1 //===- SIInstrInfo.cpp - SI Instruction Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// SI Implementation of TargetInstrInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIInstrInfo.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "GCNHazardRecognizer.h" 18 #include "GCNSubtarget.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/RegisterScavenging.h" 27 #include "llvm/CodeGen/ScheduleDAG.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/IntrinsicsAMDGPU.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Target/TargetMachine.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "si-instr-info" 37 38 #define GET_INSTRINFO_CTOR_DTOR 39 #include "AMDGPUGenInstrInfo.inc" 40 41 namespace llvm { 42 43 class AAResults; 44 45 namespace AMDGPU { 46 #define GET_D16ImageDimIntrinsics_IMPL 47 #define GET_ImageDimIntrinsicTable_IMPL 48 #define GET_RsrcIntrinsics_IMPL 49 #include "AMDGPUGenSearchableTables.inc" 50 } 51 } 52 53 54 // Must be at least 4 to be able to branch over minimum unconditional branch 55 // code. This is only for making it possible to write reasonably small tests for 56 // long branches. 57 static cl::opt<unsigned> 58 BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(16), 59 cl::desc("Restrict range of branch instructions (DEBUG)")); 60 61 static cl::opt<bool> Fix16BitCopies( 62 "amdgpu-fix-16-bit-physreg-copies", 63 cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"), 64 cl::init(true), 65 cl::ReallyHidden); 66 67 SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST) 68 : AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN), 69 RI(ST), ST(ST) { 70 SchedModel.init(&ST); 71 } 72 73 //===----------------------------------------------------------------------===// 74 // TargetInstrInfo callbacks 75 //===----------------------------------------------------------------------===// 76 77 static unsigned getNumOperandsNoGlue(SDNode *Node) { 78 unsigned N = Node->getNumOperands(); 79 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 80 --N; 81 return N; 82 } 83 84 /// Returns true if both nodes have the same value for the given 85 /// operand \p Op, or if both nodes do not have this operand. 86 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { 87 unsigned Opc0 = N0->getMachineOpcode(); 88 unsigned Opc1 = N1->getMachineOpcode(); 89 90 int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); 91 int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); 92 93 if (Op0Idx == -1 && Op1Idx == -1) 94 return true; 95 96 97 if ((Op0Idx == -1 && Op1Idx != -1) || 98 (Op1Idx == -1 && Op0Idx != -1)) 99 return false; 100 101 // getNamedOperandIdx returns the index for the MachineInstr's operands, 102 // which includes the result as the first operand. We are indexing into the 103 // MachineSDNode's operands, so we need to skip the result operand to get 104 // the real index. 105 --Op0Idx; 106 --Op1Idx; 107 108 return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); 109 } 110 111 bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 112 AAResults *AA) const { 113 if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isSDWA(MI) || isSALU(MI)) { 114 // Normally VALU use of exec would block the rematerialization, but that 115 // is OK in this case to have an implicit exec read as all VALU do. 116 // We really want all of the generic logic for this except for this. 117 118 // Another potential implicit use is mode register. The core logic of 119 // the RA will not attempt rematerialization if mode is set anywhere 120 // in the function, otherwise it is safe since mode is not changed. 121 122 // There is difference to generic method which does not allow 123 // rematerialization if there are virtual register uses. We allow this, 124 // therefore this method includes SOP instructions as well. 125 return !MI.hasImplicitDef() && 126 MI.getNumImplicitOperands() == MI.getDesc().getNumImplicitUses() && 127 !MI.mayRaiseFPException(); 128 } 129 130 return false; 131 } 132 133 // Returns true if the scalar result of a VALU instruction depends on exec. 134 static bool resultDependsOnExec(const MachineInstr &MI) { 135 // Ignore comparisons which are only used masked with exec. 136 // This allows some hoisting/sinking of VALU comparisons. 137 if (MI.isCompare()) { 138 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 139 Register DstReg = MI.getOperand(0).getReg(); 140 if (!DstReg.isVirtual()) 141 return true; 142 for (MachineInstr &Use : MRI.use_nodbg_instructions(DstReg)) { 143 switch (Use.getOpcode()) { 144 case AMDGPU::S_AND_SAVEEXEC_B32: 145 case AMDGPU::S_AND_SAVEEXEC_B64: 146 break; 147 case AMDGPU::S_AND_B32: 148 case AMDGPU::S_AND_B64: 149 if (!Use.readsRegister(AMDGPU::EXEC)) 150 return true; 151 break; 152 default: 153 return true; 154 } 155 } 156 return false; 157 } 158 159 switch (MI.getOpcode()) { 160 default: 161 break; 162 case AMDGPU::V_READFIRSTLANE_B32: 163 return true; 164 } 165 166 return false; 167 } 168 169 bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const { 170 // Any implicit use of exec by VALU is not a real register read. 171 return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() && 172 isVALU(*MO.getParent()) && !resultDependsOnExec(*MO.getParent()); 173 } 174 175 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, 176 int64_t &Offset0, 177 int64_t &Offset1) const { 178 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) 179 return false; 180 181 unsigned Opc0 = Load0->getMachineOpcode(); 182 unsigned Opc1 = Load1->getMachineOpcode(); 183 184 // Make sure both are actually loads. 185 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) 186 return false; 187 188 if (isDS(Opc0) && isDS(Opc1)) { 189 190 // FIXME: Handle this case: 191 if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) 192 return false; 193 194 // Check base reg. 195 if (Load0->getOperand(0) != Load1->getOperand(0)) 196 return false; 197 198 // Skip read2 / write2 variants for simplicity. 199 // TODO: We should report true if the used offsets are adjacent (excluded 200 // st64 versions). 201 int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 202 int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 203 if (Offset0Idx == -1 || Offset1Idx == -1) 204 return false; 205 206 // XXX - be careful of dataless loads 207 // getNamedOperandIdx returns the index for MachineInstrs. Since they 208 // include the output in the operand list, but SDNodes don't, we need to 209 // subtract the index by one. 210 Offset0Idx -= get(Opc0).NumDefs; 211 Offset1Idx -= get(Opc1).NumDefs; 212 Offset0 = cast<ConstantSDNode>(Load0->getOperand(Offset0Idx))->getZExtValue(); 213 Offset1 = cast<ConstantSDNode>(Load1->getOperand(Offset1Idx))->getZExtValue(); 214 return true; 215 } 216 217 if (isSMRD(Opc0) && isSMRD(Opc1)) { 218 // Skip time and cache invalidation instructions. 219 if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::sbase) == -1 || 220 AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::sbase) == -1) 221 return false; 222 223 assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1)); 224 225 // Check base reg. 226 if (Load0->getOperand(0) != Load1->getOperand(0)) 227 return false; 228 229 const ConstantSDNode *Load0Offset = 230 dyn_cast<ConstantSDNode>(Load0->getOperand(1)); 231 const ConstantSDNode *Load1Offset = 232 dyn_cast<ConstantSDNode>(Load1->getOperand(1)); 233 234 if (!Load0Offset || !Load1Offset) 235 return false; 236 237 Offset0 = Load0Offset->getZExtValue(); 238 Offset1 = Load1Offset->getZExtValue(); 239 return true; 240 } 241 242 // MUBUF and MTBUF can access the same addresses. 243 if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { 244 245 // MUBUF and MTBUF have vaddr at different indices. 246 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || 247 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || 248 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) 249 return false; 250 251 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 252 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 253 254 if (OffIdx0 == -1 || OffIdx1 == -1) 255 return false; 256 257 // getNamedOperandIdx returns the index for MachineInstrs. Since they 258 // include the output in the operand list, but SDNodes don't, we need to 259 // subtract the index by one. 260 OffIdx0 -= get(Opc0).NumDefs; 261 OffIdx1 -= get(Opc1).NumDefs; 262 263 SDValue Off0 = Load0->getOperand(OffIdx0); 264 SDValue Off1 = Load1->getOperand(OffIdx1); 265 266 // The offset might be a FrameIndexSDNode. 267 if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) 268 return false; 269 270 Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue(); 271 Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue(); 272 return true; 273 } 274 275 return false; 276 } 277 278 static bool isStride64(unsigned Opc) { 279 switch (Opc) { 280 case AMDGPU::DS_READ2ST64_B32: 281 case AMDGPU::DS_READ2ST64_B64: 282 case AMDGPU::DS_WRITE2ST64_B32: 283 case AMDGPU::DS_WRITE2ST64_B64: 284 return true; 285 default: 286 return false; 287 } 288 } 289 290 bool SIInstrInfo::getMemOperandsWithOffsetWidth( 291 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 292 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 293 const TargetRegisterInfo *TRI) const { 294 if (!LdSt.mayLoadOrStore()) 295 return false; 296 297 unsigned Opc = LdSt.getOpcode(); 298 OffsetIsScalable = false; 299 const MachineOperand *BaseOp, *OffsetOp; 300 int DataOpIdx; 301 302 if (isDS(LdSt)) { 303 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr); 304 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); 305 if (OffsetOp) { 306 // Normal, single offset LDS instruction. 307 if (!BaseOp) { 308 // DS_CONSUME/DS_APPEND use M0 for the base address. 309 // TODO: find the implicit use operand for M0 and use that as BaseOp? 310 return false; 311 } 312 BaseOps.push_back(BaseOp); 313 Offset = OffsetOp->getImm(); 314 // Get appropriate operand, and compute width accordingly. 315 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 316 if (DataOpIdx == -1) 317 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 318 Width = getOpSize(LdSt, DataOpIdx); 319 } else { 320 // The 2 offset instructions use offset0 and offset1 instead. We can treat 321 // these as a load with a single offset if the 2 offsets are consecutive. 322 // We will use this for some partially aligned loads. 323 const MachineOperand *Offset0Op = 324 getNamedOperand(LdSt, AMDGPU::OpName::offset0); 325 const MachineOperand *Offset1Op = 326 getNamedOperand(LdSt, AMDGPU::OpName::offset1); 327 328 unsigned Offset0 = Offset0Op->getImm(); 329 unsigned Offset1 = Offset1Op->getImm(); 330 if (Offset0 + 1 != Offset1) 331 return false; 332 333 // Each of these offsets is in element sized units, so we need to convert 334 // to bytes of the individual reads. 335 336 unsigned EltSize; 337 if (LdSt.mayLoad()) 338 EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, 0)) / 16; 339 else { 340 assert(LdSt.mayStore()); 341 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 342 EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, Data0Idx)) / 8; 343 } 344 345 if (isStride64(Opc)) 346 EltSize *= 64; 347 348 BaseOps.push_back(BaseOp); 349 Offset = EltSize * Offset0; 350 // Get appropriate operand(s), and compute width accordingly. 351 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 352 if (DataOpIdx == -1) { 353 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 354 Width = getOpSize(LdSt, DataOpIdx); 355 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 356 Width += getOpSize(LdSt, DataOpIdx); 357 } else { 358 Width = getOpSize(LdSt, DataOpIdx); 359 } 360 } 361 return true; 362 } 363 364 if (isMUBUF(LdSt) || isMTBUF(LdSt)) { 365 const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc); 366 if (!RSrc) // e.g. BUFFER_WBINVL1_VOL 367 return false; 368 BaseOps.push_back(RSrc); 369 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 370 if (BaseOp && !BaseOp->isFI()) 371 BaseOps.push_back(BaseOp); 372 const MachineOperand *OffsetImm = 373 getNamedOperand(LdSt, AMDGPU::OpName::offset); 374 Offset = OffsetImm->getImm(); 375 const MachineOperand *SOffset = 376 getNamedOperand(LdSt, AMDGPU::OpName::soffset); 377 if (SOffset) { 378 if (SOffset->isReg()) 379 BaseOps.push_back(SOffset); 380 else 381 Offset += SOffset->getImm(); 382 } 383 // Get appropriate operand, and compute width accordingly. 384 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 385 if (DataOpIdx == -1) 386 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 387 Width = getOpSize(LdSt, DataOpIdx); 388 return true; 389 } 390 391 if (isMIMG(LdSt)) { 392 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); 393 BaseOps.push_back(&LdSt.getOperand(SRsrcIdx)); 394 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); 395 if (VAddr0Idx >= 0) { 396 // GFX10 possible NSA encoding. 397 for (int I = VAddr0Idx; I < SRsrcIdx; ++I) 398 BaseOps.push_back(&LdSt.getOperand(I)); 399 } else { 400 BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr)); 401 } 402 Offset = 0; 403 // Get appropriate operand, and compute width accordingly. 404 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 405 Width = getOpSize(LdSt, DataOpIdx); 406 return true; 407 } 408 409 if (isSMRD(LdSt)) { 410 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase); 411 if (!BaseOp) // e.g. S_MEMTIME 412 return false; 413 BaseOps.push_back(BaseOp); 414 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); 415 Offset = OffsetOp ? OffsetOp->getImm() : 0; 416 // Get appropriate operand, and compute width accordingly. 417 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst); 418 Width = getOpSize(LdSt, DataOpIdx); 419 return true; 420 } 421 422 if (isFLAT(LdSt)) { 423 // Instructions have either vaddr or saddr or both or none. 424 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 425 if (BaseOp) 426 BaseOps.push_back(BaseOp); 427 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr); 428 if (BaseOp) 429 BaseOps.push_back(BaseOp); 430 Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm(); 431 // Get appropriate operand, and compute width accordingly. 432 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 433 if (DataOpIdx == -1) 434 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 435 Width = getOpSize(LdSt, DataOpIdx); 436 return true; 437 } 438 439 return false; 440 } 441 442 static bool memOpsHaveSameBasePtr(const MachineInstr &MI1, 443 ArrayRef<const MachineOperand *> BaseOps1, 444 const MachineInstr &MI2, 445 ArrayRef<const MachineOperand *> BaseOps2) { 446 // Only examine the first "base" operand of each instruction, on the 447 // assumption that it represents the real base address of the memory access. 448 // Other operands are typically offsets or indices from this base address. 449 if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front())) 450 return true; 451 452 if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand()) 453 return false; 454 455 auto MO1 = *MI1.memoperands_begin(); 456 auto MO2 = *MI2.memoperands_begin(); 457 if (MO1->getAddrSpace() != MO2->getAddrSpace()) 458 return false; 459 460 auto Base1 = MO1->getValue(); 461 auto Base2 = MO2->getValue(); 462 if (!Base1 || !Base2) 463 return false; 464 Base1 = getUnderlyingObject(Base1); 465 Base2 = getUnderlyingObject(Base2); 466 467 if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2)) 468 return false; 469 470 return Base1 == Base2; 471 } 472 473 bool SIInstrInfo::shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1, 474 ArrayRef<const MachineOperand *> BaseOps2, 475 unsigned NumLoads, 476 unsigned NumBytes) const { 477 // If the mem ops (to be clustered) do not have the same base ptr, then they 478 // should not be clustered 479 if (!BaseOps1.empty() && !BaseOps2.empty()) { 480 const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent(); 481 const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent(); 482 if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2)) 483 return false; 484 } else if (!BaseOps1.empty() || !BaseOps2.empty()) { 485 // If only one base op is empty, they do not have the same base ptr 486 return false; 487 } 488 489 // In order to avoid register pressure, on an average, the number of DWORDS 490 // loaded together by all clustered mem ops should not exceed 8. This is an 491 // empirical value based on certain observations and performance related 492 // experiments. 493 // The good thing about this heuristic is - it avoids clustering of too many 494 // sub-word loads, and also avoids clustering of wide loads. Below is the 495 // brief summary of how the heuristic behaves for various `LoadSize`. 496 // (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops 497 // (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops 498 // (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops 499 // (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops 500 // (5) LoadSize >= 17: do not cluster 501 const unsigned LoadSize = NumBytes / NumLoads; 502 const unsigned NumDWORDs = ((LoadSize + 3) / 4) * NumLoads; 503 return NumDWORDs <= 8; 504 } 505 506 // FIXME: This behaves strangely. If, for example, you have 32 load + stores, 507 // the first 16 loads will be interleaved with the stores, and the next 16 will 508 // be clustered as expected. It should really split into 2 16 store batches. 509 // 510 // Loads are clustered until this returns false, rather than trying to schedule 511 // groups of stores. This also means we have to deal with saying different 512 // address space loads should be clustered, and ones which might cause bank 513 // conflicts. 514 // 515 // This might be deprecated so it might not be worth that much effort to fix. 516 bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, 517 int64_t Offset0, int64_t Offset1, 518 unsigned NumLoads) const { 519 assert(Offset1 > Offset0 && 520 "Second offset should be larger than first offset!"); 521 // If we have less than 16 loads in a row, and the offsets are within 64 522 // bytes, then schedule together. 523 524 // A cacheline is 64 bytes (for global memory). 525 return (NumLoads <= 16 && (Offset1 - Offset0) < 64); 526 } 527 528 static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB, 529 MachineBasicBlock::iterator MI, 530 const DebugLoc &DL, MCRegister DestReg, 531 MCRegister SrcReg, bool KillSrc, 532 const char *Msg = "illegal SGPR to VGPR copy") { 533 MachineFunction *MF = MBB.getParent(); 534 DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error); 535 LLVMContext &C = MF->getFunction().getContext(); 536 C.diagnose(IllegalCopy); 537 538 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg) 539 .addReg(SrcReg, getKillRegState(KillSrc)); 540 } 541 542 /// Handle copying from SGPR to AGPR, or from AGPR to AGPR. It is not possible 543 /// to directly copy, so an intermediate VGPR needs to be used. 544 static void indirectCopyToAGPR(const SIInstrInfo &TII, 545 MachineBasicBlock &MBB, 546 MachineBasicBlock::iterator MI, 547 const DebugLoc &DL, MCRegister DestReg, 548 MCRegister SrcReg, bool KillSrc, 549 RegScavenger &RS, 550 Register ImpDefSuperReg = Register(), 551 Register ImpUseSuperReg = Register()) { 552 const SIRegisterInfo &RI = TII.getRegisterInfo(); 553 554 assert(AMDGPU::SReg_32RegClass.contains(SrcReg) || 555 AMDGPU::AGPR_32RegClass.contains(SrcReg)); 556 557 // First try to find defining accvgpr_write to avoid temporary registers. 558 for (auto Def = MI, E = MBB.begin(); Def != E; ) { 559 --Def; 560 if (!Def->definesRegister(SrcReg, &RI)) 561 continue; 562 if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 563 break; 564 565 MachineOperand &DefOp = Def->getOperand(1); 566 assert(DefOp.isReg() || DefOp.isImm()); 567 568 if (DefOp.isReg()) { 569 // Check that register source operand if not clobbered before MI. 570 // Immediate operands are always safe to propagate. 571 bool SafeToPropagate = true; 572 for (auto I = Def; I != MI && SafeToPropagate; ++I) 573 if (I->modifiesRegister(DefOp.getReg(), &RI)) 574 SafeToPropagate = false; 575 576 if (!SafeToPropagate) 577 break; 578 579 DefOp.setIsKill(false); 580 } 581 582 MachineInstrBuilder Builder = 583 BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 584 .add(DefOp); 585 if (ImpDefSuperReg) 586 Builder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); 587 588 if (ImpUseSuperReg) { 589 Builder.addReg(ImpUseSuperReg, 590 getKillRegState(KillSrc) | RegState::Implicit); 591 } 592 593 return; 594 } 595 596 RS.enterBasicBlock(MBB); 597 RS.forward(MI); 598 599 // Ideally we want to have three registers for a long reg_sequence copy 600 // to hide 2 waitstates between v_mov_b32 and accvgpr_write. 601 unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass, 602 *MBB.getParent()); 603 604 // Registers in the sequence are allocated contiguously so we can just 605 // use register number to pick one of three round-robin temps. 606 unsigned RegNo = DestReg % 3; 607 Register Tmp; 608 if (!TII.getSubtarget().hasGFX90AInsts()) { 609 Tmp = AMDGPU::VGPR32; 610 assert(MBB.getParent()->getRegInfo().isReserved(AMDGPU::VGPR32)); 611 612 // Only loop through if there are any free registers left, otherwise 613 // scavenger may report a fatal error without emergency spill slot 614 // or spill with the slot. 615 while (RegNo-- && RS.FindUnusedReg(&AMDGPU::VGPR_32RegClass)) { 616 Register Tmp2 = RS.scavengeRegister(&AMDGPU::VGPR_32RegClass, 0); 617 if (!Tmp2 || RI.getHWRegIndex(Tmp2) >= MaxVGPRs) 618 break; 619 Tmp = Tmp2; 620 RS.setRegUsed(Tmp); 621 } 622 } else { 623 Tmp = RS.scavengeRegister(&AMDGPU::VGPR_32RegClass, 0); 624 RS.setRegUsed(Tmp); 625 } 626 627 // Insert copy to temporary VGPR. 628 unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32; 629 if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) { 630 TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64; 631 } else { 632 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 633 } 634 635 MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp) 636 .addReg(SrcReg, getKillRegState(KillSrc)); 637 if (ImpUseSuperReg) { 638 UseBuilder.addReg(ImpUseSuperReg, 639 getKillRegState(KillSrc) | RegState::Implicit); 640 } 641 642 MachineInstrBuilder DefBuilder 643 = BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 644 .addReg(Tmp, RegState::Kill); 645 646 if (ImpDefSuperReg) 647 DefBuilder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); 648 } 649 650 static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB, 651 MachineBasicBlock::iterator MI, const DebugLoc &DL, 652 MCRegister DestReg, MCRegister SrcReg, bool KillSrc, 653 const TargetRegisterClass *RC, bool Forward) { 654 const SIRegisterInfo &RI = TII.getRegisterInfo(); 655 ArrayRef<int16_t> BaseIndices = RI.getRegSplitParts(RC, 4); 656 MachineBasicBlock::iterator I = MI; 657 MachineInstr *FirstMI = nullptr, *LastMI = nullptr; 658 659 for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) { 660 int16_t SubIdx = BaseIndices[Idx]; 661 Register Reg = RI.getSubReg(DestReg, SubIdx); 662 unsigned Opcode = AMDGPU::S_MOV_B32; 663 664 // Is SGPR aligned? If so try to combine with next. 665 Register Src = RI.getSubReg(SrcReg, SubIdx); 666 bool AlignedDest = ((Reg - AMDGPU::SGPR0) % 2) == 0; 667 bool AlignedSrc = ((Src - AMDGPU::SGPR0) % 2) == 0; 668 if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) { 669 // Can use SGPR64 copy 670 unsigned Channel = RI.getChannelFromSubReg(SubIdx); 671 SubIdx = RI.getSubRegFromChannel(Channel, 2); 672 Opcode = AMDGPU::S_MOV_B64; 673 Idx++; 674 } 675 676 LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), RI.getSubReg(DestReg, SubIdx)) 677 .addReg(RI.getSubReg(SrcReg, SubIdx)) 678 .addReg(SrcReg, RegState::Implicit); 679 680 if (!FirstMI) 681 FirstMI = LastMI; 682 683 if (!Forward) 684 I--; 685 } 686 687 assert(FirstMI && LastMI); 688 if (!Forward) 689 std::swap(FirstMI, LastMI); 690 691 FirstMI->addOperand( 692 MachineOperand::CreateReg(DestReg, true /*IsDef*/, true /*IsImp*/)); 693 694 if (KillSrc) 695 LastMI->addRegisterKilled(SrcReg, &RI); 696 } 697 698 void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 699 MachineBasicBlock::iterator MI, 700 const DebugLoc &DL, MCRegister DestReg, 701 MCRegister SrcReg, bool KillSrc) const { 702 const TargetRegisterClass *RC = RI.getPhysRegClass(DestReg); 703 704 // FIXME: This is hack to resolve copies between 16 bit and 32 bit 705 // registers until all patterns are fixed. 706 if (Fix16BitCopies && 707 ((RI.getRegSizeInBits(*RC) == 16) ^ 708 (RI.getRegSizeInBits(*RI.getPhysRegClass(SrcReg)) == 16))) { 709 MCRegister &RegToFix = (RI.getRegSizeInBits(*RC) == 16) ? DestReg : SrcReg; 710 MCRegister Super = RI.get32BitRegister(RegToFix); 711 assert(RI.getSubReg(Super, AMDGPU::lo16) == RegToFix); 712 RegToFix = Super; 713 714 if (DestReg == SrcReg) { 715 // Insert empty bundle since ExpandPostRA expects an instruction here. 716 BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE)); 717 return; 718 } 719 720 RC = RI.getPhysRegClass(DestReg); 721 } 722 723 if (RC == &AMDGPU::VGPR_32RegClass) { 724 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || 725 AMDGPU::SReg_32RegClass.contains(SrcReg) || 726 AMDGPU::AGPR_32RegClass.contains(SrcReg)); 727 unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ? 728 AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32; 729 BuildMI(MBB, MI, DL, get(Opc), DestReg) 730 .addReg(SrcReg, getKillRegState(KillSrc)); 731 return; 732 } 733 734 if (RC == &AMDGPU::SReg_32_XM0RegClass || 735 RC == &AMDGPU::SReg_32RegClass) { 736 if (SrcReg == AMDGPU::SCC) { 737 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg) 738 .addImm(1) 739 .addImm(0); 740 return; 741 } 742 743 if (DestReg == AMDGPU::VCC_LO) { 744 if (AMDGPU::SReg_32RegClass.contains(SrcReg)) { 745 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO) 746 .addReg(SrcReg, getKillRegState(KillSrc)); 747 } else { 748 // FIXME: Hack until VReg_1 removed. 749 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 750 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) 751 .addImm(0) 752 .addReg(SrcReg, getKillRegState(KillSrc)); 753 } 754 755 return; 756 } 757 758 if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) { 759 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 760 return; 761 } 762 763 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 764 .addReg(SrcReg, getKillRegState(KillSrc)); 765 return; 766 } 767 768 if (RC == &AMDGPU::SReg_64RegClass) { 769 if (SrcReg == AMDGPU::SCC) { 770 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg) 771 .addImm(1) 772 .addImm(0); 773 return; 774 } 775 776 if (DestReg == AMDGPU::VCC) { 777 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 778 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) 779 .addReg(SrcReg, getKillRegState(KillSrc)); 780 } else { 781 // FIXME: Hack until VReg_1 removed. 782 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 783 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) 784 .addImm(0) 785 .addReg(SrcReg, getKillRegState(KillSrc)); 786 } 787 788 return; 789 } 790 791 if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) { 792 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 793 return; 794 } 795 796 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 797 .addReg(SrcReg, getKillRegState(KillSrc)); 798 return; 799 } 800 801 if (DestReg == AMDGPU::SCC) { 802 // Copying 64-bit or 32-bit sources to SCC barely makes sense, 803 // but SelectionDAG emits such copies for i1 sources. 804 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 805 // This copy can only be produced by patterns 806 // with explicit SCC, which are known to be enabled 807 // only for subtargets with S_CMP_LG_U64 present. 808 assert(ST.hasScalarCompareEq64()); 809 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64)) 810 .addReg(SrcReg, getKillRegState(KillSrc)) 811 .addImm(0); 812 } else { 813 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 814 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32)) 815 .addReg(SrcReg, getKillRegState(KillSrc)) 816 .addImm(0); 817 } 818 819 return; 820 } 821 822 if (RC == &AMDGPU::AGPR_32RegClass) { 823 if (AMDGPU::VGPR_32RegClass.contains(SrcReg)) { 824 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 825 .addReg(SrcReg, getKillRegState(KillSrc)); 826 return; 827 } 828 829 if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) { 830 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg) 831 .addReg(SrcReg, getKillRegState(KillSrc)); 832 return; 833 } 834 835 // FIXME: Pass should maintain scavenger to avoid scan through the block on 836 // every AGPR spill. 837 RegScavenger RS; 838 indirectCopyToAGPR(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS); 839 return; 840 } 841 842 const unsigned Size = RI.getRegSizeInBits(*RC); 843 if (Size == 16) { 844 assert(AMDGPU::VGPR_LO16RegClass.contains(SrcReg) || 845 AMDGPU::VGPR_HI16RegClass.contains(SrcReg) || 846 AMDGPU::SReg_LO16RegClass.contains(SrcReg) || 847 AMDGPU::AGPR_LO16RegClass.contains(SrcReg)); 848 849 bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg); 850 bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg); 851 bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg); 852 bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg); 853 bool DstLow = AMDGPU::VGPR_LO16RegClass.contains(DestReg) || 854 AMDGPU::SReg_LO16RegClass.contains(DestReg) || 855 AMDGPU::AGPR_LO16RegClass.contains(DestReg); 856 bool SrcLow = AMDGPU::VGPR_LO16RegClass.contains(SrcReg) || 857 AMDGPU::SReg_LO16RegClass.contains(SrcReg) || 858 AMDGPU::AGPR_LO16RegClass.contains(SrcReg); 859 MCRegister NewDestReg = RI.get32BitRegister(DestReg); 860 MCRegister NewSrcReg = RI.get32BitRegister(SrcReg); 861 862 if (IsSGPRDst) { 863 if (!IsSGPRSrc) { 864 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 865 return; 866 } 867 868 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg) 869 .addReg(NewSrcReg, getKillRegState(KillSrc)); 870 return; 871 } 872 873 if (IsAGPRDst || IsAGPRSrc) { 874 if (!DstLow || !SrcLow) { 875 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, 876 "Cannot use hi16 subreg with an AGPR!"); 877 } 878 879 copyPhysReg(MBB, MI, DL, NewDestReg, NewSrcReg, KillSrc); 880 return; 881 } 882 883 if (IsSGPRSrc && !ST.hasSDWAScalar()) { 884 if (!DstLow || !SrcLow) { 885 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, 886 "Cannot use hi16 subreg on VI!"); 887 } 888 889 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg) 890 .addReg(NewSrcReg, getKillRegState(KillSrc)); 891 return; 892 } 893 894 auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg) 895 .addImm(0) // src0_modifiers 896 .addReg(NewSrcReg) 897 .addImm(0) // clamp 898 .addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0 899 : AMDGPU::SDWA::SdwaSel::WORD_1) 900 .addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE) 901 .addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0 902 : AMDGPU::SDWA::SdwaSel::WORD_1) 903 .addReg(NewDestReg, RegState::Implicit | RegState::Undef); 904 // First implicit operand is $exec. 905 MIB->tieOperands(0, MIB->getNumOperands() - 1); 906 return; 907 } 908 909 const TargetRegisterClass *SrcRC = RI.getPhysRegClass(SrcReg); 910 if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) { 911 if (ST.hasPackedFP32Ops()) { 912 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg) 913 .addImm(SISrcMods::OP_SEL_1) 914 .addReg(SrcReg) 915 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) 916 .addReg(SrcReg) 917 .addImm(0) // op_sel_lo 918 .addImm(0) // op_sel_hi 919 .addImm(0) // neg_lo 920 .addImm(0) // neg_hi 921 .addImm(0) // clamp 922 .addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); 923 return; 924 } 925 } 926 927 const bool Forward = RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg); 928 if (RI.isSGPRClass(RC)) { 929 if (!RI.isSGPRClass(SrcRC)) { 930 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 931 return; 932 } 933 const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg); 934 expandSGPRCopy(*this, MBB, MI, DL, DestReg, SrcReg, CanKillSuperReg, RC, 935 Forward); 936 return; 937 } 938 939 unsigned EltSize = 4; 940 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 941 if (RI.isAGPRClass(RC)) { 942 if (ST.hasGFX90AInsts() && RI.isAGPRClass(SrcRC)) 943 Opcode = AMDGPU::V_ACCVGPR_MOV_B32; 944 else if (RI.hasVGPRs(SrcRC)) 945 Opcode = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 946 else 947 Opcode = AMDGPU::INSTRUCTION_LIST_END; 948 } else if (RI.hasVGPRs(RC) && RI.isAGPRClass(SrcRC)) { 949 Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64; 950 } else if ((Size % 64 == 0) && RI.hasVGPRs(RC) && 951 (RI.isProperlyAlignedRC(*RC) && 952 (SrcRC == RC || RI.isSGPRClass(SrcRC)))) { 953 // TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov. 954 if (ST.hasPackedFP32Ops()) { 955 Opcode = AMDGPU::V_PK_MOV_B32; 956 EltSize = 8; 957 } 958 } 959 960 // For the cases where we need an intermediate instruction/temporary register 961 // (destination is an AGPR), we need a scavenger. 962 // 963 // FIXME: The pass should maintain this for us so we don't have to re-scan the 964 // whole block for every handled copy. 965 std::unique_ptr<RegScavenger> RS; 966 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) 967 RS.reset(new RegScavenger()); 968 969 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RC, EltSize); 970 971 // If there is an overlap, we can't kill the super-register on the last 972 // instruction, since it will also kill the components made live by this def. 973 const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg); 974 975 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 976 unsigned SubIdx; 977 if (Forward) 978 SubIdx = SubIndices[Idx]; 979 else 980 SubIdx = SubIndices[SubIndices.size() - Idx - 1]; 981 982 bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1; 983 984 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) { 985 Register ImpDefSuper = Idx == 0 ? Register(DestReg) : Register(); 986 Register ImpUseSuper = SrcReg; 987 indirectCopyToAGPR(*this, MBB, MI, DL, RI.getSubReg(DestReg, SubIdx), 988 RI.getSubReg(SrcReg, SubIdx), UseKill, *RS, 989 ImpDefSuper, ImpUseSuper); 990 } else if (Opcode == AMDGPU::V_PK_MOV_B32) { 991 Register DstSubReg = RI.getSubReg(DestReg, SubIdx); 992 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx); 993 MachineInstrBuilder MIB = 994 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DstSubReg) 995 .addImm(SISrcMods::OP_SEL_1) 996 .addReg(SrcSubReg) 997 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) 998 .addReg(SrcSubReg) 999 .addImm(0) // op_sel_lo 1000 .addImm(0) // op_sel_hi 1001 .addImm(0) // neg_lo 1002 .addImm(0) // neg_hi 1003 .addImm(0) // clamp 1004 .addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); 1005 if (Idx == 0) 1006 MIB.addReg(DestReg, RegState::Define | RegState::Implicit); 1007 } else { 1008 MachineInstrBuilder Builder = 1009 BuildMI(MBB, MI, DL, get(Opcode), RI.getSubReg(DestReg, SubIdx)) 1010 .addReg(RI.getSubReg(SrcReg, SubIdx)); 1011 if (Idx == 0) 1012 Builder.addReg(DestReg, RegState::Define | RegState::Implicit); 1013 1014 Builder.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); 1015 } 1016 } 1017 } 1018 1019 int SIInstrInfo::commuteOpcode(unsigned Opcode) const { 1020 int NewOpc; 1021 1022 // Try to map original to commuted opcode 1023 NewOpc = AMDGPU::getCommuteRev(Opcode); 1024 if (NewOpc != -1) 1025 // Check if the commuted (REV) opcode exists on the target. 1026 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 1027 1028 // Try to map commuted to original opcode 1029 NewOpc = AMDGPU::getCommuteOrig(Opcode); 1030 if (NewOpc != -1) 1031 // Check if the original (non-REV) opcode exists on the target. 1032 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 1033 1034 return Opcode; 1035 } 1036 1037 void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB, 1038 MachineBasicBlock::iterator MI, 1039 const DebugLoc &DL, unsigned DestReg, 1040 int64_t Value) const { 1041 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1042 const TargetRegisterClass *RegClass = MRI.getRegClass(DestReg); 1043 if (RegClass == &AMDGPU::SReg_32RegClass || 1044 RegClass == &AMDGPU::SGPR_32RegClass || 1045 RegClass == &AMDGPU::SReg_32_XM0RegClass || 1046 RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) { 1047 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 1048 .addImm(Value); 1049 return; 1050 } 1051 1052 if (RegClass == &AMDGPU::SReg_64RegClass || 1053 RegClass == &AMDGPU::SGPR_64RegClass || 1054 RegClass == &AMDGPU::SReg_64_XEXECRegClass) { 1055 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 1056 .addImm(Value); 1057 return; 1058 } 1059 1060 if (RegClass == &AMDGPU::VGPR_32RegClass) { 1061 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) 1062 .addImm(Value); 1063 return; 1064 } 1065 if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) { 1066 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg) 1067 .addImm(Value); 1068 return; 1069 } 1070 1071 unsigned EltSize = 4; 1072 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1073 if (RI.isSGPRClass(RegClass)) { 1074 if (RI.getRegSizeInBits(*RegClass) > 32) { 1075 Opcode = AMDGPU::S_MOV_B64; 1076 EltSize = 8; 1077 } else { 1078 Opcode = AMDGPU::S_MOV_B32; 1079 EltSize = 4; 1080 } 1081 } 1082 1083 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RegClass, EltSize); 1084 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 1085 int64_t IdxValue = Idx == 0 ? Value : 0; 1086 1087 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, 1088 get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx])); 1089 Builder.addImm(IdxValue); 1090 } 1091 } 1092 1093 const TargetRegisterClass * 1094 SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const { 1095 return &AMDGPU::VGPR_32RegClass; 1096 } 1097 1098 void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB, 1099 MachineBasicBlock::iterator I, 1100 const DebugLoc &DL, Register DstReg, 1101 ArrayRef<MachineOperand> Cond, 1102 Register TrueReg, 1103 Register FalseReg) const { 1104 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1105 const TargetRegisterClass *BoolXExecRC = 1106 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 1107 assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass && 1108 "Not a VGPR32 reg"); 1109 1110 if (Cond.size() == 1) { 1111 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1112 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1113 .add(Cond[0]); 1114 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1115 .addImm(0) 1116 .addReg(FalseReg) 1117 .addImm(0) 1118 .addReg(TrueReg) 1119 .addReg(SReg); 1120 } else if (Cond.size() == 2) { 1121 assert(Cond[0].isImm() && "Cond[0] is not an immediate"); 1122 switch (Cond[0].getImm()) { 1123 case SIInstrInfo::SCC_TRUE: { 1124 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1125 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1126 : AMDGPU::S_CSELECT_B64), SReg) 1127 .addImm(1) 1128 .addImm(0); 1129 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1130 .addImm(0) 1131 .addReg(FalseReg) 1132 .addImm(0) 1133 .addReg(TrueReg) 1134 .addReg(SReg); 1135 break; 1136 } 1137 case SIInstrInfo::SCC_FALSE: { 1138 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1139 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1140 : AMDGPU::S_CSELECT_B64), SReg) 1141 .addImm(0) 1142 .addImm(1); 1143 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1144 .addImm(0) 1145 .addReg(FalseReg) 1146 .addImm(0) 1147 .addReg(TrueReg) 1148 .addReg(SReg); 1149 break; 1150 } 1151 case SIInstrInfo::VCCNZ: { 1152 MachineOperand RegOp = Cond[1]; 1153 RegOp.setImplicit(false); 1154 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1155 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1156 .add(RegOp); 1157 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1158 .addImm(0) 1159 .addReg(FalseReg) 1160 .addImm(0) 1161 .addReg(TrueReg) 1162 .addReg(SReg); 1163 break; 1164 } 1165 case SIInstrInfo::VCCZ: { 1166 MachineOperand RegOp = Cond[1]; 1167 RegOp.setImplicit(false); 1168 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1169 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1170 .add(RegOp); 1171 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1172 .addImm(0) 1173 .addReg(TrueReg) 1174 .addImm(0) 1175 .addReg(FalseReg) 1176 .addReg(SReg); 1177 break; 1178 } 1179 case SIInstrInfo::EXECNZ: { 1180 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1181 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); 1182 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 1183 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) 1184 .addImm(0); 1185 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1186 : AMDGPU::S_CSELECT_B64), SReg) 1187 .addImm(1) 1188 .addImm(0); 1189 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1190 .addImm(0) 1191 .addReg(FalseReg) 1192 .addImm(0) 1193 .addReg(TrueReg) 1194 .addReg(SReg); 1195 break; 1196 } 1197 case SIInstrInfo::EXECZ: { 1198 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1199 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); 1200 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 1201 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) 1202 .addImm(0); 1203 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1204 : AMDGPU::S_CSELECT_B64), SReg) 1205 .addImm(0) 1206 .addImm(1); 1207 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1208 .addImm(0) 1209 .addReg(FalseReg) 1210 .addImm(0) 1211 .addReg(TrueReg) 1212 .addReg(SReg); 1213 llvm_unreachable("Unhandled branch predicate EXECZ"); 1214 break; 1215 } 1216 default: 1217 llvm_unreachable("invalid branch predicate"); 1218 } 1219 } else { 1220 llvm_unreachable("Can only handle Cond size 1 or 2"); 1221 } 1222 } 1223 1224 Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB, 1225 MachineBasicBlock::iterator I, 1226 const DebugLoc &DL, 1227 Register SrcReg, int Value) const { 1228 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1229 Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); 1230 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg) 1231 .addImm(Value) 1232 .addReg(SrcReg); 1233 1234 return Reg; 1235 } 1236 1237 Register SIInstrInfo::insertNE(MachineBasicBlock *MBB, 1238 MachineBasicBlock::iterator I, 1239 const DebugLoc &DL, 1240 Register SrcReg, int Value) const { 1241 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1242 Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); 1243 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg) 1244 .addImm(Value) 1245 .addReg(SrcReg); 1246 1247 return Reg; 1248 } 1249 1250 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { 1251 1252 if (RI.isAGPRClass(DstRC)) 1253 return AMDGPU::COPY; 1254 if (RI.getRegSizeInBits(*DstRC) == 32) { 1255 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1256 } else if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) { 1257 return AMDGPU::S_MOV_B64; 1258 } else if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) { 1259 return AMDGPU::V_MOV_B64_PSEUDO; 1260 } 1261 return AMDGPU::COPY; 1262 } 1263 1264 const MCInstrDesc & 1265 SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize, 1266 bool IsIndirectSrc) const { 1267 if (IsIndirectSrc) { 1268 if (VecSize <= 32) // 4 bytes 1269 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1); 1270 if (VecSize <= 64) // 8 bytes 1271 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2); 1272 if (VecSize <= 96) // 12 bytes 1273 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3); 1274 if (VecSize <= 128) // 16 bytes 1275 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4); 1276 if (VecSize <= 160) // 20 bytes 1277 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5); 1278 if (VecSize <= 256) // 32 bytes 1279 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8); 1280 if (VecSize <= 512) // 64 bytes 1281 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16); 1282 if (VecSize <= 1024) // 128 bytes 1283 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32); 1284 1285 llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos"); 1286 } 1287 1288 if (VecSize <= 32) // 4 bytes 1289 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1); 1290 if (VecSize <= 64) // 8 bytes 1291 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2); 1292 if (VecSize <= 96) // 12 bytes 1293 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3); 1294 if (VecSize <= 128) // 16 bytes 1295 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4); 1296 if (VecSize <= 160) // 20 bytes 1297 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5); 1298 if (VecSize <= 256) // 32 bytes 1299 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8); 1300 if (VecSize <= 512) // 64 bytes 1301 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16); 1302 if (VecSize <= 1024) // 128 bytes 1303 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32); 1304 1305 llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos"); 1306 } 1307 1308 static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) { 1309 if (VecSize <= 32) // 4 bytes 1310 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1; 1311 if (VecSize <= 64) // 8 bytes 1312 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2; 1313 if (VecSize <= 96) // 12 bytes 1314 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3; 1315 if (VecSize <= 128) // 16 bytes 1316 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4; 1317 if (VecSize <= 160) // 20 bytes 1318 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5; 1319 if (VecSize <= 256) // 32 bytes 1320 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8; 1321 if (VecSize <= 512) // 64 bytes 1322 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16; 1323 if (VecSize <= 1024) // 128 bytes 1324 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32; 1325 1326 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1327 } 1328 1329 static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) { 1330 if (VecSize <= 32) // 4 bytes 1331 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1; 1332 if (VecSize <= 64) // 8 bytes 1333 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2; 1334 if (VecSize <= 96) // 12 bytes 1335 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3; 1336 if (VecSize <= 128) // 16 bytes 1337 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4; 1338 if (VecSize <= 160) // 20 bytes 1339 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5; 1340 if (VecSize <= 256) // 32 bytes 1341 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8; 1342 if (VecSize <= 512) // 64 bytes 1343 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16; 1344 if (VecSize <= 1024) // 128 bytes 1345 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32; 1346 1347 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1348 } 1349 1350 static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) { 1351 if (VecSize <= 64) // 8 bytes 1352 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1; 1353 if (VecSize <= 128) // 16 bytes 1354 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2; 1355 if (VecSize <= 256) // 32 bytes 1356 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4; 1357 if (VecSize <= 512) // 64 bytes 1358 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8; 1359 if (VecSize <= 1024) // 128 bytes 1360 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16; 1361 1362 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1363 } 1364 1365 const MCInstrDesc & 1366 SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize, 1367 bool IsSGPR) const { 1368 if (IsSGPR) { 1369 switch (EltSize) { 1370 case 32: 1371 return get(getIndirectSGPRWriteMovRelPseudo32(VecSize)); 1372 case 64: 1373 return get(getIndirectSGPRWriteMovRelPseudo64(VecSize)); 1374 default: 1375 llvm_unreachable("invalid reg indexing elt size"); 1376 } 1377 } 1378 1379 assert(EltSize == 32 && "invalid reg indexing elt size"); 1380 return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize)); 1381 } 1382 1383 static unsigned getSGPRSpillSaveOpcode(unsigned Size) { 1384 switch (Size) { 1385 case 4: 1386 return AMDGPU::SI_SPILL_S32_SAVE; 1387 case 8: 1388 return AMDGPU::SI_SPILL_S64_SAVE; 1389 case 12: 1390 return AMDGPU::SI_SPILL_S96_SAVE; 1391 case 16: 1392 return AMDGPU::SI_SPILL_S128_SAVE; 1393 case 20: 1394 return AMDGPU::SI_SPILL_S160_SAVE; 1395 case 24: 1396 return AMDGPU::SI_SPILL_S192_SAVE; 1397 case 28: 1398 return AMDGPU::SI_SPILL_S224_SAVE; 1399 case 32: 1400 return AMDGPU::SI_SPILL_S256_SAVE; 1401 case 64: 1402 return AMDGPU::SI_SPILL_S512_SAVE; 1403 case 128: 1404 return AMDGPU::SI_SPILL_S1024_SAVE; 1405 default: 1406 llvm_unreachable("unknown register size"); 1407 } 1408 } 1409 1410 static unsigned getVGPRSpillSaveOpcode(unsigned Size) { 1411 switch (Size) { 1412 case 4: 1413 return AMDGPU::SI_SPILL_V32_SAVE; 1414 case 8: 1415 return AMDGPU::SI_SPILL_V64_SAVE; 1416 case 12: 1417 return AMDGPU::SI_SPILL_V96_SAVE; 1418 case 16: 1419 return AMDGPU::SI_SPILL_V128_SAVE; 1420 case 20: 1421 return AMDGPU::SI_SPILL_V160_SAVE; 1422 case 24: 1423 return AMDGPU::SI_SPILL_V192_SAVE; 1424 case 28: 1425 return AMDGPU::SI_SPILL_V224_SAVE; 1426 case 32: 1427 return AMDGPU::SI_SPILL_V256_SAVE; 1428 case 64: 1429 return AMDGPU::SI_SPILL_V512_SAVE; 1430 case 128: 1431 return AMDGPU::SI_SPILL_V1024_SAVE; 1432 default: 1433 llvm_unreachable("unknown register size"); 1434 } 1435 } 1436 1437 static unsigned getAGPRSpillSaveOpcode(unsigned Size) { 1438 switch (Size) { 1439 case 4: 1440 return AMDGPU::SI_SPILL_A32_SAVE; 1441 case 8: 1442 return AMDGPU::SI_SPILL_A64_SAVE; 1443 case 12: 1444 return AMDGPU::SI_SPILL_A96_SAVE; 1445 case 16: 1446 return AMDGPU::SI_SPILL_A128_SAVE; 1447 case 20: 1448 return AMDGPU::SI_SPILL_A160_SAVE; 1449 case 24: 1450 return AMDGPU::SI_SPILL_A192_SAVE; 1451 case 28: 1452 return AMDGPU::SI_SPILL_A224_SAVE; 1453 case 32: 1454 return AMDGPU::SI_SPILL_A256_SAVE; 1455 case 64: 1456 return AMDGPU::SI_SPILL_A512_SAVE; 1457 case 128: 1458 return AMDGPU::SI_SPILL_A1024_SAVE; 1459 default: 1460 llvm_unreachable("unknown register size"); 1461 } 1462 } 1463 1464 static unsigned getAVSpillSaveOpcode(unsigned Size) { 1465 switch (Size) { 1466 case 4: 1467 return AMDGPU::SI_SPILL_AV32_SAVE; 1468 case 8: 1469 return AMDGPU::SI_SPILL_AV64_SAVE; 1470 case 12: 1471 return AMDGPU::SI_SPILL_AV96_SAVE; 1472 case 16: 1473 return AMDGPU::SI_SPILL_AV128_SAVE; 1474 case 20: 1475 return AMDGPU::SI_SPILL_AV160_SAVE; 1476 case 24: 1477 return AMDGPU::SI_SPILL_AV192_SAVE; 1478 case 28: 1479 return AMDGPU::SI_SPILL_AV224_SAVE; 1480 case 32: 1481 return AMDGPU::SI_SPILL_AV256_SAVE; 1482 case 64: 1483 return AMDGPU::SI_SPILL_AV512_SAVE; 1484 case 128: 1485 return AMDGPU::SI_SPILL_AV1024_SAVE; 1486 default: 1487 llvm_unreachable("unknown register size"); 1488 } 1489 } 1490 1491 void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1492 MachineBasicBlock::iterator MI, 1493 Register SrcReg, bool isKill, 1494 int FrameIndex, 1495 const TargetRegisterClass *RC, 1496 const TargetRegisterInfo *TRI) const { 1497 MachineFunction *MF = MBB.getParent(); 1498 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 1499 MachineFrameInfo &FrameInfo = MF->getFrameInfo(); 1500 const DebugLoc &DL = MBB.findDebugLoc(MI); 1501 1502 MachinePointerInfo PtrInfo 1503 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 1504 MachineMemOperand *MMO = MF->getMachineMemOperand( 1505 PtrInfo, MachineMemOperand::MOStore, FrameInfo.getObjectSize(FrameIndex), 1506 FrameInfo.getObjectAlign(FrameIndex)); 1507 unsigned SpillSize = TRI->getSpillSize(*RC); 1508 1509 MachineRegisterInfo &MRI = MF->getRegInfo(); 1510 if (RI.isSGPRClass(RC)) { 1511 MFI->setHasSpilledSGPRs(); 1512 assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled"); 1513 assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI && 1514 SrcReg != AMDGPU::EXEC && "exec should not be spilled"); 1515 1516 // We are only allowed to create one new instruction when spilling 1517 // registers, so we need to use pseudo instruction for spilling SGPRs. 1518 const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(SpillSize)); 1519 1520 // The SGPR spill/restore instructions only work on number sgprs, so we need 1521 // to make sure we are using the correct register class. 1522 if (SrcReg.isVirtual() && SpillSize == 4) { 1523 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 1524 } 1525 1526 BuildMI(MBB, MI, DL, OpDesc) 1527 .addReg(SrcReg, getKillRegState(isKill)) // data 1528 .addFrameIndex(FrameIndex) // addr 1529 .addMemOperand(MMO) 1530 .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); 1531 1532 if (RI.spillSGPRToVGPR()) 1533 FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); 1534 return; 1535 } 1536 1537 unsigned Opcode = RI.isVectorSuperClass(RC) ? getAVSpillSaveOpcode(SpillSize) 1538 : RI.isAGPRClass(RC) ? getAGPRSpillSaveOpcode(SpillSize) 1539 : getVGPRSpillSaveOpcode(SpillSize); 1540 MFI->setHasSpilledVGPRs(); 1541 1542 BuildMI(MBB, MI, DL, get(Opcode)) 1543 .addReg(SrcReg, getKillRegState(isKill)) // data 1544 .addFrameIndex(FrameIndex) // addr 1545 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset 1546 .addImm(0) // offset 1547 .addMemOperand(MMO); 1548 } 1549 1550 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { 1551 switch (Size) { 1552 case 4: 1553 return AMDGPU::SI_SPILL_S32_RESTORE; 1554 case 8: 1555 return AMDGPU::SI_SPILL_S64_RESTORE; 1556 case 12: 1557 return AMDGPU::SI_SPILL_S96_RESTORE; 1558 case 16: 1559 return AMDGPU::SI_SPILL_S128_RESTORE; 1560 case 20: 1561 return AMDGPU::SI_SPILL_S160_RESTORE; 1562 case 24: 1563 return AMDGPU::SI_SPILL_S192_RESTORE; 1564 case 28: 1565 return AMDGPU::SI_SPILL_S224_RESTORE; 1566 case 32: 1567 return AMDGPU::SI_SPILL_S256_RESTORE; 1568 case 64: 1569 return AMDGPU::SI_SPILL_S512_RESTORE; 1570 case 128: 1571 return AMDGPU::SI_SPILL_S1024_RESTORE; 1572 default: 1573 llvm_unreachable("unknown register size"); 1574 } 1575 } 1576 1577 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { 1578 switch (Size) { 1579 case 4: 1580 return AMDGPU::SI_SPILL_V32_RESTORE; 1581 case 8: 1582 return AMDGPU::SI_SPILL_V64_RESTORE; 1583 case 12: 1584 return AMDGPU::SI_SPILL_V96_RESTORE; 1585 case 16: 1586 return AMDGPU::SI_SPILL_V128_RESTORE; 1587 case 20: 1588 return AMDGPU::SI_SPILL_V160_RESTORE; 1589 case 24: 1590 return AMDGPU::SI_SPILL_V192_RESTORE; 1591 case 28: 1592 return AMDGPU::SI_SPILL_V224_RESTORE; 1593 case 32: 1594 return AMDGPU::SI_SPILL_V256_RESTORE; 1595 case 64: 1596 return AMDGPU::SI_SPILL_V512_RESTORE; 1597 case 128: 1598 return AMDGPU::SI_SPILL_V1024_RESTORE; 1599 default: 1600 llvm_unreachable("unknown register size"); 1601 } 1602 } 1603 1604 static unsigned getAGPRSpillRestoreOpcode(unsigned Size) { 1605 switch (Size) { 1606 case 4: 1607 return AMDGPU::SI_SPILL_A32_RESTORE; 1608 case 8: 1609 return AMDGPU::SI_SPILL_A64_RESTORE; 1610 case 12: 1611 return AMDGPU::SI_SPILL_A96_RESTORE; 1612 case 16: 1613 return AMDGPU::SI_SPILL_A128_RESTORE; 1614 case 20: 1615 return AMDGPU::SI_SPILL_A160_RESTORE; 1616 case 24: 1617 return AMDGPU::SI_SPILL_A192_RESTORE; 1618 case 28: 1619 return AMDGPU::SI_SPILL_A224_RESTORE; 1620 case 32: 1621 return AMDGPU::SI_SPILL_A256_RESTORE; 1622 case 64: 1623 return AMDGPU::SI_SPILL_A512_RESTORE; 1624 case 128: 1625 return AMDGPU::SI_SPILL_A1024_RESTORE; 1626 default: 1627 llvm_unreachable("unknown register size"); 1628 } 1629 } 1630 1631 static unsigned getAVSpillRestoreOpcode(unsigned Size) { 1632 switch (Size) { 1633 case 4: 1634 return AMDGPU::SI_SPILL_AV32_RESTORE; 1635 case 8: 1636 return AMDGPU::SI_SPILL_AV64_RESTORE; 1637 case 12: 1638 return AMDGPU::SI_SPILL_AV96_RESTORE; 1639 case 16: 1640 return AMDGPU::SI_SPILL_AV128_RESTORE; 1641 case 20: 1642 return AMDGPU::SI_SPILL_AV160_RESTORE; 1643 case 24: 1644 return AMDGPU::SI_SPILL_AV192_RESTORE; 1645 case 28: 1646 return AMDGPU::SI_SPILL_AV224_RESTORE; 1647 case 32: 1648 return AMDGPU::SI_SPILL_AV256_RESTORE; 1649 case 64: 1650 return AMDGPU::SI_SPILL_AV512_RESTORE; 1651 case 128: 1652 return AMDGPU::SI_SPILL_AV1024_RESTORE; 1653 default: 1654 llvm_unreachable("unknown register size"); 1655 } 1656 } 1657 1658 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1659 MachineBasicBlock::iterator MI, 1660 Register DestReg, int FrameIndex, 1661 const TargetRegisterClass *RC, 1662 const TargetRegisterInfo *TRI) const { 1663 MachineFunction *MF = MBB.getParent(); 1664 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 1665 MachineFrameInfo &FrameInfo = MF->getFrameInfo(); 1666 const DebugLoc &DL = MBB.findDebugLoc(MI); 1667 unsigned SpillSize = TRI->getSpillSize(*RC); 1668 1669 MachinePointerInfo PtrInfo 1670 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 1671 1672 MachineMemOperand *MMO = MF->getMachineMemOperand( 1673 PtrInfo, MachineMemOperand::MOLoad, FrameInfo.getObjectSize(FrameIndex), 1674 FrameInfo.getObjectAlign(FrameIndex)); 1675 1676 if (RI.isSGPRClass(RC)) { 1677 MFI->setHasSpilledSGPRs(); 1678 assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into"); 1679 assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI && 1680 DestReg != AMDGPU::EXEC && "exec should not be spilled"); 1681 1682 // FIXME: Maybe this should not include a memoperand because it will be 1683 // lowered to non-memory instructions. 1684 const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(SpillSize)); 1685 if (DestReg.isVirtual() && SpillSize == 4) { 1686 MachineRegisterInfo &MRI = MF->getRegInfo(); 1687 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 1688 } 1689 1690 if (RI.spillSGPRToVGPR()) 1691 FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); 1692 BuildMI(MBB, MI, DL, OpDesc, DestReg) 1693 .addFrameIndex(FrameIndex) // addr 1694 .addMemOperand(MMO) 1695 .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); 1696 1697 return; 1698 } 1699 1700 unsigned Opcode = RI.isVectorSuperClass(RC) 1701 ? getAVSpillRestoreOpcode(SpillSize) 1702 : RI.isAGPRClass(RC) ? getAGPRSpillRestoreOpcode(SpillSize) 1703 : getVGPRSpillRestoreOpcode(SpillSize); 1704 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 1705 .addFrameIndex(FrameIndex) // vaddr 1706 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset 1707 .addImm(0) // offset 1708 .addMemOperand(MMO); 1709 } 1710 1711 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, 1712 MachineBasicBlock::iterator MI) const { 1713 insertNoops(MBB, MI, 1); 1714 } 1715 1716 void SIInstrInfo::insertNoops(MachineBasicBlock &MBB, 1717 MachineBasicBlock::iterator MI, 1718 unsigned Quantity) const { 1719 DebugLoc DL = MBB.findDebugLoc(MI); 1720 while (Quantity > 0) { 1721 unsigned Arg = std::min(Quantity, 8u); 1722 Quantity -= Arg; 1723 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1); 1724 } 1725 } 1726 1727 void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const { 1728 auto MF = MBB.getParent(); 1729 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 1730 1731 assert(Info->isEntryFunction()); 1732 1733 if (MBB.succ_empty()) { 1734 bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end(); 1735 if (HasNoTerminator) { 1736 if (Info->returnsVoid()) { 1737 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0); 1738 } else { 1739 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG)); 1740 } 1741 } 1742 } 1743 } 1744 1745 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) { 1746 switch (MI.getOpcode()) { 1747 default: 1748 if (MI.isMetaInstruction()) 1749 return 0; 1750 return 1; // FIXME: Do wait states equal cycles? 1751 1752 case AMDGPU::S_NOP: 1753 return MI.getOperand(0).getImm() + 1; 1754 1755 // FIXME: Any other pseudo instruction? 1756 // SI_RETURN_TO_EPILOG is a fallthrough to code outside of the function. The 1757 // hazard, even if one exist, won't really be visible. Should we handle it? 1758 case AMDGPU::SI_MASKED_UNREACHABLE: 1759 case AMDGPU::WAVE_BARRIER: 1760 return 0; 1761 } 1762 } 1763 1764 bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1765 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1766 MachineBasicBlock &MBB = *MI.getParent(); 1767 DebugLoc DL = MBB.findDebugLoc(MI); 1768 switch (MI.getOpcode()) { 1769 default: return TargetInstrInfo::expandPostRAPseudo(MI); 1770 case AMDGPU::S_MOV_B64_term: 1771 // This is only a terminator to get the correct spill code placement during 1772 // register allocation. 1773 MI.setDesc(get(AMDGPU::S_MOV_B64)); 1774 break; 1775 1776 case AMDGPU::S_MOV_B32_term: 1777 // This is only a terminator to get the correct spill code placement during 1778 // register allocation. 1779 MI.setDesc(get(AMDGPU::S_MOV_B32)); 1780 break; 1781 1782 case AMDGPU::S_XOR_B64_term: 1783 // This is only a terminator to get the correct spill code placement during 1784 // register allocation. 1785 MI.setDesc(get(AMDGPU::S_XOR_B64)); 1786 break; 1787 1788 case AMDGPU::S_XOR_B32_term: 1789 // This is only a terminator to get the correct spill code placement during 1790 // register allocation. 1791 MI.setDesc(get(AMDGPU::S_XOR_B32)); 1792 break; 1793 case AMDGPU::S_OR_B64_term: 1794 // This is only a terminator to get the correct spill code placement during 1795 // register allocation. 1796 MI.setDesc(get(AMDGPU::S_OR_B64)); 1797 break; 1798 case AMDGPU::S_OR_B32_term: 1799 // This is only a terminator to get the correct spill code placement during 1800 // register allocation. 1801 MI.setDesc(get(AMDGPU::S_OR_B32)); 1802 break; 1803 1804 case AMDGPU::S_ANDN2_B64_term: 1805 // This is only a terminator to get the correct spill code placement during 1806 // register allocation. 1807 MI.setDesc(get(AMDGPU::S_ANDN2_B64)); 1808 break; 1809 1810 case AMDGPU::S_ANDN2_B32_term: 1811 // This is only a terminator to get the correct spill code placement during 1812 // register allocation. 1813 MI.setDesc(get(AMDGPU::S_ANDN2_B32)); 1814 break; 1815 1816 case AMDGPU::S_AND_B64_term: 1817 // This is only a terminator to get the correct spill code placement during 1818 // register allocation. 1819 MI.setDesc(get(AMDGPU::S_AND_B64)); 1820 break; 1821 1822 case AMDGPU::S_AND_B32_term: 1823 // This is only a terminator to get the correct spill code placement during 1824 // register allocation. 1825 MI.setDesc(get(AMDGPU::S_AND_B32)); 1826 break; 1827 1828 case AMDGPU::V_MOV_B64_PSEUDO: { 1829 Register Dst = MI.getOperand(0).getReg(); 1830 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 1831 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 1832 1833 const MachineOperand &SrcOp = MI.getOperand(1); 1834 // FIXME: Will this work for 64-bit floating point immediates? 1835 assert(!SrcOp.isFPImm()); 1836 if (SrcOp.isImm()) { 1837 APInt Imm(64, SrcOp.getImm()); 1838 APInt Lo(32, Imm.getLoBits(32).getZExtValue()); 1839 APInt Hi(32, Imm.getHiBits(32).getZExtValue()); 1840 if (ST.hasPackedFP32Ops() && Lo == Hi && isInlineConstant(Lo)) { 1841 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) 1842 .addImm(SISrcMods::OP_SEL_1) 1843 .addImm(Lo.getSExtValue()) 1844 .addImm(SISrcMods::OP_SEL_1) 1845 .addImm(Lo.getSExtValue()) 1846 .addImm(0) // op_sel_lo 1847 .addImm(0) // op_sel_hi 1848 .addImm(0) // neg_lo 1849 .addImm(0) // neg_hi 1850 .addImm(0); // clamp 1851 } else { 1852 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 1853 .addImm(Lo.getSExtValue()) 1854 .addReg(Dst, RegState::Implicit | RegState::Define); 1855 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 1856 .addImm(Hi.getSExtValue()) 1857 .addReg(Dst, RegState::Implicit | RegState::Define); 1858 } 1859 } else { 1860 assert(SrcOp.isReg()); 1861 if (ST.hasPackedFP32Ops() && 1862 !RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) { 1863 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) 1864 .addImm(SISrcMods::OP_SEL_1) // src0_mod 1865 .addReg(SrcOp.getReg()) 1866 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod 1867 .addReg(SrcOp.getReg()) 1868 .addImm(0) // op_sel_lo 1869 .addImm(0) // op_sel_hi 1870 .addImm(0) // neg_lo 1871 .addImm(0) // neg_hi 1872 .addImm(0); // clamp 1873 } else { 1874 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 1875 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) 1876 .addReg(Dst, RegState::Implicit | RegState::Define); 1877 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 1878 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) 1879 .addReg(Dst, RegState::Implicit | RegState::Define); 1880 } 1881 } 1882 MI.eraseFromParent(); 1883 break; 1884 } 1885 case AMDGPU::V_MOV_B64_DPP_PSEUDO: { 1886 expandMovDPP64(MI); 1887 break; 1888 } 1889 case AMDGPU::S_MOV_B64_IMM_PSEUDO: { 1890 const MachineOperand &SrcOp = MI.getOperand(1); 1891 assert(!SrcOp.isFPImm()); 1892 APInt Imm(64, SrcOp.getImm()); 1893 if (Imm.isIntN(32) || isInlineConstant(Imm)) { 1894 MI.setDesc(get(AMDGPU::S_MOV_B64)); 1895 break; 1896 } 1897 1898 Register Dst = MI.getOperand(0).getReg(); 1899 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 1900 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 1901 1902 APInt Lo(32, Imm.getLoBits(32).getZExtValue()); 1903 APInt Hi(32, Imm.getHiBits(32).getZExtValue()); 1904 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo) 1905 .addImm(Lo.getSExtValue()) 1906 .addReg(Dst, RegState::Implicit | RegState::Define); 1907 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi) 1908 .addImm(Hi.getSExtValue()) 1909 .addReg(Dst, RegState::Implicit | RegState::Define); 1910 MI.eraseFromParent(); 1911 break; 1912 } 1913 case AMDGPU::V_SET_INACTIVE_B32: { 1914 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64; 1915 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 1916 // FIXME: We may possibly optimize the COPY once we find ways to make LLVM 1917 // optimizations (mainly Register Coalescer) aware of WWM register liveness. 1918 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg()) 1919 .add(MI.getOperand(1)); 1920 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec); 1921 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten 1922 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg()) 1923 .add(MI.getOperand(2)); 1924 BuildMI(MBB, MI, DL, get(NotOpc), Exec) 1925 .addReg(Exec); 1926 MI.eraseFromParent(); 1927 break; 1928 } 1929 case AMDGPU::V_SET_INACTIVE_B64: { 1930 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64; 1931 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 1932 MachineInstr *Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), 1933 MI.getOperand(0).getReg()) 1934 .add(MI.getOperand(1)); 1935 expandPostRAPseudo(*Copy); 1936 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec); 1937 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten 1938 Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), 1939 MI.getOperand(0).getReg()) 1940 .add(MI.getOperand(2)); 1941 expandPostRAPseudo(*Copy); 1942 BuildMI(MBB, MI, DL, get(NotOpc), Exec) 1943 .addReg(Exec); 1944 MI.eraseFromParent(); 1945 break; 1946 } 1947 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1: 1948 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2: 1949 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3: 1950 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4: 1951 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5: 1952 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8: 1953 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16: 1954 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32: 1955 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1: 1956 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2: 1957 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3: 1958 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4: 1959 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5: 1960 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8: 1961 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16: 1962 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32: 1963 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1: 1964 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2: 1965 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4: 1966 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8: 1967 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: { 1968 const TargetRegisterClass *EltRC = getOpRegClass(MI, 2); 1969 1970 unsigned Opc; 1971 if (RI.hasVGPRs(EltRC)) { 1972 Opc = AMDGPU::V_MOVRELD_B32_e32; 1973 } else { 1974 Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64 1975 : AMDGPU::S_MOVRELD_B32; 1976 } 1977 1978 const MCInstrDesc &OpDesc = get(Opc); 1979 Register VecReg = MI.getOperand(0).getReg(); 1980 bool IsUndef = MI.getOperand(1).isUndef(); 1981 unsigned SubReg = MI.getOperand(3).getImm(); 1982 assert(VecReg == MI.getOperand(1).getReg()); 1983 1984 MachineInstrBuilder MIB = 1985 BuildMI(MBB, MI, DL, OpDesc) 1986 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 1987 .add(MI.getOperand(2)) 1988 .addReg(VecReg, RegState::ImplicitDefine) 1989 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 1990 1991 const int ImpDefIdx = 1992 OpDesc.getNumOperands() + OpDesc.getNumImplicitUses(); 1993 const int ImpUseIdx = ImpDefIdx + 1; 1994 MIB->tieOperands(ImpDefIdx, ImpUseIdx); 1995 MI.eraseFromParent(); 1996 break; 1997 } 1998 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1: 1999 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2: 2000 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3: 2001 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4: 2002 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5: 2003 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8: 2004 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16: 2005 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: { 2006 assert(ST.useVGPRIndexMode()); 2007 Register VecReg = MI.getOperand(0).getReg(); 2008 bool IsUndef = MI.getOperand(1).isUndef(); 2009 Register Idx = MI.getOperand(3).getReg(); 2010 Register SubReg = MI.getOperand(4).getImm(); 2011 2012 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) 2013 .addReg(Idx) 2014 .addImm(AMDGPU::VGPRIndexMode::DST_ENABLE); 2015 SetOn->getOperand(3).setIsUndef(); 2016 2017 const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect_write); 2018 MachineInstrBuilder MIB = 2019 BuildMI(MBB, MI, DL, OpDesc) 2020 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2021 .add(MI.getOperand(2)) 2022 .addReg(VecReg, RegState::ImplicitDefine) 2023 .addReg(VecReg, 2024 RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2025 2026 const int ImpDefIdx = OpDesc.getNumOperands() + OpDesc.getNumImplicitUses(); 2027 const int ImpUseIdx = ImpDefIdx + 1; 2028 MIB->tieOperands(ImpDefIdx, ImpUseIdx); 2029 2030 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); 2031 2032 finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); 2033 2034 MI.eraseFromParent(); 2035 break; 2036 } 2037 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1: 2038 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2: 2039 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3: 2040 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4: 2041 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5: 2042 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8: 2043 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16: 2044 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: { 2045 assert(ST.useVGPRIndexMode()); 2046 Register Dst = MI.getOperand(0).getReg(); 2047 Register VecReg = MI.getOperand(1).getReg(); 2048 bool IsUndef = MI.getOperand(1).isUndef(); 2049 Register Idx = MI.getOperand(2).getReg(); 2050 Register SubReg = MI.getOperand(3).getImm(); 2051 2052 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) 2053 .addReg(Idx) 2054 .addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE); 2055 SetOn->getOperand(3).setIsUndef(); 2056 2057 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_indirect_read)) 2058 .addDef(Dst) 2059 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2060 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2061 2062 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); 2063 2064 finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); 2065 2066 MI.eraseFromParent(); 2067 break; 2068 } 2069 case AMDGPU::SI_PC_ADD_REL_OFFSET: { 2070 MachineFunction &MF = *MBB.getParent(); 2071 Register Reg = MI.getOperand(0).getReg(); 2072 Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0); 2073 Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1); 2074 2075 // Create a bundle so these instructions won't be re-ordered by the 2076 // post-RA scheduler. 2077 MIBundleBuilder Bundler(MBB, MI); 2078 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); 2079 2080 // Add 32-bit offset from this instruction to the start of the 2081 // constant data. 2082 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo) 2083 .addReg(RegLo) 2084 .add(MI.getOperand(1))); 2085 2086 MachineInstrBuilder MIB = BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) 2087 .addReg(RegHi); 2088 MIB.add(MI.getOperand(2)); 2089 2090 Bundler.append(MIB); 2091 finalizeBundle(MBB, Bundler.begin()); 2092 2093 MI.eraseFromParent(); 2094 break; 2095 } 2096 case AMDGPU::ENTER_STRICT_WWM: { 2097 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2098 // Whole Wave Mode is entered. 2099 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 2100 : AMDGPU::S_OR_SAVEEXEC_B64)); 2101 break; 2102 } 2103 case AMDGPU::ENTER_STRICT_WQM: { 2104 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2105 // STRICT_WQM is entered. 2106 const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 2107 const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64; 2108 const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 2109 BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(0).getReg()).addReg(Exec); 2110 BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec); 2111 2112 MI.eraseFromParent(); 2113 break; 2114 } 2115 case AMDGPU::EXIT_STRICT_WWM: 2116 case AMDGPU::EXIT_STRICT_WQM: { 2117 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2118 // WWM/STICT_WQM is exited. 2119 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64)); 2120 break; 2121 } 2122 } 2123 return true; 2124 } 2125 2126 std::pair<MachineInstr*, MachineInstr*> 2127 SIInstrInfo::expandMovDPP64(MachineInstr &MI) const { 2128 assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO); 2129 2130 MachineBasicBlock &MBB = *MI.getParent(); 2131 DebugLoc DL = MBB.findDebugLoc(MI); 2132 MachineFunction *MF = MBB.getParent(); 2133 MachineRegisterInfo &MRI = MF->getRegInfo(); 2134 Register Dst = MI.getOperand(0).getReg(); 2135 unsigned Part = 0; 2136 MachineInstr *Split[2]; 2137 2138 for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) { 2139 auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp)); 2140 if (Dst.isPhysical()) { 2141 MovDPP.addDef(RI.getSubReg(Dst, Sub)); 2142 } else { 2143 assert(MRI.isSSA()); 2144 auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2145 MovDPP.addDef(Tmp); 2146 } 2147 2148 for (unsigned I = 1; I <= 2; ++I) { // old and src operands. 2149 const MachineOperand &SrcOp = MI.getOperand(I); 2150 assert(!SrcOp.isFPImm()); 2151 if (SrcOp.isImm()) { 2152 APInt Imm(64, SrcOp.getImm()); 2153 Imm.ashrInPlace(Part * 32); 2154 MovDPP.addImm(Imm.getLoBits(32).getZExtValue()); 2155 } else { 2156 assert(SrcOp.isReg()); 2157 Register Src = SrcOp.getReg(); 2158 if (Src.isPhysical()) 2159 MovDPP.addReg(RI.getSubReg(Src, Sub)); 2160 else 2161 MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub); 2162 } 2163 } 2164 2165 for (unsigned I = 3; I < MI.getNumExplicitOperands(); ++I) 2166 MovDPP.addImm(MI.getOperand(I).getImm()); 2167 2168 Split[Part] = MovDPP; 2169 ++Part; 2170 } 2171 2172 if (Dst.isVirtual()) 2173 BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst) 2174 .addReg(Split[0]->getOperand(0).getReg()) 2175 .addImm(AMDGPU::sub0) 2176 .addReg(Split[1]->getOperand(0).getReg()) 2177 .addImm(AMDGPU::sub1); 2178 2179 MI.eraseFromParent(); 2180 return std::make_pair(Split[0], Split[1]); 2181 } 2182 2183 bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI, 2184 MachineOperand &Src0, 2185 unsigned Src0OpName, 2186 MachineOperand &Src1, 2187 unsigned Src1OpName) const { 2188 MachineOperand *Src0Mods = getNamedOperand(MI, Src0OpName); 2189 if (!Src0Mods) 2190 return false; 2191 2192 MachineOperand *Src1Mods = getNamedOperand(MI, Src1OpName); 2193 assert(Src1Mods && 2194 "All commutable instructions have both src0 and src1 modifiers"); 2195 2196 int Src0ModsVal = Src0Mods->getImm(); 2197 int Src1ModsVal = Src1Mods->getImm(); 2198 2199 Src1Mods->setImm(Src0ModsVal); 2200 Src0Mods->setImm(Src1ModsVal); 2201 return true; 2202 } 2203 2204 static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI, 2205 MachineOperand &RegOp, 2206 MachineOperand &NonRegOp) { 2207 Register Reg = RegOp.getReg(); 2208 unsigned SubReg = RegOp.getSubReg(); 2209 bool IsKill = RegOp.isKill(); 2210 bool IsDead = RegOp.isDead(); 2211 bool IsUndef = RegOp.isUndef(); 2212 bool IsDebug = RegOp.isDebug(); 2213 2214 if (NonRegOp.isImm()) 2215 RegOp.ChangeToImmediate(NonRegOp.getImm()); 2216 else if (NonRegOp.isFI()) 2217 RegOp.ChangeToFrameIndex(NonRegOp.getIndex()); 2218 else if (NonRegOp.isGlobal()) { 2219 RegOp.ChangeToGA(NonRegOp.getGlobal(), NonRegOp.getOffset(), 2220 NonRegOp.getTargetFlags()); 2221 } else 2222 return nullptr; 2223 2224 // Make sure we don't reinterpret a subreg index in the target flags. 2225 RegOp.setTargetFlags(NonRegOp.getTargetFlags()); 2226 2227 NonRegOp.ChangeToRegister(Reg, false, false, IsKill, IsDead, IsUndef, IsDebug); 2228 NonRegOp.setSubReg(SubReg); 2229 2230 return &MI; 2231 } 2232 2233 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 2234 unsigned Src0Idx, 2235 unsigned Src1Idx) const { 2236 assert(!NewMI && "this should never be used"); 2237 2238 unsigned Opc = MI.getOpcode(); 2239 int CommutedOpcode = commuteOpcode(Opc); 2240 if (CommutedOpcode == -1) 2241 return nullptr; 2242 2243 assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) == 2244 static_cast<int>(Src0Idx) && 2245 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) == 2246 static_cast<int>(Src1Idx) && 2247 "inconsistency with findCommutedOpIndices"); 2248 2249 MachineOperand &Src0 = MI.getOperand(Src0Idx); 2250 MachineOperand &Src1 = MI.getOperand(Src1Idx); 2251 2252 MachineInstr *CommutedMI = nullptr; 2253 if (Src0.isReg() && Src1.isReg()) { 2254 if (isOperandLegal(MI, Src1Idx, &Src0)) { 2255 // Be sure to copy the source modifiers to the right place. 2256 CommutedMI 2257 = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx); 2258 } 2259 2260 } else if (Src0.isReg() && !Src1.isReg()) { 2261 // src0 should always be able to support any operand type, so no need to 2262 // check operand legality. 2263 CommutedMI = swapRegAndNonRegOperand(MI, Src0, Src1); 2264 } else if (!Src0.isReg() && Src1.isReg()) { 2265 if (isOperandLegal(MI, Src1Idx, &Src0)) 2266 CommutedMI = swapRegAndNonRegOperand(MI, Src1, Src0); 2267 } else { 2268 // FIXME: Found two non registers to commute. This does happen. 2269 return nullptr; 2270 } 2271 2272 if (CommutedMI) { 2273 swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers, 2274 Src1, AMDGPU::OpName::src1_modifiers); 2275 2276 CommutedMI->setDesc(get(CommutedOpcode)); 2277 } 2278 2279 return CommutedMI; 2280 } 2281 2282 // This needs to be implemented because the source modifiers may be inserted 2283 // between the true commutable operands, and the base 2284 // TargetInstrInfo::commuteInstruction uses it. 2285 bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2286 unsigned &SrcOpIdx0, 2287 unsigned &SrcOpIdx1) const { 2288 return findCommutedOpIndices(MI.getDesc(), SrcOpIdx0, SrcOpIdx1); 2289 } 2290 2291 bool SIInstrInfo::findCommutedOpIndices(MCInstrDesc Desc, unsigned &SrcOpIdx0, 2292 unsigned &SrcOpIdx1) const { 2293 if (!Desc.isCommutable()) 2294 return false; 2295 2296 unsigned Opc = Desc.getOpcode(); 2297 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2298 if (Src0Idx == -1) 2299 return false; 2300 2301 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 2302 if (Src1Idx == -1) 2303 return false; 2304 2305 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); 2306 } 2307 2308 bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp, 2309 int64_t BrOffset) const { 2310 // BranchRelaxation should never have to check s_setpc_b64 because its dest 2311 // block is unanalyzable. 2312 assert(BranchOp != AMDGPU::S_SETPC_B64); 2313 2314 // Convert to dwords. 2315 BrOffset /= 4; 2316 2317 // The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is 2318 // from the next instruction. 2319 BrOffset -= 1; 2320 2321 return isIntN(BranchOffsetBits, BrOffset); 2322 } 2323 2324 MachineBasicBlock *SIInstrInfo::getBranchDestBlock( 2325 const MachineInstr &MI) const { 2326 if (MI.getOpcode() == AMDGPU::S_SETPC_B64) { 2327 // This would be a difficult analysis to perform, but can always be legal so 2328 // there's no need to analyze it. 2329 return nullptr; 2330 } 2331 2332 return MI.getOperand(0).getMBB(); 2333 } 2334 2335 void SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB, 2336 MachineBasicBlock &DestBB, 2337 MachineBasicBlock &RestoreBB, 2338 const DebugLoc &DL, int64_t BrOffset, 2339 RegScavenger *RS) const { 2340 assert(RS && "RegScavenger required for long branching"); 2341 assert(MBB.empty() && 2342 "new block should be inserted for expanding unconditional branch"); 2343 assert(MBB.pred_size() == 1); 2344 assert(RestoreBB.empty() && 2345 "restore block should be inserted for restoring clobbered registers"); 2346 2347 MachineFunction *MF = MBB.getParent(); 2348 MachineRegisterInfo &MRI = MF->getRegInfo(); 2349 2350 // FIXME: Virtual register workaround for RegScavenger not working with empty 2351 // blocks. 2352 Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2353 2354 auto I = MBB.end(); 2355 2356 // We need to compute the offset relative to the instruction immediately after 2357 // s_getpc_b64. Insert pc arithmetic code before last terminator. 2358 MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg); 2359 2360 auto &MCCtx = MF->getContext(); 2361 MCSymbol *PostGetPCLabel = 2362 MCCtx.createTempSymbol("post_getpc", /*AlwaysAddSuffix=*/true); 2363 GetPC->setPostInstrSymbol(*MF, PostGetPCLabel); 2364 2365 MCSymbol *OffsetLo = 2366 MCCtx.createTempSymbol("offset_lo", /*AlwaysAddSuffix=*/true); 2367 MCSymbol *OffsetHi = 2368 MCCtx.createTempSymbol("offset_hi", /*AlwaysAddSuffix=*/true); 2369 BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32)) 2370 .addReg(PCReg, RegState::Define, AMDGPU::sub0) 2371 .addReg(PCReg, 0, AMDGPU::sub0) 2372 .addSym(OffsetLo, MO_FAR_BRANCH_OFFSET); 2373 BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32)) 2374 .addReg(PCReg, RegState::Define, AMDGPU::sub1) 2375 .addReg(PCReg, 0, AMDGPU::sub1) 2376 .addSym(OffsetHi, MO_FAR_BRANCH_OFFSET); 2377 2378 // Insert the indirect branch after the other terminator. 2379 BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64)) 2380 .addReg(PCReg); 2381 2382 // FIXME: If spilling is necessary, this will fail because this scavenger has 2383 // no emergency stack slots. It is non-trivial to spill in this situation, 2384 // because the restore code needs to be specially placed after the 2385 // jump. BranchRelaxation then needs to be made aware of the newly inserted 2386 // block. 2387 // 2388 // If a spill is needed for the pc register pair, we need to insert a spill 2389 // restore block right before the destination block, and insert a short branch 2390 // into the old destination block's fallthrough predecessor. 2391 // e.g.: 2392 // 2393 // s_cbranch_scc0 skip_long_branch: 2394 // 2395 // long_branch_bb: 2396 // spill s[8:9] 2397 // s_getpc_b64 s[8:9] 2398 // s_add_u32 s8, s8, restore_bb 2399 // s_addc_u32 s9, s9, 0 2400 // s_setpc_b64 s[8:9] 2401 // 2402 // skip_long_branch: 2403 // foo; 2404 // 2405 // ..... 2406 // 2407 // dest_bb_fallthrough_predecessor: 2408 // bar; 2409 // s_branch dest_bb 2410 // 2411 // restore_bb: 2412 // restore s[8:9] 2413 // fallthrough dest_bb 2414 /// 2415 // dest_bb: 2416 // buzz; 2417 2418 RS->enterBasicBlockEnd(MBB); 2419 Register Scav = RS->scavengeRegisterBackwards( 2420 AMDGPU::SReg_64RegClass, MachineBasicBlock::iterator(GetPC), 2421 /* RestoreAfter */ false, 0, /* AllowSpill */ false); 2422 if (Scav) { 2423 RS->setRegUsed(Scav); 2424 MRI.replaceRegWith(PCReg, Scav); 2425 MRI.clearVirtRegs(); 2426 } else { 2427 // As SGPR needs VGPR to be spilled, we reuse the slot of temporary VGPR for 2428 // SGPR spill. 2429 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 2430 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 2431 TRI->spillEmergencySGPR(GetPC, RestoreBB, AMDGPU::SGPR0_SGPR1, RS); 2432 MRI.replaceRegWith(PCReg, AMDGPU::SGPR0_SGPR1); 2433 MRI.clearVirtRegs(); 2434 } 2435 2436 MCSymbol *DestLabel = Scav ? DestBB.getSymbol() : RestoreBB.getSymbol(); 2437 // Now, the distance could be defined. 2438 auto *Offset = MCBinaryExpr::createSub( 2439 MCSymbolRefExpr::create(DestLabel, MCCtx), 2440 MCSymbolRefExpr::create(PostGetPCLabel, MCCtx), MCCtx); 2441 // Add offset assignments. 2442 auto *Mask = MCConstantExpr::create(0xFFFFFFFFULL, MCCtx); 2443 OffsetLo->setVariableValue(MCBinaryExpr::createAnd(Offset, Mask, MCCtx)); 2444 auto *ShAmt = MCConstantExpr::create(32, MCCtx); 2445 OffsetHi->setVariableValue(MCBinaryExpr::createAShr(Offset, ShAmt, MCCtx)); 2446 } 2447 2448 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { 2449 switch (Cond) { 2450 case SIInstrInfo::SCC_TRUE: 2451 return AMDGPU::S_CBRANCH_SCC1; 2452 case SIInstrInfo::SCC_FALSE: 2453 return AMDGPU::S_CBRANCH_SCC0; 2454 case SIInstrInfo::VCCNZ: 2455 return AMDGPU::S_CBRANCH_VCCNZ; 2456 case SIInstrInfo::VCCZ: 2457 return AMDGPU::S_CBRANCH_VCCZ; 2458 case SIInstrInfo::EXECNZ: 2459 return AMDGPU::S_CBRANCH_EXECNZ; 2460 case SIInstrInfo::EXECZ: 2461 return AMDGPU::S_CBRANCH_EXECZ; 2462 default: 2463 llvm_unreachable("invalid branch predicate"); 2464 } 2465 } 2466 2467 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { 2468 switch (Opcode) { 2469 case AMDGPU::S_CBRANCH_SCC0: 2470 return SCC_FALSE; 2471 case AMDGPU::S_CBRANCH_SCC1: 2472 return SCC_TRUE; 2473 case AMDGPU::S_CBRANCH_VCCNZ: 2474 return VCCNZ; 2475 case AMDGPU::S_CBRANCH_VCCZ: 2476 return VCCZ; 2477 case AMDGPU::S_CBRANCH_EXECNZ: 2478 return EXECNZ; 2479 case AMDGPU::S_CBRANCH_EXECZ: 2480 return EXECZ; 2481 default: 2482 return INVALID_BR; 2483 } 2484 } 2485 2486 bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB, 2487 MachineBasicBlock::iterator I, 2488 MachineBasicBlock *&TBB, 2489 MachineBasicBlock *&FBB, 2490 SmallVectorImpl<MachineOperand> &Cond, 2491 bool AllowModify) const { 2492 if (I->getOpcode() == AMDGPU::S_BRANCH) { 2493 // Unconditional Branch 2494 TBB = I->getOperand(0).getMBB(); 2495 return false; 2496 } 2497 2498 MachineBasicBlock *CondBB = nullptr; 2499 2500 if (I->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 2501 CondBB = I->getOperand(1).getMBB(); 2502 Cond.push_back(I->getOperand(0)); 2503 } else { 2504 BranchPredicate Pred = getBranchPredicate(I->getOpcode()); 2505 if (Pred == INVALID_BR) 2506 return true; 2507 2508 CondBB = I->getOperand(0).getMBB(); 2509 Cond.push_back(MachineOperand::CreateImm(Pred)); 2510 Cond.push_back(I->getOperand(1)); // Save the branch register. 2511 } 2512 ++I; 2513 2514 if (I == MBB.end()) { 2515 // Conditional branch followed by fall-through. 2516 TBB = CondBB; 2517 return false; 2518 } 2519 2520 if (I->getOpcode() == AMDGPU::S_BRANCH) { 2521 TBB = CondBB; 2522 FBB = I->getOperand(0).getMBB(); 2523 return false; 2524 } 2525 2526 return true; 2527 } 2528 2529 bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 2530 MachineBasicBlock *&FBB, 2531 SmallVectorImpl<MachineOperand> &Cond, 2532 bool AllowModify) const { 2533 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 2534 auto E = MBB.end(); 2535 if (I == E) 2536 return false; 2537 2538 // Skip over the instructions that are artificially terminators for special 2539 // exec management. 2540 while (I != E && !I->isBranch() && !I->isReturn()) { 2541 switch (I->getOpcode()) { 2542 case AMDGPU::S_MOV_B64_term: 2543 case AMDGPU::S_XOR_B64_term: 2544 case AMDGPU::S_OR_B64_term: 2545 case AMDGPU::S_ANDN2_B64_term: 2546 case AMDGPU::S_AND_B64_term: 2547 case AMDGPU::S_MOV_B32_term: 2548 case AMDGPU::S_XOR_B32_term: 2549 case AMDGPU::S_OR_B32_term: 2550 case AMDGPU::S_ANDN2_B32_term: 2551 case AMDGPU::S_AND_B32_term: 2552 break; 2553 case AMDGPU::SI_IF: 2554 case AMDGPU::SI_ELSE: 2555 case AMDGPU::SI_KILL_I1_TERMINATOR: 2556 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 2557 // FIXME: It's messy that these need to be considered here at all. 2558 return true; 2559 default: 2560 llvm_unreachable("unexpected non-branch terminator inst"); 2561 } 2562 2563 ++I; 2564 } 2565 2566 if (I == E) 2567 return false; 2568 2569 return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify); 2570 } 2571 2572 unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB, 2573 int *BytesRemoved) const { 2574 unsigned Count = 0; 2575 unsigned RemovedSize = 0; 2576 for (MachineInstr &MI : llvm::make_early_inc_range(MBB.terminators())) { 2577 // Skip over artificial terminators when removing instructions. 2578 if (MI.isBranch() || MI.isReturn()) { 2579 RemovedSize += getInstSizeInBytes(MI); 2580 MI.eraseFromParent(); 2581 ++Count; 2582 } 2583 } 2584 2585 if (BytesRemoved) 2586 *BytesRemoved = RemovedSize; 2587 2588 return Count; 2589 } 2590 2591 // Copy the flags onto the implicit condition register operand. 2592 static void preserveCondRegFlags(MachineOperand &CondReg, 2593 const MachineOperand &OrigCond) { 2594 CondReg.setIsUndef(OrigCond.isUndef()); 2595 CondReg.setIsKill(OrigCond.isKill()); 2596 } 2597 2598 unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB, 2599 MachineBasicBlock *TBB, 2600 MachineBasicBlock *FBB, 2601 ArrayRef<MachineOperand> Cond, 2602 const DebugLoc &DL, 2603 int *BytesAdded) const { 2604 if (!FBB && Cond.empty()) { 2605 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 2606 .addMBB(TBB); 2607 if (BytesAdded) 2608 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; 2609 return 1; 2610 } 2611 2612 if(Cond.size() == 1 && Cond[0].isReg()) { 2613 BuildMI(&MBB, DL, get(AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO)) 2614 .add(Cond[0]) 2615 .addMBB(TBB); 2616 return 1; 2617 } 2618 2619 assert(TBB && Cond[0].isImm()); 2620 2621 unsigned Opcode 2622 = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm())); 2623 2624 if (!FBB) { 2625 Cond[1].isUndef(); 2626 MachineInstr *CondBr = 2627 BuildMI(&MBB, DL, get(Opcode)) 2628 .addMBB(TBB); 2629 2630 // Copy the flags onto the implicit condition register operand. 2631 preserveCondRegFlags(CondBr->getOperand(1), Cond[1]); 2632 fixImplicitOperands(*CondBr); 2633 2634 if (BytesAdded) 2635 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; 2636 return 1; 2637 } 2638 2639 assert(TBB && FBB); 2640 2641 MachineInstr *CondBr = 2642 BuildMI(&MBB, DL, get(Opcode)) 2643 .addMBB(TBB); 2644 fixImplicitOperands(*CondBr); 2645 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 2646 .addMBB(FBB); 2647 2648 MachineOperand &CondReg = CondBr->getOperand(1); 2649 CondReg.setIsUndef(Cond[1].isUndef()); 2650 CondReg.setIsKill(Cond[1].isKill()); 2651 2652 if (BytesAdded) 2653 *BytesAdded = ST.hasOffset3fBug() ? 16 : 8; 2654 2655 return 2; 2656 } 2657 2658 bool SIInstrInfo::reverseBranchCondition( 2659 SmallVectorImpl<MachineOperand> &Cond) const { 2660 if (Cond.size() != 2) { 2661 return true; 2662 } 2663 2664 if (Cond[0].isImm()) { 2665 Cond[0].setImm(-Cond[0].getImm()); 2666 return false; 2667 } 2668 2669 return true; 2670 } 2671 2672 bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 2673 ArrayRef<MachineOperand> Cond, 2674 Register DstReg, Register TrueReg, 2675 Register FalseReg, int &CondCycles, 2676 int &TrueCycles, int &FalseCycles) const { 2677 switch (Cond[0].getImm()) { 2678 case VCCNZ: 2679 case VCCZ: { 2680 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2681 const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); 2682 if (MRI.getRegClass(FalseReg) != RC) 2683 return false; 2684 2685 int NumInsts = AMDGPU::getRegBitWidth(RC->getID()) / 32; 2686 CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? 2687 2688 // Limit to equal cost for branch vs. N v_cndmask_b32s. 2689 return RI.hasVGPRs(RC) && NumInsts <= 6; 2690 } 2691 case SCC_TRUE: 2692 case SCC_FALSE: { 2693 // FIXME: We could insert for VGPRs if we could replace the original compare 2694 // with a vector one. 2695 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2696 const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); 2697 if (MRI.getRegClass(FalseReg) != RC) 2698 return false; 2699 2700 int NumInsts = AMDGPU::getRegBitWidth(RC->getID()) / 32; 2701 2702 // Multiples of 8 can do s_cselect_b64 2703 if (NumInsts % 2 == 0) 2704 NumInsts /= 2; 2705 2706 CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? 2707 return RI.isSGPRClass(RC); 2708 } 2709 default: 2710 return false; 2711 } 2712 } 2713 2714 void SIInstrInfo::insertSelect(MachineBasicBlock &MBB, 2715 MachineBasicBlock::iterator I, const DebugLoc &DL, 2716 Register DstReg, ArrayRef<MachineOperand> Cond, 2717 Register TrueReg, Register FalseReg) const { 2718 BranchPredicate Pred = static_cast<BranchPredicate>(Cond[0].getImm()); 2719 if (Pred == VCCZ || Pred == SCC_FALSE) { 2720 Pred = static_cast<BranchPredicate>(-Pred); 2721 std::swap(TrueReg, FalseReg); 2722 } 2723 2724 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2725 const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg); 2726 unsigned DstSize = RI.getRegSizeInBits(*DstRC); 2727 2728 if (DstSize == 32) { 2729 MachineInstr *Select; 2730 if (Pred == SCC_TRUE) { 2731 Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg) 2732 .addReg(TrueReg) 2733 .addReg(FalseReg); 2734 } else { 2735 // Instruction's operands are backwards from what is expected. 2736 Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg) 2737 .addReg(FalseReg) 2738 .addReg(TrueReg); 2739 } 2740 2741 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 2742 return; 2743 } 2744 2745 if (DstSize == 64 && Pred == SCC_TRUE) { 2746 MachineInstr *Select = 2747 BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg) 2748 .addReg(TrueReg) 2749 .addReg(FalseReg); 2750 2751 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 2752 return; 2753 } 2754 2755 static const int16_t Sub0_15[] = { 2756 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 2757 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 2758 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, 2759 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 2760 }; 2761 2762 static const int16_t Sub0_15_64[] = { 2763 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 2764 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 2765 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, 2766 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, 2767 }; 2768 2769 unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32; 2770 const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass; 2771 const int16_t *SubIndices = Sub0_15; 2772 int NElts = DstSize / 32; 2773 2774 // 64-bit select is only available for SALU. 2775 // TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit. 2776 if (Pred == SCC_TRUE) { 2777 if (NElts % 2) { 2778 SelOp = AMDGPU::S_CSELECT_B32; 2779 EltRC = &AMDGPU::SGPR_32RegClass; 2780 } else { 2781 SelOp = AMDGPU::S_CSELECT_B64; 2782 EltRC = &AMDGPU::SGPR_64RegClass; 2783 SubIndices = Sub0_15_64; 2784 NElts /= 2; 2785 } 2786 } 2787 2788 MachineInstrBuilder MIB = BuildMI( 2789 MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg); 2790 2791 I = MIB->getIterator(); 2792 2793 SmallVector<Register, 8> Regs; 2794 for (int Idx = 0; Idx != NElts; ++Idx) { 2795 Register DstElt = MRI.createVirtualRegister(EltRC); 2796 Regs.push_back(DstElt); 2797 2798 unsigned SubIdx = SubIndices[Idx]; 2799 2800 MachineInstr *Select; 2801 if (SelOp == AMDGPU::V_CNDMASK_B32_e32) { 2802 Select = 2803 BuildMI(MBB, I, DL, get(SelOp), DstElt) 2804 .addReg(FalseReg, 0, SubIdx) 2805 .addReg(TrueReg, 0, SubIdx); 2806 } else { 2807 Select = 2808 BuildMI(MBB, I, DL, get(SelOp), DstElt) 2809 .addReg(TrueReg, 0, SubIdx) 2810 .addReg(FalseReg, 0, SubIdx); 2811 } 2812 2813 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 2814 fixImplicitOperands(*Select); 2815 2816 MIB.addReg(DstElt) 2817 .addImm(SubIdx); 2818 } 2819 } 2820 2821 bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) { 2822 switch (MI.getOpcode()) { 2823 case AMDGPU::V_MOV_B32_e32: 2824 case AMDGPU::V_MOV_B32_e64: 2825 case AMDGPU::V_MOV_B64_PSEUDO: 2826 case AMDGPU::S_MOV_B32: 2827 case AMDGPU::S_MOV_B64: 2828 case AMDGPU::COPY: 2829 case AMDGPU::V_ACCVGPR_WRITE_B32_e64: 2830 case AMDGPU::V_ACCVGPR_READ_B32_e64: 2831 case AMDGPU::V_ACCVGPR_MOV_B32: 2832 return true; 2833 default: 2834 return false; 2835 } 2836 } 2837 2838 unsigned SIInstrInfo::getAddressSpaceForPseudoSourceKind( 2839 unsigned Kind) const { 2840 switch(Kind) { 2841 case PseudoSourceValue::Stack: 2842 case PseudoSourceValue::FixedStack: 2843 return AMDGPUAS::PRIVATE_ADDRESS; 2844 case PseudoSourceValue::ConstantPool: 2845 case PseudoSourceValue::GOT: 2846 case PseudoSourceValue::JumpTable: 2847 case PseudoSourceValue::GlobalValueCallEntry: 2848 case PseudoSourceValue::ExternalSymbolCallEntry: 2849 case PseudoSourceValue::TargetCustom: 2850 return AMDGPUAS::CONSTANT_ADDRESS; 2851 } 2852 return AMDGPUAS::FLAT_ADDRESS; 2853 } 2854 2855 static void removeModOperands(MachineInstr &MI) { 2856 unsigned Opc = MI.getOpcode(); 2857 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, 2858 AMDGPU::OpName::src0_modifiers); 2859 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, 2860 AMDGPU::OpName::src1_modifiers); 2861 int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc, 2862 AMDGPU::OpName::src2_modifiers); 2863 2864 MI.RemoveOperand(Src2ModIdx); 2865 MI.RemoveOperand(Src1ModIdx); 2866 MI.RemoveOperand(Src0ModIdx); 2867 } 2868 2869 bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2870 Register Reg, MachineRegisterInfo *MRI) const { 2871 if (!MRI->hasOneNonDBGUse(Reg)) 2872 return false; 2873 2874 switch (DefMI.getOpcode()) { 2875 default: 2876 return false; 2877 case AMDGPU::S_MOV_B64: 2878 // TODO: We could fold 64-bit immediates, but this get complicated 2879 // when there are sub-registers. 2880 return false; 2881 2882 case AMDGPU::V_MOV_B32_e32: 2883 case AMDGPU::S_MOV_B32: 2884 case AMDGPU::V_ACCVGPR_WRITE_B32_e64: 2885 break; 2886 } 2887 2888 const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0); 2889 assert(ImmOp); 2890 // FIXME: We could handle FrameIndex values here. 2891 if (!ImmOp->isImm()) 2892 return false; 2893 2894 unsigned Opc = UseMI.getOpcode(); 2895 if (Opc == AMDGPU::COPY) { 2896 Register DstReg = UseMI.getOperand(0).getReg(); 2897 bool Is16Bit = getOpSize(UseMI, 0) == 2; 2898 bool isVGPRCopy = RI.isVGPR(*MRI, DstReg); 2899 unsigned NewOpc = isVGPRCopy ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32; 2900 APInt Imm(32, ImmOp->getImm()); 2901 2902 if (UseMI.getOperand(1).getSubReg() == AMDGPU::hi16) 2903 Imm = Imm.ashr(16); 2904 2905 if (RI.isAGPR(*MRI, DstReg)) { 2906 if (!isInlineConstant(Imm)) 2907 return false; 2908 NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 2909 } 2910 2911 if (Is16Bit) { 2912 if (isVGPRCopy) 2913 return false; // Do not clobber vgpr_hi16 2914 2915 if (DstReg.isVirtual() && UseMI.getOperand(0).getSubReg() != AMDGPU::lo16) 2916 return false; 2917 2918 UseMI.getOperand(0).setSubReg(0); 2919 if (DstReg.isPhysical()) { 2920 DstReg = RI.get32BitRegister(DstReg); 2921 UseMI.getOperand(0).setReg(DstReg); 2922 } 2923 assert(UseMI.getOperand(1).getReg().isVirtual()); 2924 } 2925 2926 UseMI.setDesc(get(NewOpc)); 2927 UseMI.getOperand(1).ChangeToImmediate(Imm.getSExtValue()); 2928 UseMI.addImplicitDefUseOperands(*UseMI.getParent()->getParent()); 2929 return true; 2930 } 2931 2932 if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || 2933 Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 2934 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || 2935 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64) { 2936 // Don't fold if we are using source or output modifiers. The new VOP2 2937 // instructions don't have them. 2938 if (hasAnyModifiersSet(UseMI)) 2939 return false; 2940 2941 // If this is a free constant, there's no reason to do this. 2942 // TODO: We could fold this here instead of letting SIFoldOperands do it 2943 // later. 2944 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0); 2945 2946 // Any src operand can be used for the legality check. 2947 if (isInlineConstant(UseMI, *Src0, *ImmOp)) 2948 return false; 2949 2950 bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || 2951 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64; 2952 bool IsFMA = Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || 2953 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64; 2954 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1); 2955 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2); 2956 2957 // Multiplied part is the constant: Use v_madmk_{f16, f32}. 2958 // We should only expect these to be on src0 due to canonicalization. 2959 if (Src0->isReg() && Src0->getReg() == Reg) { 2960 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) 2961 return false; 2962 2963 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) 2964 return false; 2965 2966 unsigned NewOpc = 2967 IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32 : AMDGPU::V_FMAMK_F16) 2968 : (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16); 2969 if (pseudoToMCOpcode(NewOpc) == -1) 2970 return false; 2971 2972 // We need to swap operands 0 and 1 since madmk constant is at operand 1. 2973 2974 const int64_t Imm = ImmOp->getImm(); 2975 2976 // FIXME: This would be a lot easier if we could return a new instruction 2977 // instead of having to modify in place. 2978 2979 // Remove these first since they are at the end. 2980 UseMI.RemoveOperand( 2981 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); 2982 UseMI.RemoveOperand( 2983 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); 2984 2985 Register Src1Reg = Src1->getReg(); 2986 unsigned Src1SubReg = Src1->getSubReg(); 2987 Src0->setReg(Src1Reg); 2988 Src0->setSubReg(Src1SubReg); 2989 Src0->setIsKill(Src1->isKill()); 2990 2991 if (Opc == AMDGPU::V_MAC_F32_e64 || 2992 Opc == AMDGPU::V_MAC_F16_e64 || 2993 Opc == AMDGPU::V_FMAC_F32_e64 || 2994 Opc == AMDGPU::V_FMAC_F16_e64) 2995 UseMI.untieRegOperand( 2996 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 2997 2998 Src1->ChangeToImmediate(Imm); 2999 3000 removeModOperands(UseMI); 3001 UseMI.setDesc(get(NewOpc)); 3002 3003 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 3004 if (DeleteDef) 3005 DefMI.eraseFromParent(); 3006 3007 return true; 3008 } 3009 3010 // Added part is the constant: Use v_madak_{f16, f32}. 3011 if (Src2->isReg() && Src2->getReg() == Reg) { 3012 // Not allowed to use constant bus for another operand. 3013 // We can however allow an inline immediate as src0. 3014 bool Src0Inlined = false; 3015 if (Src0->isReg()) { 3016 // Try to inline constant if possible. 3017 // If the Def moves immediate and the use is single 3018 // We are saving VGPR here. 3019 MachineInstr *Def = MRI->getUniqueVRegDef(Src0->getReg()); 3020 if (Def && Def->isMoveImmediate() && 3021 isInlineConstant(Def->getOperand(1)) && 3022 MRI->hasOneUse(Src0->getReg())) { 3023 Src0->ChangeToImmediate(Def->getOperand(1).getImm()); 3024 Src0Inlined = true; 3025 } else if ((Src0->getReg().isPhysical() && 3026 (ST.getConstantBusLimit(Opc) <= 1 && 3027 RI.isSGPRClass(RI.getPhysRegClass(Src0->getReg())))) || 3028 (Src0->getReg().isVirtual() && 3029 (ST.getConstantBusLimit(Opc) <= 1 && 3030 RI.isSGPRClass(MRI->getRegClass(Src0->getReg()))))) 3031 return false; 3032 // VGPR is okay as Src0 - fallthrough 3033 } 3034 3035 if (Src1->isReg() && !Src0Inlined ) { 3036 // We have one slot for inlinable constant so far - try to fill it 3037 MachineInstr *Def = MRI->getUniqueVRegDef(Src1->getReg()); 3038 if (Def && Def->isMoveImmediate() && 3039 isInlineConstant(Def->getOperand(1)) && 3040 MRI->hasOneUse(Src1->getReg()) && 3041 commuteInstruction(UseMI)) { 3042 Src0->ChangeToImmediate(Def->getOperand(1).getImm()); 3043 } else if ((Src1->getReg().isPhysical() && 3044 RI.isSGPRClass(RI.getPhysRegClass(Src1->getReg()))) || 3045 (Src1->getReg().isVirtual() && 3046 RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))) 3047 return false; 3048 // VGPR is okay as Src1 - fallthrough 3049 } 3050 3051 unsigned NewOpc = 3052 IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32 : AMDGPU::V_FMAAK_F16) 3053 : (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16); 3054 if (pseudoToMCOpcode(NewOpc) == -1) 3055 return false; 3056 3057 const int64_t Imm = ImmOp->getImm(); 3058 3059 // FIXME: This would be a lot easier if we could return a new instruction 3060 // instead of having to modify in place. 3061 3062 // Remove these first since they are at the end. 3063 UseMI.RemoveOperand( 3064 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); 3065 UseMI.RemoveOperand( 3066 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); 3067 3068 if (Opc == AMDGPU::V_MAC_F32_e64 || 3069 Opc == AMDGPU::V_MAC_F16_e64 || 3070 Opc == AMDGPU::V_FMAC_F32_e64 || 3071 Opc == AMDGPU::V_FMAC_F16_e64) 3072 UseMI.untieRegOperand( 3073 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 3074 3075 // ChangingToImmediate adds Src2 back to the instruction. 3076 Src2->ChangeToImmediate(Imm); 3077 3078 // These come before src2. 3079 removeModOperands(UseMI); 3080 UseMI.setDesc(get(NewOpc)); 3081 // It might happen that UseMI was commuted 3082 // and we now have SGPR as SRC1. If so 2 inlined 3083 // constant and SGPR are illegal. 3084 legalizeOperands(UseMI); 3085 3086 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 3087 if (DeleteDef) 3088 DefMI.eraseFromParent(); 3089 3090 return true; 3091 } 3092 } 3093 3094 return false; 3095 } 3096 3097 static bool 3098 memOpsHaveSameBaseOperands(ArrayRef<const MachineOperand *> BaseOps1, 3099 ArrayRef<const MachineOperand *> BaseOps2) { 3100 if (BaseOps1.size() != BaseOps2.size()) 3101 return false; 3102 for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) { 3103 if (!BaseOps1[I]->isIdenticalTo(*BaseOps2[I])) 3104 return false; 3105 } 3106 return true; 3107 } 3108 3109 static bool offsetsDoNotOverlap(int WidthA, int OffsetA, 3110 int WidthB, int OffsetB) { 3111 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 3112 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 3113 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 3114 return LowOffset + LowWidth <= HighOffset; 3115 } 3116 3117 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa, 3118 const MachineInstr &MIb) const { 3119 SmallVector<const MachineOperand *, 4> BaseOps0, BaseOps1; 3120 int64_t Offset0, Offset1; 3121 unsigned Dummy0, Dummy1; 3122 bool Offset0IsScalable, Offset1IsScalable; 3123 if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable, 3124 Dummy0, &RI) || 3125 !getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable, 3126 Dummy1, &RI)) 3127 return false; 3128 3129 if (!memOpsHaveSameBaseOperands(BaseOps0, BaseOps1)) 3130 return false; 3131 3132 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) { 3133 // FIXME: Handle ds_read2 / ds_write2. 3134 return false; 3135 } 3136 unsigned Width0 = MIa.memoperands().front()->getSize(); 3137 unsigned Width1 = MIb.memoperands().front()->getSize(); 3138 return offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1); 3139 } 3140 3141 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 3142 const MachineInstr &MIb) const { 3143 assert(MIa.mayLoadOrStore() && 3144 "MIa must load from or modify a memory location"); 3145 assert(MIb.mayLoadOrStore() && 3146 "MIb must load from or modify a memory location"); 3147 3148 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects()) 3149 return false; 3150 3151 // XXX - Can we relax this between address spaces? 3152 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 3153 return false; 3154 3155 // TODO: Should we check the address space from the MachineMemOperand? That 3156 // would allow us to distinguish objects we know don't alias based on the 3157 // underlying address space, even if it was lowered to a different one, 3158 // e.g. private accesses lowered to use MUBUF instructions on a scratch 3159 // buffer. 3160 if (isDS(MIa)) { 3161 if (isDS(MIb)) 3162 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3163 3164 return !isFLAT(MIb) || isSegmentSpecificFLAT(MIb); 3165 } 3166 3167 if (isMUBUF(MIa) || isMTBUF(MIa)) { 3168 if (isMUBUF(MIb) || isMTBUF(MIb)) 3169 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3170 3171 return !isFLAT(MIb) && !isSMRD(MIb); 3172 } 3173 3174 if (isSMRD(MIa)) { 3175 if (isSMRD(MIb)) 3176 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3177 3178 return !isFLAT(MIb) && !isMUBUF(MIb) && !isMTBUF(MIb); 3179 } 3180 3181 if (isFLAT(MIa)) { 3182 if (isFLAT(MIb)) 3183 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3184 3185 return false; 3186 } 3187 3188 return false; 3189 } 3190 3191 static bool getFoldableImm(Register Reg, const MachineRegisterInfo &MRI, 3192 int64_t &Imm, MachineInstr **DefMI = nullptr) { 3193 if (Reg.isPhysical()) 3194 return false; 3195 auto *Def = MRI.getUniqueVRegDef(Reg); 3196 if (Def && SIInstrInfo::isFoldableCopy(*Def) && Def->getOperand(1).isImm()) { 3197 Imm = Def->getOperand(1).getImm(); 3198 if (DefMI) 3199 *DefMI = Def; 3200 return true; 3201 } 3202 return false; 3203 } 3204 3205 static bool getFoldableImm(const MachineOperand *MO, int64_t &Imm, 3206 MachineInstr **DefMI = nullptr) { 3207 if (!MO->isReg()) 3208 return false; 3209 const MachineFunction *MF = MO->getParent()->getParent()->getParent(); 3210 const MachineRegisterInfo &MRI = MF->getRegInfo(); 3211 return getFoldableImm(MO->getReg(), MRI, Imm, DefMI); 3212 } 3213 3214 static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI, 3215 MachineInstr &NewMI) { 3216 if (LV) { 3217 unsigned NumOps = MI.getNumOperands(); 3218 for (unsigned I = 1; I < NumOps; ++I) { 3219 MachineOperand &Op = MI.getOperand(I); 3220 if (Op.isReg() && Op.isKill()) 3221 LV->replaceKillInstruction(Op.getReg(), MI, NewMI); 3222 } 3223 } 3224 } 3225 3226 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineInstr &MI, 3227 LiveVariables *LV, 3228 LiveIntervals *LIS) const { 3229 MachineBasicBlock &MBB = *MI.getParent(); 3230 unsigned Opc = MI.getOpcode(); 3231 3232 // Handle MFMA. 3233 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opc); 3234 if (NewMFMAOpc != -1) { 3235 MachineInstrBuilder MIB = 3236 BuildMI(MBB, MI, MI.getDebugLoc(), get(NewMFMAOpc)); 3237 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 3238 MIB.add(MI.getOperand(I)); 3239 updateLiveVariables(LV, MI, *MIB); 3240 if (LIS) 3241 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3242 return MIB; 3243 } 3244 3245 // Handle MAC/FMAC. 3246 bool IsF16 = Opc == AMDGPU::V_MAC_F16_e32 || Opc == AMDGPU::V_MAC_F16_e64 || 3247 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64; 3248 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 || 3249 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || 3250 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64 || 3251 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 || 3252 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; 3253 bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; 3254 bool IsLegacy = Opc == AMDGPU::V_MAC_LEGACY_F32_e32 || 3255 Opc == AMDGPU::V_MAC_LEGACY_F32_e64 || 3256 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || 3257 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64; 3258 3259 switch (Opc) { 3260 default: 3261 return nullptr; 3262 case AMDGPU::V_MAC_F16_e64: 3263 case AMDGPU::V_FMAC_F16_e64: 3264 case AMDGPU::V_MAC_F32_e64: 3265 case AMDGPU::V_MAC_LEGACY_F32_e64: 3266 case AMDGPU::V_FMAC_F32_e64: 3267 case AMDGPU::V_FMAC_LEGACY_F32_e64: 3268 case AMDGPU::V_FMAC_F64_e64: 3269 break; 3270 case AMDGPU::V_MAC_F16_e32: 3271 case AMDGPU::V_FMAC_F16_e32: 3272 case AMDGPU::V_MAC_F32_e32: 3273 case AMDGPU::V_MAC_LEGACY_F32_e32: 3274 case AMDGPU::V_FMAC_F32_e32: 3275 case AMDGPU::V_FMAC_LEGACY_F32_e32: 3276 case AMDGPU::V_FMAC_F64_e32: { 3277 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 3278 AMDGPU::OpName::src0); 3279 const MachineOperand *Src0 = &MI.getOperand(Src0Idx); 3280 if (!Src0->isReg() && !Src0->isImm()) 3281 return nullptr; 3282 3283 if (Src0->isImm() && !isInlineConstant(MI, Src0Idx, *Src0)) 3284 return nullptr; 3285 3286 break; 3287 } 3288 } 3289 3290 MachineInstrBuilder MIB; 3291 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 3292 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); 3293 const MachineOperand *Src0Mods = 3294 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers); 3295 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 3296 const MachineOperand *Src1Mods = 3297 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); 3298 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 3299 const MachineOperand *Src2Mods = 3300 getNamedOperand(MI, AMDGPU::OpName::src2_modifiers); 3301 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); 3302 const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod); 3303 3304 if (!Src0Mods && !Src1Mods && !Src2Mods && !Clamp && !Omod && !IsF64 && 3305 !IsLegacy && 3306 // If we have an SGPR input, we will violate the constant bus restriction. 3307 (ST.getConstantBusLimit(Opc) > 1 || !Src0->isReg() || 3308 !RI.isSGPRReg(MBB.getParent()->getRegInfo(), Src0->getReg()))) { 3309 MachineInstr *DefMI; 3310 const auto killDef = [&DefMI, &MBB, this]() -> void { 3311 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3312 // The only user is the instruction which will be killed. 3313 if (!MRI.hasOneNonDBGUse(DefMI->getOperand(0).getReg())) 3314 return; 3315 // We cannot just remove the DefMI here, calling pass will crash. 3316 DefMI->setDesc(get(AMDGPU::IMPLICIT_DEF)); 3317 for (unsigned I = DefMI->getNumOperands() - 1; I != 0; --I) 3318 DefMI->RemoveOperand(I); 3319 }; 3320 3321 int64_t Imm; 3322 if (getFoldableImm(Src2, Imm, &DefMI)) { 3323 unsigned NewOpc = 3324 IsFMA ? (IsF16 ? AMDGPU::V_FMAAK_F16 : AMDGPU::V_FMAAK_F32) 3325 : (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32); 3326 if (pseudoToMCOpcode(NewOpc) != -1) { 3327 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3328 .add(*Dst) 3329 .add(*Src0) 3330 .add(*Src1) 3331 .addImm(Imm); 3332 updateLiveVariables(LV, MI, *MIB); 3333 if (LIS) 3334 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3335 killDef(); 3336 return MIB; 3337 } 3338 } 3339 unsigned NewOpc = IsFMA 3340 ? (IsF16 ? AMDGPU::V_FMAMK_F16 : AMDGPU::V_FMAMK_F32) 3341 : (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32); 3342 if (getFoldableImm(Src1, Imm, &DefMI)) { 3343 if (pseudoToMCOpcode(NewOpc) != -1) { 3344 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3345 .add(*Dst) 3346 .add(*Src0) 3347 .addImm(Imm) 3348 .add(*Src2); 3349 updateLiveVariables(LV, MI, *MIB); 3350 if (LIS) 3351 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3352 killDef(); 3353 return MIB; 3354 } 3355 } 3356 if (getFoldableImm(Src0, Imm, &DefMI)) { 3357 if (pseudoToMCOpcode(NewOpc) != -1 && 3358 isOperandLegal( 3359 MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0), 3360 Src1)) { 3361 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3362 .add(*Dst) 3363 .add(*Src1) 3364 .addImm(Imm) 3365 .add(*Src2); 3366 updateLiveVariables(LV, MI, *MIB); 3367 if (LIS) 3368 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3369 killDef(); 3370 return MIB; 3371 } 3372 } 3373 } 3374 3375 unsigned NewOpc = IsFMA ? IsF16 ? AMDGPU::V_FMA_F16_gfx9_e64 3376 : IsF64 ? AMDGPU::V_FMA_F64_e64 3377 : IsLegacy 3378 ? AMDGPU::V_FMA_LEGACY_F32_e64 3379 : AMDGPU::V_FMA_F32_e64 3380 : IsF16 ? AMDGPU::V_MAD_F16_e64 3381 : IsLegacy ? AMDGPU::V_MAD_LEGACY_F32_e64 3382 : AMDGPU::V_MAD_F32_e64; 3383 if (pseudoToMCOpcode(NewOpc) == -1) 3384 return nullptr; 3385 3386 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3387 .add(*Dst) 3388 .addImm(Src0Mods ? Src0Mods->getImm() : 0) 3389 .add(*Src0) 3390 .addImm(Src1Mods ? Src1Mods->getImm() : 0) 3391 .add(*Src1) 3392 .addImm(Src2Mods ? Src2Mods->getImm() : 0) 3393 .add(*Src2) 3394 .addImm(Clamp ? Clamp->getImm() : 0) 3395 .addImm(Omod ? Omod->getImm() : 0); 3396 updateLiveVariables(LV, MI, *MIB); 3397 if (LIS) 3398 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3399 return MIB; 3400 } 3401 3402 // It's not generally safe to move VALU instructions across these since it will 3403 // start using the register as a base index rather than directly. 3404 // XXX - Why isn't hasSideEffects sufficient for these? 3405 static bool changesVGPRIndexingMode(const MachineInstr &MI) { 3406 switch (MI.getOpcode()) { 3407 case AMDGPU::S_SET_GPR_IDX_ON: 3408 case AMDGPU::S_SET_GPR_IDX_MODE: 3409 case AMDGPU::S_SET_GPR_IDX_OFF: 3410 return true; 3411 default: 3412 return false; 3413 } 3414 } 3415 3416 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 3417 const MachineBasicBlock *MBB, 3418 const MachineFunction &MF) const { 3419 // Skipping the check for SP writes in the base implementation. The reason it 3420 // was added was apparently due to compile time concerns. 3421 // 3422 // TODO: Do we really want this barrier? It triggers unnecessary hazard nops 3423 // but is probably avoidable. 3424 3425 // Copied from base implementation. 3426 // Terminators and labels can't be scheduled around. 3427 if (MI.isTerminator() || MI.isPosition()) 3428 return true; 3429 3430 // INLINEASM_BR can jump to another block 3431 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 3432 return true; 3433 3434 // Target-independent instructions do not have an implicit-use of EXEC, even 3435 // when they operate on VGPRs. Treating EXEC modifications as scheduling 3436 // boundaries prevents incorrect movements of such instructions. 3437 return MI.modifiesRegister(AMDGPU::EXEC, &RI) || 3438 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || 3439 MI.getOpcode() == AMDGPU::S_SETREG_B32 || 3440 changesVGPRIndexingMode(MI); 3441 } 3442 3443 bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const { 3444 return Opcode == AMDGPU::DS_ORDERED_COUNT || 3445 Opcode == AMDGPU::DS_GWS_INIT || 3446 Opcode == AMDGPU::DS_GWS_SEMA_V || 3447 Opcode == AMDGPU::DS_GWS_SEMA_BR || 3448 Opcode == AMDGPU::DS_GWS_SEMA_P || 3449 Opcode == AMDGPU::DS_GWS_SEMA_RELEASE_ALL || 3450 Opcode == AMDGPU::DS_GWS_BARRIER; 3451 } 3452 3453 bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) { 3454 // Skip the full operand and register alias search modifiesRegister 3455 // does. There's only a handful of instructions that touch this, it's only an 3456 // implicit def, and doesn't alias any other registers. 3457 if (const MCPhysReg *ImpDef = MI.getDesc().getImplicitDefs()) { 3458 for (; ImpDef && *ImpDef; ++ImpDef) { 3459 if (*ImpDef == AMDGPU::MODE) 3460 return true; 3461 } 3462 } 3463 3464 return false; 3465 } 3466 3467 bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const { 3468 unsigned Opcode = MI.getOpcode(); 3469 3470 if (MI.mayStore() && isSMRD(MI)) 3471 return true; // scalar store or atomic 3472 3473 // This will terminate the function when other lanes may need to continue. 3474 if (MI.isReturn()) 3475 return true; 3476 3477 // These instructions cause shader I/O that may cause hardware lockups 3478 // when executed with an empty EXEC mask. 3479 // 3480 // Note: exp with VM = DONE = 0 is automatically skipped by hardware when 3481 // EXEC = 0, but checking for that case here seems not worth it 3482 // given the typical code patterns. 3483 if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT || 3484 isEXP(Opcode) || 3485 Opcode == AMDGPU::DS_ORDERED_COUNT || Opcode == AMDGPU::S_TRAP || 3486 Opcode == AMDGPU::DS_GWS_INIT || Opcode == AMDGPU::DS_GWS_BARRIER) 3487 return true; 3488 3489 if (MI.isCall() || MI.isInlineAsm()) 3490 return true; // conservative assumption 3491 3492 // A mode change is a scalar operation that influences vector instructions. 3493 if (modifiesModeRegister(MI)) 3494 return true; 3495 3496 // These are like SALU instructions in terms of effects, so it's questionable 3497 // whether we should return true for those. 3498 // 3499 // However, executing them with EXEC = 0 causes them to operate on undefined 3500 // data, which we avoid by returning true here. 3501 if (Opcode == AMDGPU::V_READFIRSTLANE_B32 || 3502 Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32) 3503 return true; 3504 3505 return false; 3506 } 3507 3508 bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI, 3509 const MachineInstr &MI) const { 3510 if (MI.isMetaInstruction()) 3511 return false; 3512 3513 // This won't read exec if this is an SGPR->SGPR copy. 3514 if (MI.isCopyLike()) { 3515 if (!RI.isSGPRReg(MRI, MI.getOperand(0).getReg())) 3516 return true; 3517 3518 // Make sure this isn't copying exec as a normal operand 3519 return MI.readsRegister(AMDGPU::EXEC, &RI); 3520 } 3521 3522 // Make a conservative assumption about the callee. 3523 if (MI.isCall()) 3524 return true; 3525 3526 // Be conservative with any unhandled generic opcodes. 3527 if (!isTargetSpecificOpcode(MI.getOpcode())) 3528 return true; 3529 3530 return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI); 3531 } 3532 3533 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { 3534 switch (Imm.getBitWidth()) { 3535 case 1: // This likely will be a condition code mask. 3536 return true; 3537 3538 case 32: 3539 return AMDGPU::isInlinableLiteral32(Imm.getSExtValue(), 3540 ST.hasInv2PiInlineImm()); 3541 case 64: 3542 return AMDGPU::isInlinableLiteral64(Imm.getSExtValue(), 3543 ST.hasInv2PiInlineImm()); 3544 case 16: 3545 return ST.has16BitInsts() && 3546 AMDGPU::isInlinableLiteral16(Imm.getSExtValue(), 3547 ST.hasInv2PiInlineImm()); 3548 default: 3549 llvm_unreachable("invalid bitwidth"); 3550 } 3551 } 3552 3553 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, 3554 uint8_t OperandType) const { 3555 if (!MO.isImm() || 3556 OperandType < AMDGPU::OPERAND_SRC_FIRST || 3557 OperandType > AMDGPU::OPERAND_SRC_LAST) 3558 return false; 3559 3560 // MachineOperand provides no way to tell the true operand size, since it only 3561 // records a 64-bit value. We need to know the size to determine if a 32-bit 3562 // floating point immediate bit pattern is legal for an integer immediate. It 3563 // would be for any 32-bit integer operand, but would not be for a 64-bit one. 3564 3565 int64_t Imm = MO.getImm(); 3566 switch (OperandType) { 3567 case AMDGPU::OPERAND_REG_IMM_INT32: 3568 case AMDGPU::OPERAND_REG_IMM_FP32: 3569 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 3570 case AMDGPU::OPERAND_REG_INLINE_C_INT32: 3571 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 3572 case AMDGPU::OPERAND_REG_IMM_V2FP32: 3573 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 3574 case AMDGPU::OPERAND_REG_IMM_V2INT32: 3575 case AMDGPU::OPERAND_REG_INLINE_C_V2INT32: 3576 case AMDGPU::OPERAND_REG_INLINE_AC_INT32: 3577 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: { 3578 int32_t Trunc = static_cast<int32_t>(Imm); 3579 return AMDGPU::isInlinableLiteral32(Trunc, ST.hasInv2PiInlineImm()); 3580 } 3581 case AMDGPU::OPERAND_REG_IMM_INT64: 3582 case AMDGPU::OPERAND_REG_IMM_FP64: 3583 case AMDGPU::OPERAND_REG_INLINE_C_INT64: 3584 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 3585 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 3586 return AMDGPU::isInlinableLiteral64(MO.getImm(), 3587 ST.hasInv2PiInlineImm()); 3588 case AMDGPU::OPERAND_REG_IMM_INT16: 3589 case AMDGPU::OPERAND_REG_INLINE_C_INT16: 3590 case AMDGPU::OPERAND_REG_INLINE_AC_INT16: 3591 // We would expect inline immediates to not be concerned with an integer/fp 3592 // distinction. However, in the case of 16-bit integer operations, the 3593 // "floating point" values appear to not work. It seems read the low 16-bits 3594 // of 32-bit immediates, which happens to always work for the integer 3595 // values. 3596 // 3597 // See llvm bugzilla 46302. 3598 // 3599 // TODO: Theoretically we could use op-sel to use the high bits of the 3600 // 32-bit FP values. 3601 return AMDGPU::isInlinableIntLiteral(Imm); 3602 case AMDGPU::OPERAND_REG_IMM_V2INT16: 3603 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 3604 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 3605 // This suffers the same problem as the scalar 16-bit cases. 3606 return AMDGPU::isInlinableIntLiteralV216(Imm); 3607 case AMDGPU::OPERAND_REG_IMM_FP16: 3608 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: 3609 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 3610 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: { 3611 if (isInt<16>(Imm) || isUInt<16>(Imm)) { 3612 // A few special case instructions have 16-bit operands on subtargets 3613 // where 16-bit instructions are not legal. 3614 // TODO: Do the 32-bit immediates work? We shouldn't really need to handle 3615 // constants in these cases 3616 int16_t Trunc = static_cast<int16_t>(Imm); 3617 return ST.has16BitInsts() && 3618 AMDGPU::isInlinableLiteral16(Trunc, ST.hasInv2PiInlineImm()); 3619 } 3620 3621 return false; 3622 } 3623 case AMDGPU::OPERAND_REG_IMM_V2FP16: 3624 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 3625 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: { 3626 uint32_t Trunc = static_cast<uint32_t>(Imm); 3627 return AMDGPU::isInlinableLiteralV216(Trunc, ST.hasInv2PiInlineImm()); 3628 } 3629 case AMDGPU::OPERAND_KIMM32: 3630 case AMDGPU::OPERAND_KIMM16: 3631 return false; 3632 default: 3633 llvm_unreachable("invalid bitwidth"); 3634 } 3635 } 3636 3637 bool SIInstrInfo::isLiteralConstantLike(const MachineOperand &MO, 3638 const MCOperandInfo &OpInfo) const { 3639 switch (MO.getType()) { 3640 case MachineOperand::MO_Register: 3641 return false; 3642 case MachineOperand::MO_Immediate: 3643 return !isInlineConstant(MO, OpInfo); 3644 case MachineOperand::MO_FrameIndex: 3645 case MachineOperand::MO_MachineBasicBlock: 3646 case MachineOperand::MO_ExternalSymbol: 3647 case MachineOperand::MO_GlobalAddress: 3648 case MachineOperand::MO_MCSymbol: 3649 return true; 3650 default: 3651 llvm_unreachable("unexpected operand type"); 3652 } 3653 } 3654 3655 static bool compareMachineOp(const MachineOperand &Op0, 3656 const MachineOperand &Op1) { 3657 if (Op0.getType() != Op1.getType()) 3658 return false; 3659 3660 switch (Op0.getType()) { 3661 case MachineOperand::MO_Register: 3662 return Op0.getReg() == Op1.getReg(); 3663 case MachineOperand::MO_Immediate: 3664 return Op0.getImm() == Op1.getImm(); 3665 default: 3666 llvm_unreachable("Didn't expect to be comparing these operand types"); 3667 } 3668 } 3669 3670 bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, 3671 const MachineOperand &MO) const { 3672 const MCInstrDesc &InstDesc = MI.getDesc(); 3673 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 3674 3675 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); 3676 3677 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) 3678 return true; 3679 3680 if (OpInfo.RegClass < 0) 3681 return false; 3682 3683 if (MO.isImm() && isInlineConstant(MO, OpInfo)) { 3684 if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() && 3685 OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(), 3686 AMDGPU::OpName::src2)) 3687 return false; 3688 return RI.opCanUseInlineConstant(OpInfo.OperandType); 3689 } 3690 3691 if (!RI.opCanUseLiteralConstant(OpInfo.OperandType)) 3692 return false; 3693 3694 if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(InstDesc, OpNo)) 3695 return true; 3696 3697 return ST.hasVOP3Literal(); 3698 } 3699 3700 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { 3701 // GFX90A does not have V_MUL_LEGACY_F32_e32. 3702 if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts()) 3703 return false; 3704 3705 int Op32 = AMDGPU::getVOPe32(Opcode); 3706 if (Op32 == -1) 3707 return false; 3708 3709 return pseudoToMCOpcode(Op32) != -1; 3710 } 3711 3712 bool SIInstrInfo::hasModifiers(unsigned Opcode) const { 3713 // The src0_modifier operand is present on all instructions 3714 // that have modifiers. 3715 3716 return AMDGPU::getNamedOperandIdx(Opcode, 3717 AMDGPU::OpName::src0_modifiers) != -1; 3718 } 3719 3720 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, 3721 unsigned OpName) const { 3722 const MachineOperand *Mods = getNamedOperand(MI, OpName); 3723 return Mods && Mods->getImm(); 3724 } 3725 3726 bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const { 3727 return hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 3728 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 3729 hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers) || 3730 hasModifiersSet(MI, AMDGPU::OpName::clamp) || 3731 hasModifiersSet(MI, AMDGPU::OpName::omod); 3732 } 3733 3734 bool SIInstrInfo::canShrink(const MachineInstr &MI, 3735 const MachineRegisterInfo &MRI) const { 3736 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 3737 // Can't shrink instruction with three operands. 3738 if (Src2) { 3739 switch (MI.getOpcode()) { 3740 default: return false; 3741 3742 case AMDGPU::V_ADDC_U32_e64: 3743 case AMDGPU::V_SUBB_U32_e64: 3744 case AMDGPU::V_SUBBREV_U32_e64: { 3745 const MachineOperand *Src1 3746 = getNamedOperand(MI, AMDGPU::OpName::src1); 3747 if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg())) 3748 return false; 3749 // Additional verification is needed for sdst/src2. 3750 return true; 3751 } 3752 case AMDGPU::V_MAC_F16_e64: 3753 case AMDGPU::V_MAC_F32_e64: 3754 case AMDGPU::V_MAC_LEGACY_F32_e64: 3755 case AMDGPU::V_FMAC_F16_e64: 3756 case AMDGPU::V_FMAC_F32_e64: 3757 case AMDGPU::V_FMAC_F64_e64: 3758 case AMDGPU::V_FMAC_LEGACY_F32_e64: 3759 if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) || 3760 hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers)) 3761 return false; 3762 break; 3763 3764 case AMDGPU::V_CNDMASK_B32_e64: 3765 break; 3766 } 3767 } 3768 3769 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 3770 if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) || 3771 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers))) 3772 return false; 3773 3774 // We don't need to check src0, all input types are legal, so just make sure 3775 // src0 isn't using any modifiers. 3776 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers)) 3777 return false; 3778 3779 // Can it be shrunk to a valid 32 bit opcode? 3780 if (!hasVALU32BitEncoding(MI.getOpcode())) 3781 return false; 3782 3783 // Check output modifiers 3784 return !hasModifiersSet(MI, AMDGPU::OpName::omod) && 3785 !hasModifiersSet(MI, AMDGPU::OpName::clamp); 3786 } 3787 3788 // Set VCC operand with all flags from \p Orig, except for setting it as 3789 // implicit. 3790 static void copyFlagsToImplicitVCC(MachineInstr &MI, 3791 const MachineOperand &Orig) { 3792 3793 for (MachineOperand &Use : MI.implicit_operands()) { 3794 if (Use.isUse() && 3795 (Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) { 3796 Use.setIsUndef(Orig.isUndef()); 3797 Use.setIsKill(Orig.isKill()); 3798 return; 3799 } 3800 } 3801 } 3802 3803 MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI, 3804 unsigned Op32) const { 3805 MachineBasicBlock *MBB = MI.getParent();; 3806 MachineInstrBuilder Inst32 = 3807 BuildMI(*MBB, MI, MI.getDebugLoc(), get(Op32)) 3808 .setMIFlags(MI.getFlags()); 3809 3810 // Add the dst operand if the 32-bit encoding also has an explicit $vdst. 3811 // For VOPC instructions, this is replaced by an implicit def of vcc. 3812 int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst); 3813 if (Op32DstIdx != -1) { 3814 // dst 3815 Inst32.add(MI.getOperand(0)); 3816 } else { 3817 assert(((MI.getOperand(0).getReg() == AMDGPU::VCC) || 3818 (MI.getOperand(0).getReg() == AMDGPU::VCC_LO)) && 3819 "Unexpected case"); 3820 } 3821 3822 Inst32.add(*getNamedOperand(MI, AMDGPU::OpName::src0)); 3823 3824 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 3825 if (Src1) 3826 Inst32.add(*Src1); 3827 3828 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 3829 3830 if (Src2) { 3831 int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2); 3832 if (Op32Src2Idx != -1) { 3833 Inst32.add(*Src2); 3834 } else { 3835 // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is 3836 // replaced with an implicit read of vcc or vcc_lo. The implicit read 3837 // of vcc was already added during the initial BuildMI, but we 3838 // 1) may need to change vcc to vcc_lo to preserve the original register 3839 // 2) have to preserve the original flags. 3840 fixImplicitOperands(*Inst32); 3841 copyFlagsToImplicitVCC(*Inst32, *Src2); 3842 } 3843 } 3844 3845 return Inst32; 3846 } 3847 3848 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, 3849 const MachineOperand &MO, 3850 const MCOperandInfo &OpInfo) const { 3851 // Literal constants use the constant bus. 3852 //if (isLiteralConstantLike(MO, OpInfo)) 3853 // return true; 3854 if (MO.isImm()) 3855 return !isInlineConstant(MO, OpInfo); 3856 3857 if (!MO.isReg()) 3858 return true; // Misc other operands like FrameIndex 3859 3860 if (!MO.isUse()) 3861 return false; 3862 3863 if (MO.getReg().isVirtual()) 3864 return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); 3865 3866 // Null is free 3867 if (MO.getReg() == AMDGPU::SGPR_NULL) 3868 return false; 3869 3870 // SGPRs use the constant bus 3871 if (MO.isImplicit()) { 3872 return MO.getReg() == AMDGPU::M0 || 3873 MO.getReg() == AMDGPU::VCC || 3874 MO.getReg() == AMDGPU::VCC_LO; 3875 } else { 3876 return AMDGPU::SReg_32RegClass.contains(MO.getReg()) || 3877 AMDGPU::SReg_64RegClass.contains(MO.getReg()); 3878 } 3879 } 3880 3881 static Register findImplicitSGPRRead(const MachineInstr &MI) { 3882 for (const MachineOperand &MO : MI.implicit_operands()) { 3883 // We only care about reads. 3884 if (MO.isDef()) 3885 continue; 3886 3887 switch (MO.getReg()) { 3888 case AMDGPU::VCC: 3889 case AMDGPU::VCC_LO: 3890 case AMDGPU::VCC_HI: 3891 case AMDGPU::M0: 3892 case AMDGPU::FLAT_SCR: 3893 return MO.getReg(); 3894 3895 default: 3896 break; 3897 } 3898 } 3899 3900 return AMDGPU::NoRegister; 3901 } 3902 3903 static bool shouldReadExec(const MachineInstr &MI) { 3904 if (SIInstrInfo::isVALU(MI)) { 3905 switch (MI.getOpcode()) { 3906 case AMDGPU::V_READLANE_B32: 3907 case AMDGPU::V_WRITELANE_B32: 3908 return false; 3909 } 3910 3911 return true; 3912 } 3913 3914 if (MI.isPreISelOpcode() || 3915 SIInstrInfo::isGenericOpcode(MI.getOpcode()) || 3916 SIInstrInfo::isSALU(MI) || 3917 SIInstrInfo::isSMRD(MI)) 3918 return false; 3919 3920 return true; 3921 } 3922 3923 static bool isSubRegOf(const SIRegisterInfo &TRI, 3924 const MachineOperand &SuperVec, 3925 const MachineOperand &SubReg) { 3926 if (SubReg.getReg().isPhysical()) 3927 return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg()); 3928 3929 return SubReg.getSubReg() != AMDGPU::NoSubRegister && 3930 SubReg.getReg() == SuperVec.getReg(); 3931 } 3932 3933 bool SIInstrInfo::verifyInstruction(const MachineInstr &MI, 3934 StringRef &ErrInfo) const { 3935 uint16_t Opcode = MI.getOpcode(); 3936 if (SIInstrInfo::isGenericOpcode(MI.getOpcode())) 3937 return true; 3938 3939 const MachineFunction *MF = MI.getParent()->getParent(); 3940 const MachineRegisterInfo &MRI = MF->getRegInfo(); 3941 3942 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 3943 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); 3944 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); 3945 3946 // Make sure the number of operands is correct. 3947 const MCInstrDesc &Desc = get(Opcode); 3948 if (!Desc.isVariadic() && 3949 Desc.getNumOperands() != MI.getNumExplicitOperands()) { 3950 ErrInfo = "Instruction has wrong number of operands."; 3951 return false; 3952 } 3953 3954 if (MI.isInlineAsm()) { 3955 // Verify register classes for inlineasm constraints. 3956 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands(); 3957 I != E; ++I) { 3958 const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI); 3959 if (!RC) 3960 continue; 3961 3962 const MachineOperand &Op = MI.getOperand(I); 3963 if (!Op.isReg()) 3964 continue; 3965 3966 Register Reg = Op.getReg(); 3967 if (!Reg.isVirtual() && !RC->contains(Reg)) { 3968 ErrInfo = "inlineasm operand has incorrect register class."; 3969 return false; 3970 } 3971 } 3972 3973 return true; 3974 } 3975 3976 if (isMIMG(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) { 3977 ErrInfo = "missing memory operand from MIMG instruction."; 3978 return false; 3979 } 3980 3981 // Make sure the register classes are correct. 3982 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { 3983 const MachineOperand &MO = MI.getOperand(i); 3984 if (MO.isFPImm()) { 3985 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " 3986 "all fp values to integers."; 3987 return false; 3988 } 3989 3990 int RegClass = Desc.OpInfo[i].RegClass; 3991 3992 switch (Desc.OpInfo[i].OperandType) { 3993 case MCOI::OPERAND_REGISTER: 3994 if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) { 3995 ErrInfo = "Illegal immediate value for operand."; 3996 return false; 3997 } 3998 break; 3999 case AMDGPU::OPERAND_REG_IMM_INT32: 4000 case AMDGPU::OPERAND_REG_IMM_FP32: 4001 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 4002 break; 4003 case AMDGPU::OPERAND_REG_INLINE_C_INT32: 4004 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 4005 case AMDGPU::OPERAND_REG_INLINE_C_INT64: 4006 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 4007 case AMDGPU::OPERAND_REG_INLINE_C_INT16: 4008 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 4009 case AMDGPU::OPERAND_REG_INLINE_AC_INT32: 4010 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 4011 case AMDGPU::OPERAND_REG_INLINE_AC_INT16: 4012 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 4013 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: { 4014 if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, i))) { 4015 ErrInfo = "Illegal immediate value for operand."; 4016 return false; 4017 } 4018 break; 4019 } 4020 case MCOI::OPERAND_IMMEDIATE: 4021 case AMDGPU::OPERAND_KIMM32: 4022 // Check if this operand is an immediate. 4023 // FrameIndex operands will be replaced by immediates, so they are 4024 // allowed. 4025 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) { 4026 ErrInfo = "Expected immediate, but got non-immediate"; 4027 return false; 4028 } 4029 LLVM_FALLTHROUGH; 4030 default: 4031 continue; 4032 } 4033 4034 if (!MO.isReg()) 4035 continue; 4036 Register Reg = MO.getReg(); 4037 if (!Reg) 4038 continue; 4039 4040 // FIXME: Ideally we would have separate instruction definitions with the 4041 // aligned register constraint. 4042 // FIXME: We do not verify inline asm operands, but custom inline asm 4043 // verification is broken anyway 4044 if (ST.needsAlignedVGPRs()) { 4045 const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg); 4046 if (RI.hasVectorRegisters(RC) && MO.getSubReg()) { 4047 const TargetRegisterClass *SubRC = 4048 RI.getSubRegClass(RC, MO.getSubReg()); 4049 RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg()); 4050 if (RC) 4051 RC = SubRC; 4052 } 4053 4054 // Check that this is the aligned version of the class. 4055 if (!RC || !RI.isProperlyAlignedRC(*RC)) { 4056 ErrInfo = "Subtarget requires even aligned vector registers"; 4057 return false; 4058 } 4059 } 4060 4061 if (RegClass != -1) { 4062 if (Reg.isVirtual()) 4063 continue; 4064 4065 const TargetRegisterClass *RC = RI.getRegClass(RegClass); 4066 if (!RC->contains(Reg)) { 4067 ErrInfo = "Operand has incorrect register class."; 4068 return false; 4069 } 4070 } 4071 } 4072 4073 // Verify SDWA 4074 if (isSDWA(MI)) { 4075 if (!ST.hasSDWA()) { 4076 ErrInfo = "SDWA is not supported on this target"; 4077 return false; 4078 } 4079 4080 int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst); 4081 4082 const int OpIndices[] = {DstIdx, Src0Idx, Src1Idx, Src2Idx}; 4083 4084 for (int OpIdx : OpIndices) { 4085 if (OpIdx == -1) 4086 continue; 4087 const MachineOperand &MO = MI.getOperand(OpIdx); 4088 4089 if (!ST.hasSDWAScalar()) { 4090 // Only VGPRS on VI 4091 if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) { 4092 ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI"; 4093 return false; 4094 } 4095 } else { 4096 // No immediates on GFX9 4097 if (!MO.isReg()) { 4098 ErrInfo = 4099 "Only reg allowed as operands in SDWA instructions on GFX9+"; 4100 return false; 4101 } 4102 } 4103 } 4104 4105 if (!ST.hasSDWAOmod()) { 4106 // No omod allowed on VI 4107 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); 4108 if (OMod != nullptr && 4109 (!OMod->isImm() || OMod->getImm() != 0)) { 4110 ErrInfo = "OMod not allowed in SDWA instructions on VI"; 4111 return false; 4112 } 4113 } 4114 4115 uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode); 4116 if (isVOPC(BasicOpcode)) { 4117 if (!ST.hasSDWASdst() && DstIdx != -1) { 4118 // Only vcc allowed as dst on VI for VOPC 4119 const MachineOperand &Dst = MI.getOperand(DstIdx); 4120 if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) { 4121 ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI"; 4122 return false; 4123 } 4124 } else if (!ST.hasSDWAOutModsVOPC()) { 4125 // No clamp allowed on GFX9 for VOPC 4126 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); 4127 if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) { 4128 ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI"; 4129 return false; 4130 } 4131 4132 // No omod allowed on GFX9 for VOPC 4133 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); 4134 if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) { 4135 ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI"; 4136 return false; 4137 } 4138 } 4139 } 4140 4141 const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused); 4142 if (DstUnused && DstUnused->isImm() && 4143 DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) { 4144 const MachineOperand &Dst = MI.getOperand(DstIdx); 4145 if (!Dst.isReg() || !Dst.isTied()) { 4146 ErrInfo = "Dst register should have tied register"; 4147 return false; 4148 } 4149 4150 const MachineOperand &TiedMO = 4151 MI.getOperand(MI.findTiedOperandIdx(DstIdx)); 4152 if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) { 4153 ErrInfo = 4154 "Dst register should be tied to implicit use of preserved register"; 4155 return false; 4156 } else if (TiedMO.getReg().isPhysical() && 4157 Dst.getReg() != TiedMO.getReg()) { 4158 ErrInfo = "Dst register should use same physical register as preserved"; 4159 return false; 4160 } 4161 } 4162 } 4163 4164 // Verify MIMG 4165 if (isMIMG(MI.getOpcode()) && !MI.mayStore()) { 4166 // Ensure that the return type used is large enough for all the options 4167 // being used TFE/LWE require an extra result register. 4168 const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask); 4169 if (DMask) { 4170 uint64_t DMaskImm = DMask->getImm(); 4171 uint32_t RegCount = 4172 isGather4(MI.getOpcode()) ? 4 : countPopulation(DMaskImm); 4173 const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe); 4174 const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe); 4175 const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16); 4176 4177 // Adjust for packed 16 bit values 4178 if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem()) 4179 RegCount >>= 1; 4180 4181 // Adjust if using LWE or TFE 4182 if ((LWE && LWE->getImm()) || (TFE && TFE->getImm())) 4183 RegCount += 1; 4184 4185 const uint32_t DstIdx = 4186 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 4187 const MachineOperand &Dst = MI.getOperand(DstIdx); 4188 if (Dst.isReg()) { 4189 const TargetRegisterClass *DstRC = getOpRegClass(MI, DstIdx); 4190 uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32; 4191 if (RegCount > DstSize) { 4192 ErrInfo = "MIMG instruction returns too many registers for dst " 4193 "register class"; 4194 return false; 4195 } 4196 } 4197 } 4198 } 4199 4200 // Verify VOP*. Ignore multiple sgpr operands on writelane. 4201 if (Desc.getOpcode() != AMDGPU::V_WRITELANE_B32 4202 && (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI) || isSDWA(MI))) { 4203 // Only look at the true operands. Only a real operand can use the constant 4204 // bus, and we don't want to check pseudo-operands like the source modifier 4205 // flags. 4206 const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx }; 4207 4208 unsigned ConstantBusCount = 0; 4209 bool UsesLiteral = false; 4210 const MachineOperand *LiteralVal = nullptr; 4211 4212 if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1) 4213 ++ConstantBusCount; 4214 4215 SmallVector<Register, 2> SGPRsUsed; 4216 Register SGPRUsed; 4217 4218 for (int OpIdx : OpIndices) { 4219 if (OpIdx == -1) 4220 break; 4221 const MachineOperand &MO = MI.getOperand(OpIdx); 4222 if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) { 4223 if (MO.isReg()) { 4224 SGPRUsed = MO.getReg(); 4225 if (llvm::all_of(SGPRsUsed, [SGPRUsed](unsigned SGPR) { 4226 return SGPRUsed != SGPR; 4227 })) { 4228 ++ConstantBusCount; 4229 SGPRsUsed.push_back(SGPRUsed); 4230 } 4231 } else { 4232 if (!UsesLiteral) { 4233 ++ConstantBusCount; 4234 UsesLiteral = true; 4235 LiteralVal = &MO; 4236 } else if (!MO.isIdenticalTo(*LiteralVal)) { 4237 assert(isVOP3(MI)); 4238 ErrInfo = "VOP3 instruction uses more than one literal"; 4239 return false; 4240 } 4241 } 4242 } 4243 } 4244 4245 SGPRUsed = findImplicitSGPRRead(MI); 4246 if (SGPRUsed != AMDGPU::NoRegister) { 4247 // Implicit uses may safely overlap true operands 4248 if (llvm::all_of(SGPRsUsed, [this, SGPRUsed](unsigned SGPR) { 4249 return !RI.regsOverlap(SGPRUsed, SGPR); 4250 })) { 4251 ++ConstantBusCount; 4252 SGPRsUsed.push_back(SGPRUsed); 4253 } 4254 } 4255 4256 // v_writelane_b32 is an exception from constant bus restriction: 4257 // vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const 4258 if (ConstantBusCount > ST.getConstantBusLimit(Opcode) && 4259 Opcode != AMDGPU::V_WRITELANE_B32) { 4260 ErrInfo = "VOP* instruction violates constant bus restriction"; 4261 return false; 4262 } 4263 4264 if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) { 4265 ErrInfo = "VOP3 instruction uses literal"; 4266 return false; 4267 } 4268 } 4269 4270 // Special case for writelane - this can break the multiple constant bus rule, 4271 // but still can't use more than one SGPR register 4272 if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) { 4273 unsigned SGPRCount = 0; 4274 Register SGPRUsed = AMDGPU::NoRegister; 4275 4276 for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx}) { 4277 if (OpIdx == -1) 4278 break; 4279 4280 const MachineOperand &MO = MI.getOperand(OpIdx); 4281 4282 if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) { 4283 if (MO.isReg() && MO.getReg() != AMDGPU::M0) { 4284 if (MO.getReg() != SGPRUsed) 4285 ++SGPRCount; 4286 SGPRUsed = MO.getReg(); 4287 } 4288 } 4289 if (SGPRCount > ST.getConstantBusLimit(Opcode)) { 4290 ErrInfo = "WRITELANE instruction violates constant bus restriction"; 4291 return false; 4292 } 4293 } 4294 } 4295 4296 // Verify misc. restrictions on specific instructions. 4297 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 || 4298 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) { 4299 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 4300 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 4301 const MachineOperand &Src2 = MI.getOperand(Src2Idx); 4302 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { 4303 if (!compareMachineOp(Src0, Src1) && 4304 !compareMachineOp(Src0, Src2)) { 4305 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; 4306 return false; 4307 } 4308 } 4309 if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() & 4310 SISrcMods::ABS) || 4311 (getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() & 4312 SISrcMods::ABS) || 4313 (getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() & 4314 SISrcMods::ABS)) { 4315 ErrInfo = "ABS not allowed in VOP3B instructions"; 4316 return false; 4317 } 4318 } 4319 4320 if (isSOP2(MI) || isSOPC(MI)) { 4321 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 4322 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 4323 unsigned Immediates = 0; 4324 4325 if (!Src0.isReg() && 4326 !isInlineConstant(Src0, Desc.OpInfo[Src0Idx].OperandType)) 4327 Immediates++; 4328 if (!Src1.isReg() && 4329 !isInlineConstant(Src1, Desc.OpInfo[Src1Idx].OperandType)) 4330 Immediates++; 4331 4332 if (Immediates > 1) { 4333 ErrInfo = "SOP2/SOPC instruction requires too many immediate constants"; 4334 return false; 4335 } 4336 } 4337 4338 if (isSOPK(MI)) { 4339 auto Op = getNamedOperand(MI, AMDGPU::OpName::simm16); 4340 if (Desc.isBranch()) { 4341 if (!Op->isMBB()) { 4342 ErrInfo = "invalid branch target for SOPK instruction"; 4343 return false; 4344 } 4345 } else { 4346 uint64_t Imm = Op->getImm(); 4347 if (sopkIsZext(MI)) { 4348 if (!isUInt<16>(Imm)) { 4349 ErrInfo = "invalid immediate for SOPK instruction"; 4350 return false; 4351 } 4352 } else { 4353 if (!isInt<16>(Imm)) { 4354 ErrInfo = "invalid immediate for SOPK instruction"; 4355 return false; 4356 } 4357 } 4358 } 4359 } 4360 4361 if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 || 4362 Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 || 4363 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 4364 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) { 4365 const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 4366 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64; 4367 4368 const unsigned StaticNumOps = Desc.getNumOperands() + 4369 Desc.getNumImplicitUses(); 4370 const unsigned NumImplicitOps = IsDst ? 2 : 1; 4371 4372 // Allow additional implicit operands. This allows a fixup done by the post 4373 // RA scheduler where the main implicit operand is killed and implicit-defs 4374 // are added for sub-registers that remain live after this instruction. 4375 if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) { 4376 ErrInfo = "missing implicit register operands"; 4377 return false; 4378 } 4379 4380 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 4381 if (IsDst) { 4382 if (!Dst->isUse()) { 4383 ErrInfo = "v_movreld_b32 vdst should be a use operand"; 4384 return false; 4385 } 4386 4387 unsigned UseOpIdx; 4388 if (!MI.isRegTiedToUseOperand(StaticNumOps, &UseOpIdx) || 4389 UseOpIdx != StaticNumOps + 1) { 4390 ErrInfo = "movrel implicit operands should be tied"; 4391 return false; 4392 } 4393 } 4394 4395 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 4396 const MachineOperand &ImpUse 4397 = MI.getOperand(StaticNumOps + NumImplicitOps - 1); 4398 if (!ImpUse.isReg() || !ImpUse.isUse() || 4399 !isSubRegOf(RI, ImpUse, IsDst ? *Dst : Src0)) { 4400 ErrInfo = "src0 should be subreg of implicit vector use"; 4401 return false; 4402 } 4403 } 4404 4405 // Make sure we aren't losing exec uses in the td files. This mostly requires 4406 // being careful when using let Uses to try to add other use registers. 4407 if (shouldReadExec(MI)) { 4408 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { 4409 ErrInfo = "VALU instruction does not implicitly read exec mask"; 4410 return false; 4411 } 4412 } 4413 4414 if (isSMRD(MI)) { 4415 if (MI.mayStore()) { 4416 // The register offset form of scalar stores may only use m0 as the 4417 // soffset register. 4418 const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soff); 4419 if (Soff && Soff->getReg() != AMDGPU::M0) { 4420 ErrInfo = "scalar stores must use m0 as offset register"; 4421 return false; 4422 } 4423 } 4424 } 4425 4426 if (isFLAT(MI) && !ST.hasFlatInstOffsets()) { 4427 const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 4428 if (Offset->getImm() != 0) { 4429 ErrInfo = "subtarget does not support offsets in flat instructions"; 4430 return false; 4431 } 4432 } 4433 4434 if (isMIMG(MI)) { 4435 const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim); 4436 if (DimOp) { 4437 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode, 4438 AMDGPU::OpName::vaddr0); 4439 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 4440 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opcode); 4441 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 4442 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 4443 const AMDGPU::MIMGDimInfo *Dim = 4444 AMDGPU::getMIMGDimInfoByEncoding(DimOp->getImm()); 4445 4446 if (!Dim) { 4447 ErrInfo = "dim is out of range"; 4448 return false; 4449 } 4450 4451 bool IsA16 = false; 4452 if (ST.hasR128A16()) { 4453 const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128); 4454 IsA16 = R128A16->getImm() != 0; 4455 } else if (ST.hasGFX10A16()) { 4456 const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16); 4457 IsA16 = A16->getImm() != 0; 4458 } 4459 4460 bool IsNSA = SRsrcIdx - VAddr0Idx > 1; 4461 4462 unsigned AddrWords = 4463 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, ST.hasG16()); 4464 4465 unsigned VAddrWords; 4466 if (IsNSA) { 4467 VAddrWords = SRsrcIdx - VAddr0Idx; 4468 } else { 4469 const TargetRegisterClass *RC = getOpRegClass(MI, VAddr0Idx); 4470 VAddrWords = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 32; 4471 if (AddrWords > 8) 4472 AddrWords = 16; 4473 } 4474 4475 if (VAddrWords != AddrWords) { 4476 LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords 4477 << " but got " << VAddrWords << "\n"); 4478 ErrInfo = "bad vaddr size"; 4479 return false; 4480 } 4481 } 4482 } 4483 4484 const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl); 4485 if (DppCt) { 4486 using namespace AMDGPU::DPP; 4487 4488 unsigned DC = DppCt->getImm(); 4489 if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 || 4490 DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST || 4491 (DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) || 4492 (DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) || 4493 (DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) || 4494 (DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) || 4495 (DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) { 4496 ErrInfo = "Invalid dpp_ctrl value"; 4497 return false; 4498 } 4499 if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 && 4500 ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 4501 ErrInfo = "Invalid dpp_ctrl value: " 4502 "wavefront shifts are not supported on GFX10+"; 4503 return false; 4504 } 4505 if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 && 4506 ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 4507 ErrInfo = "Invalid dpp_ctrl value: " 4508 "broadcasts are not supported on GFX10+"; 4509 return false; 4510 } 4511 if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST && 4512 ST.getGeneration() < AMDGPUSubtarget::GFX10) { 4513 if (DC >= DppCtrl::ROW_NEWBCAST_FIRST && 4514 DC <= DppCtrl::ROW_NEWBCAST_LAST && 4515 !ST.hasGFX90AInsts()) { 4516 ErrInfo = "Invalid dpp_ctrl value: " 4517 "row_newbroadcast/row_share is not supported before " 4518 "GFX90A/GFX10"; 4519 return false; 4520 } else if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) { 4521 ErrInfo = "Invalid dpp_ctrl value: " 4522 "row_share and row_xmask are not supported before GFX10"; 4523 return false; 4524 } 4525 } 4526 4527 int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst); 4528 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 4529 4530 if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO && 4531 ((DstIdx >= 0 && 4532 (Desc.OpInfo[DstIdx].RegClass == AMDGPU::VReg_64RegClassID || 4533 Desc.OpInfo[DstIdx].RegClass == AMDGPU::VReg_64_Align2RegClassID)) || 4534 ((Src0Idx >= 0 && 4535 (Desc.OpInfo[Src0Idx].RegClass == AMDGPU::VReg_64RegClassID || 4536 Desc.OpInfo[Src0Idx].RegClass == 4537 AMDGPU::VReg_64_Align2RegClassID)))) && 4538 !AMDGPU::isLegal64BitDPPControl(DC)) { 4539 ErrInfo = "Invalid dpp_ctrl value: " 4540 "64 bit dpp only support row_newbcast"; 4541 return false; 4542 } 4543 } 4544 4545 if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) { 4546 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 4547 uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0 4548 : AMDGPU::OpName::vdata; 4549 const MachineOperand *Data = getNamedOperand(MI, DataNameIdx); 4550 const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1); 4551 if (Data && !Data->isReg()) 4552 Data = nullptr; 4553 4554 if (ST.hasGFX90AInsts()) { 4555 if (Dst && Data && 4556 (RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) { 4557 ErrInfo = "Invalid register class: " 4558 "vdata and vdst should be both VGPR or AGPR"; 4559 return false; 4560 } 4561 if (Data && Data2 && 4562 (RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) { 4563 ErrInfo = "Invalid register class: " 4564 "both data operands should be VGPR or AGPR"; 4565 return false; 4566 } 4567 } else { 4568 if ((Dst && RI.isAGPR(MRI, Dst->getReg())) || 4569 (Data && RI.isAGPR(MRI, Data->getReg())) || 4570 (Data2 && RI.isAGPR(MRI, Data2->getReg()))) { 4571 ErrInfo = "Invalid register class: " 4572 "agpr loads and stores not supported on this GPU"; 4573 return false; 4574 } 4575 } 4576 } 4577 4578 if (ST.needsAlignedVGPRs() && 4579 (MI.getOpcode() == AMDGPU::DS_GWS_INIT || 4580 MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 4581 MI.getOpcode() == AMDGPU::DS_GWS_BARRIER)) { 4582 const MachineOperand *Op = getNamedOperand(MI, AMDGPU::OpName::data0); 4583 Register Reg = Op->getReg(); 4584 bool Aligned = true; 4585 if (Reg.isPhysical()) { 4586 Aligned = !(RI.getHWRegIndex(Reg) & 1); 4587 } else { 4588 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 4589 Aligned = RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) && 4590 !(RI.getChannelFromSubReg(Op->getSubReg()) & 1); 4591 } 4592 4593 if (!Aligned) { 4594 ErrInfo = "Subtarget requires even aligned vector registers " 4595 "for DS_GWS instructions"; 4596 return false; 4597 } 4598 } 4599 4600 if (Desc.getOpcode() == AMDGPU::G_AMDGPU_WAVE_ADDRESS) { 4601 const MachineOperand &SrcOp = MI.getOperand(1); 4602 if (!SrcOp.isReg() || SrcOp.getReg().isVirtual()) { 4603 ErrInfo = "pseudo expects only physical SGPRs"; 4604 return false; 4605 } 4606 } 4607 4608 return true; 4609 } 4610 4611 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const { 4612 switch (MI.getOpcode()) { 4613 default: return AMDGPU::INSTRUCTION_LIST_END; 4614 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; 4615 case AMDGPU::COPY: return AMDGPU::COPY; 4616 case AMDGPU::PHI: return AMDGPU::PHI; 4617 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; 4618 case AMDGPU::WQM: return AMDGPU::WQM; 4619 case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM; 4620 case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM; 4621 case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM; 4622 case AMDGPU::S_MOV_B32: { 4623 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4624 return MI.getOperand(1).isReg() || 4625 RI.isAGPR(MRI, MI.getOperand(0).getReg()) ? 4626 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; 4627 } 4628 case AMDGPU::S_ADD_I32: 4629 return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; 4630 case AMDGPU::S_ADDC_U32: 4631 return AMDGPU::V_ADDC_U32_e32; 4632 case AMDGPU::S_SUB_I32: 4633 return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32; 4634 // FIXME: These are not consistently handled, and selected when the carry is 4635 // used. 4636 case AMDGPU::S_ADD_U32: 4637 return AMDGPU::V_ADD_CO_U32_e32; 4638 case AMDGPU::S_SUB_U32: 4639 return AMDGPU::V_SUB_CO_U32_e32; 4640 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; 4641 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64; 4642 case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64; 4643 case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64; 4644 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64; 4645 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64; 4646 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64; 4647 case AMDGPU::S_XNOR_B32: 4648 return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END; 4649 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64; 4650 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64; 4651 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64; 4652 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64; 4653 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; 4654 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64; 4655 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; 4656 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64; 4657 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; 4658 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64; 4659 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64; 4660 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64; 4661 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64; 4662 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64; 4663 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; 4664 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; 4665 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; 4666 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; 4667 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e64; 4668 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e64; 4669 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e64; 4670 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e64; 4671 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e64; 4672 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e64; 4673 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e64; 4674 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e64; 4675 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e64; 4676 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e64; 4677 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e64; 4678 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e64; 4679 case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e64; 4680 case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e64; 4681 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; 4682 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; 4683 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; 4684 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; 4685 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; 4686 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; 4687 } 4688 llvm_unreachable( 4689 "Unexpected scalar opcode without corresponding vector one!"); 4690 } 4691 4692 static unsigned adjustAllocatableRegClass(const GCNSubtarget &ST, 4693 const MachineRegisterInfo &MRI, 4694 const MCInstrDesc &TID, 4695 unsigned RCID, 4696 bool IsAllocatable) { 4697 if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && 4698 (((TID.mayLoad() || TID.mayStore()) && 4699 !(TID.TSFlags & SIInstrFlags::VGPRSpill)) || 4700 (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) { 4701 switch (RCID) { 4702 case AMDGPU::AV_32RegClassID: return AMDGPU::VGPR_32RegClassID; 4703 case AMDGPU::AV_64RegClassID: return AMDGPU::VReg_64RegClassID; 4704 case AMDGPU::AV_96RegClassID: return AMDGPU::VReg_96RegClassID; 4705 case AMDGPU::AV_128RegClassID: return AMDGPU::VReg_128RegClassID; 4706 case AMDGPU::AV_160RegClassID: return AMDGPU::VReg_160RegClassID; 4707 default: 4708 break; 4709 } 4710 } 4711 return RCID; 4712 } 4713 4714 const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID, 4715 unsigned OpNum, const TargetRegisterInfo *TRI, 4716 const MachineFunction &MF) 4717 const { 4718 if (OpNum >= TID.getNumOperands()) 4719 return nullptr; 4720 auto RegClass = TID.OpInfo[OpNum].RegClass; 4721 bool IsAllocatable = false; 4722 if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) { 4723 // vdst and vdata should be both VGPR or AGPR, same for the DS instructions 4724 // with two data operands. Request register class constrained to VGPR only 4725 // of both operands present as Machine Copy Propagation can not check this 4726 // constraint and possibly other passes too. 4727 // 4728 // The check is limited to FLAT and DS because atomics in non-flat encoding 4729 // have their vdst and vdata tied to be the same register. 4730 const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, 4731 AMDGPU::OpName::vdst); 4732 const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, 4733 (TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 4734 : AMDGPU::OpName::vdata); 4735 if (DataIdx != -1) { 4736 IsAllocatable = VDstIdx != -1 || 4737 AMDGPU::getNamedOperandIdx(TID.Opcode, 4738 AMDGPU::OpName::data1) != -1; 4739 } 4740 } 4741 RegClass = adjustAllocatableRegClass(ST, MF.getRegInfo(), TID, RegClass, 4742 IsAllocatable); 4743 return RI.getRegClass(RegClass); 4744 } 4745 4746 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, 4747 unsigned OpNo) const { 4748 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4749 const MCInstrDesc &Desc = get(MI.getOpcode()); 4750 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || 4751 Desc.OpInfo[OpNo].RegClass == -1) { 4752 Register Reg = MI.getOperand(OpNo).getReg(); 4753 4754 if (Reg.isVirtual()) 4755 return MRI.getRegClass(Reg); 4756 return RI.getPhysRegClass(Reg); 4757 } 4758 4759 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 4760 RCID = adjustAllocatableRegClass(ST, MRI, Desc, RCID, true); 4761 return RI.getRegClass(RCID); 4762 } 4763 4764 void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const { 4765 MachineBasicBlock::iterator I = MI; 4766 MachineBasicBlock *MBB = MI.getParent(); 4767 MachineOperand &MO = MI.getOperand(OpIdx); 4768 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 4769 unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass; 4770 const TargetRegisterClass *RC = RI.getRegClass(RCID); 4771 unsigned Size = RI.getRegSizeInBits(*RC); 4772 unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32; 4773 if (MO.isReg()) 4774 Opcode = AMDGPU::COPY; 4775 else if (RI.isSGPRClass(RC)) 4776 Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32; 4777 4778 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); 4779 const TargetRegisterClass *VRC64 = RI.getVGPR64Class(); 4780 if (RI.getCommonSubClass(VRC64, VRC)) 4781 VRC = VRC64; 4782 else 4783 VRC = &AMDGPU::VGPR_32RegClass; 4784 4785 Register Reg = MRI.createVirtualRegister(VRC); 4786 DebugLoc DL = MBB->findDebugLoc(I); 4787 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO); 4788 MO.ChangeToRegister(Reg, false); 4789 } 4790 4791 unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI, 4792 MachineRegisterInfo &MRI, 4793 MachineOperand &SuperReg, 4794 const TargetRegisterClass *SuperRC, 4795 unsigned SubIdx, 4796 const TargetRegisterClass *SubRC) 4797 const { 4798 MachineBasicBlock *MBB = MI->getParent(); 4799 DebugLoc DL = MI->getDebugLoc(); 4800 Register SubReg = MRI.createVirtualRegister(SubRC); 4801 4802 if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) { 4803 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 4804 .addReg(SuperReg.getReg(), 0, SubIdx); 4805 return SubReg; 4806 } 4807 4808 // Just in case the super register is itself a sub-register, copy it to a new 4809 // value so we don't need to worry about merging its subreg index with the 4810 // SubIdx passed to this function. The register coalescer should be able to 4811 // eliminate this extra copy. 4812 Register NewSuperReg = MRI.createVirtualRegister(SuperRC); 4813 4814 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg) 4815 .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg()); 4816 4817 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 4818 .addReg(NewSuperReg, 0, SubIdx); 4819 4820 return SubReg; 4821 } 4822 4823 MachineOperand SIInstrInfo::buildExtractSubRegOrImm( 4824 MachineBasicBlock::iterator MII, 4825 MachineRegisterInfo &MRI, 4826 MachineOperand &Op, 4827 const TargetRegisterClass *SuperRC, 4828 unsigned SubIdx, 4829 const TargetRegisterClass *SubRC) const { 4830 if (Op.isImm()) { 4831 if (SubIdx == AMDGPU::sub0) 4832 return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm())); 4833 if (SubIdx == AMDGPU::sub1) 4834 return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm() >> 32)); 4835 4836 llvm_unreachable("Unhandled register index for immediate"); 4837 } 4838 4839 unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, 4840 SubIdx, SubRC); 4841 return MachineOperand::CreateReg(SubReg, false); 4842 } 4843 4844 // Change the order of operands from (0, 1, 2) to (0, 2, 1) 4845 void SIInstrInfo::swapOperands(MachineInstr &Inst) const { 4846 assert(Inst.getNumExplicitOperands() == 3); 4847 MachineOperand Op1 = Inst.getOperand(1); 4848 Inst.RemoveOperand(1); 4849 Inst.addOperand(Op1); 4850 } 4851 4852 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, 4853 const MCOperandInfo &OpInfo, 4854 const MachineOperand &MO) const { 4855 if (!MO.isReg()) 4856 return false; 4857 4858 Register Reg = MO.getReg(); 4859 4860 const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass); 4861 if (Reg.isPhysical()) 4862 return DRC->contains(Reg); 4863 4864 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 4865 4866 if (MO.getSubReg()) { 4867 const MachineFunction *MF = MO.getParent()->getParent()->getParent(); 4868 const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF); 4869 if (!SuperRC) 4870 return false; 4871 4872 DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg()); 4873 if (!DRC) 4874 return false; 4875 } 4876 return RC->hasSuperClassEq(DRC); 4877 } 4878 4879 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, 4880 const MCOperandInfo &OpInfo, 4881 const MachineOperand &MO) const { 4882 if (MO.isReg()) 4883 return isLegalRegOperand(MRI, OpInfo, MO); 4884 4885 // Handle non-register types that are treated like immediates. 4886 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); 4887 return true; 4888 } 4889 4890 bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx, 4891 const MachineOperand *MO) const { 4892 const MachineFunction &MF = *MI.getParent()->getParent(); 4893 const MachineRegisterInfo &MRI = MF.getRegInfo(); 4894 const MCInstrDesc &InstDesc = MI.getDesc(); 4895 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx]; 4896 const TargetRegisterClass *DefinedRC = 4897 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; 4898 if (!MO) 4899 MO = &MI.getOperand(OpIdx); 4900 4901 int ConstantBusLimit = ST.getConstantBusLimit(MI.getOpcode()); 4902 int VOP3LiteralLimit = ST.hasVOP3Literal() ? 1 : 0; 4903 if (isVALU(MI) && usesConstantBus(MRI, *MO, OpInfo)) { 4904 if (isVOP3(MI) && isLiteralConstantLike(*MO, OpInfo) && !VOP3LiteralLimit--) 4905 return false; 4906 4907 SmallDenseSet<RegSubRegPair> SGPRsUsed; 4908 if (MO->isReg()) 4909 SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg())); 4910 4911 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 4912 if (i == OpIdx) 4913 continue; 4914 const MachineOperand &Op = MI.getOperand(i); 4915 if (Op.isReg()) { 4916 RegSubRegPair SGPR(Op.getReg(), Op.getSubReg()); 4917 if (!SGPRsUsed.count(SGPR) && 4918 usesConstantBus(MRI, Op, InstDesc.OpInfo[i])) { 4919 if (--ConstantBusLimit <= 0) 4920 return false; 4921 SGPRsUsed.insert(SGPR); 4922 } 4923 } else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) { 4924 if (--ConstantBusLimit <= 0) 4925 return false; 4926 } else if (isVOP3(MI) && AMDGPU::isSISrcOperand(InstDesc, i) && 4927 isLiteralConstantLike(Op, InstDesc.OpInfo[i])) { 4928 if (!VOP3LiteralLimit--) 4929 return false; 4930 if (--ConstantBusLimit <= 0) 4931 return false; 4932 } 4933 } 4934 } 4935 4936 if (MO->isReg()) { 4937 assert(DefinedRC); 4938 if (!isLegalRegOperand(MRI, OpInfo, *MO)) 4939 return false; 4940 bool IsAGPR = RI.isAGPR(MRI, MO->getReg()); 4941 if (IsAGPR && !ST.hasMAIInsts()) 4942 return false; 4943 unsigned Opc = MI.getOpcode(); 4944 if (IsAGPR && 4945 (!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && 4946 (MI.mayLoad() || MI.mayStore() || isDS(Opc) || isMIMG(Opc))) 4947 return false; 4948 // Atomics should have both vdst and vdata either vgpr or agpr. 4949 const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 4950 const int DataIdx = AMDGPU::getNamedOperandIdx(Opc, 4951 isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata); 4952 if ((int)OpIdx == VDstIdx && DataIdx != -1 && 4953 MI.getOperand(DataIdx).isReg() && 4954 RI.isAGPR(MRI, MI.getOperand(DataIdx).getReg()) != IsAGPR) 4955 return false; 4956 if ((int)OpIdx == DataIdx) { 4957 if (VDstIdx != -1 && 4958 RI.isAGPR(MRI, MI.getOperand(VDstIdx).getReg()) != IsAGPR) 4959 return false; 4960 // DS instructions with 2 src operands also must have tied RC. 4961 const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc, 4962 AMDGPU::OpName::data1); 4963 if (Data1Idx != -1 && MI.getOperand(Data1Idx).isReg() && 4964 RI.isAGPR(MRI, MI.getOperand(Data1Idx).getReg()) != IsAGPR) 4965 return false; 4966 } 4967 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 4968 (int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) && 4969 RI.isSGPRReg(MRI, MO->getReg())) 4970 return false; 4971 return true; 4972 } 4973 4974 // Handle non-register types that are treated like immediates. 4975 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal()); 4976 4977 if (!DefinedRC) { 4978 // This operand expects an immediate. 4979 return true; 4980 } 4981 4982 return isImmOperandLegal(MI, OpIdx, *MO); 4983 } 4984 4985 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, 4986 MachineInstr &MI) const { 4987 unsigned Opc = MI.getOpcode(); 4988 const MCInstrDesc &InstrDesc = get(Opc); 4989 4990 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 4991 MachineOperand &Src0 = MI.getOperand(Src0Idx); 4992 4993 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 4994 MachineOperand &Src1 = MI.getOperand(Src1Idx); 4995 4996 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 4997 // we need to only have one constant bus use before GFX10. 4998 bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister; 4999 if (HasImplicitSGPR && ST.getConstantBusLimit(Opc) <= 1 && 5000 Src0.isReg() && (RI.isSGPRReg(MRI, Src0.getReg()) || 5001 isLiteralConstantLike(Src0, InstrDesc.OpInfo[Src0Idx]))) 5002 legalizeOpWithMove(MI, Src0Idx); 5003 5004 // Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for 5005 // both the value to write (src0) and lane select (src1). Fix up non-SGPR 5006 // src0/src1 with V_READFIRSTLANE. 5007 if (Opc == AMDGPU::V_WRITELANE_B32) { 5008 const DebugLoc &DL = MI.getDebugLoc(); 5009 if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) { 5010 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5011 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5012 .add(Src0); 5013 Src0.ChangeToRegister(Reg, false); 5014 } 5015 if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) { 5016 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5017 const DebugLoc &DL = MI.getDebugLoc(); 5018 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5019 .add(Src1); 5020 Src1.ChangeToRegister(Reg, false); 5021 } 5022 return; 5023 } 5024 5025 // No VOP2 instructions support AGPRs. 5026 if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg())) 5027 legalizeOpWithMove(MI, Src0Idx); 5028 5029 if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg())) 5030 legalizeOpWithMove(MI, Src1Idx); 5031 5032 // VOP2 src0 instructions support all operand types, so we don't need to check 5033 // their legality. If src1 is already legal, we don't need to do anything. 5034 if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1)) 5035 return; 5036 5037 // Special case: V_READLANE_B32 accepts only immediate or SGPR operands for 5038 // lane select. Fix up using V_READFIRSTLANE, since we assume that the lane 5039 // select is uniform. 5040 if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() && 5041 RI.isVGPR(MRI, Src1.getReg())) { 5042 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5043 const DebugLoc &DL = MI.getDebugLoc(); 5044 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5045 .add(Src1); 5046 Src1.ChangeToRegister(Reg, false); 5047 return; 5048 } 5049 5050 // We do not use commuteInstruction here because it is too aggressive and will 5051 // commute if it is possible. We only want to commute here if it improves 5052 // legality. This can be called a fairly large number of times so don't waste 5053 // compile time pointlessly swapping and checking legality again. 5054 if (HasImplicitSGPR || !MI.isCommutable()) { 5055 legalizeOpWithMove(MI, Src1Idx); 5056 return; 5057 } 5058 5059 // If src0 can be used as src1, commuting will make the operands legal. 5060 // Otherwise we have to give up and insert a move. 5061 // 5062 // TODO: Other immediate-like operand kinds could be commuted if there was a 5063 // MachineOperand::ChangeTo* for them. 5064 if ((!Src1.isImm() && !Src1.isReg()) || 5065 !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) { 5066 legalizeOpWithMove(MI, Src1Idx); 5067 return; 5068 } 5069 5070 int CommutedOpc = commuteOpcode(MI); 5071 if (CommutedOpc == -1) { 5072 legalizeOpWithMove(MI, Src1Idx); 5073 return; 5074 } 5075 5076 MI.setDesc(get(CommutedOpc)); 5077 5078 Register Src0Reg = Src0.getReg(); 5079 unsigned Src0SubReg = Src0.getSubReg(); 5080 bool Src0Kill = Src0.isKill(); 5081 5082 if (Src1.isImm()) 5083 Src0.ChangeToImmediate(Src1.getImm()); 5084 else if (Src1.isReg()) { 5085 Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); 5086 Src0.setSubReg(Src1.getSubReg()); 5087 } else 5088 llvm_unreachable("Should only have register or immediate operands"); 5089 5090 Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); 5091 Src1.setSubReg(Src0SubReg); 5092 fixImplicitOperands(MI); 5093 } 5094 5095 // Legalize VOP3 operands. All operand types are supported for any operand 5096 // but only one literal constant and only starting from GFX10. 5097 void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI, 5098 MachineInstr &MI) const { 5099 unsigned Opc = MI.getOpcode(); 5100 5101 int VOP3Idx[3] = { 5102 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 5103 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), 5104 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) 5105 }; 5106 5107 if (Opc == AMDGPU::V_PERMLANE16_B32_e64 || 5108 Opc == AMDGPU::V_PERMLANEX16_B32_e64) { 5109 // src1 and src2 must be scalar 5110 MachineOperand &Src1 = MI.getOperand(VOP3Idx[1]); 5111 MachineOperand &Src2 = MI.getOperand(VOP3Idx[2]); 5112 const DebugLoc &DL = MI.getDebugLoc(); 5113 if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) { 5114 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5115 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5116 .add(Src1); 5117 Src1.ChangeToRegister(Reg, false); 5118 } 5119 if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src2.getReg()))) { 5120 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5121 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5122 .add(Src2); 5123 Src2.ChangeToRegister(Reg, false); 5124 } 5125 } 5126 5127 // Find the one SGPR operand we are allowed to use. 5128 int ConstantBusLimit = ST.getConstantBusLimit(Opc); 5129 int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0; 5130 SmallDenseSet<unsigned> SGPRsUsed; 5131 Register SGPRReg = findUsedSGPR(MI, VOP3Idx); 5132 if (SGPRReg != AMDGPU::NoRegister) { 5133 SGPRsUsed.insert(SGPRReg); 5134 --ConstantBusLimit; 5135 } 5136 5137 for (int Idx : VOP3Idx) { 5138 if (Idx == -1) 5139 break; 5140 MachineOperand &MO = MI.getOperand(Idx); 5141 5142 if (!MO.isReg()) { 5143 if (!isLiteralConstantLike(MO, get(Opc).OpInfo[Idx])) 5144 continue; 5145 5146 if (LiteralLimit > 0 && ConstantBusLimit > 0) { 5147 --LiteralLimit; 5148 --ConstantBusLimit; 5149 continue; 5150 } 5151 5152 --LiteralLimit; 5153 --ConstantBusLimit; 5154 legalizeOpWithMove(MI, Idx); 5155 continue; 5156 } 5157 5158 if (RI.hasAGPRs(RI.getRegClassForReg(MRI, MO.getReg())) && 5159 !isOperandLegal(MI, Idx, &MO)) { 5160 legalizeOpWithMove(MI, Idx); 5161 continue; 5162 } 5163 5164 if (!RI.isSGPRClass(RI.getRegClassForReg(MRI, MO.getReg()))) 5165 continue; // VGPRs are legal 5166 5167 // We can use one SGPR in each VOP3 instruction prior to GFX10 5168 // and two starting from GFX10. 5169 if (SGPRsUsed.count(MO.getReg())) 5170 continue; 5171 if (ConstantBusLimit > 0) { 5172 SGPRsUsed.insert(MO.getReg()); 5173 --ConstantBusLimit; 5174 continue; 5175 } 5176 5177 // If we make it this far, then the operand is not legal and we must 5178 // legalize it. 5179 legalizeOpWithMove(MI, Idx); 5180 } 5181 } 5182 5183 Register SIInstrInfo::readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI, 5184 MachineRegisterInfo &MRI) const { 5185 const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); 5186 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); 5187 Register DstReg = MRI.createVirtualRegister(SRC); 5188 unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32; 5189 5190 if (RI.hasAGPRs(VRC)) { 5191 VRC = RI.getEquivalentVGPRClass(VRC); 5192 Register NewSrcReg = MRI.createVirtualRegister(VRC); 5193 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 5194 get(TargetOpcode::COPY), NewSrcReg) 5195 .addReg(SrcReg); 5196 SrcReg = NewSrcReg; 5197 } 5198 5199 if (SubRegs == 1) { 5200 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 5201 get(AMDGPU::V_READFIRSTLANE_B32), DstReg) 5202 .addReg(SrcReg); 5203 return DstReg; 5204 } 5205 5206 SmallVector<unsigned, 8> SRegs; 5207 for (unsigned i = 0; i < SubRegs; ++i) { 5208 Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5209 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 5210 get(AMDGPU::V_READFIRSTLANE_B32), SGPR) 5211 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); 5212 SRegs.push_back(SGPR); 5213 } 5214 5215 MachineInstrBuilder MIB = 5216 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 5217 get(AMDGPU::REG_SEQUENCE), DstReg); 5218 for (unsigned i = 0; i < SubRegs; ++i) { 5219 MIB.addReg(SRegs[i]); 5220 MIB.addImm(RI.getSubRegFromChannel(i)); 5221 } 5222 return DstReg; 5223 } 5224 5225 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, 5226 MachineInstr &MI) const { 5227 5228 // If the pointer is store in VGPRs, then we need to move them to 5229 // SGPRs using v_readfirstlane. This is safe because we only select 5230 // loads with uniform pointers to SMRD instruction so we know the 5231 // pointer value is uniform. 5232 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase); 5233 if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { 5234 Register SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); 5235 SBase->setReg(SGPR); 5236 } 5237 MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soff); 5238 if (SOff && !RI.isSGPRClass(MRI.getRegClass(SOff->getReg()))) { 5239 Register SGPR = readlaneVGPRToSGPR(SOff->getReg(), MI, MRI); 5240 SOff->setReg(SGPR); 5241 } 5242 } 5243 5244 bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const { 5245 unsigned Opc = Inst.getOpcode(); 5246 int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 5247 if (OldSAddrIdx < 0) 5248 return false; 5249 5250 assert(isSegmentSpecificFLAT(Inst)); 5251 5252 int NewOpc = AMDGPU::getGlobalVaddrOp(Opc); 5253 if (NewOpc < 0) 5254 NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opc); 5255 if (NewOpc < 0) 5256 return false; 5257 5258 MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo(); 5259 MachineOperand &SAddr = Inst.getOperand(OldSAddrIdx); 5260 if (RI.isSGPRReg(MRI, SAddr.getReg())) 5261 return false; 5262 5263 int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr); 5264 if (NewVAddrIdx < 0) 5265 return false; 5266 5267 int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 5268 5269 // Check vaddr, it shall be zero or absent. 5270 MachineInstr *VAddrDef = nullptr; 5271 if (OldVAddrIdx >= 0) { 5272 MachineOperand &VAddr = Inst.getOperand(OldVAddrIdx); 5273 VAddrDef = MRI.getUniqueVRegDef(VAddr.getReg()); 5274 if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 || 5275 !VAddrDef->getOperand(1).isImm() || 5276 VAddrDef->getOperand(1).getImm() != 0) 5277 return false; 5278 } 5279 5280 const MCInstrDesc &NewDesc = get(NewOpc); 5281 Inst.setDesc(NewDesc); 5282 5283 // Callers expect iterator to be valid after this call, so modify the 5284 // instruction in place. 5285 if (OldVAddrIdx == NewVAddrIdx) { 5286 MachineOperand &NewVAddr = Inst.getOperand(NewVAddrIdx); 5287 // Clear use list from the old vaddr holding a zero register. 5288 MRI.removeRegOperandFromUseList(&NewVAddr); 5289 MRI.moveOperands(&NewVAddr, &SAddr, 1); 5290 Inst.RemoveOperand(OldSAddrIdx); 5291 // Update the use list with the pointer we have just moved from vaddr to 5292 // saddr position. Otherwise new vaddr will be missing from the use list. 5293 MRI.removeRegOperandFromUseList(&NewVAddr); 5294 MRI.addRegOperandToUseList(&NewVAddr); 5295 } else { 5296 assert(OldSAddrIdx == NewVAddrIdx); 5297 5298 if (OldVAddrIdx >= 0) { 5299 int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc, 5300 AMDGPU::OpName::vdst_in); 5301 5302 // RemoveOperand doesn't try to fixup tied operand indexes at it goes, so 5303 // it asserts. Untie the operands for now and retie them afterwards. 5304 if (NewVDstIn != -1) { 5305 int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in); 5306 Inst.untieRegOperand(OldVDstIn); 5307 } 5308 5309 Inst.RemoveOperand(OldVAddrIdx); 5310 5311 if (NewVDstIn != -1) { 5312 int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst); 5313 Inst.tieOperands(NewVDst, NewVDstIn); 5314 } 5315 } 5316 } 5317 5318 if (VAddrDef && MRI.use_nodbg_empty(VAddrDef->getOperand(0).getReg())) 5319 VAddrDef->eraseFromParent(); 5320 5321 return true; 5322 } 5323 5324 // FIXME: Remove this when SelectionDAG is obsoleted. 5325 void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI, 5326 MachineInstr &MI) const { 5327 if (!isSegmentSpecificFLAT(MI)) 5328 return; 5329 5330 // Fixup SGPR operands in VGPRs. We only select these when the DAG divergence 5331 // thinks they are uniform, so a readfirstlane should be valid. 5332 MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr); 5333 if (!SAddr || RI.isSGPRClass(MRI.getRegClass(SAddr->getReg()))) 5334 return; 5335 5336 if (moveFlatAddrToVGPR(MI)) 5337 return; 5338 5339 Register ToSGPR = readlaneVGPRToSGPR(SAddr->getReg(), MI, MRI); 5340 SAddr->setReg(ToSGPR); 5341 } 5342 5343 void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB, 5344 MachineBasicBlock::iterator I, 5345 const TargetRegisterClass *DstRC, 5346 MachineOperand &Op, 5347 MachineRegisterInfo &MRI, 5348 const DebugLoc &DL) const { 5349 Register OpReg = Op.getReg(); 5350 unsigned OpSubReg = Op.getSubReg(); 5351 5352 const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg( 5353 RI.getRegClassForReg(MRI, OpReg), OpSubReg); 5354 5355 // Check if operand is already the correct register class. 5356 if (DstRC == OpRC) 5357 return; 5358 5359 Register DstReg = MRI.createVirtualRegister(DstRC); 5360 auto Copy = BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).add(Op); 5361 5362 Op.setReg(DstReg); 5363 Op.setSubReg(0); 5364 5365 MachineInstr *Def = MRI.getVRegDef(OpReg); 5366 if (!Def) 5367 return; 5368 5369 // Try to eliminate the copy if it is copying an immediate value. 5370 if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass) 5371 FoldImmediate(*Copy, *Def, OpReg, &MRI); 5372 5373 bool ImpDef = Def->isImplicitDef(); 5374 while (!ImpDef && Def && Def->isCopy()) { 5375 if (Def->getOperand(1).getReg().isPhysical()) 5376 break; 5377 Def = MRI.getUniqueVRegDef(Def->getOperand(1).getReg()); 5378 ImpDef = Def && Def->isImplicitDef(); 5379 } 5380 if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) && 5381 !ImpDef) 5382 Copy.addReg(AMDGPU::EXEC, RegState::Implicit); 5383 } 5384 5385 // Emit the actual waterfall loop, executing the wrapped instruction for each 5386 // unique value of \p Rsrc across all lanes. In the best case we execute 1 5387 // iteration, in the worst case we execute 64 (once per lane). 5388 static void 5389 emitLoadSRsrcFromVGPRLoop(const SIInstrInfo &TII, MachineRegisterInfo &MRI, 5390 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 5391 const DebugLoc &DL, MachineOperand &Rsrc) { 5392 MachineFunction &MF = *OrigBB.getParent(); 5393 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 5394 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5395 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 5396 unsigned SaveExecOpc = 5397 ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64; 5398 unsigned XorTermOpc = 5399 ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term; 5400 unsigned AndOpc = 5401 ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; 5402 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 5403 5404 MachineBasicBlock::iterator I = LoopBB.begin(); 5405 5406 SmallVector<Register, 8> ReadlanePieces; 5407 Register CondReg = AMDGPU::NoRegister; 5408 5409 Register VRsrc = Rsrc.getReg(); 5410 unsigned VRsrcUndef = getUndefRegState(Rsrc.isUndef()); 5411 5412 unsigned RegSize = TRI->getRegSizeInBits(Rsrc.getReg(), MRI); 5413 unsigned NumSubRegs = RegSize / 32; 5414 assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 && "Unhandled register size"); 5415 5416 for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) { 5417 5418 Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5419 Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5420 5421 // Read the next variant <- also loop target. 5422 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo) 5423 .addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx)); 5424 5425 // Read the next variant <- also loop target. 5426 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi) 5427 .addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx + 1)); 5428 5429 ReadlanePieces.push_back(CurRegLo); 5430 ReadlanePieces.push_back(CurRegHi); 5431 5432 // Comparison is to be done as 64-bit. 5433 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass); 5434 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg) 5435 .addReg(CurRegLo) 5436 .addImm(AMDGPU::sub0) 5437 .addReg(CurRegHi) 5438 .addImm(AMDGPU::sub1); 5439 5440 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC); 5441 auto Cmp = 5442 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64), NewCondReg) 5443 .addReg(CurReg); 5444 if (NumSubRegs <= 2) 5445 Cmp.addReg(VRsrc); 5446 else 5447 Cmp.addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx, 2)); 5448 5449 // Combine the comparison results with AND. 5450 if (CondReg == AMDGPU::NoRegister) // First. 5451 CondReg = NewCondReg; 5452 else { // If not the first, we create an AND. 5453 Register AndReg = MRI.createVirtualRegister(BoolXExecRC); 5454 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg) 5455 .addReg(CondReg) 5456 .addReg(NewCondReg); 5457 CondReg = AndReg; 5458 } 5459 } // End for loop. 5460 5461 auto SRsrcRC = TRI->getEquivalentSGPRClass(MRI.getRegClass(VRsrc)); 5462 Register SRsrc = MRI.createVirtualRegister(SRsrcRC); 5463 5464 // Build scalar Rsrc. 5465 auto Merge = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SRsrc); 5466 unsigned Channel = 0; 5467 for (Register Piece : ReadlanePieces) { 5468 Merge.addReg(Piece) 5469 .addImm(TRI->getSubRegFromChannel(Channel++)); 5470 } 5471 5472 // Update Rsrc operand to use the SGPR Rsrc. 5473 Rsrc.setReg(SRsrc); 5474 Rsrc.setIsKill(true); 5475 5476 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 5477 MRI.setSimpleHint(SaveExec, CondReg); 5478 5479 // Update EXEC to matching lanes, saving original to SaveExec. 5480 BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec) 5481 .addReg(CondReg, RegState::Kill); 5482 5483 // The original instruction is here; we insert the terminators after it. 5484 I = LoopBB.end(); 5485 5486 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 5487 BuildMI(LoopBB, I, DL, TII.get(XorTermOpc), Exec) 5488 .addReg(Exec) 5489 .addReg(SaveExec); 5490 5491 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB); 5492 } 5493 5494 // Build a waterfall loop around \p MI, replacing the VGPR \p Rsrc register 5495 // with SGPRs by iterating over all unique values across all lanes. 5496 // Returns the loop basic block that now contains \p MI. 5497 static MachineBasicBlock * 5498 loadSRsrcFromVGPR(const SIInstrInfo &TII, MachineInstr &MI, 5499 MachineOperand &Rsrc, MachineDominatorTree *MDT, 5500 MachineBasicBlock::iterator Begin = nullptr, 5501 MachineBasicBlock::iterator End = nullptr) { 5502 MachineBasicBlock &MBB = *MI.getParent(); 5503 MachineFunction &MF = *MBB.getParent(); 5504 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 5505 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5506 MachineRegisterInfo &MRI = MF.getRegInfo(); 5507 if (!Begin.isValid()) 5508 Begin = &MI; 5509 if (!End.isValid()) { 5510 End = &MI; 5511 ++End; 5512 } 5513 const DebugLoc &DL = MI.getDebugLoc(); 5514 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 5515 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 5516 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 5517 5518 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 5519 5520 // Save the EXEC mask 5521 BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec); 5522 5523 // Killed uses in the instruction we are waterfalling around will be 5524 // incorrect due to the added control-flow. 5525 MachineBasicBlock::iterator AfterMI = MI; 5526 ++AfterMI; 5527 for (auto I = Begin; I != AfterMI; I++) { 5528 for (auto &MO : I->uses()) { 5529 if (MO.isReg() && MO.isUse()) { 5530 MRI.clearKillFlags(MO.getReg()); 5531 } 5532 } 5533 } 5534 5535 // To insert the loop we need to split the block. Move everything after this 5536 // point to a new block, and insert a new empty block between the two. 5537 MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock(); 5538 MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock(); 5539 MachineFunction::iterator MBBI(MBB); 5540 ++MBBI; 5541 5542 MF.insert(MBBI, LoopBB); 5543 MF.insert(MBBI, RemainderBB); 5544 5545 LoopBB->addSuccessor(LoopBB); 5546 LoopBB->addSuccessor(RemainderBB); 5547 5548 // Move Begin to MI to the LoopBB, and the remainder of the block to 5549 // RemainderBB. 5550 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 5551 RemainderBB->splice(RemainderBB->begin(), &MBB, End, MBB.end()); 5552 LoopBB->splice(LoopBB->begin(), &MBB, Begin, MBB.end()); 5553 5554 MBB.addSuccessor(LoopBB); 5555 5556 // Update dominators. We know that MBB immediately dominates LoopBB, that 5557 // LoopBB immediately dominates RemainderBB, and that RemainderBB immediately 5558 // dominates all of the successors transferred to it from MBB that MBB used 5559 // to properly dominate. 5560 if (MDT) { 5561 MDT->addNewBlock(LoopBB, &MBB); 5562 MDT->addNewBlock(RemainderBB, LoopBB); 5563 for (auto &Succ : RemainderBB->successors()) { 5564 if (MDT->properlyDominates(&MBB, Succ)) { 5565 MDT->changeImmediateDominator(Succ, RemainderBB); 5566 } 5567 } 5568 } 5569 5570 emitLoadSRsrcFromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, Rsrc); 5571 5572 // Restore the EXEC mask 5573 MachineBasicBlock::iterator First = RemainderBB->begin(); 5574 BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec); 5575 return LoopBB; 5576 } 5577 5578 // Extract pointer from Rsrc and return a zero-value Rsrc replacement. 5579 static std::tuple<unsigned, unsigned> 5580 extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) { 5581 MachineBasicBlock &MBB = *MI.getParent(); 5582 MachineFunction &MF = *MBB.getParent(); 5583 MachineRegisterInfo &MRI = MF.getRegInfo(); 5584 5585 // Extract the ptr from the resource descriptor. 5586 unsigned RsrcPtr = 5587 TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass, 5588 AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); 5589 5590 // Create an empty resource descriptor 5591 Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 5592 Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5593 Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5594 Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass); 5595 uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat(); 5596 5597 // Zero64 = 0 5598 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64) 5599 .addImm(0); 5600 5601 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} 5602 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo) 5603 .addImm(RsrcDataFormat & 0xFFFFFFFF); 5604 5605 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} 5606 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi) 5607 .addImm(RsrcDataFormat >> 32); 5608 5609 // NewSRsrc = {Zero64, SRsrcFormat} 5610 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc) 5611 .addReg(Zero64) 5612 .addImm(AMDGPU::sub0_sub1) 5613 .addReg(SRsrcFormatLo) 5614 .addImm(AMDGPU::sub2) 5615 .addReg(SRsrcFormatHi) 5616 .addImm(AMDGPU::sub3); 5617 5618 return std::make_tuple(RsrcPtr, NewSRsrc); 5619 } 5620 5621 MachineBasicBlock * 5622 SIInstrInfo::legalizeOperands(MachineInstr &MI, 5623 MachineDominatorTree *MDT) const { 5624 MachineFunction &MF = *MI.getParent()->getParent(); 5625 MachineRegisterInfo &MRI = MF.getRegInfo(); 5626 MachineBasicBlock *CreatedBB = nullptr; 5627 5628 // Legalize VOP2 5629 if (isVOP2(MI) || isVOPC(MI)) { 5630 legalizeOperandsVOP2(MRI, MI); 5631 return CreatedBB; 5632 } 5633 5634 // Legalize VOP3 5635 if (isVOP3(MI)) { 5636 legalizeOperandsVOP3(MRI, MI); 5637 return CreatedBB; 5638 } 5639 5640 // Legalize SMRD 5641 if (isSMRD(MI)) { 5642 legalizeOperandsSMRD(MRI, MI); 5643 return CreatedBB; 5644 } 5645 5646 // Legalize FLAT 5647 if (isFLAT(MI)) { 5648 legalizeOperandsFLAT(MRI, MI); 5649 return CreatedBB; 5650 } 5651 5652 // Legalize REG_SEQUENCE and PHI 5653 // The register class of the operands much be the same type as the register 5654 // class of the output. 5655 if (MI.getOpcode() == AMDGPU::PHI) { 5656 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; 5657 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 5658 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual()) 5659 continue; 5660 const TargetRegisterClass *OpRC = 5661 MRI.getRegClass(MI.getOperand(i).getReg()); 5662 if (RI.hasVectorRegisters(OpRC)) { 5663 VRC = OpRC; 5664 } else { 5665 SRC = OpRC; 5666 } 5667 } 5668 5669 // If any of the operands are VGPR registers, then they all most be 5670 // otherwise we will create illegal VGPR->SGPR copies when legalizing 5671 // them. 5672 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) { 5673 if (!VRC) { 5674 assert(SRC); 5675 if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) { 5676 VRC = &AMDGPU::VReg_1RegClass; 5677 } else 5678 VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) 5679 ? RI.getEquivalentAGPRClass(SRC) 5680 : RI.getEquivalentVGPRClass(SRC); 5681 } else { 5682 VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) 5683 ? RI.getEquivalentAGPRClass(VRC) 5684 : RI.getEquivalentVGPRClass(VRC); 5685 } 5686 RC = VRC; 5687 } else { 5688 RC = SRC; 5689 } 5690 5691 // Update all the operands so they have the same type. 5692 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 5693 MachineOperand &Op = MI.getOperand(I); 5694 if (!Op.isReg() || !Op.getReg().isVirtual()) 5695 continue; 5696 5697 // MI is a PHI instruction. 5698 MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB(); 5699 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); 5700 5701 // Avoid creating no-op copies with the same src and dst reg class. These 5702 // confuse some of the machine passes. 5703 legalizeGenericOperand(*InsertBB, Insert, RC, Op, MRI, MI.getDebugLoc()); 5704 } 5705 } 5706 5707 // REG_SEQUENCE doesn't really require operand legalization, but if one has a 5708 // VGPR dest type and SGPR sources, insert copies so all operands are 5709 // VGPRs. This seems to help operand folding / the register coalescer. 5710 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) { 5711 MachineBasicBlock *MBB = MI.getParent(); 5712 const TargetRegisterClass *DstRC = getOpRegClass(MI, 0); 5713 if (RI.hasVGPRs(DstRC)) { 5714 // Update all the operands so they are VGPR register classes. These may 5715 // not be the same register class because REG_SEQUENCE supports mixing 5716 // subregister index types e.g. sub0_sub1 + sub2 + sub3 5717 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 5718 MachineOperand &Op = MI.getOperand(I); 5719 if (!Op.isReg() || !Op.getReg().isVirtual()) 5720 continue; 5721 5722 const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); 5723 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); 5724 if (VRC == OpRC) 5725 continue; 5726 5727 legalizeGenericOperand(*MBB, MI, VRC, Op, MRI, MI.getDebugLoc()); 5728 Op.setIsKill(); 5729 } 5730 } 5731 5732 return CreatedBB; 5733 } 5734 5735 // Legalize INSERT_SUBREG 5736 // src0 must have the same register class as dst 5737 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) { 5738 Register Dst = MI.getOperand(0).getReg(); 5739 Register Src0 = MI.getOperand(1).getReg(); 5740 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 5741 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); 5742 if (DstRC != Src0RC) { 5743 MachineBasicBlock *MBB = MI.getParent(); 5744 MachineOperand &Op = MI.getOperand(1); 5745 legalizeGenericOperand(*MBB, MI, DstRC, Op, MRI, MI.getDebugLoc()); 5746 } 5747 return CreatedBB; 5748 } 5749 5750 // Legalize SI_INIT_M0 5751 if (MI.getOpcode() == AMDGPU::SI_INIT_M0) { 5752 MachineOperand &Src = MI.getOperand(0); 5753 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg()))) 5754 Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI)); 5755 return CreatedBB; 5756 } 5757 5758 // Legalize MIMG and MUBUF/MTBUF for shaders. 5759 // 5760 // Shaders only generate MUBUF/MTBUF instructions via intrinsics or via 5761 // scratch memory access. In both cases, the legalization never involves 5762 // conversion to the addr64 form. 5763 if (isMIMG(MI) || (AMDGPU::isGraphics(MF.getFunction().getCallingConv()) && 5764 (isMUBUF(MI) || isMTBUF(MI)))) { 5765 MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc); 5766 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) 5767 CreatedBB = loadSRsrcFromVGPR(*this, MI, *SRsrc, MDT); 5768 5769 MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp); 5770 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) 5771 CreatedBB = loadSRsrcFromVGPR(*this, MI, *SSamp, MDT); 5772 5773 return CreatedBB; 5774 } 5775 5776 // Legalize SI_CALL 5777 if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) { 5778 MachineOperand *Dest = &MI.getOperand(0); 5779 if (!RI.isSGPRClass(MRI.getRegClass(Dest->getReg()))) { 5780 // Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and 5781 // following copies, we also need to move copies from and to physical 5782 // registers into the loop block. 5783 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 5784 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 5785 5786 // Also move the copies to physical registers into the loop block 5787 MachineBasicBlock &MBB = *MI.getParent(); 5788 MachineBasicBlock::iterator Start(&MI); 5789 while (Start->getOpcode() != FrameSetupOpcode) 5790 --Start; 5791 MachineBasicBlock::iterator End(&MI); 5792 while (End->getOpcode() != FrameDestroyOpcode) 5793 ++End; 5794 // Also include following copies of the return value 5795 ++End; 5796 while (End != MBB.end() && End->isCopy() && End->getOperand(1).isReg() && 5797 MI.definesRegister(End->getOperand(1).getReg())) 5798 ++End; 5799 CreatedBB = loadSRsrcFromVGPR(*this, MI, *Dest, MDT, Start, End); 5800 } 5801 } 5802 5803 // Legalize MUBUF* instructions. 5804 int RsrcIdx = 5805 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 5806 if (RsrcIdx != -1) { 5807 // We have an MUBUF instruction 5808 MachineOperand *Rsrc = &MI.getOperand(RsrcIdx); 5809 unsigned RsrcRC = get(MI.getOpcode()).OpInfo[RsrcIdx].RegClass; 5810 if (RI.getCommonSubClass(MRI.getRegClass(Rsrc->getReg()), 5811 RI.getRegClass(RsrcRC))) { 5812 // The operands are legal. 5813 // FIXME: We may need to legalize operands besides srsrc. 5814 return CreatedBB; 5815 } 5816 5817 // Legalize a VGPR Rsrc. 5818 // 5819 // If the instruction is _ADDR64, we can avoid a waterfall by extracting 5820 // the base pointer from the VGPR Rsrc, adding it to the VAddr, then using 5821 // a zero-value SRsrc. 5822 // 5823 // If the instruction is _OFFSET (both idxen and offen disabled), and we 5824 // support ADDR64 instructions, we can convert to ADDR64 and do the same as 5825 // above. 5826 // 5827 // Otherwise we are on non-ADDR64 hardware, and/or we have 5828 // idxen/offen/bothen and we fall back to a waterfall loop. 5829 5830 MachineBasicBlock &MBB = *MI.getParent(); 5831 5832 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 5833 if (VAddr && AMDGPU::getIfAddr64Inst(MI.getOpcode()) != -1) { 5834 // This is already an ADDR64 instruction so we need to add the pointer 5835 // extracted from the resource descriptor to the current value of VAddr. 5836 Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 5837 Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 5838 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 5839 5840 const auto *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 5841 Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC); 5842 Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC); 5843 5844 unsigned RsrcPtr, NewSRsrc; 5845 std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); 5846 5847 // NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0 5848 const DebugLoc &DL = MI.getDebugLoc(); 5849 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo) 5850 .addDef(CondReg0) 5851 .addReg(RsrcPtr, 0, AMDGPU::sub0) 5852 .addReg(VAddr->getReg(), 0, AMDGPU::sub0) 5853 .addImm(0); 5854 5855 // NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1 5856 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi) 5857 .addDef(CondReg1, RegState::Dead) 5858 .addReg(RsrcPtr, 0, AMDGPU::sub1) 5859 .addReg(VAddr->getReg(), 0, AMDGPU::sub1) 5860 .addReg(CondReg0, RegState::Kill) 5861 .addImm(0); 5862 5863 // NewVaddr = {NewVaddrHi, NewVaddrLo} 5864 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) 5865 .addReg(NewVAddrLo) 5866 .addImm(AMDGPU::sub0) 5867 .addReg(NewVAddrHi) 5868 .addImm(AMDGPU::sub1); 5869 5870 VAddr->setReg(NewVAddr); 5871 Rsrc->setReg(NewSRsrc); 5872 } else if (!VAddr && ST.hasAddr64()) { 5873 // This instructions is the _OFFSET variant, so we need to convert it to 5874 // ADDR64. 5875 assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS && 5876 "FIXME: Need to emit flat atomics here"); 5877 5878 unsigned RsrcPtr, NewSRsrc; 5879 std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); 5880 5881 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 5882 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata); 5883 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 5884 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 5885 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode()); 5886 5887 // Atomics with return have an additional tied operand and are 5888 // missing some of the special bits. 5889 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in); 5890 MachineInstr *Addr64; 5891 5892 if (!VDataIn) { 5893 // Regular buffer load / store. 5894 MachineInstrBuilder MIB = 5895 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 5896 .add(*VData) 5897 .addReg(NewVAddr) 5898 .addReg(NewSRsrc) 5899 .add(*SOffset) 5900 .add(*Offset); 5901 5902 if (const MachineOperand *CPol = 5903 getNamedOperand(MI, AMDGPU::OpName::cpol)) { 5904 MIB.addImm(CPol->getImm()); 5905 } 5906 5907 if (const MachineOperand *TFE = 5908 getNamedOperand(MI, AMDGPU::OpName::tfe)) { 5909 MIB.addImm(TFE->getImm()); 5910 } 5911 5912 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz)); 5913 5914 MIB.cloneMemRefs(MI); 5915 Addr64 = MIB; 5916 } else { 5917 // Atomics with return. 5918 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 5919 .add(*VData) 5920 .add(*VDataIn) 5921 .addReg(NewVAddr) 5922 .addReg(NewSRsrc) 5923 .add(*SOffset) 5924 .add(*Offset) 5925 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol)) 5926 .cloneMemRefs(MI); 5927 } 5928 5929 MI.removeFromParent(); 5930 5931 // NewVaddr = {NewVaddrHi, NewVaddrLo} 5932 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), 5933 NewVAddr) 5934 .addReg(RsrcPtr, 0, AMDGPU::sub0) 5935 .addImm(AMDGPU::sub0) 5936 .addReg(RsrcPtr, 0, AMDGPU::sub1) 5937 .addImm(AMDGPU::sub1); 5938 } else { 5939 // This is another variant; legalize Rsrc with waterfall loop from VGPRs 5940 // to SGPRs. 5941 CreatedBB = loadSRsrcFromVGPR(*this, MI, *Rsrc, MDT); 5942 return CreatedBB; 5943 } 5944 } 5945 return CreatedBB; 5946 } 5947 5948 MachineBasicBlock *SIInstrInfo::moveToVALU(MachineInstr &TopInst, 5949 MachineDominatorTree *MDT) const { 5950 SetVectorType Worklist; 5951 Worklist.insert(&TopInst); 5952 MachineBasicBlock *CreatedBB = nullptr; 5953 MachineBasicBlock *CreatedBBTmp = nullptr; 5954 5955 while (!Worklist.empty()) { 5956 MachineInstr &Inst = *Worklist.pop_back_val(); 5957 MachineBasicBlock *MBB = Inst.getParent(); 5958 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 5959 5960 unsigned Opcode = Inst.getOpcode(); 5961 unsigned NewOpcode = getVALUOp(Inst); 5962 5963 // Handle some special cases 5964 switch (Opcode) { 5965 default: 5966 break; 5967 case AMDGPU::S_ADD_U64_PSEUDO: 5968 case AMDGPU::S_SUB_U64_PSEUDO: 5969 splitScalar64BitAddSub(Worklist, Inst, MDT); 5970 Inst.eraseFromParent(); 5971 continue; 5972 case AMDGPU::S_ADD_I32: 5973 case AMDGPU::S_SUB_I32: { 5974 // FIXME: The u32 versions currently selected use the carry. 5975 bool Changed; 5976 std::tie(Changed, CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT); 5977 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 5978 CreatedBB = CreatedBBTmp; 5979 if (Changed) 5980 continue; 5981 5982 // Default handling 5983 break; 5984 } 5985 case AMDGPU::S_AND_B64: 5986 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT); 5987 Inst.eraseFromParent(); 5988 continue; 5989 5990 case AMDGPU::S_OR_B64: 5991 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT); 5992 Inst.eraseFromParent(); 5993 continue; 5994 5995 case AMDGPU::S_XOR_B64: 5996 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT); 5997 Inst.eraseFromParent(); 5998 continue; 5999 6000 case AMDGPU::S_NAND_B64: 6001 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT); 6002 Inst.eraseFromParent(); 6003 continue; 6004 6005 case AMDGPU::S_NOR_B64: 6006 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT); 6007 Inst.eraseFromParent(); 6008 continue; 6009 6010 case AMDGPU::S_XNOR_B64: 6011 if (ST.hasDLInsts()) 6012 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT); 6013 else 6014 splitScalar64BitXnor(Worklist, Inst, MDT); 6015 Inst.eraseFromParent(); 6016 continue; 6017 6018 case AMDGPU::S_ANDN2_B64: 6019 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT); 6020 Inst.eraseFromParent(); 6021 continue; 6022 6023 case AMDGPU::S_ORN2_B64: 6024 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT); 6025 Inst.eraseFromParent(); 6026 continue; 6027 6028 case AMDGPU::S_BREV_B64: 6029 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true); 6030 Inst.eraseFromParent(); 6031 continue; 6032 6033 case AMDGPU::S_NOT_B64: 6034 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32); 6035 Inst.eraseFromParent(); 6036 continue; 6037 6038 case AMDGPU::S_BCNT1_I32_B64: 6039 splitScalar64BitBCNT(Worklist, Inst); 6040 Inst.eraseFromParent(); 6041 continue; 6042 6043 case AMDGPU::S_BFE_I64: 6044 splitScalar64BitBFE(Worklist, Inst); 6045 Inst.eraseFromParent(); 6046 continue; 6047 6048 case AMDGPU::S_LSHL_B32: 6049 if (ST.hasOnlyRevVALUShifts()) { 6050 NewOpcode = AMDGPU::V_LSHLREV_B32_e64; 6051 swapOperands(Inst); 6052 } 6053 break; 6054 case AMDGPU::S_ASHR_I32: 6055 if (ST.hasOnlyRevVALUShifts()) { 6056 NewOpcode = AMDGPU::V_ASHRREV_I32_e64; 6057 swapOperands(Inst); 6058 } 6059 break; 6060 case AMDGPU::S_LSHR_B32: 6061 if (ST.hasOnlyRevVALUShifts()) { 6062 NewOpcode = AMDGPU::V_LSHRREV_B32_e64; 6063 swapOperands(Inst); 6064 } 6065 break; 6066 case AMDGPU::S_LSHL_B64: 6067 if (ST.hasOnlyRevVALUShifts()) { 6068 NewOpcode = AMDGPU::V_LSHLREV_B64_e64; 6069 swapOperands(Inst); 6070 } 6071 break; 6072 case AMDGPU::S_ASHR_I64: 6073 if (ST.hasOnlyRevVALUShifts()) { 6074 NewOpcode = AMDGPU::V_ASHRREV_I64_e64; 6075 swapOperands(Inst); 6076 } 6077 break; 6078 case AMDGPU::S_LSHR_B64: 6079 if (ST.hasOnlyRevVALUShifts()) { 6080 NewOpcode = AMDGPU::V_LSHRREV_B64_e64; 6081 swapOperands(Inst); 6082 } 6083 break; 6084 6085 case AMDGPU::S_ABS_I32: 6086 lowerScalarAbs(Worklist, Inst); 6087 Inst.eraseFromParent(); 6088 continue; 6089 6090 case AMDGPU::S_CBRANCH_SCC0: 6091 case AMDGPU::S_CBRANCH_SCC1: { 6092 // Clear unused bits of vcc 6093 Register CondReg = Inst.getOperand(1).getReg(); 6094 bool IsSCC = CondReg == AMDGPU::SCC; 6095 Register VCC = RI.getVCC(); 6096 Register EXEC = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 6097 unsigned Opc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; 6098 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(Opc), VCC) 6099 .addReg(EXEC) 6100 .addReg(IsSCC ? VCC : CondReg); 6101 Inst.RemoveOperand(1); 6102 } 6103 break; 6104 6105 case AMDGPU::S_BFE_U64: 6106 case AMDGPU::S_BFM_B64: 6107 llvm_unreachable("Moving this op to VALU not implemented"); 6108 6109 case AMDGPU::S_PACK_LL_B32_B16: 6110 case AMDGPU::S_PACK_LH_B32_B16: 6111 case AMDGPU::S_PACK_HH_B32_B16: 6112 movePackToVALU(Worklist, MRI, Inst); 6113 Inst.eraseFromParent(); 6114 continue; 6115 6116 case AMDGPU::S_XNOR_B32: 6117 lowerScalarXnor(Worklist, Inst); 6118 Inst.eraseFromParent(); 6119 continue; 6120 6121 case AMDGPU::S_NAND_B32: 6122 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32); 6123 Inst.eraseFromParent(); 6124 continue; 6125 6126 case AMDGPU::S_NOR_B32: 6127 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32); 6128 Inst.eraseFromParent(); 6129 continue; 6130 6131 case AMDGPU::S_ANDN2_B32: 6132 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32); 6133 Inst.eraseFromParent(); 6134 continue; 6135 6136 case AMDGPU::S_ORN2_B32: 6137 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32); 6138 Inst.eraseFromParent(); 6139 continue; 6140 6141 // TODO: remove as soon as everything is ready 6142 // to replace VGPR to SGPR copy with V_READFIRSTLANEs. 6143 // S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO 6144 // can only be selected from the uniform SDNode. 6145 case AMDGPU::S_ADD_CO_PSEUDO: 6146 case AMDGPU::S_SUB_CO_PSEUDO: { 6147 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 6148 ? AMDGPU::V_ADDC_U32_e64 6149 : AMDGPU::V_SUBB_U32_e64; 6150 const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6151 6152 Register CarryInReg = Inst.getOperand(4).getReg(); 6153 if (!MRI.constrainRegClass(CarryInReg, CarryRC)) { 6154 Register NewCarryReg = MRI.createVirtualRegister(CarryRC); 6155 BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg) 6156 .addReg(CarryInReg); 6157 } 6158 6159 Register CarryOutReg = Inst.getOperand(1).getReg(); 6160 6161 Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass( 6162 MRI.getRegClass(Inst.getOperand(0).getReg()))); 6163 MachineInstr *CarryOp = 6164 BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg) 6165 .addReg(CarryOutReg, RegState::Define) 6166 .add(Inst.getOperand(2)) 6167 .add(Inst.getOperand(3)) 6168 .addReg(CarryInReg) 6169 .addImm(0); 6170 CreatedBBTmp = legalizeOperands(*CarryOp); 6171 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6172 CreatedBB = CreatedBBTmp; 6173 MRI.replaceRegWith(Inst.getOperand(0).getReg(), DestReg); 6174 addUsersToMoveToVALUWorklist(DestReg, MRI, Worklist); 6175 Inst.eraseFromParent(); 6176 } 6177 continue; 6178 case AMDGPU::S_UADDO_PSEUDO: 6179 case AMDGPU::S_USUBO_PSEUDO: { 6180 const DebugLoc &DL = Inst.getDebugLoc(); 6181 MachineOperand &Dest0 = Inst.getOperand(0); 6182 MachineOperand &Dest1 = Inst.getOperand(1); 6183 MachineOperand &Src0 = Inst.getOperand(2); 6184 MachineOperand &Src1 = Inst.getOperand(3); 6185 6186 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 6187 ? AMDGPU::V_ADD_CO_U32_e64 6188 : AMDGPU::V_SUB_CO_U32_e64; 6189 const TargetRegisterClass *NewRC = 6190 RI.getEquivalentVGPRClass(MRI.getRegClass(Dest0.getReg())); 6191 Register DestReg = MRI.createVirtualRegister(NewRC); 6192 MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg) 6193 .addReg(Dest1.getReg(), RegState::Define) 6194 .add(Src0) 6195 .add(Src1) 6196 .addImm(0); // clamp bit 6197 6198 CreatedBBTmp = legalizeOperands(*NewInstr, MDT); 6199 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6200 CreatedBB = CreatedBBTmp; 6201 6202 MRI.replaceRegWith(Dest0.getReg(), DestReg); 6203 addUsersToMoveToVALUWorklist(NewInstr->getOperand(0).getReg(), MRI, 6204 Worklist); 6205 Inst.eraseFromParent(); 6206 } 6207 continue; 6208 6209 case AMDGPU::S_CSELECT_B32: 6210 case AMDGPU::S_CSELECT_B64: 6211 lowerSelect(Worklist, Inst, MDT); 6212 Inst.eraseFromParent(); 6213 continue; 6214 case AMDGPU::S_CMP_EQ_I32: 6215 case AMDGPU::S_CMP_LG_I32: 6216 case AMDGPU::S_CMP_GT_I32: 6217 case AMDGPU::S_CMP_GE_I32: 6218 case AMDGPU::S_CMP_LT_I32: 6219 case AMDGPU::S_CMP_LE_I32: 6220 case AMDGPU::S_CMP_EQ_U32: 6221 case AMDGPU::S_CMP_LG_U32: 6222 case AMDGPU::S_CMP_GT_U32: 6223 case AMDGPU::S_CMP_GE_U32: 6224 case AMDGPU::S_CMP_LT_U32: 6225 case AMDGPU::S_CMP_LE_U32: 6226 case AMDGPU::S_CMP_EQ_U64: 6227 case AMDGPU::S_CMP_LG_U64: { 6228 const MCInstrDesc &NewDesc = get(NewOpcode); 6229 Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass()); 6230 MachineInstr *NewInstr = 6231 BuildMI(*MBB, Inst, Inst.getDebugLoc(), NewDesc, CondReg) 6232 .add(Inst.getOperand(0)) 6233 .add(Inst.getOperand(1)); 6234 legalizeOperands(*NewInstr, MDT); 6235 int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC); 6236 MachineOperand SCCOp = Inst.getOperand(SCCIdx); 6237 addSCCDefUsersToVALUWorklist(SCCOp, Inst, Worklist, CondReg); 6238 Inst.eraseFromParent(); 6239 } 6240 continue; 6241 } 6242 6243 6244 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { 6245 // We cannot move this instruction to the VALU, so we should try to 6246 // legalize its operands instead. 6247 CreatedBBTmp = legalizeOperands(Inst, MDT); 6248 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6249 CreatedBB = CreatedBBTmp; 6250 continue; 6251 } 6252 6253 // Use the new VALU Opcode. 6254 const MCInstrDesc &NewDesc = get(NewOpcode); 6255 Inst.setDesc(NewDesc); 6256 6257 // Remove any references to SCC. Vector instructions can't read from it, and 6258 // We're just about to add the implicit use / defs of VCC, and we don't want 6259 // both. 6260 for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) { 6261 MachineOperand &Op = Inst.getOperand(i); 6262 if (Op.isReg() && Op.getReg() == AMDGPU::SCC) { 6263 // Only propagate through live-def of SCC. 6264 if (Op.isDef() && !Op.isDead()) 6265 addSCCDefUsersToVALUWorklist(Op, Inst, Worklist); 6266 if (Op.isUse()) 6267 addSCCDefsToVALUWorklist(Op, Worklist); 6268 Inst.RemoveOperand(i); 6269 } 6270 } 6271 6272 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { 6273 // We are converting these to a BFE, so we need to add the missing 6274 // operands for the size and offset. 6275 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; 6276 Inst.addOperand(MachineOperand::CreateImm(0)); 6277 Inst.addOperand(MachineOperand::CreateImm(Size)); 6278 6279 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { 6280 // The VALU version adds the second operand to the result, so insert an 6281 // extra 0 operand. 6282 Inst.addOperand(MachineOperand::CreateImm(0)); 6283 } 6284 6285 Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent()); 6286 fixImplicitOperands(Inst); 6287 6288 if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { 6289 const MachineOperand &OffsetWidthOp = Inst.getOperand(2); 6290 // If we need to move this to VGPRs, we need to unpack the second operand 6291 // back into the 2 separate ones for bit offset and width. 6292 assert(OffsetWidthOp.isImm() && 6293 "Scalar BFE is only implemented for constant width and offset"); 6294 uint32_t Imm = OffsetWidthOp.getImm(); 6295 6296 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 6297 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 6298 Inst.RemoveOperand(2); // Remove old immediate. 6299 Inst.addOperand(MachineOperand::CreateImm(Offset)); 6300 Inst.addOperand(MachineOperand::CreateImm(BitWidth)); 6301 } 6302 6303 bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef(); 6304 unsigned NewDstReg = AMDGPU::NoRegister; 6305 if (HasDst) { 6306 Register DstReg = Inst.getOperand(0).getReg(); 6307 if (DstReg.isPhysical()) 6308 continue; 6309 6310 // Update the destination register class. 6311 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst); 6312 if (!NewDstRC) 6313 continue; 6314 6315 if (Inst.isCopy() && Inst.getOperand(1).getReg().isVirtual() && 6316 NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(1).getReg())) { 6317 // Instead of creating a copy where src and dst are the same register 6318 // class, we just replace all uses of dst with src. These kinds of 6319 // copies interfere with the heuristics MachineSink uses to decide 6320 // whether or not to split a critical edge. Since the pass assumes 6321 // that copies will end up as machine instructions and not be 6322 // eliminated. 6323 addUsersToMoveToVALUWorklist(DstReg, MRI, Worklist); 6324 MRI.replaceRegWith(DstReg, Inst.getOperand(1).getReg()); 6325 MRI.clearKillFlags(Inst.getOperand(1).getReg()); 6326 Inst.getOperand(0).setReg(DstReg); 6327 6328 // Make sure we don't leave around a dead VGPR->SGPR copy. Normally 6329 // these are deleted later, but at -O0 it would leave a suspicious 6330 // looking illegal copy of an undef register. 6331 for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I) 6332 Inst.RemoveOperand(I); 6333 Inst.setDesc(get(AMDGPU::IMPLICIT_DEF)); 6334 continue; 6335 } 6336 6337 NewDstReg = MRI.createVirtualRegister(NewDstRC); 6338 MRI.replaceRegWith(DstReg, NewDstReg); 6339 } 6340 6341 // Legalize the operands 6342 CreatedBBTmp = legalizeOperands(Inst, MDT); 6343 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6344 CreatedBB = CreatedBBTmp; 6345 6346 if (HasDst) 6347 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 6348 } 6349 return CreatedBB; 6350 } 6351 6352 // Add/sub require special handling to deal with carry outs. 6353 std::pair<bool, MachineBasicBlock *> 6354 SIInstrInfo::moveScalarAddSub(SetVectorType &Worklist, MachineInstr &Inst, 6355 MachineDominatorTree *MDT) const { 6356 if (ST.hasAddNoCarry()) { 6357 // Assume there is no user of scc since we don't select this in that case. 6358 // Since scc isn't used, it doesn't really matter if the i32 or u32 variant 6359 // is used. 6360 6361 MachineBasicBlock &MBB = *Inst.getParent(); 6362 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6363 6364 Register OldDstReg = Inst.getOperand(0).getReg(); 6365 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6366 6367 unsigned Opc = Inst.getOpcode(); 6368 assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32); 6369 6370 unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ? 6371 AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64; 6372 6373 assert(Inst.getOperand(3).getReg() == AMDGPU::SCC); 6374 Inst.RemoveOperand(3); 6375 6376 Inst.setDesc(get(NewOpc)); 6377 Inst.addOperand(MachineOperand::CreateImm(0)); // clamp bit 6378 Inst.addImplicitDefUseOperands(*MBB.getParent()); 6379 MRI.replaceRegWith(OldDstReg, ResultReg); 6380 MachineBasicBlock *NewBB = legalizeOperands(Inst, MDT); 6381 6382 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6383 return std::make_pair(true, NewBB); 6384 } 6385 6386 return std::make_pair(false, nullptr); 6387 } 6388 6389 void SIInstrInfo::lowerSelect(SetVectorType &Worklist, MachineInstr &Inst, 6390 MachineDominatorTree *MDT) const { 6391 6392 MachineBasicBlock &MBB = *Inst.getParent(); 6393 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6394 MachineBasicBlock::iterator MII = Inst; 6395 DebugLoc DL = Inst.getDebugLoc(); 6396 6397 MachineOperand &Dest = Inst.getOperand(0); 6398 MachineOperand &Src0 = Inst.getOperand(1); 6399 MachineOperand &Src1 = Inst.getOperand(2); 6400 MachineOperand &Cond = Inst.getOperand(3); 6401 6402 Register SCCSource = Cond.getReg(); 6403 bool IsSCC = (SCCSource == AMDGPU::SCC); 6404 6405 // If this is a trivial select where the condition is effectively not SCC 6406 // (SCCSource is a source of copy to SCC), then the select is semantically 6407 // equivalent to copying SCCSource. Hence, there is no need to create 6408 // V_CNDMASK, we can just use that and bail out. 6409 if (!IsSCC && Src0.isImm() && (Src0.getImm() == -1) && Src1.isImm() && 6410 (Src1.getImm() == 0)) { 6411 MRI.replaceRegWith(Dest.getReg(), SCCSource); 6412 return; 6413 } 6414 6415 const TargetRegisterClass *TC = 6416 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6417 6418 Register CopySCC = MRI.createVirtualRegister(TC); 6419 6420 if (IsSCC) { 6421 // Now look for the closest SCC def if it is a copy 6422 // replacing the SCCSource with the COPY source register 6423 bool CopyFound = false; 6424 for (MachineInstr &CandI : 6425 make_range(std::next(MachineBasicBlock::reverse_iterator(Inst)), 6426 Inst.getParent()->rend())) { 6427 if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != 6428 -1) { 6429 if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) { 6430 BuildMI(MBB, MII, DL, get(AMDGPU::COPY), CopySCC) 6431 .addReg(CandI.getOperand(1).getReg()); 6432 CopyFound = true; 6433 } 6434 break; 6435 } 6436 } 6437 if (!CopyFound) { 6438 // SCC def is not a copy 6439 // Insert a trivial select instead of creating a copy, because a copy from 6440 // SCC would semantically mean just copying a single bit, but we may need 6441 // the result to be a vector condition mask that needs preserving. 6442 unsigned Opcode = (ST.getWavefrontSize() == 64) ? AMDGPU::S_CSELECT_B64 6443 : AMDGPU::S_CSELECT_B32; 6444 auto NewSelect = 6445 BuildMI(MBB, MII, DL, get(Opcode), CopySCC).addImm(-1).addImm(0); 6446 NewSelect->getOperand(3).setIsUndef(Cond.isUndef()); 6447 } 6448 } 6449 6450 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6451 6452 auto UpdatedInst = 6453 BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), ResultReg) 6454 .addImm(0) 6455 .add(Src1) // False 6456 .addImm(0) 6457 .add(Src0) // True 6458 .addReg(IsSCC ? CopySCC : SCCSource); 6459 6460 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6461 legalizeOperands(*UpdatedInst, MDT); 6462 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6463 } 6464 6465 void SIInstrInfo::lowerScalarAbs(SetVectorType &Worklist, 6466 MachineInstr &Inst) const { 6467 MachineBasicBlock &MBB = *Inst.getParent(); 6468 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6469 MachineBasicBlock::iterator MII = Inst; 6470 DebugLoc DL = Inst.getDebugLoc(); 6471 6472 MachineOperand &Dest = Inst.getOperand(0); 6473 MachineOperand &Src = Inst.getOperand(1); 6474 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6475 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6476 6477 unsigned SubOp = ST.hasAddNoCarry() ? 6478 AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32; 6479 6480 BuildMI(MBB, MII, DL, get(SubOp), TmpReg) 6481 .addImm(0) 6482 .addReg(Src.getReg()); 6483 6484 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) 6485 .addReg(Src.getReg()) 6486 .addReg(TmpReg); 6487 6488 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6489 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6490 } 6491 6492 void SIInstrInfo::lowerScalarXnor(SetVectorType &Worklist, 6493 MachineInstr &Inst) const { 6494 MachineBasicBlock &MBB = *Inst.getParent(); 6495 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6496 MachineBasicBlock::iterator MII = Inst; 6497 const DebugLoc &DL = Inst.getDebugLoc(); 6498 6499 MachineOperand &Dest = Inst.getOperand(0); 6500 MachineOperand &Src0 = Inst.getOperand(1); 6501 MachineOperand &Src1 = Inst.getOperand(2); 6502 6503 if (ST.hasDLInsts()) { 6504 Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6505 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL); 6506 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL); 6507 6508 BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest) 6509 .add(Src0) 6510 .add(Src1); 6511 6512 MRI.replaceRegWith(Dest.getReg(), NewDest); 6513 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 6514 } else { 6515 // Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can 6516 // invert either source and then perform the XOR. If either source is a 6517 // scalar register, then we can leave the inversion on the scalar unit to 6518 // achieve a better distribution of scalar and vector instructions. 6519 bool Src0IsSGPR = Src0.isReg() && 6520 RI.isSGPRClass(MRI.getRegClass(Src0.getReg())); 6521 bool Src1IsSGPR = Src1.isReg() && 6522 RI.isSGPRClass(MRI.getRegClass(Src1.getReg())); 6523 MachineInstr *Xor; 6524 Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6525 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6526 6527 // Build a pair of scalar instructions and add them to the work list. 6528 // The next iteration over the work list will lower these to the vector 6529 // unit as necessary. 6530 if (Src0IsSGPR) { 6531 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0); 6532 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) 6533 .addReg(Temp) 6534 .add(Src1); 6535 } else if (Src1IsSGPR) { 6536 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1); 6537 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) 6538 .add(Src0) 6539 .addReg(Temp); 6540 } else { 6541 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp) 6542 .add(Src0) 6543 .add(Src1); 6544 MachineInstr *Not = 6545 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp); 6546 Worklist.insert(Not); 6547 } 6548 6549 MRI.replaceRegWith(Dest.getReg(), NewDest); 6550 6551 Worklist.insert(Xor); 6552 6553 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 6554 } 6555 } 6556 6557 void SIInstrInfo::splitScalarNotBinop(SetVectorType &Worklist, 6558 MachineInstr &Inst, 6559 unsigned Opcode) const { 6560 MachineBasicBlock &MBB = *Inst.getParent(); 6561 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6562 MachineBasicBlock::iterator MII = Inst; 6563 const DebugLoc &DL = Inst.getDebugLoc(); 6564 6565 MachineOperand &Dest = Inst.getOperand(0); 6566 MachineOperand &Src0 = Inst.getOperand(1); 6567 MachineOperand &Src1 = Inst.getOperand(2); 6568 6569 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6570 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6571 6572 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm) 6573 .add(Src0) 6574 .add(Src1); 6575 6576 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest) 6577 .addReg(Interm); 6578 6579 Worklist.insert(&Op); 6580 Worklist.insert(&Not); 6581 6582 MRI.replaceRegWith(Dest.getReg(), NewDest); 6583 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 6584 } 6585 6586 void SIInstrInfo::splitScalarBinOpN2(SetVectorType& Worklist, 6587 MachineInstr &Inst, 6588 unsigned Opcode) const { 6589 MachineBasicBlock &MBB = *Inst.getParent(); 6590 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6591 MachineBasicBlock::iterator MII = Inst; 6592 const DebugLoc &DL = Inst.getDebugLoc(); 6593 6594 MachineOperand &Dest = Inst.getOperand(0); 6595 MachineOperand &Src0 = Inst.getOperand(1); 6596 MachineOperand &Src1 = Inst.getOperand(2); 6597 6598 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6599 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6600 6601 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm) 6602 .add(Src1); 6603 6604 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest) 6605 .add(Src0) 6606 .addReg(Interm); 6607 6608 Worklist.insert(&Not); 6609 Worklist.insert(&Op); 6610 6611 MRI.replaceRegWith(Dest.getReg(), NewDest); 6612 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 6613 } 6614 6615 void SIInstrInfo::splitScalar64BitUnaryOp( 6616 SetVectorType &Worklist, MachineInstr &Inst, 6617 unsigned Opcode, bool Swap) const { 6618 MachineBasicBlock &MBB = *Inst.getParent(); 6619 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6620 6621 MachineOperand &Dest = Inst.getOperand(0); 6622 MachineOperand &Src0 = Inst.getOperand(1); 6623 DebugLoc DL = Inst.getDebugLoc(); 6624 6625 MachineBasicBlock::iterator MII = Inst; 6626 6627 const MCInstrDesc &InstDesc = get(Opcode); 6628 const TargetRegisterClass *Src0RC = Src0.isReg() ? 6629 MRI.getRegClass(Src0.getReg()) : 6630 &AMDGPU::SGPR_32RegClass; 6631 6632 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 6633 6634 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6635 AMDGPU::sub0, Src0SubRC); 6636 6637 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 6638 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 6639 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 6640 6641 Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 6642 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0).add(SrcReg0Sub0); 6643 6644 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6645 AMDGPU::sub1, Src0SubRC); 6646 6647 Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 6648 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1).add(SrcReg0Sub1); 6649 6650 if (Swap) 6651 std::swap(DestSub0, DestSub1); 6652 6653 Register FullDestReg = MRI.createVirtualRegister(NewDestRC); 6654 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 6655 .addReg(DestSub0) 6656 .addImm(AMDGPU::sub0) 6657 .addReg(DestSub1) 6658 .addImm(AMDGPU::sub1); 6659 6660 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 6661 6662 Worklist.insert(&LoHalf); 6663 Worklist.insert(&HiHalf); 6664 6665 // We don't need to legalizeOperands here because for a single operand, src0 6666 // will support any kind of input. 6667 6668 // Move all users of this moved value. 6669 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 6670 } 6671 6672 void SIInstrInfo::splitScalar64BitAddSub(SetVectorType &Worklist, 6673 MachineInstr &Inst, 6674 MachineDominatorTree *MDT) const { 6675 bool IsAdd = (Inst.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 6676 6677 MachineBasicBlock &MBB = *Inst.getParent(); 6678 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6679 const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6680 6681 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6682 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6683 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6684 6685 Register CarryReg = MRI.createVirtualRegister(CarryRC); 6686 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 6687 6688 MachineOperand &Dest = Inst.getOperand(0); 6689 MachineOperand &Src0 = Inst.getOperand(1); 6690 MachineOperand &Src1 = Inst.getOperand(2); 6691 const DebugLoc &DL = Inst.getDebugLoc(); 6692 MachineBasicBlock::iterator MII = Inst; 6693 6694 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg()); 6695 const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg()); 6696 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 6697 const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); 6698 6699 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6700 AMDGPU::sub0, Src0SubRC); 6701 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 6702 AMDGPU::sub0, Src1SubRC); 6703 6704 6705 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6706 AMDGPU::sub1, Src0SubRC); 6707 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 6708 AMDGPU::sub1, Src1SubRC); 6709 6710 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 6711 MachineInstr *LoHalf = 6712 BuildMI(MBB, MII, DL, get(LoOpc), DestSub0) 6713 .addReg(CarryReg, RegState::Define) 6714 .add(SrcReg0Sub0) 6715 .add(SrcReg1Sub0) 6716 .addImm(0); // clamp bit 6717 6718 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 6719 MachineInstr *HiHalf = 6720 BuildMI(MBB, MII, DL, get(HiOpc), DestSub1) 6721 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 6722 .add(SrcReg0Sub1) 6723 .add(SrcReg1Sub1) 6724 .addReg(CarryReg, RegState::Kill) 6725 .addImm(0); // clamp bit 6726 6727 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 6728 .addReg(DestSub0) 6729 .addImm(AMDGPU::sub0) 6730 .addReg(DestSub1) 6731 .addImm(AMDGPU::sub1); 6732 6733 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 6734 6735 // Try to legalize the operands in case we need to swap the order to keep it 6736 // valid. 6737 legalizeOperands(*LoHalf, MDT); 6738 legalizeOperands(*HiHalf, MDT); 6739 6740 // Move all users of this moved value. 6741 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 6742 } 6743 6744 void SIInstrInfo::splitScalar64BitBinaryOp(SetVectorType &Worklist, 6745 MachineInstr &Inst, unsigned Opcode, 6746 MachineDominatorTree *MDT) const { 6747 MachineBasicBlock &MBB = *Inst.getParent(); 6748 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6749 6750 MachineOperand &Dest = Inst.getOperand(0); 6751 MachineOperand &Src0 = Inst.getOperand(1); 6752 MachineOperand &Src1 = Inst.getOperand(2); 6753 DebugLoc DL = Inst.getDebugLoc(); 6754 6755 MachineBasicBlock::iterator MII = Inst; 6756 6757 const MCInstrDesc &InstDesc = get(Opcode); 6758 const TargetRegisterClass *Src0RC = Src0.isReg() ? 6759 MRI.getRegClass(Src0.getReg()) : 6760 &AMDGPU::SGPR_32RegClass; 6761 6762 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 6763 const TargetRegisterClass *Src1RC = Src1.isReg() ? 6764 MRI.getRegClass(Src1.getReg()) : 6765 &AMDGPU::SGPR_32RegClass; 6766 6767 const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); 6768 6769 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6770 AMDGPU::sub0, Src0SubRC); 6771 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 6772 AMDGPU::sub0, Src1SubRC); 6773 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6774 AMDGPU::sub1, Src0SubRC); 6775 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 6776 AMDGPU::sub1, Src1SubRC); 6777 6778 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 6779 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 6780 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 6781 6782 Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 6783 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0) 6784 .add(SrcReg0Sub0) 6785 .add(SrcReg1Sub0); 6786 6787 Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 6788 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1) 6789 .add(SrcReg0Sub1) 6790 .add(SrcReg1Sub1); 6791 6792 Register FullDestReg = MRI.createVirtualRegister(NewDestRC); 6793 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 6794 .addReg(DestSub0) 6795 .addImm(AMDGPU::sub0) 6796 .addReg(DestSub1) 6797 .addImm(AMDGPU::sub1); 6798 6799 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 6800 6801 Worklist.insert(&LoHalf); 6802 Worklist.insert(&HiHalf); 6803 6804 // Move all users of this moved value. 6805 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 6806 } 6807 6808 void SIInstrInfo::splitScalar64BitXnor(SetVectorType &Worklist, 6809 MachineInstr &Inst, 6810 MachineDominatorTree *MDT) const { 6811 MachineBasicBlock &MBB = *Inst.getParent(); 6812 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6813 6814 MachineOperand &Dest = Inst.getOperand(0); 6815 MachineOperand &Src0 = Inst.getOperand(1); 6816 MachineOperand &Src1 = Inst.getOperand(2); 6817 const DebugLoc &DL = Inst.getDebugLoc(); 6818 6819 MachineBasicBlock::iterator MII = Inst; 6820 6821 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 6822 6823 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 6824 6825 MachineOperand* Op0; 6826 MachineOperand* Op1; 6827 6828 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) { 6829 Op0 = &Src0; 6830 Op1 = &Src1; 6831 } else { 6832 Op0 = &Src1; 6833 Op1 = &Src0; 6834 } 6835 6836 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm) 6837 .add(*Op0); 6838 6839 Register NewDest = MRI.createVirtualRegister(DestRC); 6840 6841 MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest) 6842 .addReg(Interm) 6843 .add(*Op1); 6844 6845 MRI.replaceRegWith(Dest.getReg(), NewDest); 6846 6847 Worklist.insert(&Xor); 6848 } 6849 6850 void SIInstrInfo::splitScalar64BitBCNT( 6851 SetVectorType &Worklist, MachineInstr &Inst) const { 6852 MachineBasicBlock &MBB = *Inst.getParent(); 6853 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6854 6855 MachineBasicBlock::iterator MII = Inst; 6856 const DebugLoc &DL = Inst.getDebugLoc(); 6857 6858 MachineOperand &Dest = Inst.getOperand(0); 6859 MachineOperand &Src = Inst.getOperand(1); 6860 6861 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); 6862 const TargetRegisterClass *SrcRC = Src.isReg() ? 6863 MRI.getRegClass(Src.getReg()) : 6864 &AMDGPU::SGPR_32RegClass; 6865 6866 Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6867 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6868 6869 const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0); 6870 6871 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 6872 AMDGPU::sub0, SrcSubRC); 6873 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 6874 AMDGPU::sub1, SrcSubRC); 6875 6876 BuildMI(MBB, MII, DL, InstDesc, MidReg).add(SrcRegSub0).addImm(0); 6877 6878 BuildMI(MBB, MII, DL, InstDesc, ResultReg).add(SrcRegSub1).addReg(MidReg); 6879 6880 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6881 6882 // We don't need to legalize operands here. src0 for either instruction can be 6883 // an SGPR, and the second input is unused or determined here. 6884 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6885 } 6886 6887 void SIInstrInfo::splitScalar64BitBFE(SetVectorType &Worklist, 6888 MachineInstr &Inst) const { 6889 MachineBasicBlock &MBB = *Inst.getParent(); 6890 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6891 MachineBasicBlock::iterator MII = Inst; 6892 const DebugLoc &DL = Inst.getDebugLoc(); 6893 6894 MachineOperand &Dest = Inst.getOperand(0); 6895 uint32_t Imm = Inst.getOperand(2).getImm(); 6896 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 6897 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 6898 6899 (void) Offset; 6900 6901 // Only sext_inreg cases handled. 6902 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 && 6903 Offset == 0 && "Not implemented"); 6904 6905 if (BitWidth < 32) { 6906 Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6907 Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6908 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6909 6910 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo) 6911 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0) 6912 .addImm(0) 6913 .addImm(BitWidth); 6914 6915 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) 6916 .addImm(31) 6917 .addReg(MidRegLo); 6918 6919 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 6920 .addReg(MidRegLo) 6921 .addImm(AMDGPU::sub0) 6922 .addReg(MidRegHi) 6923 .addImm(AMDGPU::sub1); 6924 6925 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6926 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6927 return; 6928 } 6929 6930 MachineOperand &Src = Inst.getOperand(1); 6931 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6932 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6933 6934 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) 6935 .addImm(31) 6936 .addReg(Src.getReg(), 0, AMDGPU::sub0); 6937 6938 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 6939 .addReg(Src.getReg(), 0, AMDGPU::sub0) 6940 .addImm(AMDGPU::sub0) 6941 .addReg(TmpReg) 6942 .addImm(AMDGPU::sub1); 6943 6944 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6945 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6946 } 6947 6948 void SIInstrInfo::addUsersToMoveToVALUWorklist( 6949 Register DstReg, 6950 MachineRegisterInfo &MRI, 6951 SetVectorType &Worklist) const { 6952 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), 6953 E = MRI.use_end(); I != E;) { 6954 MachineInstr &UseMI = *I->getParent(); 6955 6956 unsigned OpNo = 0; 6957 6958 switch (UseMI.getOpcode()) { 6959 case AMDGPU::COPY: 6960 case AMDGPU::WQM: 6961 case AMDGPU::SOFT_WQM: 6962 case AMDGPU::STRICT_WWM: 6963 case AMDGPU::STRICT_WQM: 6964 case AMDGPU::REG_SEQUENCE: 6965 case AMDGPU::PHI: 6966 case AMDGPU::INSERT_SUBREG: 6967 break; 6968 default: 6969 OpNo = I.getOperandNo(); 6970 break; 6971 } 6972 6973 if (!RI.hasVectorRegisters(getOpRegClass(UseMI, OpNo))) { 6974 Worklist.insert(&UseMI); 6975 6976 do { 6977 ++I; 6978 } while (I != E && I->getParent() == &UseMI); 6979 } else { 6980 ++I; 6981 } 6982 } 6983 } 6984 6985 void SIInstrInfo::movePackToVALU(SetVectorType &Worklist, 6986 MachineRegisterInfo &MRI, 6987 MachineInstr &Inst) const { 6988 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6989 MachineBasicBlock *MBB = Inst.getParent(); 6990 MachineOperand &Src0 = Inst.getOperand(1); 6991 MachineOperand &Src1 = Inst.getOperand(2); 6992 const DebugLoc &DL = Inst.getDebugLoc(); 6993 6994 switch (Inst.getOpcode()) { 6995 case AMDGPU::S_PACK_LL_B32_B16: { 6996 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6997 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6998 6999 // FIXME: Can do a lot better if we know the high bits of src0 or src1 are 7000 // 0. 7001 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 7002 .addImm(0xffff); 7003 7004 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg) 7005 .addReg(ImmReg, RegState::Kill) 7006 .add(Src0); 7007 7008 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg) 7009 .add(Src1) 7010 .addImm(16) 7011 .addReg(TmpReg, RegState::Kill); 7012 break; 7013 } 7014 case AMDGPU::S_PACK_LH_B32_B16: { 7015 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7016 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 7017 .addImm(0xffff); 7018 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg) 7019 .addReg(ImmReg, RegState::Kill) 7020 .add(Src0) 7021 .add(Src1); 7022 break; 7023 } 7024 case AMDGPU::S_PACK_HH_B32_B16: { 7025 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7026 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7027 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) 7028 .addImm(16) 7029 .add(Src0); 7030 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 7031 .addImm(0xffff0000); 7032 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg) 7033 .add(Src1) 7034 .addReg(ImmReg, RegState::Kill) 7035 .addReg(TmpReg, RegState::Kill); 7036 break; 7037 } 7038 default: 7039 llvm_unreachable("unhandled s_pack_* instruction"); 7040 } 7041 7042 MachineOperand &Dest = Inst.getOperand(0); 7043 MRI.replaceRegWith(Dest.getReg(), ResultReg); 7044 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 7045 } 7046 7047 void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op, 7048 MachineInstr &SCCDefInst, 7049 SetVectorType &Worklist, 7050 Register NewCond) const { 7051 7052 // Ensure that def inst defines SCC, which is still live. 7053 assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() && 7054 !Op.isDead() && Op.getParent() == &SCCDefInst); 7055 SmallVector<MachineInstr *, 4> CopyToDelete; 7056 // This assumes that all the users of SCC are in the same block 7057 // as the SCC def. 7058 for (MachineInstr &MI : // Skip the def inst itself. 7059 make_range(std::next(MachineBasicBlock::iterator(SCCDefInst)), 7060 SCCDefInst.getParent()->end())) { 7061 // Check if SCC is used first. 7062 int SCCIdx = MI.findRegisterUseOperandIdx(AMDGPU::SCC, false, &RI); 7063 if (SCCIdx != -1) { 7064 if (MI.isCopy()) { 7065 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 7066 Register DestReg = MI.getOperand(0).getReg(); 7067 7068 MRI.replaceRegWith(DestReg, NewCond); 7069 CopyToDelete.push_back(&MI); 7070 } else { 7071 7072 if (NewCond.isValid()) 7073 MI.getOperand(SCCIdx).setReg(NewCond); 7074 7075 Worklist.insert(&MI); 7076 } 7077 } 7078 // Exit if we find another SCC def. 7079 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != -1) 7080 break; 7081 } 7082 for (auto &Copy : CopyToDelete) 7083 Copy->eraseFromParent(); 7084 } 7085 7086 // Instructions that use SCC may be converted to VALU instructions. When that 7087 // happens, the SCC register is changed to VCC_LO. The instruction that defines 7088 // SCC must be changed to an instruction that defines VCC. This function makes 7089 // sure that the instruction that defines SCC is added to the moveToVALU 7090 // worklist. 7091 void SIInstrInfo::addSCCDefsToVALUWorklist(MachineOperand &Op, 7092 SetVectorType &Worklist) const { 7093 assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isUse()); 7094 7095 MachineInstr *SCCUseInst = Op.getParent(); 7096 // Look for a preceding instruction that either defines VCC or SCC. If VCC 7097 // then there is nothing to do because the defining instruction has been 7098 // converted to a VALU already. If SCC then that instruction needs to be 7099 // converted to a VALU. 7100 for (MachineInstr &MI : 7101 make_range(std::next(MachineBasicBlock::reverse_iterator(SCCUseInst)), 7102 SCCUseInst->getParent()->rend())) { 7103 if (MI.modifiesRegister(AMDGPU::VCC, &RI)) 7104 break; 7105 if (MI.definesRegister(AMDGPU::SCC, &RI)) { 7106 Worklist.insert(&MI); 7107 break; 7108 } 7109 } 7110 } 7111 7112 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( 7113 const MachineInstr &Inst) const { 7114 const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); 7115 7116 switch (Inst.getOpcode()) { 7117 // For target instructions, getOpRegClass just returns the virtual register 7118 // class associated with the operand, so we need to find an equivalent VGPR 7119 // register class in order to move the instruction to the VALU. 7120 case AMDGPU::COPY: 7121 case AMDGPU::PHI: 7122 case AMDGPU::REG_SEQUENCE: 7123 case AMDGPU::INSERT_SUBREG: 7124 case AMDGPU::WQM: 7125 case AMDGPU::SOFT_WQM: 7126 case AMDGPU::STRICT_WWM: 7127 case AMDGPU::STRICT_WQM: { 7128 const TargetRegisterClass *SrcRC = getOpRegClass(Inst, 1); 7129 if (RI.isAGPRClass(SrcRC)) { 7130 if (RI.isAGPRClass(NewDstRC)) 7131 return nullptr; 7132 7133 switch (Inst.getOpcode()) { 7134 case AMDGPU::PHI: 7135 case AMDGPU::REG_SEQUENCE: 7136 case AMDGPU::INSERT_SUBREG: 7137 NewDstRC = RI.getEquivalentAGPRClass(NewDstRC); 7138 break; 7139 default: 7140 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 7141 } 7142 7143 if (!NewDstRC) 7144 return nullptr; 7145 } else { 7146 if (RI.isVGPRClass(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass) 7147 return nullptr; 7148 7149 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 7150 if (!NewDstRC) 7151 return nullptr; 7152 } 7153 7154 return NewDstRC; 7155 } 7156 default: 7157 return NewDstRC; 7158 } 7159 } 7160 7161 // Find the one SGPR operand we are allowed to use. 7162 Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI, 7163 int OpIndices[3]) const { 7164 const MCInstrDesc &Desc = MI.getDesc(); 7165 7166 // Find the one SGPR operand we are allowed to use. 7167 // 7168 // First we need to consider the instruction's operand requirements before 7169 // legalizing. Some operands are required to be SGPRs, such as implicit uses 7170 // of VCC, but we are still bound by the constant bus requirement to only use 7171 // one. 7172 // 7173 // If the operand's class is an SGPR, we can never move it. 7174 7175 Register SGPRReg = findImplicitSGPRRead(MI); 7176 if (SGPRReg != AMDGPU::NoRegister) 7177 return SGPRReg; 7178 7179 Register UsedSGPRs[3] = { AMDGPU::NoRegister }; 7180 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 7181 7182 for (unsigned i = 0; i < 3; ++i) { 7183 int Idx = OpIndices[i]; 7184 if (Idx == -1) 7185 break; 7186 7187 const MachineOperand &MO = MI.getOperand(Idx); 7188 if (!MO.isReg()) 7189 continue; 7190 7191 // Is this operand statically required to be an SGPR based on the operand 7192 // constraints? 7193 const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass); 7194 bool IsRequiredSGPR = RI.isSGPRClass(OpRC); 7195 if (IsRequiredSGPR) 7196 return MO.getReg(); 7197 7198 // If this could be a VGPR or an SGPR, Check the dynamic register class. 7199 Register Reg = MO.getReg(); 7200 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); 7201 if (RI.isSGPRClass(RegRC)) 7202 UsedSGPRs[i] = Reg; 7203 } 7204 7205 // We don't have a required SGPR operand, so we have a bit more freedom in 7206 // selecting operands to move. 7207 7208 // Try to select the most used SGPR. If an SGPR is equal to one of the 7209 // others, we choose that. 7210 // 7211 // e.g. 7212 // V_FMA_F32 v0, s0, s0, s0 -> No moves 7213 // V_FMA_F32 v0, s0, s1, s0 -> Move s1 7214 7215 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should 7216 // prefer those. 7217 7218 if (UsedSGPRs[0] != AMDGPU::NoRegister) { 7219 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) 7220 SGPRReg = UsedSGPRs[0]; 7221 } 7222 7223 if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) { 7224 if (UsedSGPRs[1] == UsedSGPRs[2]) 7225 SGPRReg = UsedSGPRs[1]; 7226 } 7227 7228 return SGPRReg; 7229 } 7230 7231 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, 7232 unsigned OperandName) const { 7233 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); 7234 if (Idx == -1) 7235 return nullptr; 7236 7237 return &MI.getOperand(Idx); 7238 } 7239 7240 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { 7241 if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 7242 return (AMDGPU::MTBUFFormat::UFMT_32_FLOAT << 44) | 7243 (1ULL << 56) | // RESOURCE_LEVEL = 1 7244 (3ULL << 60); // OOB_SELECT = 3 7245 } 7246 7247 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; 7248 if (ST.isAmdHsaOS()) { 7249 // Set ATC = 1. GFX9 doesn't have this bit. 7250 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7251 RsrcDataFormat |= (1ULL << 56); 7252 7253 // Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this. 7254 // BTW, it disables TC L2 and therefore decreases performance. 7255 if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) 7256 RsrcDataFormat |= (2ULL << 59); 7257 } 7258 7259 return RsrcDataFormat; 7260 } 7261 7262 uint64_t SIInstrInfo::getScratchRsrcWords23() const { 7263 uint64_t Rsrc23 = getDefaultRsrcDataFormat() | 7264 AMDGPU::RSRC_TID_ENABLE | 7265 0xffffffff; // Size; 7266 7267 // GFX9 doesn't have ELEMENT_SIZE. 7268 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 7269 uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize(true)) - 1; 7270 Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT; 7271 } 7272 7273 // IndexStride = 64 / 32. 7274 uint64_t IndexStride = ST.getWavefrontSize() == 64 ? 3 : 2; 7275 Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT; 7276 7277 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. 7278 // Clear them unless we want a huge stride. 7279 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 7280 ST.getGeneration() <= AMDGPUSubtarget::GFX9) 7281 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; 7282 7283 return Rsrc23; 7284 } 7285 7286 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const { 7287 unsigned Opc = MI.getOpcode(); 7288 7289 return isSMRD(Opc); 7290 } 7291 7292 bool SIInstrInfo::isHighLatencyDef(int Opc) const { 7293 return get(Opc).mayLoad() && 7294 (isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc) || isFLAT(Opc)); 7295 } 7296 7297 unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI, 7298 int &FrameIndex) const { 7299 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 7300 if (!Addr || !Addr->isFI()) 7301 return AMDGPU::NoRegister; 7302 7303 assert(!MI.memoperands_empty() && 7304 (*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS); 7305 7306 FrameIndex = Addr->getIndex(); 7307 return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg(); 7308 } 7309 7310 unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI, 7311 int &FrameIndex) const { 7312 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr); 7313 assert(Addr && Addr->isFI()); 7314 FrameIndex = Addr->getIndex(); 7315 return getNamedOperand(MI, AMDGPU::OpName::data)->getReg(); 7316 } 7317 7318 unsigned SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 7319 int &FrameIndex) const { 7320 if (!MI.mayLoad()) 7321 return AMDGPU::NoRegister; 7322 7323 if (isMUBUF(MI) || isVGPRSpill(MI)) 7324 return isStackAccess(MI, FrameIndex); 7325 7326 if (isSGPRSpill(MI)) 7327 return isSGPRStackAccess(MI, FrameIndex); 7328 7329 return AMDGPU::NoRegister; 7330 } 7331 7332 unsigned SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 7333 int &FrameIndex) const { 7334 if (!MI.mayStore()) 7335 return AMDGPU::NoRegister; 7336 7337 if (isMUBUF(MI) || isVGPRSpill(MI)) 7338 return isStackAccess(MI, FrameIndex); 7339 7340 if (isSGPRSpill(MI)) 7341 return isSGPRStackAccess(MI, FrameIndex); 7342 7343 return AMDGPU::NoRegister; 7344 } 7345 7346 unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const { 7347 unsigned Size = 0; 7348 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 7349 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 7350 while (++I != E && I->isInsideBundle()) { 7351 assert(!I->isBundle() && "No nested bundle!"); 7352 Size += getInstSizeInBytes(*I); 7353 } 7354 7355 return Size; 7356 } 7357 7358 unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 7359 unsigned Opc = MI.getOpcode(); 7360 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc); 7361 unsigned DescSize = Desc.getSize(); 7362 7363 // If we have a definitive size, we can use it. Otherwise we need to inspect 7364 // the operands to know the size. 7365 if (isFixedSize(MI)) { 7366 unsigned Size = DescSize; 7367 7368 // If we hit the buggy offset, an extra nop will be inserted in MC so 7369 // estimate the worst case. 7370 if (MI.isBranch() && ST.hasOffset3fBug()) 7371 Size += 4; 7372 7373 return Size; 7374 } 7375 7376 // Instructions may have a 32-bit literal encoded after them. Check 7377 // operands that could ever be literals. 7378 if (isVALU(MI) || isSALU(MI)) { 7379 if (isDPP(MI)) 7380 return DescSize; 7381 bool HasLiteral = false; 7382 for (int I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) { 7383 if (isLiteralConstant(MI, I)) { 7384 HasLiteral = true; 7385 break; 7386 } 7387 } 7388 return HasLiteral ? DescSize + 4 : DescSize; 7389 } 7390 7391 // Check whether we have extra NSA words. 7392 if (isMIMG(MI)) { 7393 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); 7394 if (VAddr0Idx < 0) 7395 return 8; 7396 7397 int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); 7398 return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4); 7399 } 7400 7401 switch (Opc) { 7402 case TargetOpcode::BUNDLE: 7403 return getInstBundleSize(MI); 7404 case TargetOpcode::INLINEASM: 7405 case TargetOpcode::INLINEASM_BR: { 7406 const MachineFunction *MF = MI.getParent()->getParent(); 7407 const char *AsmStr = MI.getOperand(0).getSymbolName(); 7408 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST); 7409 } 7410 default: 7411 if (MI.isMetaInstruction()) 7412 return 0; 7413 return DescSize; 7414 } 7415 } 7416 7417 bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const { 7418 if (!isFLAT(MI)) 7419 return false; 7420 7421 if (MI.memoperands_empty()) 7422 return true; 7423 7424 for (const MachineMemOperand *MMO : MI.memoperands()) { 7425 if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS) 7426 return true; 7427 } 7428 return false; 7429 } 7430 7431 bool SIInstrInfo::isNonUniformBranchInstr(MachineInstr &Branch) const { 7432 return Branch.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO; 7433 } 7434 7435 void SIInstrInfo::convertNonUniformIfRegion(MachineBasicBlock *IfEntry, 7436 MachineBasicBlock *IfEnd) const { 7437 MachineBasicBlock::iterator TI = IfEntry->getFirstTerminator(); 7438 assert(TI != IfEntry->end()); 7439 7440 MachineInstr *Branch = &(*TI); 7441 MachineFunction *MF = IfEntry->getParent(); 7442 MachineRegisterInfo &MRI = IfEntry->getParent()->getRegInfo(); 7443 7444 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 7445 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC()); 7446 MachineInstr *SIIF = 7447 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_IF), DstReg) 7448 .add(Branch->getOperand(0)) 7449 .add(Branch->getOperand(1)); 7450 MachineInstr *SIEND = 7451 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_END_CF)) 7452 .addReg(DstReg); 7453 7454 IfEntry->erase(TI); 7455 IfEntry->insert(IfEntry->end(), SIIF); 7456 IfEnd->insert(IfEnd->getFirstNonPHI(), SIEND); 7457 } 7458 } 7459 7460 void SIInstrInfo::convertNonUniformLoopRegion( 7461 MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const { 7462 MachineBasicBlock::iterator TI = LoopEnd->getFirstTerminator(); 7463 // We expect 2 terminators, one conditional and one unconditional. 7464 assert(TI != LoopEnd->end()); 7465 7466 MachineInstr *Branch = &(*TI); 7467 MachineFunction *MF = LoopEnd->getParent(); 7468 MachineRegisterInfo &MRI = LoopEnd->getParent()->getRegInfo(); 7469 7470 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 7471 7472 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC()); 7473 Register BackEdgeReg = MRI.createVirtualRegister(RI.getBoolRC()); 7474 MachineInstrBuilder HeaderPHIBuilder = 7475 BuildMI(*(MF), Branch->getDebugLoc(), get(TargetOpcode::PHI), DstReg); 7476 for (MachineBasicBlock *PMBB : LoopEntry->predecessors()) { 7477 if (PMBB == LoopEnd) { 7478 HeaderPHIBuilder.addReg(BackEdgeReg); 7479 } else { 7480 Register ZeroReg = MRI.createVirtualRegister(RI.getBoolRC()); 7481 materializeImmediate(*PMBB, PMBB->getFirstTerminator(), DebugLoc(), 7482 ZeroReg, 0); 7483 HeaderPHIBuilder.addReg(ZeroReg); 7484 } 7485 HeaderPHIBuilder.addMBB(PMBB); 7486 } 7487 MachineInstr *HeaderPhi = HeaderPHIBuilder; 7488 MachineInstr *SIIFBREAK = BuildMI(*(MF), Branch->getDebugLoc(), 7489 get(AMDGPU::SI_IF_BREAK), BackEdgeReg) 7490 .addReg(DstReg) 7491 .add(Branch->getOperand(0)); 7492 MachineInstr *SILOOP = 7493 BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_LOOP)) 7494 .addReg(BackEdgeReg) 7495 .addMBB(LoopEntry); 7496 7497 LoopEntry->insert(LoopEntry->begin(), HeaderPhi); 7498 LoopEnd->erase(TI); 7499 LoopEnd->insert(LoopEnd->end(), SIIFBREAK); 7500 LoopEnd->insert(LoopEnd->end(), SILOOP); 7501 } 7502 } 7503 7504 ArrayRef<std::pair<int, const char *>> 7505 SIInstrInfo::getSerializableTargetIndices() const { 7506 static const std::pair<int, const char *> TargetIndices[] = { 7507 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, 7508 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, 7509 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, 7510 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, 7511 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; 7512 return makeArrayRef(TargetIndices); 7513 } 7514 7515 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The 7516 /// post-RA version of misched uses CreateTargetMIHazardRecognizer. 7517 ScheduleHazardRecognizer * 7518 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 7519 const ScheduleDAG *DAG) const { 7520 return new GCNHazardRecognizer(DAG->MF); 7521 } 7522 7523 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer 7524 /// pass. 7525 ScheduleHazardRecognizer * 7526 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 7527 return new GCNHazardRecognizer(MF); 7528 } 7529 7530 // Called during: 7531 // - pre-RA scheduling and post-RA scheduling 7532 ScheduleHazardRecognizer * 7533 SIInstrInfo::CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 7534 const ScheduleDAGMI *DAG) const { 7535 // Borrowed from Arm Target 7536 // We would like to restrict this hazard recognizer to only 7537 // post-RA scheduling; we can tell that we're post-RA because we don't 7538 // track VRegLiveness. 7539 if (!DAG->hasVRegLiveness()) 7540 return new GCNHazardRecognizer(DAG->MF); 7541 return TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 7542 } 7543 7544 std::pair<unsigned, unsigned> 7545 SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 7546 return std::make_pair(TF & MO_MASK, TF & ~MO_MASK); 7547 } 7548 7549 ArrayRef<std::pair<unsigned, const char *>> 7550 SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 7551 static const std::pair<unsigned, const char *> TargetFlags[] = { 7552 { MO_GOTPCREL, "amdgpu-gotprel" }, 7553 { MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" }, 7554 { MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" }, 7555 { MO_REL32_LO, "amdgpu-rel32-lo" }, 7556 { MO_REL32_HI, "amdgpu-rel32-hi" }, 7557 { MO_ABS32_LO, "amdgpu-abs32-lo" }, 7558 { MO_ABS32_HI, "amdgpu-abs32-hi" }, 7559 }; 7560 7561 return makeArrayRef(TargetFlags); 7562 } 7563 7564 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> 7565 SIInstrInfo::getSerializableMachineMemOperandTargetFlags() const { 7566 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] = 7567 { 7568 {MONoClobber, "amdgpu-noclobber"}, 7569 }; 7570 7571 return makeArrayRef(TargetFlags); 7572 } 7573 7574 bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI) const { 7575 return !MI.isTerminator() && MI.getOpcode() != AMDGPU::COPY && 7576 MI.modifiesRegister(AMDGPU::EXEC, &RI); 7577 } 7578 7579 MachineInstrBuilder 7580 SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, 7581 MachineBasicBlock::iterator I, 7582 const DebugLoc &DL, 7583 Register DestReg) const { 7584 if (ST.hasAddNoCarry()) 7585 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg); 7586 7587 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7588 Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC()); 7589 MRI.setRegAllocationHint(UnusedCarry, 0, RI.getVCC()); 7590 7591 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) 7592 .addReg(UnusedCarry, RegState::Define | RegState::Dead); 7593 } 7594 7595 MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, 7596 MachineBasicBlock::iterator I, 7597 const DebugLoc &DL, 7598 Register DestReg, 7599 RegScavenger &RS) const { 7600 if (ST.hasAddNoCarry()) 7601 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg); 7602 7603 // If available, prefer to use vcc. 7604 Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC) 7605 ? Register(RI.getVCC()) 7606 : RS.scavengeRegister(RI.getBoolRC(), I, 0, false); 7607 7608 // TODO: Users need to deal with this. 7609 if (!UnusedCarry.isValid()) 7610 return MachineInstrBuilder(); 7611 7612 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) 7613 .addReg(UnusedCarry, RegState::Define | RegState::Dead); 7614 } 7615 7616 bool SIInstrInfo::isKillTerminator(unsigned Opcode) { 7617 switch (Opcode) { 7618 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 7619 case AMDGPU::SI_KILL_I1_TERMINATOR: 7620 return true; 7621 default: 7622 return false; 7623 } 7624 } 7625 7626 const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const { 7627 switch (Opcode) { 7628 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 7629 return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR); 7630 case AMDGPU::SI_KILL_I1_PSEUDO: 7631 return get(AMDGPU::SI_KILL_I1_TERMINATOR); 7632 default: 7633 llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO"); 7634 } 7635 } 7636 7637 void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const { 7638 if (!ST.isWave32()) 7639 return; 7640 7641 for (auto &Op : MI.implicit_operands()) { 7642 if (Op.isReg() && Op.getReg() == AMDGPU::VCC) 7643 Op.setReg(AMDGPU::VCC_LO); 7644 } 7645 } 7646 7647 bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const { 7648 if (!isSMRD(MI)) 7649 return false; 7650 7651 // Check that it is using a buffer resource. 7652 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase); 7653 if (Idx == -1) // e.g. s_memtime 7654 return false; 7655 7656 const auto RCID = MI.getDesc().OpInfo[Idx].RegClass; 7657 return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass); 7658 } 7659 7660 // Depending on the used address space and instructions, some immediate offsets 7661 // are allowed and some are not. 7662 // In general, flat instruction offsets can only be non-negative, global and 7663 // scratch instruction offsets can also be negative. 7664 // 7665 // There are several bugs related to these offsets: 7666 // On gfx10.1, flat instructions that go into the global address space cannot 7667 // use an offset. 7668 // 7669 // For scratch instructions, the address can be either an SGPR or a VGPR. 7670 // The following offsets can be used, depending on the architecture (x means 7671 // cannot be used): 7672 // +----------------------------+------+------+ 7673 // | Address-Mode | SGPR | VGPR | 7674 // +----------------------------+------+------+ 7675 // | gfx9 | | | 7676 // | negative, 4-aligned offset | x | ok | 7677 // | negative, unaligned offset | x | ok | 7678 // +----------------------------+------+------+ 7679 // | gfx10 | | | 7680 // | negative, 4-aligned offset | ok | ok | 7681 // | negative, unaligned offset | ok | x | 7682 // +----------------------------+------+------+ 7683 // | gfx10.3 | | | 7684 // | negative, 4-aligned offset | ok | ok | 7685 // | negative, unaligned offset | ok | ok | 7686 // +----------------------------+------+------+ 7687 // 7688 // This function ignores the addressing mode, so if an offset cannot be used in 7689 // one addressing mode, it is considered illegal. 7690 bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace, 7691 uint64_t FlatVariant) const { 7692 // TODO: Should 0 be special cased? 7693 if (!ST.hasFlatInstOffsets()) 7694 return false; 7695 7696 if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT && 7697 (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 7698 AddrSpace == AMDGPUAS::GLOBAL_ADDRESS)) 7699 return false; 7700 7701 bool Signed = FlatVariant != SIInstrFlags::FLAT; 7702 if (ST.hasNegativeScratchOffsetBug() && 7703 FlatVariant == SIInstrFlags::FlatScratch) 7704 Signed = false; 7705 if (ST.hasNegativeUnalignedScratchOffsetBug() && 7706 FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 && 7707 (Offset % 4) != 0) { 7708 return false; 7709 } 7710 7711 unsigned N = AMDGPU::getNumFlatOffsetBits(ST, Signed); 7712 return Signed ? isIntN(N, Offset) : isUIntN(N, Offset); 7713 } 7714 7715 // See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not. 7716 std::pair<int64_t, int64_t> 7717 SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace, 7718 uint64_t FlatVariant) const { 7719 int64_t RemainderOffset = COffsetVal; 7720 int64_t ImmField = 0; 7721 bool Signed = FlatVariant != SIInstrFlags::FLAT; 7722 if (ST.hasNegativeScratchOffsetBug() && 7723 FlatVariant == SIInstrFlags::FlatScratch) 7724 Signed = false; 7725 7726 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST, Signed); 7727 if (Signed) { 7728 // Use signed division by a power of two to truncate towards 0. 7729 int64_t D = 1LL << (NumBits - 1); 7730 RemainderOffset = (COffsetVal / D) * D; 7731 ImmField = COffsetVal - RemainderOffset; 7732 7733 if (ST.hasNegativeUnalignedScratchOffsetBug() && 7734 FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 && 7735 (ImmField % 4) != 0) { 7736 // Make ImmField a multiple of 4 7737 RemainderOffset += ImmField % 4; 7738 ImmField -= ImmField % 4; 7739 } 7740 } else if (COffsetVal >= 0) { 7741 ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits); 7742 RemainderOffset = COffsetVal - ImmField; 7743 } 7744 7745 assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant)); 7746 assert(RemainderOffset + ImmField == COffsetVal); 7747 return {ImmField, RemainderOffset}; 7748 } 7749 7750 // This must be kept in sync with the SIEncodingFamily class in SIInstrInfo.td 7751 enum SIEncodingFamily { 7752 SI = 0, 7753 VI = 1, 7754 SDWA = 2, 7755 SDWA9 = 3, 7756 GFX80 = 4, 7757 GFX9 = 5, 7758 GFX10 = 6, 7759 SDWA10 = 7, 7760 GFX90A = 8 7761 }; 7762 7763 static SIEncodingFamily subtargetEncodingFamily(const GCNSubtarget &ST) { 7764 switch (ST.getGeneration()) { 7765 default: 7766 break; 7767 case AMDGPUSubtarget::SOUTHERN_ISLANDS: 7768 case AMDGPUSubtarget::SEA_ISLANDS: 7769 return SIEncodingFamily::SI; 7770 case AMDGPUSubtarget::VOLCANIC_ISLANDS: 7771 case AMDGPUSubtarget::GFX9: 7772 return SIEncodingFamily::VI; 7773 case AMDGPUSubtarget::GFX10: 7774 return SIEncodingFamily::GFX10; 7775 } 7776 llvm_unreachable("Unknown subtarget generation!"); 7777 } 7778 7779 bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const { 7780 switch(MCOp) { 7781 // These opcodes use indirect register addressing so 7782 // they need special handling by codegen (currently missing). 7783 // Therefore it is too risky to allow these opcodes 7784 // to be selected by dpp combiner or sdwa peepholer. 7785 case AMDGPU::V_MOVRELS_B32_dpp_gfx10: 7786 case AMDGPU::V_MOVRELS_B32_sdwa_gfx10: 7787 case AMDGPU::V_MOVRELD_B32_dpp_gfx10: 7788 case AMDGPU::V_MOVRELD_B32_sdwa_gfx10: 7789 case AMDGPU::V_MOVRELSD_B32_dpp_gfx10: 7790 case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10: 7791 case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10: 7792 case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10: 7793 return true; 7794 default: 7795 return false; 7796 } 7797 } 7798 7799 int SIInstrInfo::pseudoToMCOpcode(int Opcode) const { 7800 SIEncodingFamily Gen = subtargetEncodingFamily(ST); 7801 7802 if ((get(Opcode).TSFlags & SIInstrFlags::renamedInGFX9) != 0 && 7803 ST.getGeneration() == AMDGPUSubtarget::GFX9) 7804 Gen = SIEncodingFamily::GFX9; 7805 7806 // Adjust the encoding family to GFX80 for D16 buffer instructions when the 7807 // subtarget has UnpackedD16VMem feature. 7808 // TODO: remove this when we discard GFX80 encoding. 7809 if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf)) 7810 Gen = SIEncodingFamily::GFX80; 7811 7812 if (get(Opcode).TSFlags & SIInstrFlags::SDWA) { 7813 switch (ST.getGeneration()) { 7814 default: 7815 Gen = SIEncodingFamily::SDWA; 7816 break; 7817 case AMDGPUSubtarget::GFX9: 7818 Gen = SIEncodingFamily::SDWA9; 7819 break; 7820 case AMDGPUSubtarget::GFX10: 7821 Gen = SIEncodingFamily::SDWA10; 7822 break; 7823 } 7824 } 7825 7826 if (isMAI(Opcode)) { 7827 int MFMAOp = AMDGPU::getMFMAEarlyClobberOp(Opcode); 7828 if (MFMAOp != -1) 7829 Opcode = MFMAOp; 7830 } 7831 7832 int MCOp = AMDGPU::getMCOpcode(Opcode, Gen); 7833 7834 // -1 means that Opcode is already a native instruction. 7835 if (MCOp == -1) 7836 return Opcode; 7837 7838 if (ST.hasGFX90AInsts()) { 7839 uint16_t NMCOp = (uint16_t)-1; 7840 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX90A); 7841 if (NMCOp == (uint16_t)-1) 7842 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX9); 7843 if (NMCOp != (uint16_t)-1) 7844 MCOp = NMCOp; 7845 } 7846 7847 // (uint16_t)-1 means that Opcode is a pseudo instruction that has 7848 // no encoding in the given subtarget generation. 7849 if (MCOp == (uint16_t)-1) 7850 return -1; 7851 7852 if (isAsmOnlyOpcode(MCOp)) 7853 return -1; 7854 7855 return MCOp; 7856 } 7857 7858 static 7859 TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) { 7860 assert(RegOpnd.isReg()); 7861 return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() : 7862 getRegSubRegPair(RegOpnd); 7863 } 7864 7865 TargetInstrInfo::RegSubRegPair 7866 llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) { 7867 assert(MI.isRegSequence()); 7868 for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I) 7869 if (MI.getOperand(1 + 2 * I + 1).getImm() == SubReg) { 7870 auto &RegOp = MI.getOperand(1 + 2 * I); 7871 return getRegOrUndef(RegOp); 7872 } 7873 return TargetInstrInfo::RegSubRegPair(); 7874 } 7875 7876 // Try to find the definition of reg:subreg in subreg-manipulation pseudos 7877 // Following a subreg of reg:subreg isn't supported 7878 static bool followSubRegDef(MachineInstr &MI, 7879 TargetInstrInfo::RegSubRegPair &RSR) { 7880 if (!RSR.SubReg) 7881 return false; 7882 switch (MI.getOpcode()) { 7883 default: break; 7884 case AMDGPU::REG_SEQUENCE: 7885 RSR = getRegSequenceSubReg(MI, RSR.SubReg); 7886 return true; 7887 // EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg 7888 case AMDGPU::INSERT_SUBREG: 7889 if (RSR.SubReg == (unsigned)MI.getOperand(3).getImm()) 7890 // inserted the subreg we're looking for 7891 RSR = getRegOrUndef(MI.getOperand(2)); 7892 else { // the subreg in the rest of the reg 7893 auto R1 = getRegOrUndef(MI.getOperand(1)); 7894 if (R1.SubReg) // subreg of subreg isn't supported 7895 return false; 7896 RSR.Reg = R1.Reg; 7897 } 7898 return true; 7899 } 7900 return false; 7901 } 7902 7903 MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P, 7904 MachineRegisterInfo &MRI) { 7905 assert(MRI.isSSA()); 7906 if (!P.Reg.isVirtual()) 7907 return nullptr; 7908 7909 auto RSR = P; 7910 auto *DefInst = MRI.getVRegDef(RSR.Reg); 7911 while (auto *MI = DefInst) { 7912 DefInst = nullptr; 7913 switch (MI->getOpcode()) { 7914 case AMDGPU::COPY: 7915 case AMDGPU::V_MOV_B32_e32: { 7916 auto &Op1 = MI->getOperand(1); 7917 if (Op1.isReg() && Op1.getReg().isVirtual()) { 7918 if (Op1.isUndef()) 7919 return nullptr; 7920 RSR = getRegSubRegPair(Op1); 7921 DefInst = MRI.getVRegDef(RSR.Reg); 7922 } 7923 break; 7924 } 7925 default: 7926 if (followSubRegDef(*MI, RSR)) { 7927 if (!RSR.Reg) 7928 return nullptr; 7929 DefInst = MRI.getVRegDef(RSR.Reg); 7930 } 7931 } 7932 if (!DefInst) 7933 return MI; 7934 } 7935 return nullptr; 7936 } 7937 7938 bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI, 7939 Register VReg, 7940 const MachineInstr &DefMI, 7941 const MachineInstr &UseMI) { 7942 assert(MRI.isSSA() && "Must be run on SSA"); 7943 7944 auto *TRI = MRI.getTargetRegisterInfo(); 7945 auto *DefBB = DefMI.getParent(); 7946 7947 // Don't bother searching between blocks, although it is possible this block 7948 // doesn't modify exec. 7949 if (UseMI.getParent() != DefBB) 7950 return true; 7951 7952 const int MaxInstScan = 20; 7953 int NumInst = 0; 7954 7955 // Stop scan at the use. 7956 auto E = UseMI.getIterator(); 7957 for (auto I = std::next(DefMI.getIterator()); I != E; ++I) { 7958 if (I->isDebugInstr()) 7959 continue; 7960 7961 if (++NumInst > MaxInstScan) 7962 return true; 7963 7964 if (I->modifiesRegister(AMDGPU::EXEC, TRI)) 7965 return true; 7966 } 7967 7968 return false; 7969 } 7970 7971 bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI, 7972 Register VReg, 7973 const MachineInstr &DefMI) { 7974 assert(MRI.isSSA() && "Must be run on SSA"); 7975 7976 auto *TRI = MRI.getTargetRegisterInfo(); 7977 auto *DefBB = DefMI.getParent(); 7978 7979 const int MaxUseScan = 10; 7980 int NumUse = 0; 7981 7982 for (auto &Use : MRI.use_nodbg_operands(VReg)) { 7983 auto &UseInst = *Use.getParent(); 7984 // Don't bother searching between blocks, although it is possible this block 7985 // doesn't modify exec. 7986 if (UseInst.getParent() != DefBB) 7987 return true; 7988 7989 if (++NumUse > MaxUseScan) 7990 return true; 7991 } 7992 7993 if (NumUse == 0) 7994 return false; 7995 7996 const int MaxInstScan = 20; 7997 int NumInst = 0; 7998 7999 // Stop scan when we have seen all the uses. 8000 for (auto I = std::next(DefMI.getIterator()); ; ++I) { 8001 assert(I != DefBB->end()); 8002 8003 if (I->isDebugInstr()) 8004 continue; 8005 8006 if (++NumInst > MaxInstScan) 8007 return true; 8008 8009 for (const MachineOperand &Op : I->operands()) { 8010 // We don't check reg masks here as they're used only on calls: 8011 // 1. EXEC is only considered const within one BB 8012 // 2. Call should be a terminator instruction if present in a BB 8013 8014 if (!Op.isReg()) 8015 continue; 8016 8017 Register Reg = Op.getReg(); 8018 if (Op.isUse()) { 8019 if (Reg == VReg && --NumUse == 0) 8020 return false; 8021 } else if (TRI->regsOverlap(Reg, AMDGPU::EXEC)) 8022 return true; 8023 } 8024 } 8025 } 8026 8027 MachineInstr *SIInstrInfo::createPHIDestinationCopy( 8028 MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt, 8029 const DebugLoc &DL, Register Src, Register Dst) const { 8030 auto Cur = MBB.begin(); 8031 if (Cur != MBB.end()) 8032 do { 8033 if (!Cur->isPHI() && Cur->readsRegister(Dst)) 8034 return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src); 8035 ++Cur; 8036 } while (Cur != MBB.end() && Cur != LastPHIIt); 8037 8038 return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src, 8039 Dst); 8040 } 8041 8042 MachineInstr *SIInstrInfo::createPHISourceCopy( 8043 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, 8044 const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const { 8045 if (InsPt != MBB.end() && 8046 (InsPt->getOpcode() == AMDGPU::SI_IF || 8047 InsPt->getOpcode() == AMDGPU::SI_ELSE || 8048 InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) && 8049 InsPt->definesRegister(Src)) { 8050 InsPt++; 8051 return BuildMI(MBB, InsPt, DL, 8052 get(ST.isWave32() ? AMDGPU::S_MOV_B32_term 8053 : AMDGPU::S_MOV_B64_term), 8054 Dst) 8055 .addReg(Src, 0, SrcSubReg) 8056 .addReg(AMDGPU::EXEC, RegState::Implicit); 8057 } 8058 return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg, 8059 Dst); 8060 } 8061 8062 bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); } 8063 8064 MachineInstr *SIInstrInfo::foldMemoryOperandImpl( 8065 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 8066 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, 8067 VirtRegMap *VRM) const { 8068 // This is a bit of a hack (copied from AArch64). Consider this instruction: 8069 // 8070 // %0:sreg_32 = COPY $m0 8071 // 8072 // We explicitly chose SReg_32 for the virtual register so such a copy might 8073 // be eliminated by RegisterCoalescer. However, that may not be possible, and 8074 // %0 may even spill. We can't spill $m0 normally (it would require copying to 8075 // a numbered SGPR anyway), and since it is in the SReg_32 register class, 8076 // TargetInstrInfo::foldMemoryOperand() is going to try. 8077 // A similar issue also exists with spilling and reloading $exec registers. 8078 // 8079 // To prevent that, constrain the %0 register class here. 8080 if (MI.isFullCopy()) { 8081 Register DstReg = MI.getOperand(0).getReg(); 8082 Register SrcReg = MI.getOperand(1).getReg(); 8083 if ((DstReg.isVirtual() || SrcReg.isVirtual()) && 8084 (DstReg.isVirtual() != SrcReg.isVirtual())) { 8085 MachineRegisterInfo &MRI = MF.getRegInfo(); 8086 Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg; 8087 const TargetRegisterClass *RC = MRI.getRegClass(VirtReg); 8088 if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) { 8089 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 8090 return nullptr; 8091 } else if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) { 8092 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass); 8093 return nullptr; 8094 } 8095 } 8096 } 8097 8098 return nullptr; 8099 } 8100 8101 unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 8102 const MachineInstr &MI, 8103 unsigned *PredCost) const { 8104 if (MI.isBundle()) { 8105 MachineBasicBlock::const_instr_iterator I(MI.getIterator()); 8106 MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end()); 8107 unsigned Lat = 0, Count = 0; 8108 for (++I; I != E && I->isBundledWithPred(); ++I) { 8109 ++Count; 8110 Lat = std::max(Lat, SchedModel.computeInstrLatency(&*I)); 8111 } 8112 return Lat + Count - 1; 8113 } 8114 8115 return SchedModel.computeInstrLatency(&MI); 8116 } 8117 8118 unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) { 8119 switch (MF.getFunction().getCallingConv()) { 8120 case CallingConv::AMDGPU_PS: 8121 return 1; 8122 case CallingConv::AMDGPU_VS: 8123 return 2; 8124 case CallingConv::AMDGPU_GS: 8125 return 3; 8126 case CallingConv::AMDGPU_HS: 8127 case CallingConv::AMDGPU_LS: 8128 case CallingConv::AMDGPU_ES: 8129 report_fatal_error("ds_ordered_count unsupported for this calling conv"); 8130 case CallingConv::AMDGPU_CS: 8131 case CallingConv::AMDGPU_KERNEL: 8132 case CallingConv::C: 8133 case CallingConv::Fast: 8134 default: 8135 // Assume other calling conventions are various compute callable functions 8136 return 0; 8137 } 8138 } 8139 8140 bool SIInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 8141 Register &SrcReg2, int64_t &CmpMask, 8142 int64_t &CmpValue) const { 8143 if (!MI.getOperand(0).isReg() || MI.getOperand(0).getSubReg()) 8144 return false; 8145 8146 switch (MI.getOpcode()) { 8147 default: 8148 break; 8149 case AMDGPU::S_CMP_EQ_U32: 8150 case AMDGPU::S_CMP_EQ_I32: 8151 case AMDGPU::S_CMP_LG_U32: 8152 case AMDGPU::S_CMP_LG_I32: 8153 case AMDGPU::S_CMP_LT_U32: 8154 case AMDGPU::S_CMP_LT_I32: 8155 case AMDGPU::S_CMP_GT_U32: 8156 case AMDGPU::S_CMP_GT_I32: 8157 case AMDGPU::S_CMP_LE_U32: 8158 case AMDGPU::S_CMP_LE_I32: 8159 case AMDGPU::S_CMP_GE_U32: 8160 case AMDGPU::S_CMP_GE_I32: 8161 case AMDGPU::S_CMP_EQ_U64: 8162 case AMDGPU::S_CMP_LG_U64: 8163 SrcReg = MI.getOperand(0).getReg(); 8164 if (MI.getOperand(1).isReg()) { 8165 if (MI.getOperand(1).getSubReg()) 8166 return false; 8167 SrcReg2 = MI.getOperand(1).getReg(); 8168 CmpValue = 0; 8169 } else if (MI.getOperand(1).isImm()) { 8170 SrcReg2 = Register(); 8171 CmpValue = MI.getOperand(1).getImm(); 8172 } else { 8173 return false; 8174 } 8175 CmpMask = ~0; 8176 return true; 8177 case AMDGPU::S_CMPK_EQ_U32: 8178 case AMDGPU::S_CMPK_EQ_I32: 8179 case AMDGPU::S_CMPK_LG_U32: 8180 case AMDGPU::S_CMPK_LG_I32: 8181 case AMDGPU::S_CMPK_LT_U32: 8182 case AMDGPU::S_CMPK_LT_I32: 8183 case AMDGPU::S_CMPK_GT_U32: 8184 case AMDGPU::S_CMPK_GT_I32: 8185 case AMDGPU::S_CMPK_LE_U32: 8186 case AMDGPU::S_CMPK_LE_I32: 8187 case AMDGPU::S_CMPK_GE_U32: 8188 case AMDGPU::S_CMPK_GE_I32: 8189 SrcReg = MI.getOperand(0).getReg(); 8190 SrcReg2 = Register(); 8191 CmpValue = MI.getOperand(1).getImm(); 8192 CmpMask = ~0; 8193 return true; 8194 } 8195 8196 return false; 8197 } 8198 8199 bool SIInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 8200 Register SrcReg2, int64_t CmpMask, 8201 int64_t CmpValue, 8202 const MachineRegisterInfo *MRI) const { 8203 if (!SrcReg || SrcReg.isPhysical()) 8204 return false; 8205 8206 if (SrcReg2 && !getFoldableImm(SrcReg2, *MRI, CmpValue)) 8207 return false; 8208 8209 const auto optimizeCmpAnd = [&CmpInstr, SrcReg, CmpValue, MRI, 8210 this](int64_t ExpectedValue, unsigned SrcSize, 8211 bool IsReversible, bool IsSigned) -> bool { 8212 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 8213 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 8214 // s_cmp_ge_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 8215 // s_cmp_ge_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 8216 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 1 << n => s_and_b64 $src, 1 << n 8217 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 8218 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 8219 // s_cmp_gt_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 8220 // s_cmp_gt_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 8221 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 0 => s_and_b64 $src, 1 << n 8222 // 8223 // Signed ge/gt are not used for the sign bit. 8224 // 8225 // If result of the AND is unused except in the compare: 8226 // s_and_b(32|64) $src, 1 << n => s_bitcmp1_b(32|64) $src, n 8227 // 8228 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n 8229 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n 8230 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 0 => s_bitcmp0_b64 $src, n 8231 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n 8232 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n 8233 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 1 << n => s_bitcmp0_b64 $src, n 8234 8235 MachineInstr *Def = MRI->getUniqueVRegDef(SrcReg); 8236 if (!Def || Def->getParent() != CmpInstr.getParent()) 8237 return false; 8238 8239 if (Def->getOpcode() != AMDGPU::S_AND_B32 && 8240 Def->getOpcode() != AMDGPU::S_AND_B64) 8241 return false; 8242 8243 int64_t Mask; 8244 const auto isMask = [&Mask, SrcSize](const MachineOperand *MO) -> bool { 8245 if (MO->isImm()) 8246 Mask = MO->getImm(); 8247 else if (!getFoldableImm(MO, Mask)) 8248 return false; 8249 Mask &= maxUIntN(SrcSize); 8250 return isPowerOf2_64(Mask); 8251 }; 8252 8253 MachineOperand *SrcOp = &Def->getOperand(1); 8254 if (isMask(SrcOp)) 8255 SrcOp = &Def->getOperand(2); 8256 else if (isMask(&Def->getOperand(2))) 8257 SrcOp = &Def->getOperand(1); 8258 else 8259 return false; 8260 8261 unsigned BitNo = countTrailingZeros((uint64_t)Mask); 8262 if (IsSigned && BitNo == SrcSize - 1) 8263 return false; 8264 8265 ExpectedValue <<= BitNo; 8266 8267 bool IsReversedCC = false; 8268 if (CmpValue != ExpectedValue) { 8269 if (!IsReversible) 8270 return false; 8271 IsReversedCC = CmpValue == (ExpectedValue ^ Mask); 8272 if (!IsReversedCC) 8273 return false; 8274 } 8275 8276 Register DefReg = Def->getOperand(0).getReg(); 8277 if (IsReversedCC && !MRI->hasOneNonDBGUse(DefReg)) 8278 return false; 8279 8280 for (auto I = std::next(Def->getIterator()), E = CmpInstr.getIterator(); 8281 I != E; ++I) { 8282 if (I->modifiesRegister(AMDGPU::SCC, &RI) || 8283 I->killsRegister(AMDGPU::SCC, &RI)) 8284 return false; 8285 } 8286 8287 MachineOperand *SccDef = Def->findRegisterDefOperand(AMDGPU::SCC); 8288 SccDef->setIsDead(false); 8289 CmpInstr.eraseFromParent(); 8290 8291 if (!MRI->use_nodbg_empty(DefReg)) { 8292 assert(!IsReversedCC); 8293 return true; 8294 } 8295 8296 // Replace AND with unused result with a S_BITCMP. 8297 MachineBasicBlock *MBB = Def->getParent(); 8298 8299 unsigned NewOpc = (SrcSize == 32) ? IsReversedCC ? AMDGPU::S_BITCMP0_B32 8300 : AMDGPU::S_BITCMP1_B32 8301 : IsReversedCC ? AMDGPU::S_BITCMP0_B64 8302 : AMDGPU::S_BITCMP1_B64; 8303 8304 BuildMI(*MBB, Def, Def->getDebugLoc(), get(NewOpc)) 8305 .add(*SrcOp) 8306 .addImm(BitNo); 8307 Def->eraseFromParent(); 8308 8309 return true; 8310 }; 8311 8312 switch (CmpInstr.getOpcode()) { 8313 default: 8314 break; 8315 case AMDGPU::S_CMP_EQ_U32: 8316 case AMDGPU::S_CMP_EQ_I32: 8317 case AMDGPU::S_CMPK_EQ_U32: 8318 case AMDGPU::S_CMPK_EQ_I32: 8319 return optimizeCmpAnd(1, 32, true, false); 8320 case AMDGPU::S_CMP_GE_U32: 8321 case AMDGPU::S_CMPK_GE_U32: 8322 return optimizeCmpAnd(1, 32, false, false); 8323 case AMDGPU::S_CMP_GE_I32: 8324 case AMDGPU::S_CMPK_GE_I32: 8325 return optimizeCmpAnd(1, 32, false, true); 8326 case AMDGPU::S_CMP_EQ_U64: 8327 return optimizeCmpAnd(1, 64, true, false); 8328 case AMDGPU::S_CMP_LG_U32: 8329 case AMDGPU::S_CMP_LG_I32: 8330 case AMDGPU::S_CMPK_LG_U32: 8331 case AMDGPU::S_CMPK_LG_I32: 8332 return optimizeCmpAnd(0, 32, true, false); 8333 case AMDGPU::S_CMP_GT_U32: 8334 case AMDGPU::S_CMPK_GT_U32: 8335 return optimizeCmpAnd(0, 32, false, false); 8336 case AMDGPU::S_CMP_GT_I32: 8337 case AMDGPU::S_CMPK_GT_I32: 8338 return optimizeCmpAnd(0, 32, false, true); 8339 case AMDGPU::S_CMP_LG_U64: 8340 return optimizeCmpAnd(0, 64, true, false); 8341 } 8342 8343 return false; 8344 } 8345