1 //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// SI Machine Scheduler interface 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIMachineScheduler.h" 15 #include "AMDGPU.h" 16 #include "SIInstrInfo.h" 17 #include "SIRegisterInfo.h" 18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/RegisterPressure.h" 27 #include "llvm/CodeGen/SlotIndexes.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <map> 35 #include <set> 36 #include <utility> 37 #include <vector> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-scheduler" 42 43 // This scheduler implements a different scheduling algorithm than 44 // GenericScheduler. 45 // 46 // There are several specific architecture behaviours that can't be modelled 47 // for GenericScheduler: 48 // . When accessing the result of an SGPR load instruction, you have to wait 49 // for all the SGPR load instructions before your current instruction to 50 // have finished. 51 // . When accessing the result of an VGPR load instruction, you have to wait 52 // for all the VGPR load instructions previous to the VGPR load instruction 53 // you are interested in to finish. 54 // . The less the register pressure, the best load latencies are hidden 55 // 56 // Moreover some specifities (like the fact a lot of instructions in the shader 57 // have few dependencies) makes the generic scheduler have some unpredictable 58 // behaviours. For example when register pressure becomes high, it can either 59 // manage to prevent register pressure from going too high, or it can 60 // increase register pressure even more than if it hadn't taken register 61 // pressure into account. 62 // 63 // Also some other bad behaviours are generated, like loading at the beginning 64 // of the shader a constant in VGPR you won't need until the end of the shader. 65 // 66 // The scheduling problem for SI can distinguish three main parts: 67 // . Hiding high latencies (texture sampling, etc) 68 // . Hiding low latencies (SGPR constant loading, etc) 69 // . Keeping register usage low for better latency hiding and general 70 // performance 71 // 72 // Some other things can also affect performance, but are hard to predict 73 // (cache usage, the fact the HW can issue several instructions from different 74 // wavefronts if different types, etc) 75 // 76 // This scheduler tries to solve the scheduling problem by dividing it into 77 // simpler sub-problems. It divides the instructions into blocks, schedules 78 // locally inside the blocks where it takes care of low latencies, and then 79 // chooses the order of the blocks by taking care of high latencies. 80 // Dividing the instructions into blocks helps control keeping register 81 // usage low. 82 // 83 // First the instructions are put into blocks. 84 // We want the blocks help control register usage and hide high latencies 85 // later. To help control register usage, we typically want all local 86 // computations, when for example you create a result that can be comsummed 87 // right away, to be contained in a block. Block inputs and outputs would 88 // typically be important results that are needed in several locations of 89 // the shader. Since we do want blocks to help hide high latencies, we want 90 // the instructions inside the block to have a minimal set of dependencies 91 // on high latencies. It will make it easy to pick blocks to hide specific 92 // high latencies. 93 // The block creation algorithm is divided into several steps, and several 94 // variants can be tried during the scheduling process. 95 // 96 // Second the order of the instructions inside the blocks is chosen. 97 // At that step we do take into account only register usage and hiding 98 // low latency instructions 99 // 100 // Third the block order is chosen, there we try to hide high latencies 101 // and keep register usage low. 102 // 103 // After the third step, a pass is done to improve the hiding of low 104 // latencies. 105 // 106 // Actually when talking about 'low latency' or 'high latency' it includes 107 // both the latency to get the cache (or global mem) data go to the register, 108 // and the bandwidth limitations. 109 // Increasing the number of active wavefronts helps hide the former, but it 110 // doesn't solve the latter, thus why even if wavefront count is high, we have 111 // to try have as many instructions hiding high latencies as possible. 112 // The OpenCL doc says for example latency of 400 cycles for a global mem access, 113 // which is hidden by 10 instructions if the wavefront count is 10. 114 115 // Some figures taken from AMD docs: 116 // Both texture and constant L1 caches are 4-way associative with 64 bytes 117 // lines. 118 // Constant cache is shared with 4 CUs. 119 // For texture sampling, the address generation unit receives 4 texture 120 // addresses per cycle, thus we could expect texture sampling latency to be 121 // equivalent to 4 instructions in the very best case (a VGPR is 64 work items, 122 // instructions in a wavefront group are executed every 4 cycles), 123 // or 16 instructions if the other wavefronts associated to the 3 other VALUs 124 // of the CU do texture sampling too. (Don't take these figures too seriously, 125 // as I'm not 100% sure of the computation) 126 // Data exports should get similar latency. 127 // For constant loading, the cache is shader with 4 CUs. 128 // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit" 129 // I guess if the other CU don't read the cache, it can go up to 64B/cycle. 130 // It means a simple s_buffer_load should take one instruction to hide, as 131 // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same 132 // cache line. 133 // 134 // As of today the driver doesn't preload the constants in cache, thus the 135 // first loads get extra latency. The doc says global memory access can be 136 // 300-600 cycles. We do not specially take that into account when scheduling 137 // As we expect the driver to be able to preload the constants soon. 138 139 // common code // 140 141 #ifndef NDEBUG 142 143 static const char *getReasonStr(SIScheduleCandReason Reason) { 144 switch (Reason) { 145 case NoCand: return "NOCAND"; 146 case RegUsage: return "REGUSAGE"; 147 case Latency: return "LATENCY"; 148 case Successor: return "SUCCESSOR"; 149 case Depth: return "DEPTH"; 150 case NodeOrder: return "ORDER"; 151 } 152 llvm_unreachable("Unknown reason!"); 153 } 154 155 #endif 156 157 namespace llvm { 158 namespace SISched { 159 static bool tryLess(int TryVal, int CandVal, 160 SISchedulerCandidate &TryCand, 161 SISchedulerCandidate &Cand, 162 SIScheduleCandReason Reason) { 163 if (TryVal < CandVal) { 164 TryCand.Reason = Reason; 165 return true; 166 } 167 if (TryVal > CandVal) { 168 if (Cand.Reason > Reason) 169 Cand.Reason = Reason; 170 return true; 171 } 172 Cand.setRepeat(Reason); 173 return false; 174 } 175 176 static bool tryGreater(int TryVal, int CandVal, 177 SISchedulerCandidate &TryCand, 178 SISchedulerCandidate &Cand, 179 SIScheduleCandReason Reason) { 180 if (TryVal > CandVal) { 181 TryCand.Reason = Reason; 182 return true; 183 } 184 if (TryVal < CandVal) { 185 if (Cand.Reason > Reason) 186 Cand.Reason = Reason; 187 return true; 188 } 189 Cand.setRepeat(Reason); 190 return false; 191 } 192 } // end namespace SISched 193 } // end namespace llvm 194 195 // SIScheduleBlock // 196 197 void SIScheduleBlock::addUnit(SUnit *SU) { 198 NodeNum2Index[SU->NodeNum] = SUnits.size(); 199 SUnits.push_back(SU); 200 } 201 202 #ifndef NDEBUG 203 void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) { 204 205 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 206 dbgs() << '\n'; 207 } 208 #endif 209 210 void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand, 211 SISchedCandidate &TryCand) { 212 // Initialize the candidate if needed. 213 if (!Cand.isValid()) { 214 TryCand.Reason = NodeOrder; 215 return; 216 } 217 218 if (Cand.SGPRUsage > 60 && 219 SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage, 220 TryCand, Cand, RegUsage)) 221 return; 222 223 // Schedule low latency instructions as top as possible. 224 // Order of priority is: 225 // . Low latency instructions which do not depend on other low latency 226 // instructions we haven't waited for 227 // . Other instructions which do not depend on low latency instructions 228 // we haven't waited for 229 // . Low latencies 230 // . All other instructions 231 // Goal is to get: low latency instructions - independent instructions 232 // - (eventually some more low latency instructions) 233 // - instructions that depend on the first low latency instructions. 234 // If in the block there is a lot of constant loads, the SGPR usage 235 // could go quite high, thus above the arbitrary limit of 60 will encourage 236 // use the already loaded constants (in order to release some SGPRs) before 237 // loading more. 238 if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent, 239 Cand.HasLowLatencyNonWaitedParent, 240 TryCand, Cand, SIScheduleCandReason::Depth)) 241 return; 242 243 if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency, 244 TryCand, Cand, SIScheduleCandReason::Depth)) 245 return; 246 247 if (TryCand.IsLowLatency && 248 SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset, 249 TryCand, Cand, SIScheduleCandReason::Depth)) 250 return; 251 252 if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage, 253 TryCand, Cand, RegUsage)) 254 return; 255 256 // Fall through to original instruction order. 257 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 258 TryCand.Reason = NodeOrder; 259 } 260 } 261 262 SUnit* SIScheduleBlock::pickNode() { 263 SISchedCandidate TopCand; 264 265 for (SUnit* SU : TopReadySUs) { 266 SISchedCandidate TryCand; 267 std::vector<unsigned> pressure; 268 std::vector<unsigned> MaxPressure; 269 // Predict register usage after this instruction. 270 TryCand.SU = SU; 271 TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure); 272 TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32]; 273 TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32]; 274 TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum]; 275 TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum]; 276 TryCand.HasLowLatencyNonWaitedParent = 277 HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]; 278 tryCandidateTopDown(TopCand, TryCand); 279 if (TryCand.Reason != NoCand) 280 TopCand.setBest(TryCand); 281 } 282 283 return TopCand.SU; 284 } 285 286 287 // Schedule something valid. 288 void SIScheduleBlock::fastSchedule() { 289 TopReadySUs.clear(); 290 if (Scheduled) 291 undoSchedule(); 292 293 for (SUnit* SU : SUnits) { 294 if (!SU->NumPredsLeft) 295 TopReadySUs.push_back(SU); 296 } 297 298 while (!TopReadySUs.empty()) { 299 SUnit *SU = TopReadySUs[0]; 300 ScheduledSUnits.push_back(SU); 301 nodeScheduled(SU); 302 } 303 304 Scheduled = true; 305 } 306 307 // Returns if the register was set between first and last. 308 static bool isDefBetween(unsigned Reg, 309 SlotIndex First, SlotIndex Last, 310 const MachineRegisterInfo *MRI, 311 const LiveIntervals *LIS) { 312 for (MachineRegisterInfo::def_instr_iterator 313 UI = MRI->def_instr_begin(Reg), 314 UE = MRI->def_instr_end(); UI != UE; ++UI) { 315 const MachineInstr* MI = &*UI; 316 if (MI->isDebugValue()) 317 continue; 318 SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot(); 319 if (InstSlot >= First && InstSlot <= Last) 320 return true; 321 } 322 return false; 323 } 324 325 void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock, 326 MachineBasicBlock::iterator EndBlock) { 327 IntervalPressure Pressure, BotPressure; 328 RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure); 329 LiveIntervals *LIS = DAG->getLIS(); 330 MachineRegisterInfo *MRI = DAG->getMRI(); 331 DAG->initRPTracker(TopRPTracker); 332 DAG->initRPTracker(BotRPTracker); 333 DAG->initRPTracker(RPTracker); 334 335 // Goes though all SU. RPTracker captures what had to be alive for the SUs 336 // to execute, and what is still alive at the end. 337 for (SUnit* SU : ScheduledSUnits) { 338 RPTracker.setPos(SU->getInstr()); 339 RPTracker.advance(); 340 } 341 342 // Close the RPTracker to finalize live ins/outs. 343 RPTracker.closeRegion(); 344 345 // Initialize the live ins and live outs. 346 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 347 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 348 349 // Do not Track Physical Registers, because it messes up. 350 for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) { 351 if (Register::isVirtualRegister(RegMaskPair.RegUnit)) 352 LiveInRegs.insert(RegMaskPair.RegUnit); 353 } 354 LiveOutRegs.clear(); 355 // There is several possibilities to distinguish: 356 // 1) Reg is not input to any instruction in the block, but is output of one 357 // 2) 1) + read in the block and not needed after it 358 // 3) 1) + read in the block but needed in another block 359 // 4) Reg is input of an instruction but another block will read it too 360 // 5) Reg is input of an instruction and then rewritten in the block. 361 // result is not read in the block (implies used in another block) 362 // 6) Reg is input of an instruction and then rewritten in the block. 363 // result is read in the block and not needed in another block 364 // 7) Reg is input of an instruction and then rewritten in the block. 365 // result is read in the block but also needed in another block 366 // LiveInRegs will contains all the regs in situation 4, 5, 6, 7 367 // We want LiveOutRegs to contain only Regs whose content will be read after 368 // in another block, and whose content was written in the current block, 369 // that is we want it to get 1, 3, 5, 7 370 // Since we made the MIs of a block to be packed all together before 371 // scheduling, then the LiveIntervals were correct, and the RPTracker was 372 // able to correctly handle 5 vs 6, 2 vs 3. 373 // (Note: This is not sufficient for RPTracker to not do mistakes for case 4) 374 // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7 375 // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7 376 // The use of findDefBetween removes the case 4. 377 for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) { 378 Register Reg = RegMaskPair.RegUnit; 379 if (Reg.isVirtual() && 380 isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(), 381 LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI, 382 LIS)) { 383 LiveOutRegs.insert(Reg); 384 } 385 } 386 387 // Pressure = sum_alive_registers register size 388 // Internally llvm will represent some registers as big 128 bits registers 389 // for example, but they actually correspond to 4 actual 32 bits registers. 390 // Thus Pressure is not equal to num_alive_registers * constant. 391 LiveInPressure = TopPressure.MaxSetPressure; 392 LiveOutPressure = BotPressure.MaxSetPressure; 393 394 // Prepares TopRPTracker for top down scheduling. 395 TopRPTracker.closeTop(); 396 } 397 398 void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock, 399 MachineBasicBlock::iterator EndBlock) { 400 if (!Scheduled) 401 fastSchedule(); 402 403 // PreScheduling phase to set LiveIn and LiveOut. 404 initRegPressure(BeginBlock, EndBlock); 405 undoSchedule(); 406 407 // Schedule for real now. 408 409 TopReadySUs.clear(); 410 411 for (SUnit* SU : SUnits) { 412 if (!SU->NumPredsLeft) 413 TopReadySUs.push_back(SU); 414 } 415 416 while (!TopReadySUs.empty()) { 417 SUnit *SU = pickNode(); 418 ScheduledSUnits.push_back(SU); 419 TopRPTracker.setPos(SU->getInstr()); 420 TopRPTracker.advance(); 421 nodeScheduled(SU); 422 } 423 424 // TODO: compute InternalAdditionnalPressure. 425 InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size()); 426 427 // Check everything is right. 428 #ifndef NDEBUG 429 assert(SUnits.size() == ScheduledSUnits.size() && 430 TopReadySUs.empty()); 431 for (SUnit* SU : SUnits) { 432 assert(SU->isScheduled && 433 SU->NumPredsLeft == 0); 434 } 435 #endif 436 437 Scheduled = true; 438 } 439 440 void SIScheduleBlock::undoSchedule() { 441 for (SUnit* SU : SUnits) { 442 SU->isScheduled = false; 443 for (SDep& Succ : SU->Succs) { 444 if (BC->isSUInBlock(Succ.getSUnit(), ID)) 445 undoReleaseSucc(SU, &Succ); 446 } 447 } 448 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0); 449 ScheduledSUnits.clear(); 450 Scheduled = false; 451 } 452 453 void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) { 454 SUnit *SuccSU = SuccEdge->getSUnit(); 455 456 if (SuccEdge->isWeak()) { 457 ++SuccSU->WeakPredsLeft; 458 return; 459 } 460 ++SuccSU->NumPredsLeft; 461 } 462 463 void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) { 464 SUnit *SuccSU = SuccEdge->getSUnit(); 465 466 if (SuccEdge->isWeak()) { 467 --SuccSU->WeakPredsLeft; 468 return; 469 } 470 #ifndef NDEBUG 471 if (SuccSU->NumPredsLeft == 0) { 472 dbgs() << "*** Scheduling failed! ***\n"; 473 DAG->dumpNode(*SuccSU); 474 dbgs() << " has been released too many times!\n"; 475 llvm_unreachable(nullptr); 476 } 477 #endif 478 479 --SuccSU->NumPredsLeft; 480 } 481 482 /// Release Successors of the SU that are in the block or not. 483 void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) { 484 for (SDep& Succ : SU->Succs) { 485 SUnit *SuccSU = Succ.getSUnit(); 486 487 if (SuccSU->NodeNum >= DAG->SUnits.size()) 488 continue; 489 490 if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock) 491 continue; 492 493 releaseSucc(SU, &Succ); 494 if (SuccSU->NumPredsLeft == 0 && InOrOutBlock) 495 TopReadySUs.push_back(SuccSU); 496 } 497 } 498 499 void SIScheduleBlock::nodeScheduled(SUnit *SU) { 500 // Is in TopReadySUs 501 assert (!SU->NumPredsLeft); 502 std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU); 503 if (I == TopReadySUs.end()) { 504 dbgs() << "Data Structure Bug in SI Scheduler\n"; 505 llvm_unreachable(nullptr); 506 } 507 TopReadySUs.erase(I); 508 509 releaseSuccessors(SU, true); 510 // Scheduling this node will trigger a wait, 511 // thus propagate to other instructions that they do not need to wait either. 512 if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]) 513 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0); 514 515 if (DAG->IsLowLatencySU[SU->NodeNum]) { 516 for (SDep& Succ : SU->Succs) { 517 std::map<unsigned, unsigned>::iterator I = 518 NodeNum2Index.find(Succ.getSUnit()->NodeNum); 519 if (I != NodeNum2Index.end()) 520 HasLowLatencyNonWaitedParent[I->second] = 1; 521 } 522 } 523 SU->isScheduled = true; 524 } 525 526 void SIScheduleBlock::finalizeUnits() { 527 // We remove links from outside blocks to enable scheduling inside the block. 528 for (SUnit* SU : SUnits) { 529 releaseSuccessors(SU, false); 530 if (DAG->IsHighLatencySU[SU->NodeNum]) 531 HighLatencyBlock = true; 532 } 533 HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0); 534 } 535 536 // we maintain ascending order of IDs 537 void SIScheduleBlock::addPred(SIScheduleBlock *Pred) { 538 unsigned PredID = Pred->getID(); 539 540 // Check if not already predecessor. 541 for (SIScheduleBlock* P : Preds) { 542 if (PredID == P->getID()) 543 return; 544 } 545 Preds.push_back(Pred); 546 547 assert(none_of(Succs, 548 [=](std::pair<SIScheduleBlock*, 549 SIScheduleBlockLinkKind> S) { 550 return PredID == S.first->getID(); 551 }) && 552 "Loop in the Block Graph!"); 553 } 554 555 void SIScheduleBlock::addSucc(SIScheduleBlock *Succ, 556 SIScheduleBlockLinkKind Kind) { 557 unsigned SuccID = Succ->getID(); 558 559 // Check if not already predecessor. 560 for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) { 561 if (SuccID == S.first->getID()) { 562 if (S.second == SIScheduleBlockLinkKind::NoData && 563 Kind == SIScheduleBlockLinkKind::Data) 564 S.second = Kind; 565 return; 566 } 567 } 568 if (Succ->isHighLatencyBlock()) 569 ++NumHighLatencySuccessors; 570 Succs.push_back(std::make_pair(Succ, Kind)); 571 572 assert(none_of(Preds, 573 [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) && 574 "Loop in the Block Graph!"); 575 } 576 577 #ifndef NDEBUG 578 void SIScheduleBlock::printDebug(bool full) { 579 dbgs() << "Block (" << ID << ")\n"; 580 if (!full) 581 return; 582 583 dbgs() << "\nContains High Latency Instruction: " 584 << HighLatencyBlock << '\n'; 585 dbgs() << "\nDepends On:\n"; 586 for (SIScheduleBlock* P : Preds) { 587 P->printDebug(false); 588 } 589 590 dbgs() << "\nSuccessors:\n"; 591 for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) { 592 if (S.second == SIScheduleBlockLinkKind::Data) 593 dbgs() << "(Data Dep) "; 594 S.first->printDebug(false); 595 } 596 597 if (Scheduled) { 598 dbgs() << "LiveInPressure " 599 << LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' ' 600 << LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n'; 601 dbgs() << "LiveOutPressure " 602 << LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' ' 603 << LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n"; 604 dbgs() << "LiveIns:\n"; 605 for (unsigned Reg : LiveInRegs) 606 dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; 607 608 dbgs() << "\nLiveOuts:\n"; 609 for (unsigned Reg : LiveOutRegs) 610 dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; 611 } 612 613 dbgs() << "\nInstructions:\n"; 614 for (const SUnit* SU : SUnits) 615 DAG->dumpNode(*SU); 616 617 dbgs() << "///////////////////////\n"; 618 } 619 #endif 620 621 // SIScheduleBlockCreator // 622 623 SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) 624 : DAG(DAG) {} 625 626 SIScheduleBlocks 627 SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) { 628 std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B = 629 Blocks.find(BlockVariant); 630 if (B == Blocks.end()) { 631 SIScheduleBlocks Res; 632 createBlocksForVariant(BlockVariant); 633 topologicalSort(); 634 scheduleInsideBlocks(); 635 fillStats(); 636 Res.Blocks = CurrentBlocks; 637 Res.TopDownIndex2Block = TopDownIndex2Block; 638 Res.TopDownBlock2Index = TopDownBlock2Index; 639 Blocks[BlockVariant] = Res; 640 return Res; 641 } else { 642 return B->second; 643 } 644 } 645 646 bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) { 647 if (SU->NodeNum >= DAG->SUnits.size()) 648 return false; 649 return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID; 650 } 651 652 void SIScheduleBlockCreator::colorHighLatenciesAlone() { 653 unsigned DAGSize = DAG->SUnits.size(); 654 655 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 656 SUnit *SU = &DAG->SUnits[i]; 657 if (DAG->IsHighLatencySU[SU->NodeNum]) { 658 CurrentColoring[SU->NodeNum] = NextReservedID++; 659 } 660 } 661 } 662 663 static bool 664 hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) { 665 for (const auto &PredDep : SU.Preds) { 666 if (PredDep.getSUnit() == &FromSU && 667 PredDep.getKind() == llvm::SDep::Data) 668 return true; 669 } 670 return false; 671 } 672 673 void SIScheduleBlockCreator::colorHighLatenciesGroups() { 674 unsigned DAGSize = DAG->SUnits.size(); 675 unsigned NumHighLatencies = 0; 676 unsigned GroupSize; 677 int Color = NextReservedID; 678 unsigned Count = 0; 679 std::set<unsigned> FormingGroup; 680 681 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 682 SUnit *SU = &DAG->SUnits[i]; 683 if (DAG->IsHighLatencySU[SU->NodeNum]) 684 ++NumHighLatencies; 685 } 686 687 if (NumHighLatencies == 0) 688 return; 689 690 if (NumHighLatencies <= 6) 691 GroupSize = 2; 692 else if (NumHighLatencies <= 12) 693 GroupSize = 3; 694 else 695 GroupSize = 4; 696 697 for (unsigned SUNum : DAG->TopDownIndex2SU) { 698 const SUnit &SU = DAG->SUnits[SUNum]; 699 if (DAG->IsHighLatencySU[SU.NodeNum]) { 700 unsigned CompatibleGroup = true; 701 int ProposedColor = Color; 702 std::vector<int> AdditionalElements; 703 704 // We don't want to put in the same block 705 // two high latency instructions that depend 706 // on each other. 707 // One way would be to check canAddEdge 708 // in both directions, but that currently is not 709 // enough because there the high latency order is 710 // enforced (via links). 711 // Instead, look at the dependencies between the 712 // high latency instructions and deduce if it is 713 // a data dependency or not. 714 for (unsigned j : FormingGroup) { 715 bool HasSubGraph; 716 std::vector<int> SubGraph; 717 // By construction (topological order), if SU and 718 // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary 719 // in the parent graph of SU. 720 #ifndef NDEBUG 721 SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j], 722 HasSubGraph); 723 assert(!HasSubGraph); 724 #endif 725 SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU, 726 HasSubGraph); 727 if (!HasSubGraph) 728 continue; // No dependencies between each other 729 else if (SubGraph.size() > 5) { 730 // Too many elements would be required to be added to the block. 731 CompatibleGroup = false; 732 break; 733 } 734 else { 735 // Check the type of dependency 736 for (unsigned k : SubGraph) { 737 // If in the path to join the two instructions, 738 // there is another high latency instruction, 739 // or instructions colored for another block 740 // abort the merge. 741 if (DAG->IsHighLatencySU[k] || 742 (CurrentColoring[k] != ProposedColor && 743 CurrentColoring[k] != 0)) { 744 CompatibleGroup = false; 745 break; 746 } 747 // If one of the SU in the subgraph depends on the result of SU j, 748 // there'll be a data dependency. 749 if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) { 750 CompatibleGroup = false; 751 break; 752 } 753 } 754 if (!CompatibleGroup) 755 break; 756 // Same check for the SU 757 if (hasDataDependencyPred(SU, DAG->SUnits[j])) { 758 CompatibleGroup = false; 759 break; 760 } 761 // Add all the required instructions to the block 762 // These cannot live in another block (because they 763 // depend (order dependency) on one of the 764 // instruction in the block, and are required for the 765 // high latency instruction we add. 766 llvm::append_range(AdditionalElements, SubGraph); 767 } 768 } 769 if (CompatibleGroup) { 770 FormingGroup.insert(SU.NodeNum); 771 for (unsigned j : AdditionalElements) 772 CurrentColoring[j] = ProposedColor; 773 CurrentColoring[SU.NodeNum] = ProposedColor; 774 ++Count; 775 } 776 // Found one incompatible instruction, 777 // or has filled a big enough group. 778 // -> start a new one. 779 if (!CompatibleGroup) { 780 FormingGroup.clear(); 781 Color = ++NextReservedID; 782 ProposedColor = Color; 783 FormingGroup.insert(SU.NodeNum); 784 CurrentColoring[SU.NodeNum] = ProposedColor; 785 Count = 0; 786 } else if (Count == GroupSize) { 787 FormingGroup.clear(); 788 Color = ++NextReservedID; 789 ProposedColor = Color; 790 Count = 0; 791 } 792 } 793 } 794 } 795 796 void SIScheduleBlockCreator::colorComputeReservedDependencies() { 797 unsigned DAGSize = DAG->SUnits.size(); 798 std::map<std::set<unsigned>, unsigned> ColorCombinations; 799 800 CurrentTopDownReservedDependencyColoring.clear(); 801 CurrentBottomUpReservedDependencyColoring.clear(); 802 803 CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0); 804 CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0); 805 806 // Traverse TopDown, and give different colors to SUs depending 807 // on which combination of High Latencies they depend on. 808 809 for (unsigned SUNum : DAG->TopDownIndex2SU) { 810 SUnit *SU = &DAG->SUnits[SUNum]; 811 std::set<unsigned> SUColors; 812 813 // Already given. 814 if (CurrentColoring[SU->NodeNum]) { 815 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 816 CurrentColoring[SU->NodeNum]; 817 continue; 818 } 819 820 for (SDep& PredDep : SU->Preds) { 821 SUnit *Pred = PredDep.getSUnit(); 822 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) 823 continue; 824 if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0) 825 SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]); 826 } 827 // Color 0 by default. 828 if (SUColors.empty()) 829 continue; 830 // Same color than parents. 831 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) 832 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 833 *SUColors.begin(); 834 else { 835 std::map<std::set<unsigned>, unsigned>::iterator Pos = 836 ColorCombinations.find(SUColors); 837 if (Pos != ColorCombinations.end()) { 838 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second; 839 } else { 840 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 841 NextNonReservedID; 842 ColorCombinations[SUColors] = NextNonReservedID++; 843 } 844 } 845 } 846 847 ColorCombinations.clear(); 848 849 // Same as before, but BottomUp. 850 851 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 852 SUnit *SU = &DAG->SUnits[SUNum]; 853 std::set<unsigned> SUColors; 854 855 // Already given. 856 if (CurrentColoring[SU->NodeNum]) { 857 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 858 CurrentColoring[SU->NodeNum]; 859 continue; 860 } 861 862 for (SDep& SuccDep : SU->Succs) { 863 SUnit *Succ = SuccDep.getSUnit(); 864 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 865 continue; 866 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0) 867 SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]); 868 } 869 // Keep color 0. 870 if (SUColors.empty()) 871 continue; 872 // Same color than parents. 873 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) 874 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 875 *SUColors.begin(); 876 else { 877 std::map<std::set<unsigned>, unsigned>::iterator Pos = 878 ColorCombinations.find(SUColors); 879 if (Pos != ColorCombinations.end()) { 880 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second; 881 } else { 882 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 883 NextNonReservedID; 884 ColorCombinations[SUColors] = NextNonReservedID++; 885 } 886 } 887 } 888 } 889 890 void SIScheduleBlockCreator::colorAccordingToReservedDependencies() { 891 unsigned DAGSize = DAG->SUnits.size(); 892 std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations; 893 894 // Every combination of colors given by the top down 895 // and bottom up Reserved node dependency 896 897 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 898 SUnit *SU = &DAG->SUnits[i]; 899 std::pair<unsigned, unsigned> SUColors; 900 901 // High latency instructions: already given. 902 if (CurrentColoring[SU->NodeNum]) 903 continue; 904 905 SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum]; 906 SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum]; 907 908 std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos = 909 ColorCombinations.find(SUColors); 910 if (Pos != ColorCombinations.end()) { 911 CurrentColoring[SU->NodeNum] = Pos->second; 912 } else { 913 CurrentColoring[SU->NodeNum] = NextNonReservedID; 914 ColorCombinations[SUColors] = NextNonReservedID++; 915 } 916 } 917 } 918 919 void SIScheduleBlockCreator::colorEndsAccordingToDependencies() { 920 unsigned DAGSize = DAG->SUnits.size(); 921 std::vector<int> PendingColoring = CurrentColoring; 922 923 assert(DAGSize >= 1 && 924 CurrentBottomUpReservedDependencyColoring.size() == DAGSize && 925 CurrentTopDownReservedDependencyColoring.size() == DAGSize); 926 // If there is no reserved block at all, do nothing. We don't want 927 // everything in one block. 928 if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(), 929 CurrentBottomUpReservedDependencyColoring.end()) == 0 && 930 *std::max_element(CurrentTopDownReservedDependencyColoring.begin(), 931 CurrentTopDownReservedDependencyColoring.end()) == 0) 932 return; 933 934 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 935 SUnit *SU = &DAG->SUnits[SUNum]; 936 std::set<unsigned> SUColors; 937 std::set<unsigned> SUColorsPending; 938 939 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 940 continue; 941 942 if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 || 943 CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0) 944 continue; 945 946 for (SDep& SuccDep : SU->Succs) { 947 SUnit *Succ = SuccDep.getSUnit(); 948 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 949 continue; 950 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 || 951 CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0) 952 SUColors.insert(CurrentColoring[Succ->NodeNum]); 953 SUColorsPending.insert(PendingColoring[Succ->NodeNum]); 954 } 955 // If there is only one child/parent block, and that block 956 // is not among the ones we are removing in this path, then 957 // merge the instruction to that block 958 if (SUColors.size() == 1 && SUColorsPending.size() == 1) 959 PendingColoring[SU->NodeNum] = *SUColors.begin(); 960 else // TODO: Attribute new colors depending on color 961 // combination of children. 962 PendingColoring[SU->NodeNum] = NextNonReservedID++; 963 } 964 CurrentColoring = PendingColoring; 965 } 966 967 968 void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() { 969 unsigned DAGSize = DAG->SUnits.size(); 970 unsigned PreviousColor; 971 std::set<unsigned> SeenColors; 972 973 if (DAGSize <= 1) 974 return; 975 976 PreviousColor = CurrentColoring[0]; 977 978 for (unsigned i = 1, e = DAGSize; i != e; ++i) { 979 SUnit *SU = &DAG->SUnits[i]; 980 unsigned CurrentColor = CurrentColoring[i]; 981 unsigned PreviousColorSave = PreviousColor; 982 assert(i == SU->NodeNum); 983 984 if (CurrentColor != PreviousColor) 985 SeenColors.insert(PreviousColor); 986 PreviousColor = CurrentColor; 987 988 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 989 continue; 990 991 if (SeenColors.find(CurrentColor) == SeenColors.end()) 992 continue; 993 994 if (PreviousColorSave != CurrentColor) 995 CurrentColoring[i] = NextNonReservedID++; 996 else 997 CurrentColoring[i] = CurrentColoring[i-1]; 998 } 999 } 1000 1001 void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() { 1002 unsigned DAGSize = DAG->SUnits.size(); 1003 1004 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1005 SUnit *SU = &DAG->SUnits[SUNum]; 1006 std::set<unsigned> SUColors; 1007 1008 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1009 continue; 1010 1011 // No predecessor: Vgpr constant loading. 1012 // Low latency instructions usually have a predecessor (the address) 1013 if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum]) 1014 continue; 1015 1016 for (SDep& SuccDep : SU->Succs) { 1017 SUnit *Succ = SuccDep.getSUnit(); 1018 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1019 continue; 1020 SUColors.insert(CurrentColoring[Succ->NodeNum]); 1021 } 1022 if (SUColors.size() == 1) 1023 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 1024 } 1025 } 1026 1027 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() { 1028 unsigned DAGSize = DAG->SUnits.size(); 1029 1030 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1031 SUnit *SU = &DAG->SUnits[SUNum]; 1032 std::set<unsigned> SUColors; 1033 1034 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1035 continue; 1036 1037 for (SDep& SuccDep : SU->Succs) { 1038 SUnit *Succ = SuccDep.getSUnit(); 1039 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1040 continue; 1041 SUColors.insert(CurrentColoring[Succ->NodeNum]); 1042 } 1043 if (SUColors.size() == 1) 1044 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 1045 } 1046 } 1047 1048 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() { 1049 unsigned DAGSize = DAG->SUnits.size(); 1050 1051 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1052 SUnit *SU = &DAG->SUnits[SUNum]; 1053 std::set<unsigned> SUColors; 1054 1055 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1056 continue; 1057 1058 for (SDep& SuccDep : SU->Succs) { 1059 SUnit *Succ = SuccDep.getSUnit(); 1060 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1061 continue; 1062 SUColors.insert(CurrentColoring[Succ->NodeNum]); 1063 } 1064 if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize) 1065 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 1066 } 1067 } 1068 1069 void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() { 1070 unsigned DAGSize = DAG->SUnits.size(); 1071 std::map<unsigned, unsigned> ColorCount; 1072 1073 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1074 SUnit *SU = &DAG->SUnits[SUNum]; 1075 unsigned color = CurrentColoring[SU->NodeNum]; 1076 ++ColorCount[color]; 1077 } 1078 1079 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1080 SUnit *SU = &DAG->SUnits[SUNum]; 1081 unsigned color = CurrentColoring[SU->NodeNum]; 1082 std::set<unsigned> SUColors; 1083 1084 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1085 continue; 1086 1087 if (ColorCount[color] > 1) 1088 continue; 1089 1090 for (SDep& SuccDep : SU->Succs) { 1091 SUnit *Succ = SuccDep.getSUnit(); 1092 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1093 continue; 1094 SUColors.insert(CurrentColoring[Succ->NodeNum]); 1095 } 1096 if (SUColors.size() == 1 && *SUColors.begin() != color) { 1097 --ColorCount[color]; 1098 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 1099 ++ColorCount[*SUColors.begin()]; 1100 } 1101 } 1102 } 1103 1104 void SIScheduleBlockCreator::cutHugeBlocks() { 1105 // TODO 1106 } 1107 1108 void SIScheduleBlockCreator::regroupNoUserInstructions() { 1109 unsigned DAGSize = DAG->SUnits.size(); 1110 int GroupID = NextNonReservedID++; 1111 1112 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1113 SUnit *SU = &DAG->SUnits[SUNum]; 1114 bool hasSuccessor = false; 1115 1116 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1117 continue; 1118 1119 for (SDep& SuccDep : SU->Succs) { 1120 SUnit *Succ = SuccDep.getSUnit(); 1121 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1122 continue; 1123 hasSuccessor = true; 1124 } 1125 if (!hasSuccessor) 1126 CurrentColoring[SU->NodeNum] = GroupID; 1127 } 1128 } 1129 1130 void SIScheduleBlockCreator::colorExports() { 1131 unsigned ExportColor = NextNonReservedID++; 1132 SmallVector<unsigned, 8> ExpGroup; 1133 1134 // Put all exports together in a block. 1135 // The block will naturally end up being scheduled last, 1136 // thus putting exports at the end of the schedule, which 1137 // is better for performance. 1138 // However we must ensure, for safety, the exports can be put 1139 // together in the same block without any other instruction. 1140 // This could happen, for example, when scheduling after regalloc 1141 // if reloading a spilled register from memory using the same 1142 // register than used in a previous export. 1143 // If that happens, do not regroup the exports. 1144 for (unsigned SUNum : DAG->TopDownIndex2SU) { 1145 const SUnit &SU = DAG->SUnits[SUNum]; 1146 if (SIInstrInfo::isEXP(*SU.getInstr())) { 1147 // Check the EXP can be added to the group safely, 1148 // ie without needing any other instruction. 1149 // The EXP is allowed to depend on other EXP 1150 // (they will be in the same group). 1151 for (unsigned j : ExpGroup) { 1152 bool HasSubGraph; 1153 std::vector<int> SubGraph; 1154 // By construction (topological order), if SU and 1155 // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary 1156 // in the parent graph of SU. 1157 #ifndef NDEBUG 1158 SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j], 1159 HasSubGraph); 1160 assert(!HasSubGraph); 1161 #endif 1162 SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU, 1163 HasSubGraph); 1164 if (!HasSubGraph) 1165 continue; // No dependencies between each other 1166 1167 // SubGraph contains all the instructions required 1168 // between EXP SUnits[j] and EXP SU. 1169 for (unsigned k : SubGraph) { 1170 if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr())) 1171 // Other instructions than EXP would be required in the group. 1172 // Abort the groupping. 1173 return; 1174 } 1175 } 1176 1177 ExpGroup.push_back(SUNum); 1178 } 1179 } 1180 1181 // The group can be formed. Give the color. 1182 for (unsigned j : ExpGroup) 1183 CurrentColoring[j] = ExportColor; 1184 } 1185 1186 void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) { 1187 unsigned DAGSize = DAG->SUnits.size(); 1188 std::map<unsigned,unsigned> RealID; 1189 1190 CurrentBlocks.clear(); 1191 CurrentColoring.clear(); 1192 CurrentColoring.resize(DAGSize, 0); 1193 Node2CurrentBlock.clear(); 1194 1195 // Restore links previous scheduling variant has overridden. 1196 DAG->restoreSULinksLeft(); 1197 1198 NextReservedID = 1; 1199 NextNonReservedID = DAGSize + 1; 1200 1201 LLVM_DEBUG(dbgs() << "Coloring the graph\n"); 1202 1203 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped) 1204 colorHighLatenciesGroups(); 1205 else 1206 colorHighLatenciesAlone(); 1207 colorComputeReservedDependencies(); 1208 colorAccordingToReservedDependencies(); 1209 colorEndsAccordingToDependencies(); 1210 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive) 1211 colorForceConsecutiveOrderInGroup(); 1212 regroupNoUserInstructions(); 1213 colorMergeConstantLoadsNextGroup(); 1214 colorMergeIfPossibleNextGroupOnlyForReserved(); 1215 colorExports(); 1216 1217 // Put SUs of same color into same block 1218 Node2CurrentBlock.resize(DAGSize, -1); 1219 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1220 SUnit *SU = &DAG->SUnits[i]; 1221 unsigned Color = CurrentColoring[SU->NodeNum]; 1222 if (RealID.find(Color) == RealID.end()) { 1223 int ID = CurrentBlocks.size(); 1224 BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID)); 1225 CurrentBlocks.push_back(BlockPtrs.rbegin()->get()); 1226 RealID[Color] = ID; 1227 } 1228 CurrentBlocks[RealID[Color]]->addUnit(SU); 1229 Node2CurrentBlock[SU->NodeNum] = RealID[Color]; 1230 } 1231 1232 // Build dependencies between blocks. 1233 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1234 SUnit *SU = &DAG->SUnits[i]; 1235 int SUID = Node2CurrentBlock[i]; 1236 for (SDep& SuccDep : SU->Succs) { 1237 SUnit *Succ = SuccDep.getSUnit(); 1238 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1239 continue; 1240 if (Node2CurrentBlock[Succ->NodeNum] != SUID) 1241 CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]], 1242 SuccDep.isCtrl() ? NoData : Data); 1243 } 1244 for (SDep& PredDep : SU->Preds) { 1245 SUnit *Pred = PredDep.getSUnit(); 1246 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) 1247 continue; 1248 if (Node2CurrentBlock[Pred->NodeNum] != SUID) 1249 CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]); 1250 } 1251 } 1252 1253 // Free root and leafs of all blocks to enable scheduling inside them. 1254 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1255 SIScheduleBlock *Block = CurrentBlocks[i]; 1256 Block->finalizeUnits(); 1257 } 1258 LLVM_DEBUG(dbgs() << "Blocks created:\n\n"; 1259 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1260 SIScheduleBlock *Block = CurrentBlocks[i]; 1261 Block->printDebug(true); 1262 }); 1263 } 1264 1265 // Two functions taken from Codegen/MachineScheduler.cpp 1266 1267 /// Non-const version. 1268 static MachineBasicBlock::iterator 1269 nextIfDebug(MachineBasicBlock::iterator I, 1270 MachineBasicBlock::const_iterator End) { 1271 for (; I != End; ++I) { 1272 if (!I->isDebugInstr()) 1273 break; 1274 } 1275 return I; 1276 } 1277 1278 void SIScheduleBlockCreator::topologicalSort() { 1279 unsigned DAGSize = CurrentBlocks.size(); 1280 std::vector<int> WorkList; 1281 1282 LLVM_DEBUG(dbgs() << "Topological Sort\n"); 1283 1284 WorkList.reserve(DAGSize); 1285 TopDownIndex2Block.resize(DAGSize); 1286 TopDownBlock2Index.resize(DAGSize); 1287 BottomUpIndex2Block.resize(DAGSize); 1288 1289 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1290 SIScheduleBlock *Block = CurrentBlocks[i]; 1291 unsigned Degree = Block->getSuccs().size(); 1292 TopDownBlock2Index[i] = Degree; 1293 if (Degree == 0) { 1294 WorkList.push_back(i); 1295 } 1296 } 1297 1298 int Id = DAGSize; 1299 while (!WorkList.empty()) { 1300 int i = WorkList.back(); 1301 SIScheduleBlock *Block = CurrentBlocks[i]; 1302 WorkList.pop_back(); 1303 TopDownBlock2Index[i] = --Id; 1304 TopDownIndex2Block[Id] = i; 1305 for (SIScheduleBlock* Pred : Block->getPreds()) { 1306 if (!--TopDownBlock2Index[Pred->getID()]) 1307 WorkList.push_back(Pred->getID()); 1308 } 1309 } 1310 1311 #ifndef NDEBUG 1312 // Check correctness of the ordering. 1313 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1314 SIScheduleBlock *Block = CurrentBlocks[i]; 1315 for (SIScheduleBlock* Pred : Block->getPreds()) { 1316 assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] && 1317 "Wrong Top Down topological sorting"); 1318 } 1319 } 1320 #endif 1321 1322 BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(), 1323 TopDownIndex2Block.rend()); 1324 } 1325 1326 void SIScheduleBlockCreator::scheduleInsideBlocks() { 1327 unsigned DAGSize = CurrentBlocks.size(); 1328 1329 LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n"); 1330 1331 // We do schedule a valid scheduling such that a Block corresponds 1332 // to a range of instructions. 1333 LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n"); 1334 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1335 SIScheduleBlock *Block = CurrentBlocks[i]; 1336 Block->fastSchedule(); 1337 } 1338 1339 // Note: the following code, and the part restoring previous position 1340 // is by far the most expensive operation of the Scheduler. 1341 1342 // Do not update CurrentTop. 1343 MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop(); 1344 std::vector<MachineBasicBlock::iterator> PosOld; 1345 std::vector<MachineBasicBlock::iterator> PosNew; 1346 PosOld.reserve(DAG->SUnits.size()); 1347 PosNew.reserve(DAG->SUnits.size()); 1348 1349 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1350 int BlockIndice = TopDownIndex2Block[i]; 1351 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1352 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1353 1354 for (SUnit* SU : SUs) { 1355 MachineInstr *MI = SU->getInstr(); 1356 MachineBasicBlock::iterator Pos = MI; 1357 PosOld.push_back(Pos); 1358 if (&*CurrentTopFastSched == MI) { 1359 PosNew.push_back(Pos); 1360 CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched, 1361 DAG->getCurrentBottom()); 1362 } else { 1363 // Update the instruction stream. 1364 DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI); 1365 1366 // Update LiveIntervals. 1367 // Note: Moving all instructions and calling handleMove every time 1368 // is the most cpu intensive operation of the scheduler. 1369 // It would gain a lot if there was a way to recompute the 1370 // LiveIntervals for the entire scheduling region. 1371 DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true); 1372 PosNew.push_back(CurrentTopFastSched); 1373 } 1374 } 1375 } 1376 1377 // Now we have Block of SUs == Block of MI. 1378 // We do the final schedule for the instructions inside the block. 1379 // The property that all the SUs of the Block are grouped together as MI 1380 // is used for correct reg usage tracking. 1381 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1382 SIScheduleBlock *Block = CurrentBlocks[i]; 1383 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1384 Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr()); 1385 } 1386 1387 LLVM_DEBUG(dbgs() << "Restoring MI Pos\n"); 1388 // Restore old ordering (which prevents a LIS->handleMove bug). 1389 for (unsigned i = PosOld.size(), e = 0; i != e; --i) { 1390 MachineBasicBlock::iterator POld = PosOld[i-1]; 1391 MachineBasicBlock::iterator PNew = PosNew[i-1]; 1392 if (PNew != POld) { 1393 // Update the instruction stream. 1394 DAG->getBB()->splice(POld, DAG->getBB(), PNew); 1395 1396 // Update LiveIntervals. 1397 DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true); 1398 } 1399 } 1400 1401 LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1402 SIScheduleBlock *Block = CurrentBlocks[i]; 1403 Block->printDebug(true); 1404 }); 1405 } 1406 1407 void SIScheduleBlockCreator::fillStats() { 1408 unsigned DAGSize = CurrentBlocks.size(); 1409 1410 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1411 int BlockIndice = TopDownIndex2Block[i]; 1412 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1413 if (Block->getPreds().empty()) 1414 Block->Depth = 0; 1415 else { 1416 unsigned Depth = 0; 1417 for (SIScheduleBlock *Pred : Block->getPreds()) { 1418 if (Depth < Pred->Depth + Pred->getCost()) 1419 Depth = Pred->Depth + Pred->getCost(); 1420 } 1421 Block->Depth = Depth; 1422 } 1423 } 1424 1425 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1426 int BlockIndice = BottomUpIndex2Block[i]; 1427 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1428 if (Block->getSuccs().empty()) 1429 Block->Height = 0; 1430 else { 1431 unsigned Height = 0; 1432 for (const auto &Succ : Block->getSuccs()) 1433 Height = std::max(Height, Succ.first->Height + Succ.first->getCost()); 1434 Block->Height = Height; 1435 } 1436 } 1437 } 1438 1439 // SIScheduleBlockScheduler // 1440 1441 SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG, 1442 SISchedulerBlockSchedulerVariant Variant, 1443 SIScheduleBlocks BlocksStruct) : 1444 DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks), 1445 LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0), 1446 SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) { 1447 1448 // Fill the usage of every output 1449 // Warning: while by construction we always have a link between two blocks 1450 // when one needs a result from the other, the number of users of an output 1451 // is not the sum of child blocks having as input the same virtual register. 1452 // Here is an example. A produces x and y. B eats x and produces x'. 1453 // C eats x' and y. The register coalescer may have attributed the same 1454 // virtual register to x and x'. 1455 // To count accurately, we do a topological sort. In case the register is 1456 // found for several parents, we increment the usage of the one with the 1457 // highest topological index. 1458 LiveOutRegsNumUsages.resize(Blocks.size()); 1459 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1460 SIScheduleBlock *Block = Blocks[i]; 1461 for (unsigned Reg : Block->getInRegs()) { 1462 bool Found = false; 1463 int topoInd = -1; 1464 for (SIScheduleBlock* Pred: Block->getPreds()) { 1465 std::set<unsigned> PredOutRegs = Pred->getOutRegs(); 1466 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg); 1467 1468 if (RegPos != PredOutRegs.end()) { 1469 Found = true; 1470 if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) { 1471 topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()]; 1472 } 1473 } 1474 } 1475 1476 if (!Found) 1477 continue; 1478 1479 int PredID = BlocksStruct.TopDownIndex2Block[topoInd]; 1480 ++LiveOutRegsNumUsages[PredID][Reg]; 1481 } 1482 } 1483 1484 LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0); 1485 BlockNumPredsLeft.resize(Blocks.size()); 1486 BlockNumSuccsLeft.resize(Blocks.size()); 1487 1488 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1489 SIScheduleBlock *Block = Blocks[i]; 1490 BlockNumPredsLeft[i] = Block->getPreds().size(); 1491 BlockNumSuccsLeft[i] = Block->getSuccs().size(); 1492 } 1493 1494 #ifndef NDEBUG 1495 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1496 SIScheduleBlock *Block = Blocks[i]; 1497 assert(Block->getID() == i); 1498 } 1499 #endif 1500 1501 std::set<unsigned> InRegs = DAG->getInRegs(); 1502 addLiveRegs(InRegs); 1503 1504 // Increase LiveOutRegsNumUsages for blocks 1505 // producing registers consumed in another 1506 // scheduling region. 1507 for (unsigned Reg : DAG->getOutRegs()) { 1508 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1509 // Do reverse traversal 1510 int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i]; 1511 SIScheduleBlock *Block = Blocks[ID]; 1512 const std::set<unsigned> &OutRegs = Block->getOutRegs(); 1513 1514 if (OutRegs.find(Reg) == OutRegs.end()) 1515 continue; 1516 1517 ++LiveOutRegsNumUsages[ID][Reg]; 1518 break; 1519 } 1520 } 1521 1522 // Fill LiveRegsConsumers for regs that were already 1523 // defined before scheduling. 1524 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1525 SIScheduleBlock *Block = Blocks[i]; 1526 for (unsigned Reg : Block->getInRegs()) { 1527 bool Found = false; 1528 for (SIScheduleBlock* Pred: Block->getPreds()) { 1529 std::set<unsigned> PredOutRegs = Pred->getOutRegs(); 1530 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg); 1531 1532 if (RegPos != PredOutRegs.end()) { 1533 Found = true; 1534 break; 1535 } 1536 } 1537 1538 if (!Found) 1539 ++LiveRegsConsumers[Reg]; 1540 } 1541 } 1542 1543 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1544 SIScheduleBlock *Block = Blocks[i]; 1545 if (BlockNumPredsLeft[i] == 0) { 1546 ReadyBlocks.push_back(Block); 1547 } 1548 } 1549 1550 while (SIScheduleBlock *Block = pickBlock()) { 1551 BlocksScheduled.push_back(Block); 1552 blockScheduled(Block); 1553 } 1554 1555 LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block 1556 : BlocksScheduled) { 1557 dbgs() << ' ' << Block->getID(); 1558 } dbgs() << '\n';); 1559 } 1560 1561 bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand, 1562 SIBlockSchedCandidate &TryCand) { 1563 if (!Cand.isValid()) { 1564 TryCand.Reason = NodeOrder; 1565 return true; 1566 } 1567 1568 // Try to hide high latencies. 1569 if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled, 1570 Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency)) 1571 return true; 1572 // Schedule high latencies early so you can hide them better. 1573 if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency, 1574 TryCand, Cand, Latency)) 1575 return true; 1576 if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height, 1577 TryCand, Cand, Depth)) 1578 return true; 1579 if (SISched::tryGreater(TryCand.NumHighLatencySuccessors, 1580 Cand.NumHighLatencySuccessors, 1581 TryCand, Cand, Successor)) 1582 return true; 1583 return false; 1584 } 1585 1586 bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand, 1587 SIBlockSchedCandidate &TryCand) { 1588 if (!Cand.isValid()) { 1589 TryCand.Reason = NodeOrder; 1590 return true; 1591 } 1592 1593 if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0, 1594 TryCand, Cand, RegUsage)) 1595 return true; 1596 if (SISched::tryGreater(TryCand.NumSuccessors > 0, 1597 Cand.NumSuccessors > 0, 1598 TryCand, Cand, Successor)) 1599 return true; 1600 if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth)) 1601 return true; 1602 if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff, 1603 TryCand, Cand, RegUsage)) 1604 return true; 1605 return false; 1606 } 1607 1608 SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() { 1609 SIBlockSchedCandidate Cand; 1610 std::vector<SIScheduleBlock*>::iterator Best; 1611 SIScheduleBlock *Block; 1612 if (ReadyBlocks.empty()) 1613 return nullptr; 1614 1615 DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(), 1616 VregCurrentUsage, SregCurrentUsage); 1617 if (VregCurrentUsage > maxVregUsage) 1618 maxVregUsage = VregCurrentUsage; 1619 if (SregCurrentUsage > maxSregUsage) 1620 maxSregUsage = SregCurrentUsage; 1621 LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: "; 1622 for (SIScheduleBlock *Block 1623 : ReadyBlocks) dbgs() 1624 << Block->getID() << ' '; 1625 dbgs() << "\nCurrent Live:\n"; 1626 for (unsigned Reg 1627 : LiveRegs) dbgs() 1628 << printVRegOrUnit(Reg, DAG->getTRI()) << ' '; 1629 dbgs() << '\n'; 1630 dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n'; 1631 dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';); 1632 1633 Cand.Block = nullptr; 1634 for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(), 1635 E = ReadyBlocks.end(); I != E; ++I) { 1636 SIBlockSchedCandidate TryCand; 1637 TryCand.Block = *I; 1638 TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock(); 1639 TryCand.VGPRUsageDiff = 1640 checkRegUsageImpact(TryCand.Block->getInRegs(), 1641 TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32]; 1642 TryCand.NumSuccessors = TryCand.Block->getSuccs().size(); 1643 TryCand.NumHighLatencySuccessors = 1644 TryCand.Block->getNumHighLatencySuccessors(); 1645 TryCand.LastPosHighLatParentScheduled = 1646 (unsigned int) std::max<int> (0, 1647 LastPosHighLatencyParentScheduled[TryCand.Block->getID()] - 1648 LastPosWaitedHighLatency); 1649 TryCand.Height = TryCand.Block->Height; 1650 // Try not to increase VGPR usage too much, else we may spill. 1651 if (VregCurrentUsage > 120 || 1652 Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) { 1653 if (!tryCandidateRegUsage(Cand, TryCand) && 1654 Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage) 1655 tryCandidateLatency(Cand, TryCand); 1656 } else { 1657 if (!tryCandidateLatency(Cand, TryCand)) 1658 tryCandidateRegUsage(Cand, TryCand); 1659 } 1660 if (TryCand.Reason != NoCand) { 1661 Cand.setBest(TryCand); 1662 Best = I; 1663 LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' ' 1664 << getReasonStr(Cand.Reason) << '\n'); 1665 } 1666 } 1667 1668 LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n'; 1669 dbgs() << "Is a block with high latency instruction: " 1670 << (Cand.IsHighLatency ? "yes\n" : "no\n"); 1671 dbgs() << "Position of last high latency dependency: " 1672 << Cand.LastPosHighLatParentScheduled << '\n'; 1673 dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n'; 1674 dbgs() << '\n';); 1675 1676 Block = Cand.Block; 1677 ReadyBlocks.erase(Best); 1678 return Block; 1679 } 1680 1681 // Tracking of currently alive registers to determine VGPR Usage. 1682 1683 void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) { 1684 for (Register Reg : Regs) { 1685 // For now only track virtual registers. 1686 if (!Reg.isVirtual()) 1687 continue; 1688 // If not already in the live set, then add it. 1689 (void) LiveRegs.insert(Reg); 1690 } 1691 } 1692 1693 void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block, 1694 std::set<unsigned> &Regs) { 1695 for (unsigned Reg : Regs) { 1696 // For now only track virtual registers. 1697 std::set<unsigned>::iterator Pos = LiveRegs.find(Reg); 1698 assert (Pos != LiveRegs.end() && // Reg must be live. 1699 LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() && 1700 LiveRegsConsumers[Reg] >= 1); 1701 --LiveRegsConsumers[Reg]; 1702 if (LiveRegsConsumers[Reg] == 0) 1703 LiveRegs.erase(Pos); 1704 } 1705 } 1706 1707 void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) { 1708 for (const auto &Block : Parent->getSuccs()) { 1709 if (--BlockNumPredsLeft[Block.first->getID()] == 0) 1710 ReadyBlocks.push_back(Block.first); 1711 1712 if (Parent->isHighLatencyBlock() && 1713 Block.second == SIScheduleBlockLinkKind::Data) 1714 LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled; 1715 } 1716 } 1717 1718 void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) { 1719 decreaseLiveRegs(Block, Block->getInRegs()); 1720 addLiveRegs(Block->getOutRegs()); 1721 releaseBlockSuccs(Block); 1722 for (std::map<unsigned, unsigned>::iterator RegI = 1723 LiveOutRegsNumUsages[Block->getID()].begin(), 1724 E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) { 1725 std::pair<unsigned, unsigned> RegP = *RegI; 1726 // We produce this register, thus it must not be previously alive. 1727 assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() || 1728 LiveRegsConsumers[RegP.first] == 0); 1729 LiveRegsConsumers[RegP.first] += RegP.second; 1730 } 1731 if (LastPosHighLatencyParentScheduled[Block->getID()] > 1732 (unsigned)LastPosWaitedHighLatency) 1733 LastPosWaitedHighLatency = 1734 LastPosHighLatencyParentScheduled[Block->getID()]; 1735 ++NumBlockScheduled; 1736 } 1737 1738 std::vector<int> 1739 SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs, 1740 std::set<unsigned> &OutRegs) { 1741 std::vector<int> DiffSetPressure; 1742 DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0); 1743 1744 for (Register Reg : InRegs) { 1745 // For now only track virtual registers. 1746 if (!Reg.isVirtual()) 1747 continue; 1748 if (LiveRegsConsumers[Reg] > 1) 1749 continue; 1750 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg); 1751 for (; PSetI.isValid(); ++PSetI) { 1752 DiffSetPressure[*PSetI] -= PSetI.getWeight(); 1753 } 1754 } 1755 1756 for (Register Reg : OutRegs) { 1757 // For now only track virtual registers. 1758 if (!Reg.isVirtual()) 1759 continue; 1760 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg); 1761 for (; PSetI.isValid(); ++PSetI) { 1762 DiffSetPressure[*PSetI] += PSetI.getWeight(); 1763 } 1764 } 1765 1766 return DiffSetPressure; 1767 } 1768 1769 // SIScheduler // 1770 1771 struct SIScheduleBlockResult 1772 SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant, 1773 SISchedulerBlockSchedulerVariant ScheduleVariant) { 1774 SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant); 1775 SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks); 1776 std::vector<SIScheduleBlock*> ScheduledBlocks; 1777 struct SIScheduleBlockResult Res; 1778 1779 ScheduledBlocks = Scheduler.getBlocks(); 1780 1781 for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) { 1782 SIScheduleBlock *Block = ScheduledBlocks[b]; 1783 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1784 1785 for (SUnit* SU : SUs) 1786 Res.SUs.push_back(SU->NodeNum); 1787 } 1788 1789 Res.MaxSGPRUsage = Scheduler.getSGPRUsage(); 1790 Res.MaxVGPRUsage = Scheduler.getVGPRUsage(); 1791 return Res; 1792 } 1793 1794 // SIScheduleDAGMI // 1795 1796 SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) : 1797 ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) { 1798 SITII = static_cast<const SIInstrInfo*>(TII); 1799 SITRI = static_cast<const SIRegisterInfo*>(TRI); 1800 } 1801 1802 SIScheduleDAGMI::~SIScheduleDAGMI() = default; 1803 1804 // Code adapted from scheduleDAG.cpp 1805 // Does a topological sort over the SUs. 1806 // Both TopDown and BottomUp 1807 void SIScheduleDAGMI::topologicalSort() { 1808 Topo.InitDAGTopologicalSorting(); 1809 1810 TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end()); 1811 BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend()); 1812 } 1813 1814 // Move low latencies further from their user without 1815 // increasing SGPR usage (in general) 1816 // This is to be replaced by a better pass that would 1817 // take into account SGPR usage (based on VGPR Usage 1818 // and the corresponding wavefront count), that would 1819 // try to merge groups of loads if it make sense, etc 1820 void SIScheduleDAGMI::moveLowLatencies() { 1821 unsigned DAGSize = SUnits.size(); 1822 int LastLowLatencyUser = -1; 1823 int LastLowLatencyPos = -1; 1824 1825 for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) { 1826 SUnit *SU = &SUnits[ScheduledSUnits[i]]; 1827 bool IsLowLatencyUser = false; 1828 unsigned MinPos = 0; 1829 1830 for (SDep& PredDep : SU->Preds) { 1831 SUnit *Pred = PredDep.getSUnit(); 1832 if (SITII->isLowLatencyInstruction(*Pred->getInstr())) { 1833 IsLowLatencyUser = true; 1834 } 1835 if (Pred->NodeNum >= DAGSize) 1836 continue; 1837 unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum]; 1838 if (PredPos >= MinPos) 1839 MinPos = PredPos + 1; 1840 } 1841 1842 if (SITII->isLowLatencyInstruction(*SU->getInstr())) { 1843 unsigned BestPos = LastLowLatencyUser + 1; 1844 if ((int)BestPos <= LastLowLatencyPos) 1845 BestPos = LastLowLatencyPos + 1; 1846 if (BestPos < MinPos) 1847 BestPos = MinPos; 1848 if (BestPos < i) { 1849 for (unsigned u = i; u > BestPos; --u) { 1850 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; 1851 ScheduledSUnits[u] = ScheduledSUnits[u-1]; 1852 } 1853 ScheduledSUnits[BestPos] = SU->NodeNum; 1854 ScheduledSUnitsInv[SU->NodeNum] = BestPos; 1855 } 1856 LastLowLatencyPos = BestPos; 1857 if (IsLowLatencyUser) 1858 LastLowLatencyUser = BestPos; 1859 } else if (IsLowLatencyUser) { 1860 LastLowLatencyUser = i; 1861 // Moves COPY instructions on which depends 1862 // the low latency instructions too. 1863 } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) { 1864 bool CopyForLowLat = false; 1865 for (SDep& SuccDep : SU->Succs) { 1866 SUnit *Succ = SuccDep.getSUnit(); 1867 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1868 continue; 1869 if (SITII->isLowLatencyInstruction(*Succ->getInstr())) { 1870 CopyForLowLat = true; 1871 } 1872 } 1873 if (!CopyForLowLat) 1874 continue; 1875 if (MinPos < i) { 1876 for (unsigned u = i; u > MinPos; --u) { 1877 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; 1878 ScheduledSUnits[u] = ScheduledSUnits[u-1]; 1879 } 1880 ScheduledSUnits[MinPos] = SU->NodeNum; 1881 ScheduledSUnitsInv[SU->NodeNum] = MinPos; 1882 } 1883 } 1884 } 1885 } 1886 1887 void SIScheduleDAGMI::restoreSULinksLeft() { 1888 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1889 SUnits[i].isScheduled = false; 1890 SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft; 1891 SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft; 1892 SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft; 1893 SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft; 1894 } 1895 } 1896 1897 // Return the Vgpr and Sgpr usage corresponding to some virtual registers. 1898 template<typename _Iterator> void 1899 SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End, 1900 unsigned &VgprUsage, unsigned &SgprUsage) { 1901 VgprUsage = 0; 1902 SgprUsage = 0; 1903 for (_Iterator RegI = First; RegI != End; ++RegI) { 1904 Register Reg = *RegI; 1905 // For now only track virtual registers 1906 if (!Reg.isVirtual()) 1907 continue; 1908 PSetIterator PSetI = MRI.getPressureSets(Reg); 1909 for (; PSetI.isValid(); ++PSetI) { 1910 if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32) 1911 VgprUsage += PSetI.getWeight(); 1912 else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32) 1913 SgprUsage += PSetI.getWeight(); 1914 } 1915 } 1916 } 1917 1918 void SIScheduleDAGMI::schedule() 1919 { 1920 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1921 SIScheduleBlockResult Best, Temp; 1922 LLVM_DEBUG(dbgs() << "Preparing Scheduling\n"); 1923 1924 buildDAGWithRegPressure(); 1925 LLVM_DEBUG(dump()); 1926 1927 topologicalSort(); 1928 findRootsAndBiasEdges(TopRoots, BotRoots); 1929 // We reuse several ScheduleDAGMI and ScheduleDAGMILive 1930 // functions, but to make them happy we must initialize 1931 // the default Scheduler implementation (even if we do not 1932 // run it) 1933 SchedImpl->initialize(this); 1934 initQueues(TopRoots, BotRoots); 1935 1936 // Fill some stats to help scheduling. 1937 1938 SUnitsLinksBackup = SUnits; 1939 IsLowLatencySU.clear(); 1940 LowLatencyOffset.clear(); 1941 IsHighLatencySU.clear(); 1942 1943 IsLowLatencySU.resize(SUnits.size(), 0); 1944 LowLatencyOffset.resize(SUnits.size(), 0); 1945 IsHighLatencySU.resize(SUnits.size(), 0); 1946 1947 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { 1948 SUnit *SU = &SUnits[i]; 1949 const MachineOperand *BaseLatOp; 1950 int64_t OffLatReg; 1951 if (SITII->isLowLatencyInstruction(*SU->getInstr())) { 1952 IsLowLatencySU[i] = 1; 1953 bool OffsetIsScalable; 1954 if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg, 1955 OffsetIsScalable, TRI)) 1956 LowLatencyOffset[i] = OffLatReg; 1957 } else if (SITII->isHighLatencyDef(SU->getInstr()->getOpcode())) 1958 IsHighLatencySU[i] = 1; 1959 } 1960 1961 SIScheduler Scheduler(this); 1962 Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone, 1963 SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage); 1964 1965 // if VGPR usage is extremely high, try other good performing variants 1966 // which could lead to lower VGPR usage 1967 if (Best.MaxVGPRUsage > 180) { 1968 static const std::pair<SISchedulerBlockCreatorVariant, 1969 SISchedulerBlockSchedulerVariant> 1970 Variants[] = { 1971 { LatenciesAlone, BlockRegUsageLatency }, 1972 // { LatenciesAlone, BlockRegUsage }, 1973 { LatenciesGrouped, BlockLatencyRegUsage }, 1974 // { LatenciesGrouped, BlockRegUsageLatency }, 1975 // { LatenciesGrouped, BlockRegUsage }, 1976 { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, 1977 // { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, 1978 // { LatenciesAlonePlusConsecutive, BlockRegUsage } 1979 }; 1980 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { 1981 Temp = Scheduler.scheduleVariant(v.first, v.second); 1982 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) 1983 Best = Temp; 1984 } 1985 } 1986 // if VGPR usage is still extremely high, we may spill. Try other variants 1987 // which are less performing, but that could lead to lower VGPR usage. 1988 if (Best.MaxVGPRUsage > 200) { 1989 static const std::pair<SISchedulerBlockCreatorVariant, 1990 SISchedulerBlockSchedulerVariant> 1991 Variants[] = { 1992 // { LatenciesAlone, BlockRegUsageLatency }, 1993 { LatenciesAlone, BlockRegUsage }, 1994 // { LatenciesGrouped, BlockLatencyRegUsage }, 1995 { LatenciesGrouped, BlockRegUsageLatency }, 1996 { LatenciesGrouped, BlockRegUsage }, 1997 // { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, 1998 { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, 1999 { LatenciesAlonePlusConsecutive, BlockRegUsage } 2000 }; 2001 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { 2002 Temp = Scheduler.scheduleVariant(v.first, v.second); 2003 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) 2004 Best = Temp; 2005 } 2006 } 2007 2008 ScheduledSUnits = Best.SUs; 2009 ScheduledSUnitsInv.resize(SUnits.size()); 2010 2011 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { 2012 ScheduledSUnitsInv[ScheduledSUnits[i]] = i; 2013 } 2014 2015 moveLowLatencies(); 2016 2017 // Tell the outside world about the result of the scheduling. 2018 2019 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 2020 TopRPTracker.setPos(CurrentTop); 2021 2022 for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(), 2023 E = ScheduledSUnits.end(); I != E; ++I) { 2024 SUnit *SU = &SUnits[*I]; 2025 2026 scheduleMI(SU, true); 2027 2028 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 2029 << *SU->getInstr()); 2030 } 2031 2032 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 2033 2034 placeDebugValues(); 2035 2036 LLVM_DEBUG({ 2037 dbgs() << "*** Final schedule for " 2038 << printMBBReference(*begin()->getParent()) << " ***\n"; 2039 dumpSchedule(); 2040 dbgs() << '\n'; 2041 }); 2042 } 2043