1 //===-- SIMachineScheduler.cpp - SI Scheduler Interface -*- C++ -*-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief SI Machine Scheduler interface 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "SIMachineScheduler.h" 17 #include "llvm/CodeGen/LiveInterval.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/MachineScheduler.h" 21 #include "llvm/CodeGen/RegisterPressure.h" 22 23 using namespace llvm; 24 25 #define DEBUG_TYPE "misched" 26 27 // This scheduler implements a different scheduling algorithm than 28 // GenericScheduler. 29 // 30 // There are several specific architecture behaviours that can't be modelled 31 // for GenericScheduler: 32 // . When accessing the result of an SGPR load instruction, you have to wait 33 // for all the SGPR load instructions before your current instruction to 34 // have finished. 35 // . When accessing the result of an VGPR load instruction, you have to wait 36 // for all the VGPR load instructions previous to the VGPR load instruction 37 // you are interested in to finish. 38 // . The less the register pressure, the best load latencies are hidden 39 // 40 // Moreover some specifities (like the fact a lot of instructions in the shader 41 // have few dependencies) makes the generic scheduler have some unpredictable 42 // behaviours. For example when register pressure becomes high, it can either 43 // manage to prevent register pressure from going too high, or it can 44 // increase register pressure even more than if it hadn't taken register 45 // pressure into account. 46 // 47 // Also some other bad behaviours are generated, like loading at the beginning 48 // of the shader a constant in VGPR you won't need until the end of the shader. 49 // 50 // The scheduling problem for SI can distinguish three main parts: 51 // . Hiding high latencies (texture sampling, etc) 52 // . Hiding low latencies (SGPR constant loading, etc) 53 // . Keeping register usage low for better latency hiding and general 54 // performance 55 // 56 // Some other things can also affect performance, but are hard to predict 57 // (cache usage, the fact the HW can issue several instructions from different 58 // wavefronts if different types, etc) 59 // 60 // This scheduler tries to solve the scheduling problem by dividing it into 61 // simpler sub-problems. It divides the instructions into blocks, schedules 62 // locally inside the blocks where it takes care of low latencies, and then 63 // chooses the order of the blocks by taking care of high latencies. 64 // Dividing the instructions into blocks helps control keeping register 65 // usage low. 66 // 67 // First the instructions are put into blocks. 68 // We want the blocks help control register usage and hide high latencies 69 // later. To help control register usage, we typically want all local 70 // computations, when for example you create a result that can be comsummed 71 // right away, to be contained in a block. Block inputs and outputs would 72 // typically be important results that are needed in several locations of 73 // the shader. Since we do want blocks to help hide high latencies, we want 74 // the instructions inside the block to have a minimal set of dependencies 75 // on high latencies. It will make it easy to pick blocks to hide specific 76 // high latencies. 77 // The block creation algorithm is divided into several steps, and several 78 // variants can be tried during the scheduling process. 79 // 80 // Second the order of the instructions inside the blocks is choosen. 81 // At that step we do take into account only register usage and hiding 82 // low latency instructions 83 // 84 // Third the block order is choosen, there we try to hide high latencies 85 // and keep register usage low. 86 // 87 // After the third step, a pass is done to improve the hiding of low 88 // latencies. 89 // 90 // Actually when talking about 'low latency' or 'high latency' it includes 91 // both the latency to get the cache (or global mem) data go to the register, 92 // and the bandwith limitations. 93 // Increasing the number of active wavefronts helps hide the former, but it 94 // doesn't solve the latter, thus why even if wavefront count is high, we have 95 // to try have as many instructions hiding high latencies as possible. 96 // The OpenCL doc says for example latency of 400 cycles for a global mem access, 97 // which is hidden by 10 instructions if the wavefront count is 10. 98 99 // Some figures taken from AMD docs: 100 // Both texture and constant L1 caches are 4-way associative with 64 bytes 101 // lines. 102 // Constant cache is shared with 4 CUs. 103 // For texture sampling, the address generation unit receives 4 texture 104 // addresses per cycle, thus we could expect texture sampling latency to be 105 // equivalent to 4 instructions in the very best case (a VGPR is 64 work items, 106 // instructions in a wavefront group are executed every 4 cycles), 107 // or 16 instructions if the other wavefronts associated to the 3 other VALUs 108 // of the CU do texture sampling too. (Don't take these figures too seriously, 109 // as I'm not 100% sure of the computation) 110 // Data exports should get similar latency. 111 // For constant loading, the cache is shader with 4 CUs. 112 // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit" 113 // I guess if the other CU don't read the cache, it can go up to 64B/cycle. 114 // It means a simple s_buffer_load should take one instruction to hide, as 115 // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same 116 // cache line. 117 // 118 // As of today the driver doesn't preload the constants in cache, thus the 119 // first loads get extra latency. The doc says global memory access can be 120 // 300-600 cycles. We do not specially take that into account when scheduling 121 // As we expect the driver to be able to preload the constants soon. 122 123 124 // common code // 125 126 #ifndef NDEBUG 127 128 static const char *getReasonStr(SIScheduleCandReason Reason) { 129 switch (Reason) { 130 case NoCand: return "NOCAND"; 131 case RegUsage: return "REGUSAGE"; 132 case Latency: return "LATENCY"; 133 case Successor: return "SUCCESSOR"; 134 case Depth: return "DEPTH"; 135 case NodeOrder: return "ORDER"; 136 } 137 llvm_unreachable("Unknown reason!"); 138 } 139 140 #endif 141 142 static bool tryLess(int TryVal, int CandVal, 143 SISchedulerCandidate &TryCand, 144 SISchedulerCandidate &Cand, 145 SIScheduleCandReason Reason) { 146 if (TryVal < CandVal) { 147 TryCand.Reason = Reason; 148 return true; 149 } 150 if (TryVal > CandVal) { 151 if (Cand.Reason > Reason) 152 Cand.Reason = Reason; 153 return true; 154 } 155 Cand.setRepeat(Reason); 156 return false; 157 } 158 159 static bool tryGreater(int TryVal, int CandVal, 160 SISchedulerCandidate &TryCand, 161 SISchedulerCandidate &Cand, 162 SIScheduleCandReason Reason) { 163 if (TryVal > CandVal) { 164 TryCand.Reason = Reason; 165 return true; 166 } 167 if (TryVal < CandVal) { 168 if (Cand.Reason > Reason) 169 Cand.Reason = Reason; 170 return true; 171 } 172 Cand.setRepeat(Reason); 173 return false; 174 } 175 176 // SIScheduleBlock // 177 178 void SIScheduleBlock::addUnit(SUnit *SU) { 179 NodeNum2Index[SU->NodeNum] = SUnits.size(); 180 SUnits.push_back(SU); 181 } 182 183 #ifndef NDEBUG 184 185 void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) { 186 187 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); 188 dbgs() << '\n'; 189 } 190 #endif 191 192 void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand, 193 SISchedCandidate &TryCand) { 194 // Initialize the candidate if needed. 195 if (!Cand.isValid()) { 196 TryCand.Reason = NodeOrder; 197 return; 198 } 199 200 if (Cand.SGPRUsage > 60 && 201 tryLess(TryCand.SGPRUsage, Cand.SGPRUsage, TryCand, Cand, RegUsage)) 202 return; 203 204 // Schedule low latency instructions as top as possible. 205 // Order of priority is: 206 // . Low latency instructions which do not depend on other low latency 207 // instructions we haven't waited for 208 // . Other instructions which do not depend on low latency instructions 209 // we haven't waited for 210 // . Low latencies 211 // . All other instructions 212 // Goal is to get: low latency instructions - independant instructions 213 // - (eventually some more low latency instructions) 214 // - instructions that depend on the first low latency instructions. 215 // If in the block there is a lot of constant loads, the SGPR usage 216 // could go quite high, thus above the arbitrary limit of 60 will encourage 217 // use the already loaded constants (in order to release some SGPRs) before 218 // loading more. 219 if (tryLess(TryCand.HasLowLatencyNonWaitedParent, 220 Cand.HasLowLatencyNonWaitedParent, 221 TryCand, Cand, SIScheduleCandReason::Depth)) 222 return; 223 224 if (tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency, 225 TryCand, Cand, SIScheduleCandReason::Depth)) 226 return; 227 228 if (TryCand.IsLowLatency && 229 tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset, 230 TryCand, Cand, SIScheduleCandReason::Depth)) 231 return; 232 233 if (tryLess(TryCand.VGPRUsage, Cand.VGPRUsage, TryCand, Cand, RegUsage)) 234 return; 235 236 // Fall through to original instruction order. 237 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { 238 TryCand.Reason = NodeOrder; 239 } 240 } 241 242 SUnit* SIScheduleBlock::pickNode() { 243 SISchedCandidate TopCand; 244 245 for (SUnit* SU : TopReadySUs) { 246 SISchedCandidate TryCand; 247 std::vector<unsigned> pressure; 248 std::vector<unsigned> MaxPressure; 249 // Predict register usage after this instruction. 250 TryCand.SU = SU; 251 TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure); 252 TryCand.SGPRUsage = pressure[DAG->getSGPRSetID()]; 253 TryCand.VGPRUsage = pressure[DAG->getVGPRSetID()]; 254 TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum]; 255 TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum]; 256 TryCand.HasLowLatencyNonWaitedParent = 257 HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]; 258 tryCandidateTopDown(TopCand, TryCand); 259 if (TryCand.Reason != NoCand) 260 TopCand.setBest(TryCand); 261 } 262 263 return TopCand.SU; 264 } 265 266 267 // Schedule something valid. 268 void SIScheduleBlock::fastSchedule() { 269 TopReadySUs.clear(); 270 if (Scheduled) 271 undoSchedule(); 272 273 for (SUnit* SU : SUnits) { 274 if (!SU->NumPredsLeft) 275 TopReadySUs.push_back(SU); 276 } 277 278 while (!TopReadySUs.empty()) { 279 SUnit *SU = TopReadySUs[0]; 280 ScheduledSUnits.push_back(SU); 281 nodeScheduled(SU); 282 } 283 284 Scheduled = true; 285 } 286 287 // Returns if the register was set between first and last. 288 static bool isDefBetween(unsigned Reg, 289 SlotIndex First, SlotIndex Last, 290 const MachineRegisterInfo *MRI, 291 const LiveIntervals *LIS) { 292 for (MachineRegisterInfo::def_instr_iterator 293 UI = MRI->def_instr_begin(Reg), 294 UE = MRI->def_instr_end(); UI != UE; ++UI) { 295 const MachineInstr* MI = &*UI; 296 if (MI->isDebugValue()) 297 continue; 298 SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot(); 299 if (InstSlot >= First && InstSlot <= Last) 300 return true; 301 } 302 return false; 303 } 304 305 void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock, 306 MachineBasicBlock::iterator EndBlock) { 307 IntervalPressure Pressure, BotPressure; 308 RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure); 309 LiveIntervals *LIS = DAG->getLIS(); 310 MachineRegisterInfo *MRI = DAG->getMRI(); 311 DAG->initRPTracker(TopRPTracker); 312 DAG->initRPTracker(BotRPTracker); 313 DAG->initRPTracker(RPTracker); 314 315 // Goes though all SU. RPTracker captures what had to be alive for the SUs 316 // to execute, and what is still alive at the end. 317 for (SUnit* SU : ScheduledSUnits) { 318 RPTracker.setPos(SU->getInstr()); 319 RPTracker.advance(); 320 } 321 322 // Close the RPTracker to finalize live ins/outs. 323 RPTracker.closeRegion(); 324 325 // Initialize the live ins and live outs. 326 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); 327 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); 328 329 // Do not Track Physical Registers, because it messes up. 330 for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) { 331 if (TargetRegisterInfo::isVirtualRegister(RegMaskPair.RegUnit)) 332 LiveInRegs.insert(RegMaskPair.RegUnit); 333 } 334 LiveOutRegs.clear(); 335 // There is several possibilities to distinguish: 336 // 1) Reg is not input to any instruction in the block, but is output of one 337 // 2) 1) + read in the block and not needed after it 338 // 3) 1) + read in the block but needed in another block 339 // 4) Reg is input of an instruction but another block will read it too 340 // 5) Reg is input of an instruction and then rewritten in the block. 341 // result is not read in the block (implies used in another block) 342 // 6) Reg is input of an instruction and then rewritten in the block. 343 // result is read in the block and not needed in another block 344 // 7) Reg is input of an instruction and then rewritten in the block. 345 // result is read in the block but also needed in another block 346 // LiveInRegs will contains all the regs in situation 4, 5, 6, 7 347 // We want LiveOutRegs to contain only Regs whose content will be read after 348 // in another block, and whose content was written in the current block, 349 // that is we want it to get 1, 3, 5, 7 350 // Since we made the MIs of a block to be packed all together before 351 // scheduling, then the LiveIntervals were correct, and the RPTracker was 352 // able to correctly handle 5 vs 6, 2 vs 3. 353 // (Note: This is not sufficient for RPTracker to not do mistakes for case 4) 354 // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7 355 // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7 356 // The use of findDefBetween removes the case 4. 357 for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) { 358 unsigned Reg = RegMaskPair.RegUnit; 359 if (TargetRegisterInfo::isVirtualRegister(Reg) && 360 isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(), 361 LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI, 362 LIS)) { 363 LiveOutRegs.insert(Reg); 364 } 365 } 366 367 // Pressure = sum_alive_registers register size 368 // Internally llvm will represent some registers as big 128 bits registers 369 // for example, but they actually correspond to 4 actual 32 bits registers. 370 // Thus Pressure is not equal to num_alive_registers * constant. 371 LiveInPressure = TopPressure.MaxSetPressure; 372 LiveOutPressure = BotPressure.MaxSetPressure; 373 374 // Prepares TopRPTracker for top down scheduling. 375 TopRPTracker.closeTop(); 376 } 377 378 void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock, 379 MachineBasicBlock::iterator EndBlock) { 380 if (!Scheduled) 381 fastSchedule(); 382 383 // PreScheduling phase to set LiveIn and LiveOut. 384 initRegPressure(BeginBlock, EndBlock); 385 undoSchedule(); 386 387 // Schedule for real now. 388 389 TopReadySUs.clear(); 390 391 for (SUnit* SU : SUnits) { 392 if (!SU->NumPredsLeft) 393 TopReadySUs.push_back(SU); 394 } 395 396 while (!TopReadySUs.empty()) { 397 SUnit *SU = pickNode(); 398 ScheduledSUnits.push_back(SU); 399 TopRPTracker.setPos(SU->getInstr()); 400 TopRPTracker.advance(); 401 nodeScheduled(SU); 402 } 403 404 // TODO: compute InternalAdditionnalPressure. 405 InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size()); 406 407 // Check everything is right. 408 #ifndef NDEBUG 409 assert(SUnits.size() == ScheduledSUnits.size() && 410 TopReadySUs.empty()); 411 for (SUnit* SU : SUnits) { 412 assert(SU->isScheduled && 413 SU->NumPredsLeft == 0); 414 } 415 #endif 416 417 Scheduled = true; 418 } 419 420 void SIScheduleBlock::undoSchedule() { 421 for (SUnit* SU : SUnits) { 422 SU->isScheduled = false; 423 for (SDep& Succ : SU->Succs) { 424 if (BC->isSUInBlock(Succ.getSUnit(), ID)) 425 undoReleaseSucc(SU, &Succ); 426 } 427 } 428 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0); 429 ScheduledSUnits.clear(); 430 Scheduled = false; 431 } 432 433 void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) { 434 SUnit *SuccSU = SuccEdge->getSUnit(); 435 436 if (SuccEdge->isWeak()) { 437 ++SuccSU->WeakPredsLeft; 438 return; 439 } 440 ++SuccSU->NumPredsLeft; 441 } 442 443 void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) { 444 SUnit *SuccSU = SuccEdge->getSUnit(); 445 446 if (SuccEdge->isWeak()) { 447 --SuccSU->WeakPredsLeft; 448 return; 449 } 450 #ifndef NDEBUG 451 if (SuccSU->NumPredsLeft == 0) { 452 dbgs() << "*** Scheduling failed! ***\n"; 453 SuccSU->dump(DAG); 454 dbgs() << " has been released too many times!\n"; 455 llvm_unreachable(nullptr); 456 } 457 #endif 458 459 --SuccSU->NumPredsLeft; 460 } 461 462 /// Release Successors of the SU that are in the block or not. 463 void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) { 464 for (SDep& Succ : SU->Succs) { 465 SUnit *SuccSU = Succ.getSUnit(); 466 467 if (SuccSU->NodeNum >= DAG->SUnits.size()) 468 continue; 469 470 if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock) 471 continue; 472 473 releaseSucc(SU, &Succ); 474 if (SuccSU->NumPredsLeft == 0 && InOrOutBlock) 475 TopReadySUs.push_back(SuccSU); 476 } 477 } 478 479 void SIScheduleBlock::nodeScheduled(SUnit *SU) { 480 // Is in TopReadySUs 481 assert (!SU->NumPredsLeft); 482 std::vector<SUnit *>::iterator I = find(TopReadySUs, SU); 483 if (I == TopReadySUs.end()) { 484 dbgs() << "Data Structure Bug in SI Scheduler\n"; 485 llvm_unreachable(nullptr); 486 } 487 TopReadySUs.erase(I); 488 489 releaseSuccessors(SU, true); 490 // Scheduling this node will trigger a wait, 491 // thus propagate to other instructions that they do not need to wait either. 492 if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]]) 493 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0); 494 495 if (DAG->IsLowLatencySU[SU->NodeNum]) { 496 for (SDep& Succ : SU->Succs) { 497 std::map<unsigned, unsigned>::iterator I = 498 NodeNum2Index.find(Succ.getSUnit()->NodeNum); 499 if (I != NodeNum2Index.end()) 500 HasLowLatencyNonWaitedParent[I->second] = 1; 501 } 502 } 503 SU->isScheduled = true; 504 } 505 506 void SIScheduleBlock::finalizeUnits() { 507 // We remove links from outside blocks to enable scheduling inside the block. 508 for (SUnit* SU : SUnits) { 509 releaseSuccessors(SU, false); 510 if (DAG->IsHighLatencySU[SU->NodeNum]) 511 HighLatencyBlock = true; 512 } 513 HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0); 514 } 515 516 // we maintain ascending order of IDs 517 void SIScheduleBlock::addPred(SIScheduleBlock *Pred) { 518 unsigned PredID = Pred->getID(); 519 520 // Check if not already predecessor. 521 for (SIScheduleBlock* P : Preds) { 522 if (PredID == P->getID()) 523 return; 524 } 525 Preds.push_back(Pred); 526 527 assert(none_of(Succs, 528 [=](SIScheduleBlock *S) { return PredID == S->getID(); }) && 529 "Loop in the Block Graph!"); 530 } 531 532 void SIScheduleBlock::addSucc(SIScheduleBlock *Succ) { 533 unsigned SuccID = Succ->getID(); 534 535 // Check if not already predecessor. 536 for (SIScheduleBlock* S : Succs) { 537 if (SuccID == S->getID()) 538 return; 539 } 540 if (Succ->isHighLatencyBlock()) 541 ++NumHighLatencySuccessors; 542 Succs.push_back(Succ); 543 assert(none_of(Preds, 544 [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) && 545 "Loop in the Block Graph!"); 546 } 547 548 #ifndef NDEBUG 549 void SIScheduleBlock::printDebug(bool full) { 550 dbgs() << "Block (" << ID << ")\n"; 551 if (!full) 552 return; 553 554 dbgs() << "\nContains High Latency Instruction: " 555 << HighLatencyBlock << '\n'; 556 dbgs() << "\nDepends On:\n"; 557 for (SIScheduleBlock* P : Preds) { 558 P->printDebug(false); 559 } 560 561 dbgs() << "\nSuccessors:\n"; 562 for (SIScheduleBlock* S : Succs) { 563 S->printDebug(false); 564 } 565 566 if (Scheduled) { 567 dbgs() << "LiveInPressure " << LiveInPressure[DAG->getSGPRSetID()] << ' ' 568 << LiveInPressure[DAG->getVGPRSetID()] << '\n'; 569 dbgs() << "LiveOutPressure " << LiveOutPressure[DAG->getSGPRSetID()] << ' ' 570 << LiveOutPressure[DAG->getVGPRSetID()] << "\n\n"; 571 dbgs() << "LiveIns:\n"; 572 for (unsigned Reg : LiveInRegs) 573 dbgs() << PrintVRegOrUnit(Reg, DAG->getTRI()) << ' '; 574 575 dbgs() << "\nLiveOuts:\n"; 576 for (unsigned Reg : LiveOutRegs) 577 dbgs() << PrintVRegOrUnit(Reg, DAG->getTRI()) << ' '; 578 } 579 580 dbgs() << "\nInstructions:\n"; 581 if (!Scheduled) { 582 for (SUnit* SU : SUnits) { 583 SU->dump(DAG); 584 } 585 } else { 586 for (SUnit* SU : SUnits) { 587 SU->dump(DAG); 588 } 589 } 590 591 dbgs() << "///////////////////////\n"; 592 } 593 594 #endif 595 596 // SIScheduleBlockCreator // 597 598 SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) : 599 DAG(DAG) { 600 } 601 602 SIScheduleBlockCreator::~SIScheduleBlockCreator() { 603 } 604 605 SIScheduleBlocks 606 SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) { 607 std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B = 608 Blocks.find(BlockVariant); 609 if (B == Blocks.end()) { 610 SIScheduleBlocks Res; 611 createBlocksForVariant(BlockVariant); 612 topologicalSort(); 613 scheduleInsideBlocks(); 614 fillStats(); 615 Res.Blocks = CurrentBlocks; 616 Res.TopDownIndex2Block = TopDownIndex2Block; 617 Res.TopDownBlock2Index = TopDownBlock2Index; 618 Blocks[BlockVariant] = Res; 619 return Res; 620 } else { 621 return B->second; 622 } 623 } 624 625 bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) { 626 if (SU->NodeNum >= DAG->SUnits.size()) 627 return false; 628 return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID; 629 } 630 631 void SIScheduleBlockCreator::colorHighLatenciesAlone() { 632 unsigned DAGSize = DAG->SUnits.size(); 633 634 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 635 SUnit *SU = &DAG->SUnits[i]; 636 if (DAG->IsHighLatencySU[SU->NodeNum]) { 637 CurrentColoring[SU->NodeNum] = NextReservedID++; 638 } 639 } 640 } 641 642 void SIScheduleBlockCreator::colorHighLatenciesGroups() { 643 unsigned DAGSize = DAG->SUnits.size(); 644 unsigned NumHighLatencies = 0; 645 unsigned GroupSize; 646 unsigned Color = NextReservedID; 647 unsigned Count = 0; 648 std::set<unsigned> FormingGroup; 649 650 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 651 SUnit *SU = &DAG->SUnits[i]; 652 if (DAG->IsHighLatencySU[SU->NodeNum]) 653 ++NumHighLatencies; 654 } 655 656 if (NumHighLatencies == 0) 657 return; 658 659 if (NumHighLatencies <= 6) 660 GroupSize = 2; 661 else if (NumHighLatencies <= 12) 662 GroupSize = 3; 663 else 664 GroupSize = 4; 665 666 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 667 SUnit *SU = &DAG->SUnits[i]; 668 if (DAG->IsHighLatencySU[SU->NodeNum]) { 669 unsigned CompatibleGroup = true; 670 unsigned ProposedColor = Color; 671 for (unsigned j : FormingGroup) { 672 // TODO: Currently CompatibleGroup will always be false, 673 // because the graph enforces the load order. This 674 // can be fixed, but as keeping the load order is often 675 // good for performance that causes a performance hit (both 676 // the default scheduler and this scheduler). 677 // When this scheduler determines a good load order, 678 // this can be fixed. 679 if (!DAG->canAddEdge(SU, &DAG->SUnits[j]) || 680 !DAG->canAddEdge(&DAG->SUnits[j], SU)) 681 CompatibleGroup = false; 682 } 683 if (!CompatibleGroup || ++Count == GroupSize) { 684 FormingGroup.clear(); 685 Color = ++NextReservedID; 686 if (!CompatibleGroup) { 687 ProposedColor = Color; 688 FormingGroup.insert(SU->NodeNum); 689 } 690 Count = 0; 691 } else { 692 FormingGroup.insert(SU->NodeNum); 693 } 694 CurrentColoring[SU->NodeNum] = ProposedColor; 695 } 696 } 697 } 698 699 void SIScheduleBlockCreator::colorComputeReservedDependencies() { 700 unsigned DAGSize = DAG->SUnits.size(); 701 std::map<std::set<unsigned>, unsigned> ColorCombinations; 702 703 CurrentTopDownReservedDependencyColoring.clear(); 704 CurrentBottomUpReservedDependencyColoring.clear(); 705 706 CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0); 707 CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0); 708 709 // Traverse TopDown, and give different colors to SUs depending 710 // on which combination of High Latencies they depend on. 711 712 for (unsigned SUNum : DAG->TopDownIndex2SU) { 713 SUnit *SU = &DAG->SUnits[SUNum]; 714 std::set<unsigned> SUColors; 715 716 // Already given. 717 if (CurrentColoring[SU->NodeNum]) { 718 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 719 CurrentColoring[SU->NodeNum]; 720 continue; 721 } 722 723 for (SDep& PredDep : SU->Preds) { 724 SUnit *Pred = PredDep.getSUnit(); 725 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) 726 continue; 727 if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0) 728 SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]); 729 } 730 // Color 0 by default. 731 if (SUColors.empty()) 732 continue; 733 // Same color than parents. 734 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) 735 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 736 *SUColors.begin(); 737 else { 738 std::map<std::set<unsigned>, unsigned>::iterator Pos = 739 ColorCombinations.find(SUColors); 740 if (Pos != ColorCombinations.end()) { 741 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second; 742 } else { 743 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = 744 NextNonReservedID; 745 ColorCombinations[SUColors] = NextNonReservedID++; 746 } 747 } 748 } 749 750 ColorCombinations.clear(); 751 752 // Same as before, but BottomUp. 753 754 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 755 SUnit *SU = &DAG->SUnits[SUNum]; 756 std::set<unsigned> SUColors; 757 758 // Already given. 759 if (CurrentColoring[SU->NodeNum]) { 760 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 761 CurrentColoring[SU->NodeNum]; 762 continue; 763 } 764 765 for (SDep& SuccDep : SU->Succs) { 766 SUnit *Succ = SuccDep.getSUnit(); 767 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 768 continue; 769 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0) 770 SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]); 771 } 772 // Keep color 0. 773 if (SUColors.empty()) 774 continue; 775 // Same color than parents. 776 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize) 777 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 778 *SUColors.begin(); 779 else { 780 std::map<std::set<unsigned>, unsigned>::iterator Pos = 781 ColorCombinations.find(SUColors); 782 if (Pos != ColorCombinations.end()) { 783 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second; 784 } else { 785 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = 786 NextNonReservedID; 787 ColorCombinations[SUColors] = NextNonReservedID++; 788 } 789 } 790 } 791 } 792 793 void SIScheduleBlockCreator::colorAccordingToReservedDependencies() { 794 unsigned DAGSize = DAG->SUnits.size(); 795 std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations; 796 797 // Every combination of colors given by the top down 798 // and bottom up Reserved node dependency 799 800 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 801 SUnit *SU = &DAG->SUnits[i]; 802 std::pair<unsigned, unsigned> SUColors; 803 804 // High latency instructions: already given. 805 if (CurrentColoring[SU->NodeNum]) 806 continue; 807 808 SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum]; 809 SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum]; 810 811 std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos = 812 ColorCombinations.find(SUColors); 813 if (Pos != ColorCombinations.end()) { 814 CurrentColoring[SU->NodeNum] = Pos->second; 815 } else { 816 CurrentColoring[SU->NodeNum] = NextNonReservedID; 817 ColorCombinations[SUColors] = NextNonReservedID++; 818 } 819 } 820 } 821 822 void SIScheduleBlockCreator::colorEndsAccordingToDependencies() { 823 unsigned DAGSize = DAG->SUnits.size(); 824 std::vector<int> PendingColoring = CurrentColoring; 825 826 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 827 SUnit *SU = &DAG->SUnits[SUNum]; 828 std::set<unsigned> SUColors; 829 std::set<unsigned> SUColorsPending; 830 831 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 832 continue; 833 834 if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 || 835 CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0) 836 continue; 837 838 for (SDep& SuccDep : SU->Succs) { 839 SUnit *Succ = SuccDep.getSUnit(); 840 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 841 continue; 842 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 || 843 CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0) 844 SUColors.insert(CurrentColoring[Succ->NodeNum]); 845 SUColorsPending.insert(PendingColoring[Succ->NodeNum]); 846 } 847 if (SUColors.size() == 1 && SUColorsPending.size() == 1) 848 PendingColoring[SU->NodeNum] = *SUColors.begin(); 849 else // TODO: Attribute new colors depending on color 850 // combination of children. 851 PendingColoring[SU->NodeNum] = NextNonReservedID++; 852 } 853 CurrentColoring = PendingColoring; 854 } 855 856 857 void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() { 858 unsigned DAGSize = DAG->SUnits.size(); 859 unsigned PreviousColor; 860 std::set<unsigned> SeenColors; 861 862 if (DAGSize <= 1) 863 return; 864 865 PreviousColor = CurrentColoring[0]; 866 867 for (unsigned i = 1, e = DAGSize; i != e; ++i) { 868 SUnit *SU = &DAG->SUnits[i]; 869 unsigned CurrentColor = CurrentColoring[i]; 870 unsigned PreviousColorSave = PreviousColor; 871 assert(i == SU->NodeNum); 872 873 if (CurrentColor != PreviousColor) 874 SeenColors.insert(PreviousColor); 875 PreviousColor = CurrentColor; 876 877 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 878 continue; 879 880 if (SeenColors.find(CurrentColor) == SeenColors.end()) 881 continue; 882 883 if (PreviousColorSave != CurrentColor) 884 CurrentColoring[i] = NextNonReservedID++; 885 else 886 CurrentColoring[i] = CurrentColoring[i-1]; 887 } 888 } 889 890 void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() { 891 unsigned DAGSize = DAG->SUnits.size(); 892 893 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 894 SUnit *SU = &DAG->SUnits[SUNum]; 895 std::set<unsigned> SUColors; 896 897 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 898 continue; 899 900 // No predecessor: Vgpr constant loading. 901 // Low latency instructions usually have a predecessor (the address) 902 if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum]) 903 continue; 904 905 for (SDep& SuccDep : SU->Succs) { 906 SUnit *Succ = SuccDep.getSUnit(); 907 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 908 continue; 909 SUColors.insert(CurrentColoring[Succ->NodeNum]); 910 } 911 if (SUColors.size() == 1) 912 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 913 } 914 } 915 916 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() { 917 unsigned DAGSize = DAG->SUnits.size(); 918 919 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 920 SUnit *SU = &DAG->SUnits[SUNum]; 921 std::set<unsigned> SUColors; 922 923 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 924 continue; 925 926 for (SDep& SuccDep : SU->Succs) { 927 SUnit *Succ = SuccDep.getSUnit(); 928 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 929 continue; 930 SUColors.insert(CurrentColoring[Succ->NodeNum]); 931 } 932 if (SUColors.size() == 1) 933 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 934 } 935 } 936 937 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() { 938 unsigned DAGSize = DAG->SUnits.size(); 939 940 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 941 SUnit *SU = &DAG->SUnits[SUNum]; 942 std::set<unsigned> SUColors; 943 944 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 945 continue; 946 947 for (SDep& SuccDep : SU->Succs) { 948 SUnit *Succ = SuccDep.getSUnit(); 949 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 950 continue; 951 SUColors.insert(CurrentColoring[Succ->NodeNum]); 952 } 953 if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize) 954 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 955 } 956 } 957 958 void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() { 959 unsigned DAGSize = DAG->SUnits.size(); 960 std::map<unsigned, unsigned> ColorCount; 961 962 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 963 SUnit *SU = &DAG->SUnits[SUNum]; 964 unsigned color = CurrentColoring[SU->NodeNum]; 965 std::map<unsigned, unsigned>::iterator Pos = ColorCount.find(color); 966 if (Pos != ColorCount.end()) { 967 ++ColorCount[color]; 968 } else { 969 ColorCount[color] = 1; 970 } 971 } 972 973 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 974 SUnit *SU = &DAG->SUnits[SUNum]; 975 unsigned color = CurrentColoring[SU->NodeNum]; 976 std::set<unsigned> SUColors; 977 978 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 979 continue; 980 981 if (ColorCount[color] > 1) 982 continue; 983 984 for (SDep& SuccDep : SU->Succs) { 985 SUnit *Succ = SuccDep.getSUnit(); 986 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 987 continue; 988 SUColors.insert(CurrentColoring[Succ->NodeNum]); 989 } 990 if (SUColors.size() == 1 && *SUColors.begin() != color) { 991 --ColorCount[color]; 992 CurrentColoring[SU->NodeNum] = *SUColors.begin(); 993 ++ColorCount[*SUColors.begin()]; 994 } 995 } 996 } 997 998 void SIScheduleBlockCreator::cutHugeBlocks() { 999 // TODO 1000 } 1001 1002 void SIScheduleBlockCreator::regroupNoUserInstructions() { 1003 unsigned DAGSize = DAG->SUnits.size(); 1004 int GroupID = NextNonReservedID++; 1005 1006 for (unsigned SUNum : DAG->BottomUpIndex2SU) { 1007 SUnit *SU = &DAG->SUnits[SUNum]; 1008 bool hasSuccessor = false; 1009 1010 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize) 1011 continue; 1012 1013 for (SDep& SuccDep : SU->Succs) { 1014 SUnit *Succ = SuccDep.getSUnit(); 1015 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1016 continue; 1017 hasSuccessor = true; 1018 } 1019 if (!hasSuccessor) 1020 CurrentColoring[SU->NodeNum] = GroupID; 1021 } 1022 } 1023 1024 void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) { 1025 unsigned DAGSize = DAG->SUnits.size(); 1026 std::map<unsigned,unsigned> RealID; 1027 1028 CurrentBlocks.clear(); 1029 CurrentColoring.clear(); 1030 CurrentColoring.resize(DAGSize, 0); 1031 Node2CurrentBlock.clear(); 1032 1033 // Restore links previous scheduling variant has overridden. 1034 DAG->restoreSULinksLeft(); 1035 1036 NextReservedID = 1; 1037 NextNonReservedID = DAGSize + 1; 1038 1039 DEBUG(dbgs() << "Coloring the graph\n"); 1040 1041 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped) 1042 colorHighLatenciesGroups(); 1043 else 1044 colorHighLatenciesAlone(); 1045 colorComputeReservedDependencies(); 1046 colorAccordingToReservedDependencies(); 1047 colorEndsAccordingToDependencies(); 1048 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive) 1049 colorForceConsecutiveOrderInGroup(); 1050 regroupNoUserInstructions(); 1051 colorMergeConstantLoadsNextGroup(); 1052 colorMergeIfPossibleNextGroupOnlyForReserved(); 1053 1054 // Put SUs of same color into same block 1055 Node2CurrentBlock.resize(DAGSize, -1); 1056 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1057 SUnit *SU = &DAG->SUnits[i]; 1058 unsigned Color = CurrentColoring[SU->NodeNum]; 1059 if (RealID.find(Color) == RealID.end()) { 1060 int ID = CurrentBlocks.size(); 1061 BlockPtrs.push_back( 1062 make_unique<SIScheduleBlock>(DAG, this, ID)); 1063 CurrentBlocks.push_back(BlockPtrs.rbegin()->get()); 1064 RealID[Color] = ID; 1065 } 1066 CurrentBlocks[RealID[Color]]->addUnit(SU); 1067 Node2CurrentBlock[SU->NodeNum] = RealID[Color]; 1068 } 1069 1070 // Build dependencies between blocks. 1071 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1072 SUnit *SU = &DAG->SUnits[i]; 1073 int SUID = Node2CurrentBlock[i]; 1074 for (SDep& SuccDep : SU->Succs) { 1075 SUnit *Succ = SuccDep.getSUnit(); 1076 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize) 1077 continue; 1078 if (Node2CurrentBlock[Succ->NodeNum] != SUID) 1079 CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]]); 1080 } 1081 for (SDep& PredDep : SU->Preds) { 1082 SUnit *Pred = PredDep.getSUnit(); 1083 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize) 1084 continue; 1085 if (Node2CurrentBlock[Pred->NodeNum] != SUID) 1086 CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]); 1087 } 1088 } 1089 1090 // Free root and leafs of all blocks to enable scheduling inside them. 1091 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1092 SIScheduleBlock *Block = CurrentBlocks[i]; 1093 Block->finalizeUnits(); 1094 } 1095 DEBUG( 1096 dbgs() << "Blocks created:\n\n"; 1097 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1098 SIScheduleBlock *Block = CurrentBlocks[i]; 1099 Block->printDebug(true); 1100 } 1101 ); 1102 } 1103 1104 // Two functions taken from Codegen/MachineScheduler.cpp 1105 1106 /// If this iterator is a debug value, increment until reaching the End or a 1107 /// non-debug instruction. 1108 static MachineBasicBlock::const_iterator 1109 nextIfDebug(MachineBasicBlock::const_iterator I, 1110 MachineBasicBlock::const_iterator End) { 1111 for(; I != End; ++I) { 1112 if (!I->isDebugValue()) 1113 break; 1114 } 1115 return I; 1116 } 1117 1118 /// Non-const version. 1119 static MachineBasicBlock::iterator 1120 nextIfDebug(MachineBasicBlock::iterator I, 1121 MachineBasicBlock::const_iterator End) { 1122 // Cast the return value to nonconst MachineInstr, then cast to an 1123 // instr_iterator, which does not check for null, finally return a 1124 // bundle_iterator. 1125 return MachineBasicBlock::instr_iterator( 1126 const_cast<MachineInstr*>( 1127 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End))); 1128 } 1129 1130 void SIScheduleBlockCreator::topologicalSort() { 1131 unsigned DAGSize = CurrentBlocks.size(); 1132 std::vector<int> WorkList; 1133 1134 DEBUG(dbgs() << "Topological Sort\n"); 1135 1136 WorkList.reserve(DAGSize); 1137 TopDownIndex2Block.resize(DAGSize); 1138 TopDownBlock2Index.resize(DAGSize); 1139 BottomUpIndex2Block.resize(DAGSize); 1140 1141 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1142 SIScheduleBlock *Block = CurrentBlocks[i]; 1143 unsigned Degree = Block->getSuccs().size(); 1144 TopDownBlock2Index[i] = Degree; 1145 if (Degree == 0) { 1146 WorkList.push_back(i); 1147 } 1148 } 1149 1150 int Id = DAGSize; 1151 while (!WorkList.empty()) { 1152 int i = WorkList.back(); 1153 SIScheduleBlock *Block = CurrentBlocks[i]; 1154 WorkList.pop_back(); 1155 TopDownBlock2Index[i] = --Id; 1156 TopDownIndex2Block[Id] = i; 1157 for (SIScheduleBlock* Pred : Block->getPreds()) { 1158 if (!--TopDownBlock2Index[Pred->getID()]) 1159 WorkList.push_back(Pred->getID()); 1160 } 1161 } 1162 1163 #ifndef NDEBUG 1164 // Check correctness of the ordering. 1165 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1166 SIScheduleBlock *Block = CurrentBlocks[i]; 1167 for (SIScheduleBlock* Pred : Block->getPreds()) { 1168 assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] && 1169 "Wrong Top Down topological sorting"); 1170 } 1171 } 1172 #endif 1173 1174 BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(), 1175 TopDownIndex2Block.rend()); 1176 } 1177 1178 void SIScheduleBlockCreator::scheduleInsideBlocks() { 1179 unsigned DAGSize = CurrentBlocks.size(); 1180 1181 DEBUG(dbgs() << "\nScheduling Blocks\n\n"); 1182 1183 // We do schedule a valid scheduling such that a Block corresponds 1184 // to a range of instructions. 1185 DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n"); 1186 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1187 SIScheduleBlock *Block = CurrentBlocks[i]; 1188 Block->fastSchedule(); 1189 } 1190 1191 // Note: the following code, and the part restoring previous position 1192 // is by far the most expensive operation of the Scheduler. 1193 1194 // Do not update CurrentTop. 1195 MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop(); 1196 std::vector<MachineBasicBlock::iterator> PosOld; 1197 std::vector<MachineBasicBlock::iterator> PosNew; 1198 PosOld.reserve(DAG->SUnits.size()); 1199 PosNew.reserve(DAG->SUnits.size()); 1200 1201 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1202 int BlockIndice = TopDownIndex2Block[i]; 1203 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1204 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1205 1206 for (SUnit* SU : SUs) { 1207 MachineInstr *MI = SU->getInstr(); 1208 MachineBasicBlock::iterator Pos = MI; 1209 PosOld.push_back(Pos); 1210 if (&*CurrentTopFastSched == MI) { 1211 PosNew.push_back(Pos); 1212 CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched, 1213 DAG->getCurrentBottom()); 1214 } else { 1215 // Update the instruction stream. 1216 DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI); 1217 1218 // Update LiveIntervals. 1219 // Note: Moving all instructions and calling handleMove everytime 1220 // is the most cpu intensive operation of the scheduler. 1221 // It would gain a lot if there was a way to recompute the 1222 // LiveIntervals for the entire scheduling region. 1223 DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true); 1224 PosNew.push_back(CurrentTopFastSched); 1225 } 1226 } 1227 } 1228 1229 // Now we have Block of SUs == Block of MI. 1230 // We do the final schedule for the instructions inside the block. 1231 // The property that all the SUs of the Block are grouped together as MI 1232 // is used for correct reg usage tracking. 1233 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1234 SIScheduleBlock *Block = CurrentBlocks[i]; 1235 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1236 Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr()); 1237 } 1238 1239 DEBUG(dbgs() << "Restoring MI Pos\n"); 1240 // Restore old ordering (which prevents a LIS->handleMove bug). 1241 for (unsigned i = PosOld.size(), e = 0; i != e; --i) { 1242 MachineBasicBlock::iterator POld = PosOld[i-1]; 1243 MachineBasicBlock::iterator PNew = PosNew[i-1]; 1244 if (PNew != POld) { 1245 // Update the instruction stream. 1246 DAG->getBB()->splice(POld, DAG->getBB(), PNew); 1247 1248 // Update LiveIntervals. 1249 DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true); 1250 } 1251 } 1252 1253 DEBUG( 1254 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) { 1255 SIScheduleBlock *Block = CurrentBlocks[i]; 1256 Block->printDebug(true); 1257 } 1258 ); 1259 } 1260 1261 void SIScheduleBlockCreator::fillStats() { 1262 unsigned DAGSize = CurrentBlocks.size(); 1263 1264 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1265 int BlockIndice = TopDownIndex2Block[i]; 1266 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1267 if (Block->getPreds().size() == 0) 1268 Block->Depth = 0; 1269 else { 1270 unsigned Depth = 0; 1271 for (SIScheduleBlock *Pred : Block->getPreds()) { 1272 if (Depth < Pred->Depth + 1) 1273 Depth = Pred->Depth + 1; 1274 } 1275 Block->Depth = Depth; 1276 } 1277 } 1278 1279 for (unsigned i = 0, e = DAGSize; i != e; ++i) { 1280 int BlockIndice = BottomUpIndex2Block[i]; 1281 SIScheduleBlock *Block = CurrentBlocks[BlockIndice]; 1282 if (Block->getSuccs().size() == 0) 1283 Block->Height = 0; 1284 else { 1285 unsigned Height = 0; 1286 for (SIScheduleBlock *Succ : Block->getSuccs()) { 1287 if (Height < Succ->Height + 1) 1288 Height = Succ->Height + 1; 1289 } 1290 Block->Height = Height; 1291 } 1292 } 1293 } 1294 1295 // SIScheduleBlockScheduler // 1296 1297 SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG, 1298 SISchedulerBlockSchedulerVariant Variant, 1299 SIScheduleBlocks BlocksStruct) : 1300 DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks), 1301 LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0), 1302 SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) { 1303 1304 // Fill the usage of every output 1305 // Warning: while by construction we always have a link between two blocks 1306 // when one needs a result from the other, the number of users of an output 1307 // is not the sum of child blocks having as input the same virtual register. 1308 // Here is an example. A produces x and y. B eats x and produces x'. 1309 // C eats x' and y. The register coalescer may have attributed the same 1310 // virtual register to x and x'. 1311 // To count accurately, we do a topological sort. In case the register is 1312 // found for several parents, we increment the usage of the one with the 1313 // highest topological index. 1314 LiveOutRegsNumUsages.resize(Blocks.size()); 1315 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1316 SIScheduleBlock *Block = Blocks[i]; 1317 for (unsigned Reg : Block->getInRegs()) { 1318 bool Found = false; 1319 int topoInd = -1; 1320 for (SIScheduleBlock* Pred: Block->getPreds()) { 1321 std::set<unsigned> PredOutRegs = Pred->getOutRegs(); 1322 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg); 1323 1324 if (RegPos != PredOutRegs.end()) { 1325 Found = true; 1326 if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) { 1327 topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()]; 1328 } 1329 } 1330 } 1331 1332 if (!Found) 1333 continue; 1334 1335 int PredID = BlocksStruct.TopDownIndex2Block[topoInd]; 1336 std::map<unsigned, unsigned>::iterator RegPos = 1337 LiveOutRegsNumUsages[PredID].find(Reg); 1338 if (RegPos != LiveOutRegsNumUsages[PredID].end()) { 1339 ++LiveOutRegsNumUsages[PredID][Reg]; 1340 } else { 1341 LiveOutRegsNumUsages[PredID][Reg] = 1; 1342 } 1343 } 1344 } 1345 1346 LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0); 1347 BlockNumPredsLeft.resize(Blocks.size()); 1348 BlockNumSuccsLeft.resize(Blocks.size()); 1349 1350 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1351 SIScheduleBlock *Block = Blocks[i]; 1352 BlockNumPredsLeft[i] = Block->getPreds().size(); 1353 BlockNumSuccsLeft[i] = Block->getSuccs().size(); 1354 } 1355 1356 #ifndef NDEBUG 1357 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1358 SIScheduleBlock *Block = Blocks[i]; 1359 assert(Block->getID() == i); 1360 } 1361 #endif 1362 1363 std::set<unsigned> InRegs = DAG->getInRegs(); 1364 addLiveRegs(InRegs); 1365 1366 // Fill LiveRegsConsumers for regs that were already 1367 // defined before scheduling. 1368 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1369 SIScheduleBlock *Block = Blocks[i]; 1370 for (unsigned Reg : Block->getInRegs()) { 1371 bool Found = false; 1372 for (SIScheduleBlock* Pred: Block->getPreds()) { 1373 std::set<unsigned> PredOutRegs = Pred->getOutRegs(); 1374 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg); 1375 1376 if (RegPos != PredOutRegs.end()) { 1377 Found = true; 1378 break; 1379 } 1380 } 1381 1382 if (!Found) { 1383 if (LiveRegsConsumers.find(Reg) == LiveRegsConsumers.end()) 1384 LiveRegsConsumers[Reg] = 1; 1385 else 1386 ++LiveRegsConsumers[Reg]; 1387 } 1388 } 1389 } 1390 1391 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1392 SIScheduleBlock *Block = Blocks[i]; 1393 if (BlockNumPredsLeft[i] == 0) { 1394 ReadyBlocks.push_back(Block); 1395 } 1396 } 1397 1398 while (SIScheduleBlock *Block = pickBlock()) { 1399 BlocksScheduled.push_back(Block); 1400 blockScheduled(Block); 1401 } 1402 1403 DEBUG( 1404 dbgs() << "Block Order:"; 1405 for (SIScheduleBlock* Block : BlocksScheduled) { 1406 dbgs() << ' ' << Block->getID(); 1407 } 1408 ); 1409 } 1410 1411 bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand, 1412 SIBlockSchedCandidate &TryCand) { 1413 if (!Cand.isValid()) { 1414 TryCand.Reason = NodeOrder; 1415 return true; 1416 } 1417 1418 // Try to hide high latencies. 1419 if (tryLess(TryCand.LastPosHighLatParentScheduled, 1420 Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency)) 1421 return true; 1422 // Schedule high latencies early so you can hide them better. 1423 if (tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency, 1424 TryCand, Cand, Latency)) 1425 return true; 1426 if (TryCand.IsHighLatency && tryGreater(TryCand.Height, Cand.Height, 1427 TryCand, Cand, Depth)) 1428 return true; 1429 if (tryGreater(TryCand.NumHighLatencySuccessors, 1430 Cand.NumHighLatencySuccessors, 1431 TryCand, Cand, Successor)) 1432 return true; 1433 return false; 1434 } 1435 1436 bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand, 1437 SIBlockSchedCandidate &TryCand) { 1438 if (!Cand.isValid()) { 1439 TryCand.Reason = NodeOrder; 1440 return true; 1441 } 1442 1443 if (tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0, 1444 TryCand, Cand, RegUsage)) 1445 return true; 1446 if (tryGreater(TryCand.NumSuccessors > 0, 1447 Cand.NumSuccessors > 0, 1448 TryCand, Cand, Successor)) 1449 return true; 1450 if (tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth)) 1451 return true; 1452 if (tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff, 1453 TryCand, Cand, RegUsage)) 1454 return true; 1455 return false; 1456 } 1457 1458 SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() { 1459 SIBlockSchedCandidate Cand; 1460 std::vector<SIScheduleBlock*>::iterator Best; 1461 SIScheduleBlock *Block; 1462 if (ReadyBlocks.empty()) 1463 return nullptr; 1464 1465 DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(), 1466 VregCurrentUsage, SregCurrentUsage); 1467 if (VregCurrentUsage > maxVregUsage) 1468 maxVregUsage = VregCurrentUsage; 1469 if (VregCurrentUsage > maxSregUsage) 1470 maxSregUsage = VregCurrentUsage; 1471 DEBUG( 1472 dbgs() << "Picking New Blocks\n"; 1473 dbgs() << "Available: "; 1474 for (SIScheduleBlock* Block : ReadyBlocks) 1475 dbgs() << Block->getID() << ' '; 1476 dbgs() << "\nCurrent Live:\n"; 1477 for (unsigned Reg : LiveRegs) 1478 dbgs() << PrintVRegOrUnit(Reg, DAG->getTRI()) << ' '; 1479 dbgs() << '\n'; 1480 dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n'; 1481 dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n'; 1482 ); 1483 1484 Cand.Block = nullptr; 1485 for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(), 1486 E = ReadyBlocks.end(); I != E; ++I) { 1487 SIBlockSchedCandidate TryCand; 1488 TryCand.Block = *I; 1489 TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock(); 1490 TryCand.VGPRUsageDiff = 1491 checkRegUsageImpact(TryCand.Block->getInRegs(), 1492 TryCand.Block->getOutRegs())[DAG->getVGPRSetID()]; 1493 TryCand.NumSuccessors = TryCand.Block->getSuccs().size(); 1494 TryCand.NumHighLatencySuccessors = 1495 TryCand.Block->getNumHighLatencySuccessors(); 1496 TryCand.LastPosHighLatParentScheduled = 1497 (unsigned int) std::max<int> (0, 1498 LastPosHighLatencyParentScheduled[TryCand.Block->getID()] - 1499 LastPosWaitedHighLatency); 1500 TryCand.Height = TryCand.Block->Height; 1501 // Try not to increase VGPR usage too much, else we may spill. 1502 if (VregCurrentUsage > 120 || 1503 Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) { 1504 if (!tryCandidateRegUsage(Cand, TryCand) && 1505 Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage) 1506 tryCandidateLatency(Cand, TryCand); 1507 } else { 1508 if (!tryCandidateLatency(Cand, TryCand)) 1509 tryCandidateRegUsage(Cand, TryCand); 1510 } 1511 if (TryCand.Reason != NoCand) { 1512 Cand.setBest(TryCand); 1513 Best = I; 1514 DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' ' 1515 << getReasonStr(Cand.Reason) << '\n'); 1516 } 1517 } 1518 1519 DEBUG( 1520 dbgs() << "Picking: " << Cand.Block->getID() << '\n'; 1521 dbgs() << "Is a block with high latency instruction: " 1522 << (Cand.IsHighLatency ? "yes\n" : "no\n"); 1523 dbgs() << "Position of last high latency dependency: " 1524 << Cand.LastPosHighLatParentScheduled << '\n'; 1525 dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n'; 1526 dbgs() << '\n'; 1527 ); 1528 1529 Block = Cand.Block; 1530 ReadyBlocks.erase(Best); 1531 return Block; 1532 } 1533 1534 // Tracking of currently alive registers to determine VGPR Usage. 1535 1536 void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) { 1537 for (unsigned Reg : Regs) { 1538 // For now only track virtual registers. 1539 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1540 continue; 1541 // If not already in the live set, then add it. 1542 (void) LiveRegs.insert(Reg); 1543 } 1544 } 1545 1546 void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block, 1547 std::set<unsigned> &Regs) { 1548 for (unsigned Reg : Regs) { 1549 // For now only track virtual registers. 1550 std::set<unsigned>::iterator Pos = LiveRegs.find(Reg); 1551 assert (Pos != LiveRegs.end() && // Reg must be live. 1552 LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() && 1553 LiveRegsConsumers[Reg] >= 1); 1554 --LiveRegsConsumers[Reg]; 1555 if (LiveRegsConsumers[Reg] == 0) 1556 LiveRegs.erase(Pos); 1557 } 1558 } 1559 1560 void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) { 1561 for (SIScheduleBlock* Block : Parent->getSuccs()) { 1562 --BlockNumPredsLeft[Block->getID()]; 1563 if (BlockNumPredsLeft[Block->getID()] == 0) { 1564 ReadyBlocks.push_back(Block); 1565 } 1566 // TODO: Improve check. When the dependency between the high latency 1567 // instructions and the instructions of the other blocks are WAR or WAW 1568 // there will be no wait triggered. We would like these cases to not 1569 // update LastPosHighLatencyParentScheduled. 1570 if (Parent->isHighLatencyBlock()) 1571 LastPosHighLatencyParentScheduled[Block->getID()] = NumBlockScheduled; 1572 } 1573 } 1574 1575 void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) { 1576 decreaseLiveRegs(Block, Block->getInRegs()); 1577 addLiveRegs(Block->getOutRegs()); 1578 releaseBlockSuccs(Block); 1579 for (std::map<unsigned, unsigned>::iterator RegI = 1580 LiveOutRegsNumUsages[Block->getID()].begin(), 1581 E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) { 1582 std::pair<unsigned, unsigned> RegP = *RegI; 1583 if (LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end()) 1584 LiveRegsConsumers[RegP.first] = RegP.second; 1585 else { 1586 assert(LiveRegsConsumers[RegP.first] == 0); 1587 LiveRegsConsumers[RegP.first] += RegP.second; 1588 } 1589 } 1590 if (LastPosHighLatencyParentScheduled[Block->getID()] > 1591 (unsigned)LastPosWaitedHighLatency) 1592 LastPosWaitedHighLatency = 1593 LastPosHighLatencyParentScheduled[Block->getID()]; 1594 ++NumBlockScheduled; 1595 } 1596 1597 std::vector<int> 1598 SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs, 1599 std::set<unsigned> &OutRegs) { 1600 std::vector<int> DiffSetPressure; 1601 DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0); 1602 1603 for (unsigned Reg : InRegs) { 1604 // For now only track virtual registers. 1605 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1606 continue; 1607 if (LiveRegsConsumers[Reg] > 1) 1608 continue; 1609 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg); 1610 for (; PSetI.isValid(); ++PSetI) { 1611 DiffSetPressure[*PSetI] -= PSetI.getWeight(); 1612 } 1613 } 1614 1615 for (unsigned Reg : OutRegs) { 1616 // For now only track virtual registers. 1617 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1618 continue; 1619 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg); 1620 for (; PSetI.isValid(); ++PSetI) { 1621 DiffSetPressure[*PSetI] += PSetI.getWeight(); 1622 } 1623 } 1624 1625 return DiffSetPressure; 1626 } 1627 1628 // SIScheduler // 1629 1630 struct SIScheduleBlockResult 1631 SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant, 1632 SISchedulerBlockSchedulerVariant ScheduleVariant) { 1633 SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant); 1634 SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks); 1635 std::vector<SIScheduleBlock*> ScheduledBlocks; 1636 struct SIScheduleBlockResult Res; 1637 1638 ScheduledBlocks = Scheduler.getBlocks(); 1639 1640 for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) { 1641 SIScheduleBlock *Block = ScheduledBlocks[b]; 1642 std::vector<SUnit*> SUs = Block->getScheduledUnits(); 1643 1644 for (SUnit* SU : SUs) 1645 Res.SUs.push_back(SU->NodeNum); 1646 } 1647 1648 Res.MaxSGPRUsage = Scheduler.getSGPRUsage(); 1649 Res.MaxVGPRUsage = Scheduler.getVGPRUsage(); 1650 return Res; 1651 } 1652 1653 // SIScheduleDAGMI // 1654 1655 SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) : 1656 ScheduleDAGMILive(C, make_unique<GenericScheduler>(C)) { 1657 SITII = static_cast<const SIInstrInfo*>(TII); 1658 SITRI = static_cast<const SIRegisterInfo*>(TRI); 1659 1660 VGPRSetID = SITRI->getVGPRPressureSet(); 1661 SGPRSetID = SITRI->getSGPRPressureSet(); 1662 } 1663 1664 SIScheduleDAGMI::~SIScheduleDAGMI() { 1665 } 1666 1667 // Code adapted from scheduleDAG.cpp 1668 // Does a topological sort over the SUs. 1669 // Both TopDown and BottomUp 1670 void SIScheduleDAGMI::topologicalSort() { 1671 Topo.InitDAGTopologicalSorting(); 1672 1673 TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end()); 1674 BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend()); 1675 } 1676 1677 // Move low latencies further from their user without 1678 // increasing SGPR usage (in general) 1679 // This is to be replaced by a better pass that would 1680 // take into account SGPR usage (based on VGPR Usage 1681 // and the corresponding wavefront count), that would 1682 // try to merge groups of loads if it make sense, etc 1683 void SIScheduleDAGMI::moveLowLatencies() { 1684 unsigned DAGSize = SUnits.size(); 1685 int LastLowLatencyUser = -1; 1686 int LastLowLatencyPos = -1; 1687 1688 for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) { 1689 SUnit *SU = &SUnits[ScheduledSUnits[i]]; 1690 bool IsLowLatencyUser = false; 1691 unsigned MinPos = 0; 1692 1693 for (SDep& PredDep : SU->Preds) { 1694 SUnit *Pred = PredDep.getSUnit(); 1695 if (SITII->isLowLatencyInstruction(*Pred->getInstr())) { 1696 IsLowLatencyUser = true; 1697 } 1698 if (Pred->NodeNum >= DAGSize) 1699 continue; 1700 unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum]; 1701 if (PredPos >= MinPos) 1702 MinPos = PredPos + 1; 1703 } 1704 1705 if (SITII->isLowLatencyInstruction(*SU->getInstr())) { 1706 unsigned BestPos = LastLowLatencyUser + 1; 1707 if ((int)BestPos <= LastLowLatencyPos) 1708 BestPos = LastLowLatencyPos + 1; 1709 if (BestPos < MinPos) 1710 BestPos = MinPos; 1711 if (BestPos < i) { 1712 for (unsigned u = i; u > BestPos; --u) { 1713 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; 1714 ScheduledSUnits[u] = ScheduledSUnits[u-1]; 1715 } 1716 ScheduledSUnits[BestPos] = SU->NodeNum; 1717 ScheduledSUnitsInv[SU->NodeNum] = BestPos; 1718 } 1719 LastLowLatencyPos = BestPos; 1720 if (IsLowLatencyUser) 1721 LastLowLatencyUser = BestPos; 1722 } else if (IsLowLatencyUser) { 1723 LastLowLatencyUser = i; 1724 // Moves COPY instructions on which depends 1725 // the low latency instructions too. 1726 } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) { 1727 bool CopyForLowLat = false; 1728 for (SDep& SuccDep : SU->Succs) { 1729 SUnit *Succ = SuccDep.getSUnit(); 1730 if (SITII->isLowLatencyInstruction(*Succ->getInstr())) { 1731 CopyForLowLat = true; 1732 } 1733 } 1734 if (!CopyForLowLat) 1735 continue; 1736 if (MinPos < i) { 1737 for (unsigned u = i; u > MinPos; --u) { 1738 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]]; 1739 ScheduledSUnits[u] = ScheduledSUnits[u-1]; 1740 } 1741 ScheduledSUnits[MinPos] = SU->NodeNum; 1742 ScheduledSUnitsInv[SU->NodeNum] = MinPos; 1743 } 1744 } 1745 } 1746 } 1747 1748 void SIScheduleDAGMI::restoreSULinksLeft() { 1749 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1750 SUnits[i].isScheduled = false; 1751 SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft; 1752 SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft; 1753 SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft; 1754 SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft; 1755 } 1756 } 1757 1758 // Return the Vgpr and Sgpr usage corresponding to some virtual registers. 1759 template<typename _Iterator> void 1760 SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End, 1761 unsigned &VgprUsage, unsigned &SgprUsage) { 1762 VgprUsage = 0; 1763 SgprUsage = 0; 1764 for (_Iterator RegI = First; RegI != End; ++RegI) { 1765 unsigned Reg = *RegI; 1766 // For now only track virtual registers 1767 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1768 continue; 1769 PSetIterator PSetI = MRI.getPressureSets(Reg); 1770 for (; PSetI.isValid(); ++PSetI) { 1771 if (*PSetI == VGPRSetID) 1772 VgprUsage += PSetI.getWeight(); 1773 else if (*PSetI == SGPRSetID) 1774 SgprUsage += PSetI.getWeight(); 1775 } 1776 } 1777 } 1778 1779 void SIScheduleDAGMI::schedule() 1780 { 1781 SmallVector<SUnit*, 8> TopRoots, BotRoots; 1782 SIScheduleBlockResult Best, Temp; 1783 DEBUG(dbgs() << "Preparing Scheduling\n"); 1784 1785 buildDAGWithRegPressure(); 1786 DEBUG( 1787 for(SUnit& SU : SUnits) 1788 SU.dumpAll(this) 1789 ); 1790 1791 topologicalSort(); 1792 findRootsAndBiasEdges(TopRoots, BotRoots); 1793 // We reuse several ScheduleDAGMI and ScheduleDAGMILive 1794 // functions, but to make them happy we must initialize 1795 // the default Scheduler implementation (even if we do not 1796 // run it) 1797 SchedImpl->initialize(this); 1798 initQueues(TopRoots, BotRoots); 1799 1800 // Fill some stats to help scheduling. 1801 1802 SUnitsLinksBackup = SUnits; 1803 IsLowLatencySU.clear(); 1804 LowLatencyOffset.clear(); 1805 IsHighLatencySU.clear(); 1806 1807 IsLowLatencySU.resize(SUnits.size(), 0); 1808 LowLatencyOffset.resize(SUnits.size(), 0); 1809 IsHighLatencySU.resize(SUnits.size(), 0); 1810 1811 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { 1812 SUnit *SU = &SUnits[i]; 1813 unsigned BaseLatReg; 1814 int64_t OffLatReg; 1815 if (SITII->isLowLatencyInstruction(*SU->getInstr())) { 1816 IsLowLatencySU[i] = 1; 1817 if (SITII->getMemOpBaseRegImmOfs(*SU->getInstr(), BaseLatReg, OffLatReg, 1818 TRI)) 1819 LowLatencyOffset[i] = OffLatReg; 1820 } else if (SITII->isHighLatencyInstruction(*SU->getInstr())) 1821 IsHighLatencySU[i] = 1; 1822 } 1823 1824 SIScheduler Scheduler(this); 1825 Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone, 1826 SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage); 1827 1828 // if VGPR usage is extremely high, try other good performing variants 1829 // which could lead to lower VGPR usage 1830 if (Best.MaxVGPRUsage > 180) { 1831 std::vector<std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant>> Variants = { 1832 { LatenciesAlone, BlockRegUsageLatency }, 1833 // { LatenciesAlone, BlockRegUsage }, 1834 { LatenciesGrouped, BlockLatencyRegUsage }, 1835 // { LatenciesGrouped, BlockRegUsageLatency }, 1836 // { LatenciesGrouped, BlockRegUsage }, 1837 { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, 1838 // { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, 1839 // { LatenciesAlonePlusConsecutive, BlockRegUsage } 1840 }; 1841 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { 1842 Temp = Scheduler.scheduleVariant(v.first, v.second); 1843 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) 1844 Best = Temp; 1845 } 1846 } 1847 // if VGPR usage is still extremely high, we may spill. Try other variants 1848 // which are less performing, but that could lead to lower VGPR usage. 1849 if (Best.MaxVGPRUsage > 200) { 1850 std::vector<std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant>> Variants = { 1851 // { LatenciesAlone, BlockRegUsageLatency }, 1852 { LatenciesAlone, BlockRegUsage }, 1853 // { LatenciesGrouped, BlockLatencyRegUsage }, 1854 { LatenciesGrouped, BlockRegUsageLatency }, 1855 { LatenciesGrouped, BlockRegUsage }, 1856 // { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage }, 1857 { LatenciesAlonePlusConsecutive, BlockRegUsageLatency }, 1858 { LatenciesAlonePlusConsecutive, BlockRegUsage } 1859 }; 1860 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) { 1861 Temp = Scheduler.scheduleVariant(v.first, v.second); 1862 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage) 1863 Best = Temp; 1864 } 1865 } 1866 1867 ScheduledSUnits = Best.SUs; 1868 ScheduledSUnitsInv.resize(SUnits.size()); 1869 1870 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) { 1871 ScheduledSUnitsInv[ScheduledSUnits[i]] = i; 1872 } 1873 1874 moveLowLatencies(); 1875 1876 // Tell the outside world about the result of the scheduling. 1877 1878 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); 1879 TopRPTracker.setPos(CurrentTop); 1880 1881 for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(), 1882 E = ScheduledSUnits.end(); I != E; ++I) { 1883 SUnit *SU = &SUnits[*I]; 1884 1885 scheduleMI(SU, true); 1886 1887 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " 1888 << *SU->getInstr()); 1889 } 1890 1891 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 1892 1893 placeDebugValues(); 1894 1895 DEBUG({ 1896 unsigned BBNum = begin()->getParent()->getNumber(); 1897 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n"; 1898 dumpSchedule(); 1899 dbgs() << '\n'; 1900 }); 1901 } 1902