register usage and hiding 98 // low latency instructions 99 // 100 // Third the block order is chosen, there we try to hide high latencies 101 // and keep register usage low. 102 // 103 // After the third step, a pass is done to improve the hiding of low 104 // latencies. 105 // 106 // Actually when talking about 'low latency' or 'high latency' it includes 107 // both the latency to get the cache (or global mem) data go to the register, 108 // and the bandwidth limitations. 109 // Increasing the number of active wavefronts helps hide the former, but it 110 // doesn't solve the latter, thus why even if wavefront count is high, we have 111 // to try have as many instructions hiding high latencies as possible. 112 // The OpenCL doc says for example latency of 400 cycles for a global mem access, 113 // which is hidden by 10 instructions if the wavefront count is 10. 114 115 // Some figures taken from AMD docs: 116 // Both texture and constant L1 caches are 4-way associative with 64 bytes 117 // lines. 118 // Constant cache is shared with 4 CUs. 119 // For texture sampling, the address generation unit receives 4 texture 120 // addresses per cycle, thus we could expect texture sampling latency to be 121 // equivalent to 4 instructions in the very best case (a VGPR is 64 work items, 122 // instructions in a wavefront group are executed every 4 cycles), 123 // or 16 instructions if the other wavefronts associated to the 3 other VALUs 124 // of the CU do texture sampling too. (Don't take these figures too seriously, 125 // as I'm not 100% sure of the computation) 126 // Data exports should get similar latency. 127 // For constant loading, the cache is shader with 4 CUs. 128 // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit" 129 // I guess if the other CU don't read the cache, it can go up to 64B/cycle. 130 // It means a simple s_buffer_load should take one instruction to hide, as 131 // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same 132 // cache line. 133 // 134 // As of today the driver doesn't preload the constants in cache, thus the 135 // first loads get extra latency. The doc says global memory access can be 136 // 300-600 cycles. We do not specially take that into account when scheduling 137 // As we expect the driver to be able to preload the constants soon. 138 139 // common code // 140 141 #ifndef NDEBUG 142 143 static const char *getReasonStr(SIScheduleCandReason Reason) { 144 switch (Reason) { 145 case NoCand: return "NOCAND"; 146 case RegUsage: return "REGUSAGE"; 147 case Latency: return "LATENCY"; 148 case Successor: return "SUCCESSOR"; 149 case Depth: return "DEPTH"; 150 case NodeOrder: return "ORDER"; 151 } 152 llvm_unreachable("Unknown reason!"); 153 } 154 155 #endif 156 157 namespace llvm { 158 namespace SISched { 159 static bool tryLess(int TryVal, int CandVal, 160 SISchedulerCandidate &TryCand, 161 SISchedulerCandidate &Cand, 162 SIScheduleCandReason Reason) { 163 if (TryVal < CandVal) { 164 TryCand.Reason = Reason; 165 return true; 166 } 167 if (TryVal > CandVal) { 168 if (Cand.Reason > Reason) 169 Cand.Reason = Reason; 170 return true; 171 } 172 Cand.setRepeat(Reason); 173 return false; 174 } 175 176 static bool tryGreater(int TryVal, int CandVal, 177 SISchedulerCandidate &TryCand, 178 SISchedulerCandidate &Cand, 179 SIScheduleCandReason Reason) { 180 if (TryVal > CandVal) { 181 TryCand.Reason = Reason; 182 return true; 183 } 184 if (TryVal < CandVal) { 185 if (Cand.Reason > Reason) 186 Cand.Reason = Reason; 187 return true; 188 } 189 Cand.setRepeat(Reason); 190 return false; 191 } 192 } // end namespace SISched 193 } // end namespace llvm 194 195 // SIScheduleBlock // 196 197 void SIScheduleBlock::addUnit(SUnit *SU) { 198 NodeNum2Index[SU->NodeNum] = SUnits.size(); 199 SUnits.push_back(SU); 200 } 201 202 #ifndef NDEBUG 203 void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) { 204 205 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 206 dbgs() << '\n'; 207 } 208 #endif 209 210 void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand, 211 SISchedCandidate &TryCand) { 212 // Initialize the candidate if needed. 213 if (!Cand.isValid()) { 214 TryCand.Reason = NodeOrder; 215 return; 216 } 217 218 if (Cand.SGPRUsage > 60 && 219 SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage, 220 TryCand, Cand, RegUsage)) 221 return; 222 223 // Schedule low latency instructions as top as possible. 224 // Order of priority is: 225 // . Low latency instructions which do not depend on other low latency 226 // instructions we haven't waited for 227 // . Other instructions which do not depend on low latency instructions 228 // we haven't waited for 229 // . Low latencies 230 // . All other instructions 231 // Goal is to get: low latency instructions - independent instructions 232 // - (eventually some more low latency instructions) 233 // - instructions that depend on the first low latency instructions. 234 // If in the block there is a lot of constant loads, the SGPR usage 235 // could go quite high, thus above the arbitrary limit of 60 will encourage 236 // use the already loaded constants (in order to release some SGPRs) before 237 // loading more. 238 if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent, 239 Cand.HasLowLatencyNonWaitedParent, 240 TryCand, Cand, SIScheduleCandReason::Depth)) 241 return; 242 243 if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency, 244 TryCand, Cand, SIScheduleCandReason::Depth)) 245 return; 246 247 if (TryCand.IsLowLatency && 248 SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset, 249 TryCand, Cand, SIScheduleCandReason::Depth)) 250 return; 251 252 if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage, 253 TryCand, Cand, RegUsage)) 254 return; 255 256 // Fall through to original instruction order. 257 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 258 TryCand.Reason = NodeOrder; 259 } 260 } 261 262 SUnit* SIScheduleBlock::pickNode() { 263 SISchedCandidate TopCand; 264 265 for (SUnit* SU : TopReadySUs) { 266 SISchedCandidate TryCand; 267 std::vector<unsigned> pressure; 268 std::vector<unsigned> MaxPressure; 269 // Predict register usage after this instruction. 270 TryCand.SU = SU; 271 TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure); 272 TryCand.SGPRUsage = pressure[DAG->getSGPRSetID()]; 273 TryCand.VGPRUsage = pressure[DAG->getVGPRSetID()]; 274 TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum]; 275 TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum]; 276 TryCand.HasLowLatencyNonWaitedParent = 277 HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]; 278 tryCandidateTopDown(TopCand, TryCand); 279 if (TryCand.Reason != NoCand) 280 TopCand.setBest(TryCand); 281 } 282 283 return TopCand.SU; 284 } 285 286 287 // Schedule something valid. 288 void SIScheduleBlock::fastSchedule() { 289 TopReadySUs.clear(); 290 if (Scheduled) 291 undoSchedule(); 292 293 for (SUnit* SU : SUnits) { 294 if (!SU->NumPredsLeft) 295 TopReadySUs.push_back(SU); 296 } 297 298 while (!TopReadySUs.empty()) { 299 SUnit *SU = TopReadySUs[0]; 300 ScheduledSUnits.push_back(SU); 301 nodeScheduled(SU); 302 } 303 304 Scheduled = true; 305 } 306 307 // Returns if the register was set between first and last. 308 static bool isDefBetween(unsigned Reg, 309 SlotIndex First, SlotIndex Last, 310 const MachineRegisterInfo *MRI, 311 const LiveIntervals *LIS) { 312 for (MachineRegisterInfo::def_instr_iterator 313 UI = MRI->def_instr_begin(Reg), 314 UE = MRI->def_instr_end(); UI != UE; ++UI) { 315 const MachineInstr* MI = &*UI; 316 if (MI->isDebugValue()) 317 continue; 318 SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot(); 319 if (InstSlot >= First && InstSlot <= Last) 320 return true; 321 } 322 return false; 323 } 324 325 void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock, 326 MachineBasicBlock::iterator EndBlock) { 327 IntervalPressure Pressure, BotPressure; 328 RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure); 329 LiveIntervals *LIS = DAG->getLIS(); 330 MachineRegisterInfo *MRI = DAG->getMRI(); 331 DAG->initRPTracker(TopRPTracker); 332 DAG->initRPTracker(BotRPTracker); 333 DAG->initRPTracker(RPTracker); 334 335 // Goes though all SU. RPTracker captures what had to be alive for the SUs 336 // to execute, and what is still alive at the end. 337 for (SUnit* SU : ScheduledSUnits) { 338 RPTracker.setPos(SU->getInstr()); 339 RPTracker.advance(); 340 } 341 342 // Close the RPTracker to finalize live ins/outs. 343 RPTracker.closeRegion(); 344 345 // Initialize the live ins and live outs. 346 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 347 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 348 349 // Do not Track Physical Registers, because it messes up. 350 for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) { 351 if (Register::isVirtualRegister(RegMaskPair.RegUnit)) 352 LiveInRegs.insert(RegMaskPair.RegUnit); 353 } 354 LiveOutRegs.clear(); 355 // There is several possibilities to distinguish: 356 // 1) Reg is not input to any instruction in the block, but is output of one 357 // 2) 1) + read in the block and not needed after it 358 // 3) 1) + read in the block but needed in another block 359 // 4) Reg is input of an instruction but another block will read it too 360 // 5) Reg is input of an instruction and then rewritten in the block. 361 // result is not read in the block (implies used in another block) 362 // 6) Reg is input of an instruction and then rewritten in the block. 363 // result is read in the block and not needed in another block 364 // 7) Reg is input of an instruction and then rewritten in the block. 365 // result is read in the block but also needed in another block 366 // LiveInRegs will contains all the regs in situation 4, 5, 6, 7 367 // We want LiveOutRegs to contain only Regs whose content will be read after 368 // in another block, and whose content was written in the current block, 369 // that is we want it to get 1, 3, 5, 7 370 // Since we made the MIs of a block to be packed all together before 371 // scheduling, then the LiveIntervals were correct, and the RPTracker was 372 // able to correctly handle 5 vs 6, 2 vs 3. 373 // (Note: This is not sufficient for RPTracker to not do mistakes for case 4) 374 // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7 375 // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7 376 // The use of findDefBetween removes the case 4. 377 for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) { 378 unsigned Reg = RegMaskPair.RegUnit; 379 if (Register::isVirtualRegister(Reg) && 380 isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(), 381 LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI, 382 LIS)) { 383 LiveOutRegs.insert(Reg); 384 } 385 } 386 387 // Pressure = sum_alive_registers register size 388 // Internally llvm will represent some registers as big 128 bits registers 389 // for example, but they actually correspond to 4 actual 32 bits registers. 390 // Thus Pressure is not equal to num_alive_registers * constant. 391 LiveInPressure = TopPressure.MaxSetPressure; 392 LiveOutPressure = BotPressure.MaxSetPressure; 393 394 // Prepares TopRPTracker for top down scheduling. 395 TopRPTracker.closeTop(); 396 } 397 398 void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock, 399 MachineBasicBlock::iterator EndBlock) { 400 if (!Scheduled) 401 fastSchedule(); 402 403 // PreScheduling phase to set LiveIn and LiveOut. 404 initRegPressure(BeginBlock, EndBlock); 405 undoSchedule(); 406 407 // Schedule for real now. 408 409 TopReadySUs.clear(); 410 411 for (SUnit* SU : SUnits) { 412 if (!SU->NumPredsLeft) 413 TopReadySUs.push_back(SU); 414 } 415 416 while (!TopReadySUs.empty()) { 417 SUnit *SU = pickNode(); 418 ScheduledSUnits.push_back(SU); 419 TopRPTracker.setPos(SU->getInstr()); 420 TopRPTracker.advance(); 421 nodeScheduled(SU); 422 } 423 424 // TODO: compute InternalAdditionnalPressure. 425 InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size()); 426 427 // Check everything is right. 428 #ifndef NDEBUG 429 assert(SUnits.size() == ScheduledSUnits.size() && 430 TopReadySUs.empty()); 431 for (SUnit* SU : SUnits) { 432 assert(SU->isScheduled && 433 SU->NumPredsLeft == 0); 434 } 435 #endif 436 437 Scheduled = true; 438 } 439 440 void SIScheduleBlock::undoSchedule() { 441 for (SUnit* SU : SUnits) { 442 SU->isScheduled = false; 443 for (SDep& Succ : SU->Succs) { 444 if (BC->isSUInBlock(Succ.getSUnit(), ID)) 445 undoReleaseSucc(SU, &Succ); 446 } 447 } 448 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0); 449 ScheduledSUnits.clear(); 450 Scheduled = false; 451 } 452 453 void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) { 454 SUnit *SuccSU = SuccEdge->getSUnit(); 455 456 if (SuccEdge->isWeak()) { 457 ++SuccSU->WeakPredsLeft; 458 return; 459 } 460 ++SuccSU->NumPredsLeft; 461 } 462 463 void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) { 464 SUnit *SuccSU = SuccEdge->getSUnit(); 465 466 if (SuccEdge->isWeak()) { 467 --SuccSU->WeakPredsLeft; 468 return; 469 } 470 #ifndef NDEBUG 471 if (SuccSU->NumPredsLeft == 0) { 472 dbgs() << "*** Scheduling failed! ***\n"; 473 DAG->dumpNode(*SuccSU); 474 dbgs() << " has been released too many times!\n"; 475 llvm_unreachable(nullptr); 476 } 477 #endif 478 479 --SuccSU->NumPredsLeft; 480 } 481 482 /// Release Successors of the SU that are in the block or not. 483 void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) { 484 for (SDep& Succ : SU->Succs) { 485 SUnit *SuccSU = Succ.getSUnit(); 486 487 if (SuccSU->NodeNum >= DAG->SUnits.size()) 488 continue; 489 490 if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock) 491 continue; 492 493 releaseSucc(SU, &Succ); 494 if (SuccSU->NumPredsLeft == 0 && InOrOutBlock) 495 TopReadySUs.push_back(SuccSU); 496 } 497 } 498 499 void SIScheduleBlock::nodeScheduled(SUnit *SU) { 500 // Is in TopReadySUs 501 assert (!SU->NumPredsLeft); 502 std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU); 503 if (I == TopReadySUs.end()) { 504 dbgs() << "Data Structure Bug in SI Scheduler\n"; 505 llvm_unreachable(nullptr); 506 } 507 TopReadySUs.erase(I); 508 509 releaseSuccessors(SU, true); 510 // Scheduling this node will trigger a wait, 511 // thus propagate to other instructions that they do not need to wait either. 512 if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]) 513 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0); 514 515 if (DAG->IsLowLatencySU[SU->NodeNum]) { 516 for (SDep& Succ : SU->Succs) { 517 std::map<unsigned, unsigned>::iterator I = 518 NodeNum2Index.find(Succ.getSUnit()->NodeNum); 519 if (I != NodeNum2Index.end()) 520 HasLowLatencyNonWaitedParent[I->second] = 1; 521 } 522 } 523 SU->isScheduled = true; 524 } 525 526 void SIScheduleBlock::finalizeUnits() { 527 // We remove links from outside blocks to enable scheduling inside the block. 528 for (SUnit* SU : SUnits) { 529 releaseSuccessors(SU, false); 530 if (DAG->IsHighLatencySU[SU->NodeNum]) 531 HighLatencyBlock = true; 532 } 533 HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0); 534 } 535 536 // we maintain ascending order of IDs 537 void SIScheduleBlock::addPred(SIScheduleBlock *Pred) { 538 unsigned PredID = Pred->getID(); 539 540 // Check if not already predecessor. 541 for (SIScheduleBlock* P : Preds) { 542 if (PredID == P->getID()) 543 return; 544 } 545 Preds.push_back(Pred); 546 547 assert(none_of(Succs, 548 [=](std::pair<SIScheduleBlock*, 549 SIScheduleBlockLinkKind> S) { 550 return PredID == S.first->getID(); 551 }) && 552 "Loop in the Block Graph!"); 553 } 554 555 void SIScheduleBlock::addSucc(SIScheduleBlock *Succ, 556 SIScheduleBlockLinkKind Kind) { 557 unsigned SuccID = Succ->getID(); 558 559 // Check if not already predecessor. 560 for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) { 561 if (SuccID == S.first->getID()) { 562 if (S.second == SIScheduleBlockLinkKind::NoData && 563 Kind == SIScheduleBlockLinkKind::Data) 564 S.second = Kind; 565 return; 566 } 567 } 568 if (Succ->isHighLatencyBlock()) 569 ++NumHighLatencySuccessors; 570 Succs.push_back(std::make_pair(Succ, Kind)); 571 572 assert(none_of(Preds, 573 [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) && 574 "Loop in the Block Graph!"); 575 } 576 577 #ifndef NDEBUG 578 void SIScheduleBlock::printDebug(bool full) { 579 dbgs() << "Block (" << ID << ")\n"; 580 if (!full) 581 return; 582 583 dbgs() << "\nContains High Latency Instruction: " 584 << HighLatencyBlock << '\n'; 585 dbgs() << "\nDepends On:\n"; 586 for (SIScheduleBlock* P : Preds) { 587 P->printDebug(false); 588 } 589 590 dbgs() << "\nSuccessors:\n"; 591 for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) { 592 if (S.second == SIScheduleBlockLinkKind::Data) 593 dbgs() << "(Data Dep) "; 594 S.first->printDebug(false); 595 } 596 597 if (Scheduled) { 598 dbgs() << "LiveInPressure " << LiveInPressure[DAG->getSGPRSetID()] << ' ' 599 << LiveInPressure[DAG->getVGPRSetID()] << '\n'; 600 dbgs() << "LiveOutPressure " << LiveOutPressure[DAG->getSGPRSetID()] << ' ' 601 << LiveOutPressure[DAG->getVGPRSetID()] << "\n\n"; 602 dbgs() << "LiveIns:\n"; 603 for (unsigned Reg : LiveInRegs) 604 dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; 605 606 dbgs() << "\nLiveOuts:\n"; 607 for (unsigned Reg : LiveOutRegs) 608 dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; 609 } 610 611 dbgs() << "\nInstructions:\n"; 612 for (const SUnit* SU : SUnits) 613 DAG->dumpNode(*SU); 614 615 dbgs() << "///////////////////////\n"; 616 } 617 #endif 618 619 // SIScheduleBlockCreator // 620 621 SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) : 622 DAG(DAG) { 623 } 624 625 SIScheduleBlockCreator::~SIScheduleBlockCreator() = default; 626 627 SIScheduleBlocks 628 SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) { 629 std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B = 630 Blocks.find(BlockVariant); 631 if (B == Blocks.end()) { 632 SIScheduleBlocks Res; 633 createBlocksForVariant(BlockVariant); 634 topologicalSort(); 635 scheduleInsideBlocks(); 636 fillStats(); 637 Res.Blocks = CurrentBlocks; 638 Res.TopDownIndex2Block = TopDownIndex2Block; 639 Res.TopDownBlock2Index = TopDownBlock2Index; 640 Blocks[BlockVariant] = Res; 641 return Res; 642 } else { 643 return B->second; 644 } 645 } 646 647 bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) { 648 if (SU->NodeNum >= DAG->SUnits.size()) 649 return false; 650 return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID; 651 } 652 653 void SIScheduleBlockCreator::colorHighLatenciesAlone() { 654 unsigned DAGSize = DAG->SUnits.size(); 655 656 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 657 SUnit *SU = &DAG->SUnits[i]; 658 if (DAG->IsHighLatencySU[SU->NodeNum]) { 659 CurrentColoring[SU->NodeNum] = NextReservedID++; 660 } 661 } 662 } 663 664 static bool 665 hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) { 666 for (const auto &PredDep : SU.Preds) { 667 if (PredDep.getSUnit() == &FromSU && 668 PredDep.getKind() == llvm::SDep::Data) 669 return true; 670 } 671 return false; 672 } 673 674 void SIScheduleBlockCreator::colorHighLatenciesGroups() { 675 unsigned DAGSize = DAG->SUnits.size(); 676 unsigned NumHighLatencies = 0; 677 unsigned GroupSize; 678 int Color = NextReservedID; 679 unsigned Count = 0; 680 std::set<unsigned> FormingGroup; 681 682 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 683 SUnit *SU = &DAG->SUnits[i]; 684 if (DAG->IsHighLatencySU[SU->NodeNum]) 685 ++NumHighLatencies; 686 } 687 688 if (NumHighLatencies == 0) 689 return; 690 691 if (NumHighLatencies <= 6) 692 GroupSize = 2; 693 else if (NumHighLatencies <= 12) 694 GroupSize = 3; 695 else 696 GroupSize = 4; 697 698 for (unsigned SUNum : DAG->TopDownIndex2SU) { 699 const SUnit &SU = DAG->SUnits[SUNum]; 700 if (DAG->IsHighLatencySU[SU.NodeNum]) { 701 unsigned CompatibleGroup = true; 702 int ProposedColor = Color; 703 std::vector<int> AdditionalElements; 704 705 // We don't want to put in the same block 706 // two high latency instructions that depend 707 // on each other. 708 // One way would be to check canAddEdge 709 // in both directions, but that currently is not 710 // enough because there the high latency order is 711 // enforced (via links). 712 // Instead, look at the dependencies between the 713 // high latency instructions and deduce if it is 714 // a data dependency or not. 715 for (unsigned j : FormingGroup) { 716 bool HasSubGraph; 717 std::vector<int> SubGraph; 718 // By construction (topological order), if SU and 719 // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary 720 // in the parent graph of SU. 721 #ifndef NDEBUG 722 SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j], 723 HasSubGraph); 724 assert(!HasSubGraph); 725 #endif 726 SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU, 727 HasSubGraph); 728 if (!HasSubGraph) 729 continue; // No dependencies between each other 730 else if (SubGraph.size() > 5) { 731 // Too many elements would be required to be added to the block. 732 CompatibleGroup = false; 733 break; 734 } 735 else { 736 // Check the type of dependency 737 for (unsigned k : SubGraph) { 738 // If in the path to join the two instructions, 739 // there is another high latency instruction, 740 // or instructions colored for another block 741 // abort the merge. 742 if (DAG->IsHighLatencySU[k] || 743 (CurrentColoring[k] != ProposedColor && 744 CurrentColoring[k] != 0)) { 745 CompatibleGroup = false; 746 break; 747 } 748 // If one of the SU in the subgraph depends on the result of SU j, 749 // there'll be a data dependency. 750 if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) { 751 CompatibleGroup = false; 752 break; 753 } 754 } 755 if (!CompatibleGroup) 756 break; 757 // Same check for the SU 758 if (hasDataDependencyPred(SU, DAG->SUnits[j])) { 759 CompatibleGroup = false; 760 break; 761 } 762 // Add all the required instructions to the block 763 // These cannot live in another block (because they 764 // depend (order dependency) on one of the 765 // instruction in the block, and are required for the 766 // high latency instruction we add. 767 AdditionalElements.insert(AdditionalElements.end(), 768 SubGraph.begin(), SubGraph.end()); 769 } 770 } 771 if (CompatibleGroup) { 772 FormingGroup.insert(SU.NodeNum); 773 for (unsigned j : AdditionalElements) 774 CurrentColoring[j] = ProposedColor; 775 CurrentColoring[SU.NodeNum] = ProposedColor; 776 ++Count; 777 } 778 // Found one incompatible instruction, 779 // or has filled a big enough group. 780 // -> start a new one. 781 if (!CompatibleGroup) { 782 FormingGroup.clear(); 783 Color = ++NextReservedID; 784 ProposedColor = Color; 785 FormingGroup.insert(SU.NodeNum); 786 CurrentColoring[SU.NodeNum] = ProposedColor; 787 Count = 0; 788 } else if (Count == GroupSize) { 789 FormingGroup.clear(); 790 Color = ++NextReservedID; 791 ProposedColor = Color; 792 Count = 0; 793 } 794 } 795 } 796 } 797 798 void SIScheduleBlockCreator::colorComputeReservedDependencies() { 799 unsigned DAGSize = DAG->SUnits.size(); 800 std::map<std::set<unsigned>, unsigned> ColorCombinations; 801 802 CurrentTopDownReservedDependencyColoring.clear(); 803 CurrentBottomUpReservedDependencyColoring.clear(); 804 805 CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0); 806 CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0); 807 808 // Traverse TopDown, and give different colors to SUs depending 809 // on which combination of High Latencies they depend on. 810 811 for (unsigned SUNum : DAG->TopDownIndex2SU) { 812 SUnit *SU = &DAG->SUnits[SUNum]; 813 std::set<unsigned> SUColors; 814 815 // Already given. 816 if (CurrentColoring[SU->NodeNum]) { 817 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 818 CurrentColoring[SU->NodeNum]; 819 continue; 820 } 821 822 for (SDep& PredDep : SU->Preds) { 823 SUnit *Pred = PredDep.getSUnit(); 824 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) 825 continue; 826 if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0) 827 SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]); 828 } 829 // Color 0 by default. 830 if (SUColors.empty()) 831 continue; 832 // Same color than parents. 833 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) 834 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 835 *SUColors.begin(); 836 else { 837 std::map<std::set<unsigned>, unsigned>::iterator Pos = 838 ColorCombinations.find(SUColors); 839 if (Pos != ColorCombinations.end()) { 840 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second; 841 } else { 842 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 843 NextNonReservedID; 844 ColorCombinations[SUColors] = NextNonReservedID++; 845 } 846 } 847 } 848 849 ColorCombinations.clear(); 850 851 // Same as before, but BottomUp. 852 853 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 854 SUnit *SU = &DAG->SUnits[SUNum]; 855 std::set<unsigned> SUColors; 856 857 // Already given. 858 if (CurrentColoring[SU->NodeNum]) { 859 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 860 CurrentColoring[SU->NodeNum]; 861 continue; 862 } 863 864 for (SDep& SuccDep : SU->Succs) { 865 SUnit *Succ = SuccDep.getSUnit(); 866 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 867 continue; 868 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0) 869 SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]); 870 } 871 // Keep color 0. 872 if (SUColors.empty()) 873 continue; 874 // Same color than parents. 875 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) 876 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 877 *SUColors.begin(); 878 else { 879 std::map<std::set<unsigned>, unsigned>::iterator Pos = 880 ColorCombinations.find(SUColors); 881 if (Pos != ColorCombinations.end()) { 882 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second; 883 } else { 884 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 885 NextNonReservedID; 886 ColorCombinations[SUColors] = NextNonReservedID++; 887 } 888 } 889 } 890 } 891 892 void SIScheduleBlockCreator::colorAccordingToReservedDependencies() { 893 unsigned DAGSize = DAG->SUnits.size(); 894 std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations; 895 896 // Every combination of colors given by the top down 897 // and bottom up Reserved node dependency 898 899 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 900 SUnit *SU = &DAG->SUnits[i]; 901 std::pair<unsigned, unsigned> SUColors; 902 903 // High latency instructions: already given. 904 if (CurrentColoring[SU->NodeNum]) 905 continue; 906 907 SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum]; 908 SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum]; 909 910 std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos = 911 ColorCombinations.find(SUColors); 912 if (Pos != ColorCombinations.end()) { 913 CurrentColoring[SU->NodeNum] = Pos->second; 914 } else { 915 CurrentColoring[SU->NodeNum] = NextNonReservedID; 916 ColorCombinations[SUColors] = NextNonReservedID++; 917 } 918 } 919 } 920 921 void SIScheduleBlockCreator::colorEndsAccordingToDependencies() { 922 unsigned DAGSize = DAG->SUnits.size(); 923 std::vector<int> PendingColoring = CurrentColoring; 924 925 assert(DAGSize >= 1 && 926 CurrentBottomUpReservedDependencyColoring.size() == DAGSize && 927 CurrentTopDownReservedDependencyColoring.size() == DAGSize); 928 // If there is no reserved block at all, do nothing. We don't want 929 // everything in one block. 930 if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(), 931 CurrentBottomUpReservedDependencyColoring.end()) == 0 && 932 *std::max_element(CurrentTopDownReservedDependencyColoring.begin(), 933 CurrentTopDownReservedDependencyColoring.end()) == 0) 934 return; 935 936 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 937 SUnit *SU = &DAG->SUnits[SUNum]; 938 std::set<unsigned> SUColors; 939 std::set<unsigned> SUColorsPending; 940 941 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 942 continue; 943 944 if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 || 945 CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0) 946 continue; 947 948 for (SDep& SuccDep : SU->Succs) { 949 SUnit *Succ = SuccDep.getSUnit(); 950 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 951 continue; 952 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 || 953 CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0) 954 SUColors.insert(CurrentColoring[Succ->NodeNum]); 955 SUColorsPending.insert(PendingColoring[Succ->NodeNum]); 956 } 957 // If there is only one child/parent block, and that block 958 // is not among the ones we are removing in this path, then 959 // merge the instruction to that block 960 if (SUColors.size() == 1 && SUColorsPending.size() == 1) 961 PendingColoring[SU->NodeNum] = *SUColors.begin(); 962 else // TODO: Attribute new colors depending on color 963 // combination of children. 964 PendingColoring[SU->NodeNum] = NextNonReservedID++; 965 } 966 CurrentColoring = PendingColoring; 967 } 968 969 970 void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() { 971 unsigned DAGSize = DAG->SUnits.size(); 972 unsigned PreviousColor; 973 std::set<unsigned> SeenColors; 974 975 if (DAGSize <= 1) 976 return; 977 978 PreviousColor = CurrentColoring[0]; 979 980 for (unsigned i = 1, e = DAGSize; i != e; ++i) { 981 SUnit *SU = &DAG->SUnits[i]; 982 unsigned CurrentColor = CurrentColoring[i]; 983 unsigned PreviousColorSave = PreviousColor; 984 assert(i == SU->NodeNum); 985 986 if (CurrentColor != PreviousColor) 987 SeenColors.insert(PreviousColor); 988 PreviousColor = CurrentColor; 989 990 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 991 continue; 992 993 if (SeenColors.find(CurrentColor) == SeenColors.end()) 994 continue; 995 996 if (PreviousColorSave != CurrentColor) 997 CurrentColoring[i] = NextNonReservedID++; 998 else 999 CurrentColoring[i] = CurrentColoring[i-1]; 1000 } 1001 } 1002 1003 void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() { 1004 unsigned DAGSize = DAG->SUnits.size(); 1005 1006 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1007 SUnit *SU = &DAG->SUnits[SUNum]; 1008 std::set<unsigned> SUColors; 1009 1010 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1011 continue; 1012 1013 // No predecessor: Vgpr constant loading. 1014 // Low latency instructions usually have a predecessor (the address) 1015 if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum]) 1016 continue; 1017 1018 for (SDep& SuccDep : SU->Succs) { 1019 SUnit *Succ = SuccDep.getSUnit(); 1020 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1021 continue; 1022 SUColors.insert(CurrentColoring[Succ->NodeNum]); 1023 } 1024 if (SUColors.size() == 1) 1025 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 1026 } 1027 } 1028 1029 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() { 1030 unsigned DAGSize = DAG->SUnits.size(); 1031 1032 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1033 SUnit *SU = &DAG->SUnits[SUNum]; 1034 std::set<unsigned> SUColors; 1035 1036 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1037 continue; 1038 1039 for (SDep& SuccDep : SU->Succs) { 1040 SUnit *Succ = SuccDep.getSUnit(); 1041 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1042 continue; 1043 SUColors.insert(CurrentColoring[Succ->NodeNum]); 1044 } 1045 if (SUColors.size() == 1) 1046 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 1047 } 1048 } 1049 1050 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() { 1051 unsigned DAGSize = DAG->SUnits.size(); 1052 1053 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1054 SUnit *SU = &DAG->SUnits[SUNum]; 1055 std::set<unsigned> SUColors; 1056 1057 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1058 continue; 1059 1060 for (SDep& SuccDep : SU->Succs) { 1061 SUnit *Succ = SuccDep.getSUnit(); 1062 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1063 continue; 1064 SUColors.insert(CurrentColoring[Succ->NodeNum]); 1065 } 1066 if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize) 1067 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 1068 } 1069 } 1070 1071 void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() { 1072 unsigned DAGSize = DAG->SUnits.size(); 1073 std::map<unsigned, unsigned> ColorCount; 1074 1075 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1076 SUnit *SU = &DAG->SUnits[SUNum]; 1077 unsigned color = CurrentColoring[SU->NodeNum]; 1078 ++ColorCount[color]; 1079 } 1080 1081 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1082 SUnit *SU = &DAG->SUnits[SUNum]; 1083 unsigned color = CurrentColoring[SU->NodeNum]; 1084 std::set<unsigned> SUColors; 1085 1086 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1087 continue; 1088 1089 if (ColorCount[color] > 1) 1090 continue; 1091 1092 for (SDep& SuccDep : SU->Succs) { 1093 SUnit *Succ = SuccDep.getSUnit(); 1094 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1095 continue; 1096 SUColors.insert(CurrentColoring[Succ->NodeNum]); 1097 } 1098 if (SUColors.size() == 1 && *SUColors.begin() != color) { 1099 --ColorCount[color]; 1100 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 1101 ++ColorCount[*SUColors.begin()]; 1102 } 1103 } 1104 } 1105 1106 void SIScheduleBlockCreator::cutHugeBlocks() { 1107 // TODO 1108 } 1109 1110 void SIScheduleBlockCreator::regroupNoUserInstructions() { 1111 unsigned DAGSize = DAG->SUnits.size(); 1112 int GroupID = NextNonReservedID++; 1113 1114 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1115 SUnit *SU = &DAG->SUnits[SUNum]; 1116 bool hasSuccessor = false; 1117 1118 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1119 continue; 1120 1121 for (SDep& SuccDep : SU->Succs) { 1122 SUnit *Succ = SuccDep.getSUnit(); 1123 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1124 continue; 1125 hasSuccessor = true; 1126 } 1127 if (!hasSuccessor) 1128 CurrentColoring[SU->NodeNum] = GroupID; 1129 } 1130 } 1131 1132 void SIScheduleBlockCreator::colorExports() { 1133 unsigned ExportColor = NextNonReservedID++; 1134 SmallVector<unsigned, 8> ExpGroup; 1135 1136 // Put all exports together in a block. 1137 // The block will naturally end up being scheduled last, 1138 // thus putting exports at the end of the schedule, which 1139 // is better for performance. 1140 // However we must ensure, for safety, the exports can be put 1141 // together in the same block without any other instruction. 1142 // This could happen, for example, when scheduling after regalloc 1143 // if reloading a spilled register from memory using the same 1144 // register than used in a previous export. 1145 // If that happens, do not regroup the exports. 1146 for (unsigned SUNum : DAG->TopDownIndex2SU) { 1147 const SUnit &SU = DAG->SUnits[SUNum]; 1148 if (SIInstrInfo::isEXP(*SU.getInstr())) { 1149 // Check the EXP can be added to the group safely, 1150 // ie without needing any other instruction. 1151 // The EXP is allowed to depend on other EXP 1152 // (they will be in the same group). 1153 for (unsigned j : ExpGroup) { 1154 bool HasSubGraph; 1155 std::vector<int> SubGraph; 1156 // By construction (topological order), if SU and 1157 // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary 1158 // in the parent graph of SU. 1159 #ifndef NDEBUG 1160 SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j], 1161 HasSubGraph); 1162 assert(!HasSubGraph); 1163 #endif 1164 SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU, 1165 HasSubGraph); 1166 if (!HasSubGraph) 1167 continue; // No dependencies between each other 1168 1169 // SubGraph contains all the instructions required 1170 // between EXP SUnits[j] and EXP SU. 1171 for (unsigned k : SubGraph) { 1172 if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr())) 1173 // Other instructions than EXP would be required in the group. 1174 // Abort the groupping. 1175 return; 1176 } 1177 } 1178 1179 ExpGroup.push_back(SUNum); 1180 } 1181 } 1182 1183 // The group can be formed. Give the color. 1184 for (unsigned j : ExpGroup) 1185 CurrentColoring[j] = ExportColor; 1186 } 1187 1188 void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) { 1189 unsigned DAGSize = DAG->SUnits.size(); 1190 std::map<unsigned,unsigned> RealID; 1191 1192 CurrentBlocks.clear(); 1193 CurrentColoring.clear(); 1194 CurrentColoring.resize(DAGSize, 0); 1195 Node2CurrentBlock.clear(); 1196 1197 // Restore links previous scheduling variant has overridden. 1198 DAG->restoreSULinksLeft(); 1199 1200 NextReservedID = 1; 1201 NextNonReservedID = DAGSize + 1; 1202 1203 LLVM_DEBUG(dbgs() << "Coloring the graph\n"); 1204 1205 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped) 1206 colorHighLatenciesGroups(); 1207 else 1208 colorHighLatenciesAlone(); 1209 colorComputeReservedDependencies(); 1210 colorAccordingToReservedDependencies(); 1211 colorEndsAccordingToDependencies(); 1212 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive) 1213 colorForceConsecutiveOrderInGroup(); 1214 regroupNoUserInstructions(); 1215 colorMergeConstantLoadsNextGroup(); 1216 colorMergeIfPossibleNextGroupOnlyForReserved(); 1217 colorExports(); 1218 1219 // Put SUs of same color into same block 1220 Node2CurrentBlock.resize(DAGSize, -1); 1221 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1222 SUnit *SU = &DAG->SUnits[i]; 1223 unsigned Color = CurrentColoring[SU->NodeNum]; 1224 if (RealID.find(Color) == RealID.end()) { 1225 int ID = CurrentBlocks.size(); 1226 BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID)); 1227 CurrentBlocks.push_back(BlockPtrs.rbegin()->get()); 1228 RealID[Color] = ID; 1229 } 1230 CurrentBlocks[RealID[Color]]->addUnit(SU); 1231 Node2CurrentBlock[SU->NodeNum] = RealID[Color]; 1232 } 1233 1234 // Build dependencies between blocks. 1235 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1236 SUnit *SU = &DAG->SUnits[i]; 1237 int SUID = Node2CurrentBlock[i]; 1238 for (SDep& SuccDep : SU->Succs) { 1239 SUnit *Succ = SuccDep.getSUnit(); 1240 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1241 continue; 1242 if (Node2CurrentBlock[Succ->NodeNum] != SUID) 1243 CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]], 1244 SuccDep.isCtrl() ? NoData : Data); 1245 } 1246 for (SDep& PredDep : SU->Preds) { 1247 SUnit *Pred = PredDep.getSUnit(); 1248 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) 1249 continue; 1250 if (Node2CurrentBlock[Pred->NodeNum] != SUID) 1251 CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]); 1252 } 1253 } 1254 1255 // Free root and leafs of all blocks to enable scheduling inside them. 1256 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1257 SIScheduleBlock *Block = CurrentBlocks[i]; 1258 Block->finalizeUnits(); 1259 } 1260 LLVM_DEBUG(dbgs() << "Blocks created:\n\n"; 1261 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1262 SIScheduleBlock *Block = CurrentBlocks[i]; 1263 Block->printDebug(true); 1264 }); 1265 } 1266 1267 // Two functions taken from Codegen/MachineScheduler.cpp 1268 1269 /// Non-const version. 1270 static MachineBasicBlock::iterator 1271 nextIfDebug(MachineBasicBlock::iterator I, 1272 MachineBasicBlock::const_iterator End) { 1273 for (; I != End; ++I) { 1274 if (!I->isDebugInstr()) 1275 break; 1276 } 1277 return I; 1278 } 1279 1280 void SIScheduleBlockCreator::topologicalSort() { 1281 unsigned DAGSize = CurrentBlocks.size(); 1282 std::vector<int> WorkList; 1283 1284 LLVM_DEBUG(dbgs() << "Topological Sort\n"); 1285 1286 WorkList.reserve(DAGSize); 1287 TopDownIndex2Block.resize(DAGSize); 1288 TopDownBlock2Index.resize(DAGSize); 1289 BottomUpIndex2Block.resize(DAGSize); 1290 1291 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1292 SIScheduleBlock *Block = CurrentBlocks[i]; 1293 unsigned Degree = Block->getSuccs().size(); 1294 TopDownBlock2Index[i] = Degree; 1295 if (Degree == 0) { 1296 WorkList.push_back(i); 1297 } 1298 } 1299 1300 int Id = DAGSize; 1301 while (!WorkList.empty()) { 1302 int i = WorkList.back(); 1303 SIScheduleBlock *Block = CurrentBlocks[i]; 1304 WorkList.pop_back(); 1305 TopDownBlock2Index[i] = --Id; 1306 TopDownIndex2Block[Id] = i; 1307 for (SIScheduleBlock* Pred : Block->getPreds()) { 1308 if (!--TopDownBlock2Index[Pred->getID()]) 1309 WorkList.push_back(Pred->getID()); 1310 } 1311 } 1312 1313 #ifndef NDEBUG 1314 // Check correctness of the ordering. 1315 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1316 SIScheduleBlock *Block = CurrentBlocks[i]; 1317 for (SIScheduleBlock* Pred : Block->getPreds()) { 1318 assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] && 1319 "Wrong Top Down topological sorting"); 1320 } 1321 } 1322 #endif 1323 1324 BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(), 1325 TopDownIndex2Block.rend()); 1326 } 1327 1328 void SIScheduleBlockCreator::scheduleInsideBlocks() { 1329 unsigned DAGSize = CurrentBlocks.size(); 1330 1331 LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n"); 1332 1333 // We do schedule a valid scheduling such that a Block corresponds 1334 // to a range of instructions. 1335 LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n"); 1336 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1337 SIScheduleBlock *Block = CurrentBlocks[i]; 1338 Block->fastSchedule(); 1339 } 1340 1341 // Note: the following code, and the part restoring previous position 1342 // is by far the most expensive operation of the Scheduler. 1343 1344 // Do not update CurrentTop. 1345 MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop(); 1346 std::vector<MachineBasicBlock::iterator> PosOld; 1347 std::vector<MachineBasicBlock::iterator> PosNew; 1348 PosOld.reserve(DAG->SUnits.size()); 1349 PosNew.reserve(DAG->SUnits.size()); 1350 1351 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1352 int BlockIndice = TopDownIndex2Block[i]; 1353 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1354 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1355 1356 for (SUnit* SU : SUs) { 1357 MachineInstr *MI = SU->getInstr(); 1358 MachineBasicBlock::iterator Pos = MI; 1359 PosOld.push_back(Pos); 1360 if (&*CurrentTopFastSched == MI) { 1361 PosNew.push_back(Pos); 1362 CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched, 1363 DAG->getCurrentBottom()); 1364 } else { 1365 // Update the instruction stream. 1366 DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI); 1367 1368 // Update LiveIntervals. 1369 // Note: Moving all instructions and calling handleMove every time 1370 // is the most cpu intensive operation of the scheduler. 1371 // It would gain a lot if there was a way to recompute the 1372 // LiveIntervals for the entire scheduling region. 1373 DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true); 1374 PosNew.push_back(CurrentTopFastSched); 1375 } 1376 } 1377 } 1378 1379 // Now we have Block of SUs == Block of MI. 1380 // We do the final schedule for the instructions inside the block. 1381 // The property that all the SUs of the Block are grouped together as MI 1382 // is used for correct reg usage tracking. 1383 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1384 SIScheduleBlock *Block = CurrentBlocks[i]; 1385 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1386 Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr()); 1387 } 1388 1389 LLVM_DEBUG(dbgs() << "Restoring MI Pos\n"); 1390 // Restore old ordering (which prevents a LIS->handleMove bug). 1391 for (unsigned i = PosOld.size(), e = 0; i != e; --i) { 1392 MachineBasicBlock::iterator POld = PosOld[i-1]; 1393 MachineBasicBlock::iterator PNew = PosNew[i-1]; 1394 if (PNew != POld) { 1395 // Update the instruction stream. 1396 DAG->getBB()->splice(POld, DAG->getBB(), PNew); 1397 1398 // Update LiveIntervals. 1399 DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true); 1400 } 1401 } 1402 1403 LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1404 SIScheduleBlock *Block = CurrentBlocks[i]; 1405 Block->printDebug(true); 1406 }); 1407 } 1408 1409 void SIScheduleBlockCreator::fillStats() { 1410 unsigned DAGSize = CurrentBlocks.size(); 1411 1412 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1413 int BlockIndice = TopDownIndex2Block[i]; 1414 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1415 if (Block->getPreds().empty()) 1416 Block->Depth = 0; 1417 else { 1418 unsigned Depth = 0; 1419 for (SIScheduleBlock *Pred : Block->getPreds()) { 1420 if (Depth < Pred->Depth + Pred->getCost()) 1421 Depth = Pred->Depth + Pred->getCost(); 1422 } 1423 Block->Depth = Depth; 1424 } 1425 } 1426 1427 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1428 int BlockIndice = BottomUpIndex2Block[i]; 1429 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1430 if (Block->getSuccs().empty()) 1431 Block->Height = 0; 1432 else { 1433 unsigned Height = 0; 1434 for (const auto &Succ : Block->getSuccs()) 1435 Height = std::max(Height, Succ.first->Height + Succ.first->getCost()); 1436 Block->Height = Height; 1437 } 1438 } 1439 } 1440 1441 // SIScheduleBlockScheduler // 1442 1443 SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG, 1444 SISchedulerBlockSchedulerVariant Variant, 1445 SIScheduleBlocks BlocksStruct) : 1446 DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks), 1447 LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0), 1448 SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) { 1449 1450 // Fill the usage of every output 1451 // Warning: while by construction we always have a link between two blocks 1452 // when one needs a result from the other, the number of users of an output 1453 // is not the sum of child blocks having as input the same virtual register. 1454 // Here is an example. A produces x and y. B eats x and produces x'. 1455 // C eats x' and y. The register coalescer may have attributed the same 1456 // virtual register to x and x'. 1457 // To count accurately, we do a topological sort. In case the register is 1458 // found for several parents, we increment the usage of the one with the 1459 // highest topological index. 1460 LiveOutRegsNumUsages.resize(Blocks.size()); 1461 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1462 SIScheduleBlock *Block = Blocks[i]; 1463 for (unsigned Reg : Block->getInRegs()) { 1464 bool Found = false; 1465 int topoInd = -1; 1466 for (SIScheduleBlock* Pred: Block->getPreds()) { 1467 std::set<unsigned> PredOutRegs = Pred->getOutRegs(); 1468 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg); 1469 1470 if (RegPos != PredOutRegs.end()) { 1471 Found = true; 1472 if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) { 1473 topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()]; 1474 } 1475 } 1476 } 1477 1478 if (!Found) 1479 continue; 1480 1481 int PredID = BlocksStruct.TopDownIndex2Block[topoInd]; 1482 ++LiveOutRegsNumUsages[PredID][Reg]; 1483 } 1484 } 1485 1486 LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0); 1487 BlockNumPredsLeft.resize(Blocks.size()); 1488 BlockNumSuccsLeft.resize(Blocks.size()); 1489 1490 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1491 SIScheduleBlock *Block = Blocks[i]; 1492 BlockNumPredsLeft[i] = Block->getPreds().size(); 1493 BlockNumSuccsLeft[i] = Block->getSuccs().size(); 1494 } 1495 1496 #ifndef NDEBUG 1497 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1498 SIScheduleBlock *Block = Blocks[i]; 1499 assert(Block->getID() == i); 1500 } 1501 #endif 1502 1503 std::set<unsigned> InRegs = DAG->getInRegs(); 1504 addLiveRegs(InRegs); 1505 1506 // Increase LiveOutRegsNumUsages for blocks 1507 // producing registers consumed in another 1508 // scheduling region. 1509 for (unsigned Reg : DAG->getOutRegs()) { 1510 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1511 // Do reverse traversal 1512 int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i]; 1513 SIScheduleBlock *Block = Blocks[ID]; 1514 const std::set<unsigned> &OutRegs = Block->getOutRegs(); 1515 1516 if (OutRegs.find(Reg) == OutRegs.end()) 1517 continue; 1518 1519 ++LiveOutRegsNumUsages[ID][Reg]; 1520 break; 1521 } 1522 } 1523 1524 // Fill LiveRegsConsumers for regs that were already 1525 // defined before scheduling. 1526 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1527 SIScheduleBlock *Block = Blocks[i]; 1528 for (unsigned Reg : Block->getInRegs()) { 1529 bool Found = false; 1530 for (SIScheduleBlock* Pred: Block->getPreds()) { 1531 std::set<unsigned> PredOutRegs = Pred->getOutRegs(); 1532 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg); 1533 1534 if (RegPos != PredOutRegs.end()) { 1535 Found = true; 1536 break; 1537 } 1538 } 1539 1540 if (!Found) 1541 ++LiveRegsConsumers[Reg]; 1542 } 1543 } 1544 1545 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1546 SIScheduleBlock *Block = Blocks[i]; 1547 if (BlockNumPredsLeft[i] == 0) { 1548 ReadyBlocks.push_back(Block); 1549 } 1550 } 1551 1552 while (SIScheduleBlock *Block = pickBlock()) { 1553 BlocksScheduled.push_back(Block); 1554 blockScheduled(Block); 1555 } 1556 1557 LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block 1558 : BlocksScheduled) { 1559 dbgs() << ' ' << Block->getID(); 1560 } dbgs() << '\n';); 1561 } 1562 1563 bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand, 1564 SIBlockSchedCandidate &TryCand) { 1565 if (!Cand.isValid()) { 1566 TryCand.Reason = NodeOrder; 1567 return true; 1568 } 1569 1570 // Try to hide high latencies. 1571 if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled, 1572 Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency)) 1573 return true; 1574 // Schedule high latencies early so you can hide them better. 1575 if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency, 1576 TryCand, Cand, Latency)) 1577 return true; 1578 if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height, 1579 TryCand, Cand, Depth)) 1580 return true; 1581 if (SISched::tryGreater(TryCand.NumHighLatencySuccessors, 1582 Cand.NumHighLatencySuccessors, 1583 TryCand, Cand, Successor)) 1584 return true; 1585 return false; 1586 } 1587 1588 bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand, 1589 SIBlockSchedCandidate &TryCand) { 1590 if (!Cand.isValid()) { 1591 TryCand.Reason = NodeOrder; 1592 return true; 1593 } 1594 1595 if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0, 1596 TryCand, Cand, RegUsage)) 1597 return true; 1598 if (SISched::tryGreater(TryCand.NumSuccessors > 0, 1599 Cand.NumSuccessors > 0, 1600 TryCand, Cand, Successor)) 1601 return true; 1602 if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth)) 1603 return true; 1604 if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff, 1605 TryCand, Cand, RegUsage)) 1606 return true; 1607 return false; 1608 } 1609 1610 SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() { 1611 SIBlockSchedCandidate Cand; 1612 std::vector<SIScheduleBlock*>::iterator Best; 1613 SIScheduleBlock *Block; 1614 if (ReadyBlocks.empty()) 1615 return nullptr; 1616 1617 DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(), 1618 VregCurrentUsage, SregCurrentUsage); 1619 if (VregCurrentUsage > maxVregUsage) 1620 maxVregUsage = VregCurrentUsage; 1621 if (SregCurrentUsage > maxSregUsage) 1622 maxSregUsage = SregCurrentUsage; 1623 LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: "; 1624 for (SIScheduleBlock *Block 1625 : ReadyBlocks) dbgs() 1626 << Block->getID() << ' '; 1627 dbgs() << "\nCurrent Live:\n"; 1628 for (unsigned Reg 1629 : LiveRegs) dbgs() 1630 << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; 1631 dbgs() << '\n'; 1632 dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n'; 1633 dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';); 1634 1635 Cand.Block = nullptr; 1636 for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(), 1637 E = ReadyBlocks.end(); I != E; ++I) { 1638 SIBlockSchedCandidate TryCand; 1639 TryCand.Block = *I; 1640 TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock(); 1641 TryCand.VGPRUsageDiff = 1642 checkRegUsageImpact(TryCand.Block->getInRegs(), 1643 TryCand.Block->getOutRegs())[DAG->getVGPRSetID()]; 1644 TryCand.NumSuccessors = TryCand.Block->getSuccs().size(); 1645 TryCand.NumHighLatencySuccessors = 1646 TryCand.Block->getNumHighLatencySuccessors(); 1647 TryCand.LastPosHighLatParentScheduled = 1648 (unsigned int) std::max<int> (0, 1649 LastPosHighLatencyParentScheduled[TryCand.Block->getID()] - 1650 LastPosWaitedHighLatency); 1651 TryCand.Height = TryCand.Block->Height; 1652 // Try not to increase VGPR usage too much, else we may spill. 1653 if (VregCurrentUsage > 120 || 1654 Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) { 1655 if (!tryCandidateRegUsage(Cand, TryCand) && 1656 Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage) 1657 tryCandidateLatency(Cand, TryCand); 1658 } else { 1659 if (!tryCandidateLatency(Cand, TryCand)) 1660 tryCandidateRegUsage(Cand, TryCand); 1661 } 1662 if (TryCand.Reason != NoCand) { 1663 Cand.setBest(TryCand); 1664 Best = I; 1665 LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' ' 1666 << getReasonStr(Cand.Reason) << '\n'); 1667 } 1668 } 1669 1670 LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n'; 1671 dbgs() << "Is a block with high latency instruction: " 1672 << (Cand.IsHighLatency ? "yes\n" : "no\n"); 1673 dbgs() << "Position of last high latency dependency: " 1674 << Cand.LastPosHighLatParentScheduled << '\n'; 1675 dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n'; 1676 dbgs() << '\n';); 1677 1678 Block = Cand.Block; 1679 ReadyBlocks.erase(Best); 1680 return Block; 1681 } 1682 1683 // Tracking of currently alive registers to determine VGPR Usage. 1684 1685 void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) { 1686 for (unsigned Reg : Regs) { 1687 // For now only track virtual registers. 1688 if (!Register::isVirtualRegister(Reg)) 1689 continue; 1690 // If not already in the live set, then add it. 1691 (void) LiveRegs.insert(Reg); 1692 } 1693 } 1694 1695 void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block, 1696 std::set<unsigned> &Regs) { 1697 for (unsigned Reg : Regs) { 1698 // For now only track virtual registers. 1699 std::set<unsigned>::iterator Pos = LiveRegs.find(Reg); 1700 assert (Pos != LiveRegs.end() && // Reg must be live. 1701 LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() && 1702 LiveRegsConsumers[Reg] >= 1); 1703 --LiveRegsConsumers[Reg]; 1704 if (LiveRegsConsumers[Reg] == 0) 1705 LiveRegs.erase(Pos); 1706 } 1707 } 1708 1709 void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) { 1710 for (const auto &Block : Parent->getSuccs()) { 1711 if (--BlockNumPredsLeft[Block.first->getID()] == 0) 1712 ReadyBlocks.push_back(Block.first); 1713 1714 if (Parent->isHighLatencyBlock() && 1715 Block.second == SIScheduleBlockLinkKind::Data) 1716 LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled; 1717 } 1718 } 1719 1720 void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) { 1721 decreaseLiveRegs(Block, Block->getInRegs()); 1722 addLiveRegs(Block->getOutRegs()); 1723 releaseBlockSuccs(Block); 1724 for (std::map<unsigned, unsigned>::iterator RegI = 1725 LiveOutRegsNumUsages[Block->getID()].begin(), 1726 E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) { 1727 std::pair<unsigned, unsigned> RegP = *RegI; 1728 // We produce this register, thus it must not be previously alive. 1729 assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() || 1730 LiveRegsConsumers[RegP.first] == 0); 1731 LiveRegsConsumers[RegP.first] += RegP.second; 1732 } 1733 if (LastPosHighLatencyParentScheduled[Block->getID()] > 1734 (unsigned)LastPosWaitedHighLatency) 1735 LastPosWaitedHighLatency = 1736 LastPosHighLatencyParentScheduled[Block->getID()]; 1737 ++NumBlockScheduled; 1738 } 1739 1740 std::vector<int> 1741 SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs, 1742 std::set<unsigned> &OutRegs) { 1743 std::vector<int> DiffSetPressure; 1744 DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0); 1745 1746 for (unsigned Reg : InRegs) { 1747 // For now only track virtual registers. 1748 if (!Register::isVirtualRegister(Reg)) 1749 continue; 1750 if (LiveRegsConsumers[Reg] > 1) 1751 continue; 1752 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg); 1753 for (; PSetI.isValid(); ++PSetI) { 1754 DiffSetPressure[*PSetI] -= PSetI.getWeight(); 1755 } 1756 } 1757 1758 for (unsigned Reg : OutRegs) { 1759 // For now only track virtual registers. 1760 if (!Register::isVirtualRegister(Reg)) 1761 continue; 1762 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg); 1763 for (; PSetI.isValid(); ++PSetI) { 1764 DiffSetPressure[*PSetI] += PSetI.getWeight(); 1765 } 1766 } 1767 1768 return DiffSetPressure; 1769 } 1770 1771 // SIScheduler // 1772 1773 struct SIScheduleBlockResult 1774 SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant, 1775 SISchedulerBlockSchedulerVariant ScheduleVariant) { 1776 SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant); 1777 SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks); 1778 std::vector<SIScheduleBlock*> ScheduledBlocks; 1779 struct SIScheduleBlockResult Res; 1780 1781 ScheduledBlocks = Scheduler.getBlocks(); 1782 1783 for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) { 1784 SIScheduleBlock *Block = ScheduledBlocks[b]; 1785 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1786 1787 for (SUnit* SU : SUs) 1788 Res.SUs.push_back(SU->NodeNum); 1789 } 1790 1791 Res.MaxSGPRUsage = Scheduler.getSGPRUsage(); 1792 Res.MaxVGPRUsage = Scheduler.getVGPRUsage(); 1793 return Res; 1794 } 1795 1796 // SIScheduleDAGMI // 1797 1798 SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) : 1799 ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) { 1800 SITII = static_cast<const SIInstrInfo*>(TII); 1801 SITRI = static_cast<const SIRegisterInfo*>(TRI); 1802 1803 VGPRSetID = SITRI->getVGPRPressureSet(); 1804 SGPRSetID = SITRI->getSGPRPressureSet(); 1805 } 1806 1807 SIScheduleDAGMI::~SIScheduleDAGMI() = default; 1808 1809 // Code adapted from scheduleDAG.cpp 1810 // Does a topological sort over the SUs. 1811 // Both TopDown and BottomUp 1812 void SIScheduleDAGMI::topologicalSort() { 1813 Topo.InitDAGTopologicalSorting(); 1814 1815 TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end()); 1816 BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend()); 1817 } 1818 1819 // Move low latencies further from their user without 1820 // increasing SGPR usage (in general) 1821 // This is to be replaced by a better pass that would 1822 // take into account SGPR usage (based on VGPR Usage 1823 // and the corresponding wavefront count), that would 1824 // try to merge groups of loads if it make sense, etc 1825 void SIScheduleDAGMI::moveLowLatencies() { 1826 unsigned DAGSize = SUnits.size(); 1827 int LastLowLatencyUser = -1; 1828 int LastLowLatencyPos = -1; 1829 1830 for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) { 1831 SUnit *SU = &SUnits[ScheduledSUnits[i]]; 1832 bool IsLowLatencyUser = false; 1833 unsigned MinPos = 0; 1834 1835 for (SDep& PredDep : SU->Preds) { 1836 SUnit *Pred = PredDep.getSUnit(); 1837 if (SITII->isLowLatencyInstruction(*Pred->getInstr())) { 1838 IsLowLatencyUser = true; 1839 } 1840 if (Pred->NodeNum >= DAGSize) 1841 continue; 1842 unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum]; 1843 if (PredPos >= MinPos) 1844 MinPos = PredPos + 1; 1845 } 1846 1847 if (SITII->isLowLatencyInstruction(*SU->getInstr())) { 1848 unsigned BestPos = LastLowLatencyUser + 1; 1849 if ((int)BestPos <= LastLowLatencyPos) 1850 BestPos = LastLowLatencyPos + 1; 1851 if (BestPos < MinPos) 1852 BestPos = MinPos; 1853 if (BestPos < i) { 1854 for (unsigned u = i; u > BestPos; --u) { 1855 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; 1856 ScheduledSUnits[u] = ScheduledSUnits[u-1]; 1857 } 1858 ScheduledSUnits[BestPos] = SU->NodeNum; 1859 ScheduledSUnitsInv[SU->NodeNum] = BestPos; 1860 } 1861 LastLowLatencyPos = BestPos; 1862 if (IsLowLatencyUser) 1863 LastLowLatencyUser = BestPos; 1864 } else if (IsLowLatencyUser) { 1865 LastLowLatencyUser = i; 1866 // Moves COPY instructions on which depends 1867 // the low latency instructions too. 1868 } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) { 1869 bool CopyForLowLat = false; 1870 for (SDep& SuccDep : SU->Succs) { 1871 SUnit *Succ = SuccDep.getSUnit(); 1872 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1873 continue; 1874 if (SITII->isLowLatencyInstruction(*Succ->getInstr())) { 1875 CopyForLowLat = true; 1876 } 1877 } 1878 if (!CopyForLowLat) 1879 continue; 1880 if (MinPos < i) { 1881 for (unsigned u = i; u > MinPos; --u) { 1882 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; 1883 ScheduledSUnits[u] = ScheduledSUnits[u-1]; 1884 } 1885 ScheduledSUnits[MinPos] = SU->NodeNum; 1886 ScheduledSUnitsInv[SU->NodeNum] = MinPos; 1887 } 1888 } 1889 } 1890 } 1891 1892 void SIScheduleDAGMI::restoreSULinksLeft() { 1893 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1894 SUnits[i].isScheduled = false; 1895 SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft; 1896 SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft; 1897 SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft; 1898 SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft; 1899 } 1900 } 1901 1902 // Return the Vgpr and Sgpr usage corresponding to some virtual registers. 1903 template<typename _Iterator> void 1904 SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End, 1905 unsigned &VgprUsage, unsigned &SgprUsage) { 1906 VgprUsage = 0; 1907 SgprUsage = 0; 1908 for (_Iterator RegI = First; RegI != End; ++RegI) { 1909 unsigned Reg = *RegI; 1910 // For now only track virtual registers 1911 if (!Register::isVirtualRegister(Reg)) 1912 continue; 1913 PSetIterator PSetI = MRI.getPressureSets(Reg); 1914 for (; PSetI.isValid(); ++PSetI) { 1915 if (*PSetI == VGPRSetID) 1916 VgprUsage += PSetI.getWeight(); 1917 else if (*PSetI == SGPRSetID) 1918 SgprUsage += PSetI.getWeight(); 1919 } 1920 } 1921 } 1922 1923 void SIScheduleDAGMI::schedule() 1924 { 1925 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1926 SIScheduleBlockResult Best, Temp; 1927 LLVM_DEBUG(dbgs() << "Preparing Scheduling\n"); 1928 1929 buildDAGWithRegPressure(); 1930 LLVM_DEBUG(dump()); 1931 1932 topologicalSort(); 1933 findRootsAndBiasEdges(TopRoots, BotRoots); 1934 // We reuse several ScheduleDAGMI and ScheduleDAGMILive 1935 // functions, but to make them happy we must initialize 1936 // the default Scheduler implementation (even if we do not 1937 // run it) 1938 SchedImpl->initialize(this); 1939 initQueues(TopRoots, BotRoots); 1940 1941 // Fill some stats to help scheduling. 1942 1943 SUnitsLinksBackup = SUnits; 1944 IsLowLatencySU.clear(); 1945 LowLatencyOffset.clear(); 1946 IsHighLatencySU.clear(); 1947 1948 IsLowLatencySU.resize(SUnits.size(), 0); 1949 LowLatencyOffset.resize(SUnits.size(), 0); 1950 IsHighLatencySU.resize(SUnits.size(), 0); 1951 1952 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { 1953 SUnit *SU = &SUnits[i]; 1954 const MachineOperand *BaseLatOp; 1955 int64_t OffLatReg; 1956 if (SITII->isLowLatencyInstruction(*SU->getInstr())) { 1957 IsLowLatencySU[i] = 1; 1958 if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg, 1959 TRI)) 1960 LowLatencyOffset[i] = OffLatReg; 1961 } else if (SITII->isHighLatencyInstruction(*SU->getInstr())) 1962 IsHighLatencySU[i] = 1; 1963 } 1964 1965 SIScheduler Scheduler(this); 1966 Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone, 1967 SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage); 1968 1969 // if VGPR usage is extremely high, try other good performing variants 1970 // which could lead to lower VGPR usage 1971 if (Best.MaxVGPRUsage > 180) { 1972 static const std::pair<SISchedulerBlockCreatorVariant, 1973 SISchedulerBlockSchedulerVariant> 1974 Variants[] = { 1975 { LatenciesAlone, BlockRegUsageLatency }, 1976 // { LatenciesAlone, BlockRegUsage }, 1977 { LatenciesGrouped, BlockLatencyRegUsage }, 1978 // { LatenciesGrouped, BlockRegUsageLatency }, 1979 // { LatenciesGrouped, BlockRegUsage }, 1980 { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, 1981 // { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, 1982 // { LatenciesAlonePlusConsecutive, BlockRegUsage } 1983 }; 1984 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { 1985 Temp = Scheduler.scheduleVariant(v.first, v.second); 1986 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) 1987 Best = Temp; 1988 } 1989 } 1990 // if VGPR usage is still extremely high, we may spill. Try other variants 1991 // which are less performing, but that could lead to lower VGPR usage. 1992 if (Best.MaxVGPRUsage > 200) { 1993 static const std::pair<SISchedulerBlockCreatorVariant, 1994 SISchedulerBlockSchedulerVariant> 1995 Variants[] = { 1996 // { LatenciesAlone, BlockRegUsageLatency }, 1997 { LatenciesAlone, BlockRegUsage }, 1998 // { LatenciesGrouped, BlockLatencyRegUsage }, 1999 { LatenciesGrouped, BlockRegUsageLatency }, 2000 { LatenciesGrouped, BlockRegUsage }, 2001 // { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, 2002 { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, 2003 { LatenciesAlonePlusConsecutive, BlockRegUsage } 2004 }; 2005 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { 2006 Temp = Scheduler.scheduleVariant(v.first, v.second); 2007 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) 2008 Best = Temp; 2009 } 2010 } 2011 2012 ScheduledSUnits = Best.SUs; 2013 ScheduledSUnitsInv.resize(SUnits.size()); 2014 2015 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { 2016 ScheduledSUnitsInv[ScheduledSUnits[i]] = i; 2017 } 2018 2019 moveLowLatencies(); 2020 2021 // Tell the outside world about the result of the scheduling. 2022 2023 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 2024 TopRPTracker.setPos(CurrentTop); 2025 2026 for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(), 2027 E = ScheduledSUnits.end(); I != E; ++I) { 2028 SUnit *SU = &SUnits[*I]; 2029 2030 scheduleMI(SU, true); 2031 2032 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 2033 << *SU->getInstr()); 2034 } 2035 2036 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 2037 2038 placeDebugValues(); 2039 2040 LLVM_DEBUG({ 2041 dbgs() << "*** Final schedule for " 2042 << printMBBReference(*begin()->getParent()) << " ***\n"; 2043 dumpSchedule(); 2044 dbgs() << '\n'; 2045 }); 2046 } 2047