1 //===- SIInstrInfo.cpp - SI Instruction Information ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// SI Implementation of TargetInstrInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SIInstrInfo.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUInstrInfo.h" 17 #include "GCNHazardRecognizer.h" 18 #include "GCNSubtarget.h" 19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/RegisterScavenging.h" 27 #include "llvm/CodeGen/ScheduleDAG.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/IntrinsicsAMDGPU.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Target/TargetMachine.h" 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "si-instr-info" 37 38 #define GET_INSTRINFO_CTOR_DTOR 39 #include "AMDGPUGenInstrInfo.inc" 40 41 namespace llvm { 42 43 class AAResults; 44 45 namespace AMDGPU { 46 #define GET_D16ImageDimIntrinsics_IMPL 47 #define GET_ImageDimIntrinsicTable_IMPL 48 #define GET_RsrcIntrinsics_IMPL 49 #include "AMDGPUGenSearchableTables.inc" 50 } 51 } 52 53 54 // Must be at least 4 to be able to branch over minimum unconditional branch 55 // code. This is only for making it possible to write reasonably small tests for 56 // long branches. 57 static cl::opt<unsigned> 58 BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(16), 59 cl::desc("Restrict range of branch instructions (DEBUG)")); 60 61 static cl::opt<bool> Fix16BitCopies( 62 "amdgpu-fix-16-bit-physreg-copies", 63 cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"), 64 cl::init(true), 65 cl::ReallyHidden); 66 67 SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST) 68 : AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN), 69 RI(ST), ST(ST) { 70 SchedModel.init(&ST); 71 } 72 73 //===----------------------------------------------------------------------===// 74 // TargetInstrInfo callbacks 75 //===----------------------------------------------------------------------===// 76 77 static unsigned getNumOperandsNoGlue(SDNode *Node) { 78 unsigned N = Node->getNumOperands(); 79 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 80 --N; 81 return N; 82 } 83 84 /// Returns true if both nodes have the same value for the given 85 /// operand \p Op, or if both nodes do not have this operand. 86 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { 87 unsigned Opc0 = N0->getMachineOpcode(); 88 unsigned Opc1 = N1->getMachineOpcode(); 89 90 int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); 91 int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); 92 93 if (Op0Idx == -1 && Op1Idx == -1) 94 return true; 95 96 97 if ((Op0Idx == -1 && Op1Idx != -1) || 98 (Op1Idx == -1 && Op0Idx != -1)) 99 return false; 100 101 // getNamedOperandIdx returns the index for the MachineInstr's operands, 102 // which includes the result as the first operand. We are indexing into the 103 // MachineSDNode's operands, so we need to skip the result operand to get 104 // the real index. 105 --Op0Idx; 106 --Op1Idx; 107 108 return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); 109 } 110 111 bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 112 AAResults *AA) const { 113 if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isSDWA(MI) || isSALU(MI)) { 114 // Normally VALU use of exec would block the rematerialization, but that 115 // is OK in this case to have an implicit exec read as all VALU do. 116 // We really want all of the generic logic for this except for this. 117 118 // Another potential implicit use is mode register. The core logic of 119 // the RA will not attempt rematerialization if mode is set anywhere 120 // in the function, otherwise it is safe since mode is not changed. 121 122 // There is difference to generic method which does not allow 123 // rematerialization if there are virtual register uses. We allow this, 124 // therefore this method includes SOP instructions as well. 125 return !MI.hasImplicitDef() && 126 MI.getNumImplicitOperands() == MI.getDesc().getNumImplicitUses() && 127 !MI.mayRaiseFPException(); 128 } 129 130 return false; 131 } 132 133 // Returns true if the scalar result of a VALU instruction depends on exec. 134 static bool resultDependsOnExec(const MachineInstr &MI) { 135 // Ignore comparisons which are only used masked with exec. 136 // This allows some hoisting/sinking of VALU comparisons. 137 if (MI.isCompare()) { 138 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 139 Register DstReg = MI.getOperand(0).getReg(); 140 if (!DstReg.isVirtual()) 141 return true; 142 for (MachineInstr &Use : MRI.use_nodbg_instructions(DstReg)) { 143 switch (Use.getOpcode()) { 144 case AMDGPU::S_AND_SAVEEXEC_B32: 145 case AMDGPU::S_AND_SAVEEXEC_B64: 146 break; 147 case AMDGPU::S_AND_B32: 148 case AMDGPU::S_AND_B64: 149 if (!Use.readsRegister(AMDGPU::EXEC)) 150 return true; 151 break; 152 default: 153 return true; 154 } 155 } 156 return false; 157 } 158 159 switch (MI.getOpcode()) { 160 default: 161 break; 162 case AMDGPU::V_READFIRSTLANE_B32: 163 return true; 164 } 165 166 return false; 167 } 168 169 bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const { 170 // Any implicit use of exec by VALU is not a real register read. 171 return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() && 172 isVALU(*MO.getParent()) && !resultDependsOnExec(*MO.getParent()); 173 } 174 175 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, 176 int64_t &Offset0, 177 int64_t &Offset1) const { 178 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) 179 return false; 180 181 unsigned Opc0 = Load0->getMachineOpcode(); 182 unsigned Opc1 = Load1->getMachineOpcode(); 183 184 // Make sure both are actually loads. 185 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) 186 return false; 187 188 if (isDS(Opc0) && isDS(Opc1)) { 189 190 // FIXME: Handle this case: 191 if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) 192 return false; 193 194 // Check base reg. 195 if (Load0->getOperand(0) != Load1->getOperand(0)) 196 return false; 197 198 // Skip read2 / write2 variants for simplicity. 199 // TODO: We should report true if the used offsets are adjacent (excluded 200 // st64 versions). 201 int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 202 int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 203 if (Offset0Idx == -1 || Offset1Idx == -1) 204 return false; 205 206 // XXX - be careful of dataless loads 207 // getNamedOperandIdx returns the index for MachineInstrs. Since they 208 // include the output in the operand list, but SDNodes don't, we need to 209 // subtract the index by one. 210 Offset0Idx -= get(Opc0).NumDefs; 211 Offset1Idx -= get(Opc1).NumDefs; 212 Offset0 = cast<ConstantSDNode>(Load0->getOperand(Offset0Idx))->getZExtValue(); 213 Offset1 = cast<ConstantSDNode>(Load1->getOperand(Offset1Idx))->getZExtValue(); 214 return true; 215 } 216 217 if (isSMRD(Opc0) && isSMRD(Opc1)) { 218 // Skip time and cache invalidation instructions. 219 if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::sbase) == -1 || 220 AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::sbase) == -1) 221 return false; 222 223 assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1)); 224 225 // Check base reg. 226 if (Load0->getOperand(0) != Load1->getOperand(0)) 227 return false; 228 229 const ConstantSDNode *Load0Offset = 230 dyn_cast<ConstantSDNode>(Load0->getOperand(1)); 231 const ConstantSDNode *Load1Offset = 232 dyn_cast<ConstantSDNode>(Load1->getOperand(1)); 233 234 if (!Load0Offset || !Load1Offset) 235 return false; 236 237 Offset0 = Load0Offset->getZExtValue(); 238 Offset1 = Load1Offset->getZExtValue(); 239 return true; 240 } 241 242 // MUBUF and MTBUF can access the same addresses. 243 if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { 244 245 // MUBUF and MTBUF have vaddr at different indices. 246 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || 247 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || 248 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) 249 return false; 250 251 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 252 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 253 254 if (OffIdx0 == -1 || OffIdx1 == -1) 255 return false; 256 257 // getNamedOperandIdx returns the index for MachineInstrs. Since they 258 // include the output in the operand list, but SDNodes don't, we need to 259 // subtract the index by one. 260 OffIdx0 -= get(Opc0).NumDefs; 261 OffIdx1 -= get(Opc1).NumDefs; 262 263 SDValue Off0 = Load0->getOperand(OffIdx0); 264 SDValue Off1 = Load1->getOperand(OffIdx1); 265 266 // The offset might be a FrameIndexSDNode. 267 if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) 268 return false; 269 270 Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue(); 271 Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue(); 272 return true; 273 } 274 275 return false; 276 } 277 278 static bool isStride64(unsigned Opc) { 279 switch (Opc) { 280 case AMDGPU::DS_READ2ST64_B32: 281 case AMDGPU::DS_READ2ST64_B64: 282 case AMDGPU::DS_WRITE2ST64_B32: 283 case AMDGPU::DS_WRITE2ST64_B64: 284 return true; 285 default: 286 return false; 287 } 288 } 289 290 bool SIInstrInfo::getMemOperandsWithOffsetWidth( 291 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps, 292 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width, 293 const TargetRegisterInfo *TRI) const { 294 if (!LdSt.mayLoadOrStore()) 295 return false; 296 297 unsigned Opc = LdSt.getOpcode(); 298 OffsetIsScalable = false; 299 const MachineOperand *BaseOp, *OffsetOp; 300 int DataOpIdx; 301 302 if (isDS(LdSt)) { 303 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr); 304 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); 305 if (OffsetOp) { 306 // Normal, single offset LDS instruction. 307 if (!BaseOp) { 308 // DS_CONSUME/DS_APPEND use M0 for the base address. 309 // TODO: find the implicit use operand for M0 and use that as BaseOp? 310 return false; 311 } 312 BaseOps.push_back(BaseOp); 313 Offset = OffsetOp->getImm(); 314 // Get appropriate operand, and compute width accordingly. 315 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 316 if (DataOpIdx == -1) 317 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 318 Width = getOpSize(LdSt, DataOpIdx); 319 } else { 320 // The 2 offset instructions use offset0 and offset1 instead. We can treat 321 // these as a load with a single offset if the 2 offsets are consecutive. 322 // We will use this for some partially aligned loads. 323 const MachineOperand *Offset0Op = 324 getNamedOperand(LdSt, AMDGPU::OpName::offset0); 325 const MachineOperand *Offset1Op = 326 getNamedOperand(LdSt, AMDGPU::OpName::offset1); 327 328 unsigned Offset0 = Offset0Op->getImm(); 329 unsigned Offset1 = Offset1Op->getImm(); 330 if (Offset0 + 1 != Offset1) 331 return false; 332 333 // Each of these offsets is in element sized units, so we need to convert 334 // to bytes of the individual reads. 335 336 unsigned EltSize; 337 if (LdSt.mayLoad()) 338 EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, 0)) / 16; 339 else { 340 assert(LdSt.mayStore()); 341 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 342 EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, Data0Idx)) / 8; 343 } 344 345 if (isStride64(Opc)) 346 EltSize *= 64; 347 348 BaseOps.push_back(BaseOp); 349 Offset = EltSize * Offset0; 350 // Get appropriate operand(s), and compute width accordingly. 351 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 352 if (DataOpIdx == -1) { 353 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 354 Width = getOpSize(LdSt, DataOpIdx); 355 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1); 356 Width += getOpSize(LdSt, DataOpIdx); 357 } else { 358 Width = getOpSize(LdSt, DataOpIdx); 359 } 360 } 361 return true; 362 } 363 364 if (isMUBUF(LdSt) || isMTBUF(LdSt)) { 365 const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc); 366 if (!RSrc) // e.g. BUFFER_WBINVL1_VOL 367 return false; 368 BaseOps.push_back(RSrc); 369 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 370 if (BaseOp && !BaseOp->isFI()) 371 BaseOps.push_back(BaseOp); 372 const MachineOperand *OffsetImm = 373 getNamedOperand(LdSt, AMDGPU::OpName::offset); 374 Offset = OffsetImm->getImm(); 375 const MachineOperand *SOffset = 376 getNamedOperand(LdSt, AMDGPU::OpName::soffset); 377 if (SOffset) { 378 if (SOffset->isReg()) 379 BaseOps.push_back(SOffset); 380 else 381 Offset += SOffset->getImm(); 382 } 383 // Get appropriate operand, and compute width accordingly. 384 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 385 if (DataOpIdx == -1) 386 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 387 Width = getOpSize(LdSt, DataOpIdx); 388 return true; 389 } 390 391 if (isMIMG(LdSt)) { 392 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); 393 BaseOps.push_back(&LdSt.getOperand(SRsrcIdx)); 394 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); 395 if (VAddr0Idx >= 0) { 396 // GFX10 possible NSA encoding. 397 for (int I = VAddr0Idx; I < SRsrcIdx; ++I) 398 BaseOps.push_back(&LdSt.getOperand(I)); 399 } else { 400 BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr)); 401 } 402 Offset = 0; 403 // Get appropriate operand, and compute width accordingly. 404 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 405 Width = getOpSize(LdSt, DataOpIdx); 406 return true; 407 } 408 409 if (isSMRD(LdSt)) { 410 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase); 411 if (!BaseOp) // e.g. S_MEMTIME 412 return false; 413 BaseOps.push_back(BaseOp); 414 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset); 415 Offset = OffsetOp ? OffsetOp->getImm() : 0; 416 // Get appropriate operand, and compute width accordingly. 417 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst); 418 Width = getOpSize(LdSt, DataOpIdx); 419 return true; 420 } 421 422 if (isFLAT(LdSt)) { 423 // Instructions have either vaddr or saddr or both or none. 424 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 425 if (BaseOp) 426 BaseOps.push_back(BaseOp); 427 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr); 428 if (BaseOp) 429 BaseOps.push_back(BaseOp); 430 Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm(); 431 // Get appropriate operand, and compute width accordingly. 432 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 433 if (DataOpIdx == -1) 434 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata); 435 Width = getOpSize(LdSt, DataOpIdx); 436 return true; 437 } 438 439 return false; 440 } 441 442 static bool memOpsHaveSameBasePtr(const MachineInstr &MI1, 443 ArrayRef<const MachineOperand *> BaseOps1, 444 const MachineInstr &MI2, 445 ArrayRef<const MachineOperand *> BaseOps2) { 446 // Only examine the first "base" operand of each instruction, on the 447 // assumption that it represents the real base address of the memory access. 448 // Other operands are typically offsets or indices from this base address. 449 if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front())) 450 return true; 451 452 if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand()) 453 return false; 454 455 auto MO1 = *MI1.memoperands_begin(); 456 auto MO2 = *MI2.memoperands_begin(); 457 if (MO1->getAddrSpace() != MO2->getAddrSpace()) 458 return false; 459 460 auto Base1 = MO1->getValue(); 461 auto Base2 = MO2->getValue(); 462 if (!Base1 || !Base2) 463 return false; 464 Base1 = getUnderlyingObject(Base1); 465 Base2 = getUnderlyingObject(Base2); 466 467 if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2)) 468 return false; 469 470 return Base1 == Base2; 471 } 472 473 bool SIInstrInfo::shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1, 474 ArrayRef<const MachineOperand *> BaseOps2, 475 unsigned NumLoads, 476 unsigned NumBytes) const { 477 // If the mem ops (to be clustered) do not have the same base ptr, then they 478 // should not be clustered 479 if (!BaseOps1.empty() && !BaseOps2.empty()) { 480 const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent(); 481 const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent(); 482 if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2)) 483 return false; 484 } else if (!BaseOps1.empty() || !BaseOps2.empty()) { 485 // If only one base op is empty, they do not have the same base ptr 486 return false; 487 } 488 489 // In order to avoid register pressure, on an average, the number of DWORDS 490 // loaded together by all clustered mem ops should not exceed 8. This is an 491 // empirical value based on certain observations and performance related 492 // experiments. 493 // The good thing about this heuristic is - it avoids clustering of too many 494 // sub-word loads, and also avoids clustering of wide loads. Below is the 495 // brief summary of how the heuristic behaves for various `LoadSize`. 496 // (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops 497 // (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops 498 // (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops 499 // (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops 500 // (5) LoadSize >= 17: do not cluster 501 const unsigned LoadSize = NumBytes / NumLoads; 502 const unsigned NumDWORDs = ((LoadSize + 3) / 4) * NumLoads; 503 return NumDWORDs <= 8; 504 } 505 506 // FIXME: This behaves strangely. If, for example, you have 32 load + stores, 507 // the first 16 loads will be interleaved with the stores, and the next 16 will 508 // be clustered as expected. It should really split into 2 16 store batches. 509 // 510 // Loads are clustered until this returns false, rather than trying to schedule 511 // groups of stores. This also means we have to deal with saying different 512 // address space loads should be clustered, and ones which might cause bank 513 // conflicts. 514 // 515 // This might be deprecated so it might not be worth that much effort to fix. 516 bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, 517 int64_t Offset0, int64_t Offset1, 518 unsigned NumLoads) const { 519 assert(Offset1 > Offset0 && 520 "Second offset should be larger than first offset!"); 521 // If we have less than 16 loads in a row, and the offsets are within 64 522 // bytes, then schedule together. 523 524 // A cacheline is 64 bytes (for global memory). 525 return (NumLoads <= 16 && (Offset1 - Offset0) < 64); 526 } 527 528 static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB, 529 MachineBasicBlock::iterator MI, 530 const DebugLoc &DL, MCRegister DestReg, 531 MCRegister SrcReg, bool KillSrc, 532 const char *Msg = "illegal SGPR to VGPR copy") { 533 MachineFunction *MF = MBB.getParent(); 534 DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error); 535 LLVMContext &C = MF->getFunction().getContext(); 536 C.diagnose(IllegalCopy); 537 538 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg) 539 .addReg(SrcReg, getKillRegState(KillSrc)); 540 } 541 542 /// Handle copying from SGPR to AGPR, or from AGPR to AGPR. It is not possible 543 /// to directly copy, so an intermediate VGPR needs to be used. 544 static void indirectCopyToAGPR(const SIInstrInfo &TII, 545 MachineBasicBlock &MBB, 546 MachineBasicBlock::iterator MI, 547 const DebugLoc &DL, MCRegister DestReg, 548 MCRegister SrcReg, bool KillSrc, 549 RegScavenger &RS, 550 Register ImpDefSuperReg = Register(), 551 Register ImpUseSuperReg = Register()) { 552 const SIRegisterInfo &RI = TII.getRegisterInfo(); 553 554 assert(AMDGPU::SReg_32RegClass.contains(SrcReg) || 555 AMDGPU::AGPR_32RegClass.contains(SrcReg)); 556 557 // First try to find defining accvgpr_write to avoid temporary registers. 558 for (auto Def = MI, E = MBB.begin(); Def != E; ) { 559 --Def; 560 if (!Def->definesRegister(SrcReg, &RI)) 561 continue; 562 if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64) 563 break; 564 565 MachineOperand &DefOp = Def->getOperand(1); 566 assert(DefOp.isReg() || DefOp.isImm()); 567 568 if (DefOp.isReg()) { 569 // Check that register source operand if not clobbered before MI. 570 // Immediate operands are always safe to propagate. 571 bool SafeToPropagate = true; 572 for (auto I = Def; I != MI && SafeToPropagate; ++I) 573 if (I->modifiesRegister(DefOp.getReg(), &RI)) 574 SafeToPropagate = false; 575 576 if (!SafeToPropagate) 577 break; 578 579 DefOp.setIsKill(false); 580 } 581 582 MachineInstrBuilder Builder = 583 BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 584 .add(DefOp); 585 if (ImpDefSuperReg) 586 Builder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); 587 588 if (ImpUseSuperReg) { 589 Builder.addReg(ImpUseSuperReg, 590 getKillRegState(KillSrc) | RegState::Implicit); 591 } 592 593 return; 594 } 595 596 RS.enterBasicBlock(MBB); 597 RS.forward(MI); 598 599 // Ideally we want to have three registers for a long reg_sequence copy 600 // to hide 2 waitstates between v_mov_b32 and accvgpr_write. 601 unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass, 602 *MBB.getParent()); 603 604 // Registers in the sequence are allocated contiguously so we can just 605 // use register number to pick one of three round-robin temps. 606 unsigned RegNo = DestReg % 3; 607 Register Tmp; 608 if (!TII.getSubtarget().hasGFX90AInsts()) { 609 Tmp = AMDGPU::VGPR32; 610 assert(MBB.getParent()->getRegInfo().isReserved(AMDGPU::VGPR32)); 611 612 // Only loop through if there are any free registers left, otherwise 613 // scavenger may report a fatal error without emergency spill slot 614 // or spill with the slot. 615 while (RegNo-- && RS.FindUnusedReg(&AMDGPU::VGPR_32RegClass)) { 616 Register Tmp2 = RS.scavengeRegister(&AMDGPU::VGPR_32RegClass, 0); 617 if (!Tmp2 || RI.getHWRegIndex(Tmp2) >= MaxVGPRs) 618 break; 619 Tmp = Tmp2; 620 RS.setRegUsed(Tmp); 621 } 622 } else { 623 Tmp = RS.scavengeRegister(&AMDGPU::VGPR_32RegClass, 0); 624 RS.setRegUsed(Tmp); 625 } 626 627 // Insert copy to temporary VGPR. 628 unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32; 629 if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) { 630 TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64; 631 } else { 632 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 633 } 634 635 MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp) 636 .addReg(SrcReg, getKillRegState(KillSrc)); 637 if (ImpUseSuperReg) { 638 UseBuilder.addReg(ImpUseSuperReg, 639 getKillRegState(KillSrc) | RegState::Implicit); 640 } 641 642 MachineInstrBuilder DefBuilder 643 = BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 644 .addReg(Tmp, RegState::Kill); 645 646 if (ImpDefSuperReg) 647 DefBuilder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit); 648 } 649 650 static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB, 651 MachineBasicBlock::iterator MI, const DebugLoc &DL, 652 MCRegister DestReg, MCRegister SrcReg, bool KillSrc, 653 const TargetRegisterClass *RC, bool Forward) { 654 const SIRegisterInfo &RI = TII.getRegisterInfo(); 655 ArrayRef<int16_t> BaseIndices = RI.getRegSplitParts(RC, 4); 656 MachineBasicBlock::iterator I = MI; 657 MachineInstr *FirstMI = nullptr, *LastMI = nullptr; 658 659 for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) { 660 int16_t SubIdx = BaseIndices[Idx]; 661 Register Reg = RI.getSubReg(DestReg, SubIdx); 662 unsigned Opcode = AMDGPU::S_MOV_B32; 663 664 // Is SGPR aligned? If so try to combine with next. 665 Register Src = RI.getSubReg(SrcReg, SubIdx); 666 bool AlignedDest = ((Reg - AMDGPU::SGPR0) % 2) == 0; 667 bool AlignedSrc = ((Src - AMDGPU::SGPR0) % 2) == 0; 668 if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) { 669 // Can use SGPR64 copy 670 unsigned Channel = RI.getChannelFromSubReg(SubIdx); 671 SubIdx = RI.getSubRegFromChannel(Channel, 2); 672 Opcode = AMDGPU::S_MOV_B64; 673 Idx++; 674 } 675 676 LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), RI.getSubReg(DestReg, SubIdx)) 677 .addReg(RI.getSubReg(SrcReg, SubIdx)) 678 .addReg(SrcReg, RegState::Implicit); 679 680 if (!FirstMI) 681 FirstMI = LastMI; 682 683 if (!Forward) 684 I--; 685 } 686 687 assert(FirstMI && LastMI); 688 if (!Forward) 689 std::swap(FirstMI, LastMI); 690 691 FirstMI->addOperand( 692 MachineOperand::CreateReg(DestReg, true /*IsDef*/, true /*IsImp*/)); 693 694 if (KillSrc) 695 LastMI->addRegisterKilled(SrcReg, &RI); 696 } 697 698 void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 699 MachineBasicBlock::iterator MI, 700 const DebugLoc &DL, MCRegister DestReg, 701 MCRegister SrcReg, bool KillSrc) const { 702 const TargetRegisterClass *RC = RI.getPhysRegClass(DestReg); 703 704 // FIXME: This is hack to resolve copies between 16 bit and 32 bit 705 // registers until all patterns are fixed. 706 if (Fix16BitCopies && 707 ((RI.getRegSizeInBits(*RC) == 16) ^ 708 (RI.getRegSizeInBits(*RI.getPhysRegClass(SrcReg)) == 16))) { 709 MCRegister &RegToFix = (RI.getRegSizeInBits(*RC) == 16) ? DestReg : SrcReg; 710 MCRegister Super = RI.get32BitRegister(RegToFix); 711 assert(RI.getSubReg(Super, AMDGPU::lo16) == RegToFix); 712 RegToFix = Super; 713 714 if (DestReg == SrcReg) { 715 // Insert empty bundle since ExpandPostRA expects an instruction here. 716 BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE)); 717 return; 718 } 719 720 RC = RI.getPhysRegClass(DestReg); 721 } 722 723 if (RC == &AMDGPU::VGPR_32RegClass) { 724 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || 725 AMDGPU::SReg_32RegClass.contains(SrcReg) || 726 AMDGPU::AGPR_32RegClass.contains(SrcReg)); 727 unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ? 728 AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32; 729 BuildMI(MBB, MI, DL, get(Opc), DestReg) 730 .addReg(SrcReg, getKillRegState(KillSrc)); 731 return; 732 } 733 734 if (RC == &AMDGPU::SReg_32_XM0RegClass || 735 RC == &AMDGPU::SReg_32RegClass) { 736 if (SrcReg == AMDGPU::SCC) { 737 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg) 738 .addImm(1) 739 .addImm(0); 740 return; 741 } 742 743 if (DestReg == AMDGPU::VCC_LO) { 744 if (AMDGPU::SReg_32RegClass.contains(SrcReg)) { 745 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO) 746 .addReg(SrcReg, getKillRegState(KillSrc)); 747 } else { 748 // FIXME: Hack until VReg_1 removed. 749 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 750 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) 751 .addImm(0) 752 .addReg(SrcReg, getKillRegState(KillSrc)); 753 } 754 755 return; 756 } 757 758 if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) { 759 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 760 return; 761 } 762 763 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 764 .addReg(SrcReg, getKillRegState(KillSrc)); 765 return; 766 } 767 768 if (RC == &AMDGPU::SReg_64RegClass) { 769 if (SrcReg == AMDGPU::SCC) { 770 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg) 771 .addImm(1) 772 .addImm(0); 773 return; 774 } 775 776 if (DestReg == AMDGPU::VCC) { 777 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 778 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) 779 .addReg(SrcReg, getKillRegState(KillSrc)); 780 } else { 781 // FIXME: Hack until VReg_1 removed. 782 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 783 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32)) 784 .addImm(0) 785 .addReg(SrcReg, getKillRegState(KillSrc)); 786 } 787 788 return; 789 } 790 791 if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) { 792 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 793 return; 794 } 795 796 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 797 .addReg(SrcReg, getKillRegState(KillSrc)); 798 return; 799 } 800 801 if (DestReg == AMDGPU::SCC) { 802 // Copying 64-bit or 32-bit sources to SCC barely makes sense, 803 // but SelectionDAG emits such copies for i1 sources. 804 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 805 // This copy can only be produced by patterns 806 // with explicit SCC, which are known to be enabled 807 // only for subtargets with S_CMP_LG_U64 present. 808 assert(ST.hasScalarCompareEq64()); 809 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64)) 810 .addReg(SrcReg, getKillRegState(KillSrc)) 811 .addImm(0); 812 } else { 813 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 814 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32)) 815 .addReg(SrcReg, getKillRegState(KillSrc)) 816 .addImm(0); 817 } 818 819 return; 820 } 821 822 if (RC == &AMDGPU::AGPR_32RegClass) { 823 if (AMDGPU::VGPR_32RegClass.contains(SrcReg)) { 824 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg) 825 .addReg(SrcReg, getKillRegState(KillSrc)); 826 return; 827 } 828 829 if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) { 830 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg) 831 .addReg(SrcReg, getKillRegState(KillSrc)); 832 return; 833 } 834 835 // FIXME: Pass should maintain scavenger to avoid scan through the block on 836 // every AGPR spill. 837 RegScavenger RS; 838 indirectCopyToAGPR(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS); 839 return; 840 } 841 842 const unsigned Size = RI.getRegSizeInBits(*RC); 843 if (Size == 16) { 844 assert(AMDGPU::VGPR_LO16RegClass.contains(SrcReg) || 845 AMDGPU::VGPR_HI16RegClass.contains(SrcReg) || 846 AMDGPU::SReg_LO16RegClass.contains(SrcReg) || 847 AMDGPU::AGPR_LO16RegClass.contains(SrcReg)); 848 849 bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg); 850 bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg); 851 bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg); 852 bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg); 853 bool DstLow = AMDGPU::VGPR_LO16RegClass.contains(DestReg) || 854 AMDGPU::SReg_LO16RegClass.contains(DestReg) || 855 AMDGPU::AGPR_LO16RegClass.contains(DestReg); 856 bool SrcLow = AMDGPU::VGPR_LO16RegClass.contains(SrcReg) || 857 AMDGPU::SReg_LO16RegClass.contains(SrcReg) || 858 AMDGPU::AGPR_LO16RegClass.contains(SrcReg); 859 MCRegister NewDestReg = RI.get32BitRegister(DestReg); 860 MCRegister NewSrcReg = RI.get32BitRegister(SrcReg); 861 862 if (IsSGPRDst) { 863 if (!IsSGPRSrc) { 864 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 865 return; 866 } 867 868 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg) 869 .addReg(NewSrcReg, getKillRegState(KillSrc)); 870 return; 871 } 872 873 if (IsAGPRDst || IsAGPRSrc) { 874 if (!DstLow || !SrcLow) { 875 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, 876 "Cannot use hi16 subreg with an AGPR!"); 877 } 878 879 copyPhysReg(MBB, MI, DL, NewDestReg, NewSrcReg, KillSrc); 880 return; 881 } 882 883 if (IsSGPRSrc && !ST.hasSDWAScalar()) { 884 if (!DstLow || !SrcLow) { 885 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc, 886 "Cannot use hi16 subreg on VI!"); 887 } 888 889 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg) 890 .addReg(NewSrcReg, getKillRegState(KillSrc)); 891 return; 892 } 893 894 auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg) 895 .addImm(0) // src0_modifiers 896 .addReg(NewSrcReg) 897 .addImm(0) // clamp 898 .addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0 899 : AMDGPU::SDWA::SdwaSel::WORD_1) 900 .addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE) 901 .addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0 902 : AMDGPU::SDWA::SdwaSel::WORD_1) 903 .addReg(NewDestReg, RegState::Implicit | RegState::Undef); 904 // First implicit operand is $exec. 905 MIB->tieOperands(0, MIB->getNumOperands() - 1); 906 return; 907 } 908 909 const TargetRegisterClass *SrcRC = RI.getPhysRegClass(SrcReg); 910 if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) { 911 if (ST.hasMovB64()) { 912 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_e32), DestReg) 913 .addReg(SrcReg, getKillRegState(KillSrc)); 914 return; 915 } 916 if (ST.hasPackedFP32Ops()) { 917 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg) 918 .addImm(SISrcMods::OP_SEL_1) 919 .addReg(SrcReg) 920 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) 921 .addReg(SrcReg) 922 .addImm(0) // op_sel_lo 923 .addImm(0) // op_sel_hi 924 .addImm(0) // neg_lo 925 .addImm(0) // neg_hi 926 .addImm(0) // clamp 927 .addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); 928 return; 929 } 930 } 931 932 const bool Forward = RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg); 933 if (RI.isSGPRClass(RC)) { 934 if (!RI.isSGPRClass(SrcRC)) { 935 reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc); 936 return; 937 } 938 const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg); 939 expandSGPRCopy(*this, MBB, MI, DL, DestReg, SrcReg, CanKillSuperReg, RC, 940 Forward); 941 return; 942 } 943 944 unsigned EltSize = 4; 945 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 946 if (RI.isAGPRClass(RC)) { 947 if (ST.hasGFX90AInsts() && RI.isAGPRClass(SrcRC)) 948 Opcode = AMDGPU::V_ACCVGPR_MOV_B32; 949 else if (RI.hasVGPRs(SrcRC)) 950 Opcode = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 951 else 952 Opcode = AMDGPU::INSTRUCTION_LIST_END; 953 } else if (RI.hasVGPRs(RC) && RI.isAGPRClass(SrcRC)) { 954 Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64; 955 } else if ((Size % 64 == 0) && RI.hasVGPRs(RC) && 956 (RI.isProperlyAlignedRC(*RC) && 957 (SrcRC == RC || RI.isSGPRClass(SrcRC)))) { 958 // TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov. 959 if (ST.hasMovB64()) { 960 Opcode = AMDGPU::V_MOV_B64_e32; 961 EltSize = 8; 962 } else if (ST.hasPackedFP32Ops()) { 963 Opcode = AMDGPU::V_PK_MOV_B32; 964 EltSize = 8; 965 } 966 } 967 968 // For the cases where we need an intermediate instruction/temporary register 969 // (destination is an AGPR), we need a scavenger. 970 // 971 // FIXME: The pass should maintain this for us so we don't have to re-scan the 972 // whole block for every handled copy. 973 std::unique_ptr<RegScavenger> RS; 974 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) 975 RS.reset(new RegScavenger()); 976 977 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RC, EltSize); 978 979 // If there is an overlap, we can't kill the super-register on the last 980 // instruction, since it will also kill the components made live by this def. 981 const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg); 982 983 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 984 unsigned SubIdx; 985 if (Forward) 986 SubIdx = SubIndices[Idx]; 987 else 988 SubIdx = SubIndices[SubIndices.size() - Idx - 1]; 989 990 bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1; 991 992 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) { 993 Register ImpDefSuper = Idx == 0 ? Register(DestReg) : Register(); 994 Register ImpUseSuper = SrcReg; 995 indirectCopyToAGPR(*this, MBB, MI, DL, RI.getSubReg(DestReg, SubIdx), 996 RI.getSubReg(SrcReg, SubIdx), UseKill, *RS, 997 ImpDefSuper, ImpUseSuper); 998 } else if (Opcode == AMDGPU::V_PK_MOV_B32) { 999 Register DstSubReg = RI.getSubReg(DestReg, SubIdx); 1000 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx); 1001 MachineInstrBuilder MIB = 1002 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DstSubReg) 1003 .addImm(SISrcMods::OP_SEL_1) 1004 .addReg(SrcSubReg) 1005 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) 1006 .addReg(SrcSubReg) 1007 .addImm(0) // op_sel_lo 1008 .addImm(0) // op_sel_hi 1009 .addImm(0) // neg_lo 1010 .addImm(0) // neg_hi 1011 .addImm(0) // clamp 1012 .addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); 1013 if (Idx == 0) 1014 MIB.addReg(DestReg, RegState::Define | RegState::Implicit); 1015 } else { 1016 MachineInstrBuilder Builder = 1017 BuildMI(MBB, MI, DL, get(Opcode), RI.getSubReg(DestReg, SubIdx)) 1018 .addReg(RI.getSubReg(SrcReg, SubIdx)); 1019 if (Idx == 0) 1020 Builder.addReg(DestReg, RegState::Define | RegState::Implicit); 1021 1022 Builder.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit); 1023 } 1024 } 1025 } 1026 1027 int SIInstrInfo::commuteOpcode(unsigned Opcode) const { 1028 int NewOpc; 1029 1030 // Try to map original to commuted opcode 1031 NewOpc = AMDGPU::getCommuteRev(Opcode); 1032 if (NewOpc != -1) 1033 // Check if the commuted (REV) opcode exists on the target. 1034 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 1035 1036 // Try to map commuted to original opcode 1037 NewOpc = AMDGPU::getCommuteOrig(Opcode); 1038 if (NewOpc != -1) 1039 // Check if the original (non-REV) opcode exists on the target. 1040 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 1041 1042 return Opcode; 1043 } 1044 1045 void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB, 1046 MachineBasicBlock::iterator MI, 1047 const DebugLoc &DL, unsigned DestReg, 1048 int64_t Value) const { 1049 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1050 const TargetRegisterClass *RegClass = MRI.getRegClass(DestReg); 1051 if (RegClass == &AMDGPU::SReg_32RegClass || 1052 RegClass == &AMDGPU::SGPR_32RegClass || 1053 RegClass == &AMDGPU::SReg_32_XM0RegClass || 1054 RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) { 1055 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 1056 .addImm(Value); 1057 return; 1058 } 1059 1060 if (RegClass == &AMDGPU::SReg_64RegClass || 1061 RegClass == &AMDGPU::SGPR_64RegClass || 1062 RegClass == &AMDGPU::SReg_64_XEXECRegClass) { 1063 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 1064 .addImm(Value); 1065 return; 1066 } 1067 1068 if (RegClass == &AMDGPU::VGPR_32RegClass) { 1069 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) 1070 .addImm(Value); 1071 return; 1072 } 1073 if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) { 1074 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg) 1075 .addImm(Value); 1076 return; 1077 } 1078 1079 unsigned EltSize = 4; 1080 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1081 if (RI.isSGPRClass(RegClass)) { 1082 if (RI.getRegSizeInBits(*RegClass) > 32) { 1083 Opcode = AMDGPU::S_MOV_B64; 1084 EltSize = 8; 1085 } else { 1086 Opcode = AMDGPU::S_MOV_B32; 1087 EltSize = 4; 1088 } 1089 } 1090 1091 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RegClass, EltSize); 1092 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 1093 int64_t IdxValue = Idx == 0 ? Value : 0; 1094 1095 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, 1096 get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx])); 1097 Builder.addImm(IdxValue); 1098 } 1099 } 1100 1101 const TargetRegisterClass * 1102 SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const { 1103 return &AMDGPU::VGPR_32RegClass; 1104 } 1105 1106 void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB, 1107 MachineBasicBlock::iterator I, 1108 const DebugLoc &DL, Register DstReg, 1109 ArrayRef<MachineOperand> Cond, 1110 Register TrueReg, 1111 Register FalseReg) const { 1112 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1113 const TargetRegisterClass *BoolXExecRC = 1114 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 1115 assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass && 1116 "Not a VGPR32 reg"); 1117 1118 if (Cond.size() == 1) { 1119 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1120 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1121 .add(Cond[0]); 1122 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1123 .addImm(0) 1124 .addReg(FalseReg) 1125 .addImm(0) 1126 .addReg(TrueReg) 1127 .addReg(SReg); 1128 } else if (Cond.size() == 2) { 1129 assert(Cond[0].isImm() && "Cond[0] is not an immediate"); 1130 switch (Cond[0].getImm()) { 1131 case SIInstrInfo::SCC_TRUE: { 1132 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1133 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1134 : AMDGPU::S_CSELECT_B64), SReg) 1135 .addImm(1) 1136 .addImm(0); 1137 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1138 .addImm(0) 1139 .addReg(FalseReg) 1140 .addImm(0) 1141 .addReg(TrueReg) 1142 .addReg(SReg); 1143 break; 1144 } 1145 case SIInstrInfo::SCC_FALSE: { 1146 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1147 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1148 : AMDGPU::S_CSELECT_B64), SReg) 1149 .addImm(0) 1150 .addImm(1); 1151 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1152 .addImm(0) 1153 .addReg(FalseReg) 1154 .addImm(0) 1155 .addReg(TrueReg) 1156 .addReg(SReg); 1157 break; 1158 } 1159 case SIInstrInfo::VCCNZ: { 1160 MachineOperand RegOp = Cond[1]; 1161 RegOp.setImplicit(false); 1162 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1163 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1164 .add(RegOp); 1165 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1166 .addImm(0) 1167 .addReg(FalseReg) 1168 .addImm(0) 1169 .addReg(TrueReg) 1170 .addReg(SReg); 1171 break; 1172 } 1173 case SIInstrInfo::VCCZ: { 1174 MachineOperand RegOp = Cond[1]; 1175 RegOp.setImplicit(false); 1176 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1177 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg) 1178 .add(RegOp); 1179 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1180 .addImm(0) 1181 .addReg(TrueReg) 1182 .addImm(0) 1183 .addReg(FalseReg) 1184 .addReg(SReg); 1185 break; 1186 } 1187 case SIInstrInfo::EXECNZ: { 1188 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1189 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); 1190 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 1191 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) 1192 .addImm(0); 1193 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1194 : AMDGPU::S_CSELECT_B64), SReg) 1195 .addImm(1) 1196 .addImm(0); 1197 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1198 .addImm(0) 1199 .addReg(FalseReg) 1200 .addImm(0) 1201 .addReg(TrueReg) 1202 .addReg(SReg); 1203 break; 1204 } 1205 case SIInstrInfo::EXECZ: { 1206 Register SReg = MRI.createVirtualRegister(BoolXExecRC); 1207 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC()); 1208 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 1209 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2) 1210 .addImm(0); 1211 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32 1212 : AMDGPU::S_CSELECT_B64), SReg) 1213 .addImm(0) 1214 .addImm(1); 1215 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg) 1216 .addImm(0) 1217 .addReg(FalseReg) 1218 .addImm(0) 1219 .addReg(TrueReg) 1220 .addReg(SReg); 1221 llvm_unreachable("Unhandled branch predicate EXECZ"); 1222 break; 1223 } 1224 default: 1225 llvm_unreachable("invalid branch predicate"); 1226 } 1227 } else { 1228 llvm_unreachable("Can only handle Cond size 1 or 2"); 1229 } 1230 } 1231 1232 Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB, 1233 MachineBasicBlock::iterator I, 1234 const DebugLoc &DL, 1235 Register SrcReg, int Value) const { 1236 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1237 Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); 1238 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg) 1239 .addImm(Value) 1240 .addReg(SrcReg); 1241 1242 return Reg; 1243 } 1244 1245 Register SIInstrInfo::insertNE(MachineBasicBlock *MBB, 1246 MachineBasicBlock::iterator I, 1247 const DebugLoc &DL, 1248 Register SrcReg, int Value) const { 1249 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1250 Register Reg = MRI.createVirtualRegister(RI.getBoolRC()); 1251 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg) 1252 .addImm(Value) 1253 .addReg(SrcReg); 1254 1255 return Reg; 1256 } 1257 1258 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { 1259 1260 if (RI.isAGPRClass(DstRC)) 1261 return AMDGPU::COPY; 1262 if (RI.getRegSizeInBits(*DstRC) == 32) { 1263 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1264 } else if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) { 1265 return AMDGPU::S_MOV_B64; 1266 } else if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) { 1267 return AMDGPU::V_MOV_B64_PSEUDO; 1268 } 1269 return AMDGPU::COPY; 1270 } 1271 1272 const MCInstrDesc & 1273 SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize, 1274 bool IsIndirectSrc) const { 1275 if (IsIndirectSrc) { 1276 if (VecSize <= 32) // 4 bytes 1277 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1); 1278 if (VecSize <= 64) // 8 bytes 1279 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2); 1280 if (VecSize <= 96) // 12 bytes 1281 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3); 1282 if (VecSize <= 128) // 16 bytes 1283 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4); 1284 if (VecSize <= 160) // 20 bytes 1285 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5); 1286 if (VecSize <= 256) // 32 bytes 1287 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8); 1288 if (VecSize <= 512) // 64 bytes 1289 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16); 1290 if (VecSize <= 1024) // 128 bytes 1291 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32); 1292 1293 llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos"); 1294 } 1295 1296 if (VecSize <= 32) // 4 bytes 1297 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1); 1298 if (VecSize <= 64) // 8 bytes 1299 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2); 1300 if (VecSize <= 96) // 12 bytes 1301 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3); 1302 if (VecSize <= 128) // 16 bytes 1303 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4); 1304 if (VecSize <= 160) // 20 bytes 1305 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5); 1306 if (VecSize <= 256) // 32 bytes 1307 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8); 1308 if (VecSize <= 512) // 64 bytes 1309 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16); 1310 if (VecSize <= 1024) // 128 bytes 1311 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32); 1312 1313 llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos"); 1314 } 1315 1316 static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) { 1317 if (VecSize <= 32) // 4 bytes 1318 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1; 1319 if (VecSize <= 64) // 8 bytes 1320 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2; 1321 if (VecSize <= 96) // 12 bytes 1322 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3; 1323 if (VecSize <= 128) // 16 bytes 1324 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4; 1325 if (VecSize <= 160) // 20 bytes 1326 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5; 1327 if (VecSize <= 256) // 32 bytes 1328 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8; 1329 if (VecSize <= 512) // 64 bytes 1330 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16; 1331 if (VecSize <= 1024) // 128 bytes 1332 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32; 1333 1334 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1335 } 1336 1337 static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) { 1338 if (VecSize <= 32) // 4 bytes 1339 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1; 1340 if (VecSize <= 64) // 8 bytes 1341 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2; 1342 if (VecSize <= 96) // 12 bytes 1343 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3; 1344 if (VecSize <= 128) // 16 bytes 1345 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4; 1346 if (VecSize <= 160) // 20 bytes 1347 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5; 1348 if (VecSize <= 256) // 32 bytes 1349 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8; 1350 if (VecSize <= 512) // 64 bytes 1351 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16; 1352 if (VecSize <= 1024) // 128 bytes 1353 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32; 1354 1355 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1356 } 1357 1358 static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) { 1359 if (VecSize <= 64) // 8 bytes 1360 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1; 1361 if (VecSize <= 128) // 16 bytes 1362 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2; 1363 if (VecSize <= 256) // 32 bytes 1364 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4; 1365 if (VecSize <= 512) // 64 bytes 1366 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8; 1367 if (VecSize <= 1024) // 128 bytes 1368 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16; 1369 1370 llvm_unreachable("unsupported size for IndirectRegWrite pseudos"); 1371 } 1372 1373 const MCInstrDesc & 1374 SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize, 1375 bool IsSGPR) const { 1376 if (IsSGPR) { 1377 switch (EltSize) { 1378 case 32: 1379 return get(getIndirectSGPRWriteMovRelPseudo32(VecSize)); 1380 case 64: 1381 return get(getIndirectSGPRWriteMovRelPseudo64(VecSize)); 1382 default: 1383 llvm_unreachable("invalid reg indexing elt size"); 1384 } 1385 } 1386 1387 assert(EltSize == 32 && "invalid reg indexing elt size"); 1388 return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize)); 1389 } 1390 1391 static unsigned getSGPRSpillSaveOpcode(unsigned Size) { 1392 switch (Size) { 1393 case 4: 1394 return AMDGPU::SI_SPILL_S32_SAVE; 1395 case 8: 1396 return AMDGPU::SI_SPILL_S64_SAVE; 1397 case 12: 1398 return AMDGPU::SI_SPILL_S96_SAVE; 1399 case 16: 1400 return AMDGPU::SI_SPILL_S128_SAVE; 1401 case 20: 1402 return AMDGPU::SI_SPILL_S160_SAVE; 1403 case 24: 1404 return AMDGPU::SI_SPILL_S192_SAVE; 1405 case 28: 1406 return AMDGPU::SI_SPILL_S224_SAVE; 1407 case 32: 1408 return AMDGPU::SI_SPILL_S256_SAVE; 1409 case 64: 1410 return AMDGPU::SI_SPILL_S512_SAVE; 1411 case 128: 1412 return AMDGPU::SI_SPILL_S1024_SAVE; 1413 default: 1414 llvm_unreachable("unknown register size"); 1415 } 1416 } 1417 1418 static unsigned getVGPRSpillSaveOpcode(unsigned Size) { 1419 switch (Size) { 1420 case 4: 1421 return AMDGPU::SI_SPILL_V32_SAVE; 1422 case 8: 1423 return AMDGPU::SI_SPILL_V64_SAVE; 1424 case 12: 1425 return AMDGPU::SI_SPILL_V96_SAVE; 1426 case 16: 1427 return AMDGPU::SI_SPILL_V128_SAVE; 1428 case 20: 1429 return AMDGPU::SI_SPILL_V160_SAVE; 1430 case 24: 1431 return AMDGPU::SI_SPILL_V192_SAVE; 1432 case 28: 1433 return AMDGPU::SI_SPILL_V224_SAVE; 1434 case 32: 1435 return AMDGPU::SI_SPILL_V256_SAVE; 1436 case 64: 1437 return AMDGPU::SI_SPILL_V512_SAVE; 1438 case 128: 1439 return AMDGPU::SI_SPILL_V1024_SAVE; 1440 default: 1441 llvm_unreachable("unknown register size"); 1442 } 1443 } 1444 1445 static unsigned getAGPRSpillSaveOpcode(unsigned Size) { 1446 switch (Size) { 1447 case 4: 1448 return AMDGPU::SI_SPILL_A32_SAVE; 1449 case 8: 1450 return AMDGPU::SI_SPILL_A64_SAVE; 1451 case 12: 1452 return AMDGPU::SI_SPILL_A96_SAVE; 1453 case 16: 1454 return AMDGPU::SI_SPILL_A128_SAVE; 1455 case 20: 1456 return AMDGPU::SI_SPILL_A160_SAVE; 1457 case 24: 1458 return AMDGPU::SI_SPILL_A192_SAVE; 1459 case 28: 1460 return AMDGPU::SI_SPILL_A224_SAVE; 1461 case 32: 1462 return AMDGPU::SI_SPILL_A256_SAVE; 1463 case 64: 1464 return AMDGPU::SI_SPILL_A512_SAVE; 1465 case 128: 1466 return AMDGPU::SI_SPILL_A1024_SAVE; 1467 default: 1468 llvm_unreachable("unknown register size"); 1469 } 1470 } 1471 1472 static unsigned getAVSpillSaveOpcode(unsigned Size) { 1473 switch (Size) { 1474 case 4: 1475 return AMDGPU::SI_SPILL_AV32_SAVE; 1476 case 8: 1477 return AMDGPU::SI_SPILL_AV64_SAVE; 1478 case 12: 1479 return AMDGPU::SI_SPILL_AV96_SAVE; 1480 case 16: 1481 return AMDGPU::SI_SPILL_AV128_SAVE; 1482 case 20: 1483 return AMDGPU::SI_SPILL_AV160_SAVE; 1484 case 24: 1485 return AMDGPU::SI_SPILL_AV192_SAVE; 1486 case 28: 1487 return AMDGPU::SI_SPILL_AV224_SAVE; 1488 case 32: 1489 return AMDGPU::SI_SPILL_AV256_SAVE; 1490 case 64: 1491 return AMDGPU::SI_SPILL_AV512_SAVE; 1492 case 128: 1493 return AMDGPU::SI_SPILL_AV1024_SAVE; 1494 default: 1495 llvm_unreachable("unknown register size"); 1496 } 1497 } 1498 1499 void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1500 MachineBasicBlock::iterator MI, 1501 Register SrcReg, bool isKill, 1502 int FrameIndex, 1503 const TargetRegisterClass *RC, 1504 const TargetRegisterInfo *TRI) const { 1505 MachineFunction *MF = MBB.getParent(); 1506 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 1507 MachineFrameInfo &FrameInfo = MF->getFrameInfo(); 1508 const DebugLoc &DL = MBB.findDebugLoc(MI); 1509 1510 MachinePointerInfo PtrInfo 1511 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 1512 MachineMemOperand *MMO = MF->getMachineMemOperand( 1513 PtrInfo, MachineMemOperand::MOStore, FrameInfo.getObjectSize(FrameIndex), 1514 FrameInfo.getObjectAlign(FrameIndex)); 1515 unsigned SpillSize = TRI->getSpillSize(*RC); 1516 1517 MachineRegisterInfo &MRI = MF->getRegInfo(); 1518 if (RI.isSGPRClass(RC)) { 1519 MFI->setHasSpilledSGPRs(); 1520 assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled"); 1521 assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI && 1522 SrcReg != AMDGPU::EXEC && "exec should not be spilled"); 1523 1524 // We are only allowed to create one new instruction when spilling 1525 // registers, so we need to use pseudo instruction for spilling SGPRs. 1526 const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(SpillSize)); 1527 1528 // The SGPR spill/restore instructions only work on number sgprs, so we need 1529 // to make sure we are using the correct register class. 1530 if (SrcReg.isVirtual() && SpillSize == 4) { 1531 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 1532 } 1533 1534 BuildMI(MBB, MI, DL, OpDesc) 1535 .addReg(SrcReg, getKillRegState(isKill)) // data 1536 .addFrameIndex(FrameIndex) // addr 1537 .addMemOperand(MMO) 1538 .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); 1539 1540 if (RI.spillSGPRToVGPR()) 1541 FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); 1542 return; 1543 } 1544 1545 unsigned Opcode = RI.isVectorSuperClass(RC) ? getAVSpillSaveOpcode(SpillSize) 1546 : RI.isAGPRClass(RC) ? getAGPRSpillSaveOpcode(SpillSize) 1547 : getVGPRSpillSaveOpcode(SpillSize); 1548 MFI->setHasSpilledVGPRs(); 1549 1550 BuildMI(MBB, MI, DL, get(Opcode)) 1551 .addReg(SrcReg, getKillRegState(isKill)) // data 1552 .addFrameIndex(FrameIndex) // addr 1553 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset 1554 .addImm(0) // offset 1555 .addMemOperand(MMO); 1556 } 1557 1558 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { 1559 switch (Size) { 1560 case 4: 1561 return AMDGPU::SI_SPILL_S32_RESTORE; 1562 case 8: 1563 return AMDGPU::SI_SPILL_S64_RESTORE; 1564 case 12: 1565 return AMDGPU::SI_SPILL_S96_RESTORE; 1566 case 16: 1567 return AMDGPU::SI_SPILL_S128_RESTORE; 1568 case 20: 1569 return AMDGPU::SI_SPILL_S160_RESTORE; 1570 case 24: 1571 return AMDGPU::SI_SPILL_S192_RESTORE; 1572 case 28: 1573 return AMDGPU::SI_SPILL_S224_RESTORE; 1574 case 32: 1575 return AMDGPU::SI_SPILL_S256_RESTORE; 1576 case 64: 1577 return AMDGPU::SI_SPILL_S512_RESTORE; 1578 case 128: 1579 return AMDGPU::SI_SPILL_S1024_RESTORE; 1580 default: 1581 llvm_unreachable("unknown register size"); 1582 } 1583 } 1584 1585 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { 1586 switch (Size) { 1587 case 4: 1588 return AMDGPU::SI_SPILL_V32_RESTORE; 1589 case 8: 1590 return AMDGPU::SI_SPILL_V64_RESTORE; 1591 case 12: 1592 return AMDGPU::SI_SPILL_V96_RESTORE; 1593 case 16: 1594 return AMDGPU::SI_SPILL_V128_RESTORE; 1595 case 20: 1596 return AMDGPU::SI_SPILL_V160_RESTORE; 1597 case 24: 1598 return AMDGPU::SI_SPILL_V192_RESTORE; 1599 case 28: 1600 return AMDGPU::SI_SPILL_V224_RESTORE; 1601 case 32: 1602 return AMDGPU::SI_SPILL_V256_RESTORE; 1603 case 64: 1604 return AMDGPU::SI_SPILL_V512_RESTORE; 1605 case 128: 1606 return AMDGPU::SI_SPILL_V1024_RESTORE; 1607 default: 1608 llvm_unreachable("unknown register size"); 1609 } 1610 } 1611 1612 static unsigned getAGPRSpillRestoreOpcode(unsigned Size) { 1613 switch (Size) { 1614 case 4: 1615 return AMDGPU::SI_SPILL_A32_RESTORE; 1616 case 8: 1617 return AMDGPU::SI_SPILL_A64_RESTORE; 1618 case 12: 1619 return AMDGPU::SI_SPILL_A96_RESTORE; 1620 case 16: 1621 return AMDGPU::SI_SPILL_A128_RESTORE; 1622 case 20: 1623 return AMDGPU::SI_SPILL_A160_RESTORE; 1624 case 24: 1625 return AMDGPU::SI_SPILL_A192_RESTORE; 1626 case 28: 1627 return AMDGPU::SI_SPILL_A224_RESTORE; 1628 case 32: 1629 return AMDGPU::SI_SPILL_A256_RESTORE; 1630 case 64: 1631 return AMDGPU::SI_SPILL_A512_RESTORE; 1632 case 128: 1633 return AMDGPU::SI_SPILL_A1024_RESTORE; 1634 default: 1635 llvm_unreachable("unknown register size"); 1636 } 1637 } 1638 1639 static unsigned getAVSpillRestoreOpcode(unsigned Size) { 1640 switch (Size) { 1641 case 4: 1642 return AMDGPU::SI_SPILL_AV32_RESTORE; 1643 case 8: 1644 return AMDGPU::SI_SPILL_AV64_RESTORE; 1645 case 12: 1646 return AMDGPU::SI_SPILL_AV96_RESTORE; 1647 case 16: 1648 return AMDGPU::SI_SPILL_AV128_RESTORE; 1649 case 20: 1650 return AMDGPU::SI_SPILL_AV160_RESTORE; 1651 case 24: 1652 return AMDGPU::SI_SPILL_AV192_RESTORE; 1653 case 28: 1654 return AMDGPU::SI_SPILL_AV224_RESTORE; 1655 case 32: 1656 return AMDGPU::SI_SPILL_AV256_RESTORE; 1657 case 64: 1658 return AMDGPU::SI_SPILL_AV512_RESTORE; 1659 case 128: 1660 return AMDGPU::SI_SPILL_AV1024_RESTORE; 1661 default: 1662 llvm_unreachable("unknown register size"); 1663 } 1664 } 1665 1666 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1667 MachineBasicBlock::iterator MI, 1668 Register DestReg, int FrameIndex, 1669 const TargetRegisterClass *RC, 1670 const TargetRegisterInfo *TRI) const { 1671 MachineFunction *MF = MBB.getParent(); 1672 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 1673 MachineFrameInfo &FrameInfo = MF->getFrameInfo(); 1674 const DebugLoc &DL = MBB.findDebugLoc(MI); 1675 unsigned SpillSize = TRI->getSpillSize(*RC); 1676 1677 MachinePointerInfo PtrInfo 1678 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 1679 1680 MachineMemOperand *MMO = MF->getMachineMemOperand( 1681 PtrInfo, MachineMemOperand::MOLoad, FrameInfo.getObjectSize(FrameIndex), 1682 FrameInfo.getObjectAlign(FrameIndex)); 1683 1684 if (RI.isSGPRClass(RC)) { 1685 MFI->setHasSpilledSGPRs(); 1686 assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into"); 1687 assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI && 1688 DestReg != AMDGPU::EXEC && "exec should not be spilled"); 1689 1690 // FIXME: Maybe this should not include a memoperand because it will be 1691 // lowered to non-memory instructions. 1692 const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(SpillSize)); 1693 if (DestReg.isVirtual() && SpillSize == 4) { 1694 MachineRegisterInfo &MRI = MF->getRegInfo(); 1695 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 1696 } 1697 1698 if (RI.spillSGPRToVGPR()) 1699 FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill); 1700 BuildMI(MBB, MI, DL, OpDesc, DestReg) 1701 .addFrameIndex(FrameIndex) // addr 1702 .addMemOperand(MMO) 1703 .addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit); 1704 1705 return; 1706 } 1707 1708 unsigned Opcode = RI.isVectorSuperClass(RC) 1709 ? getAVSpillRestoreOpcode(SpillSize) 1710 : RI.isAGPRClass(RC) ? getAGPRSpillRestoreOpcode(SpillSize) 1711 : getVGPRSpillRestoreOpcode(SpillSize); 1712 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 1713 .addFrameIndex(FrameIndex) // vaddr 1714 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset 1715 .addImm(0) // offset 1716 .addMemOperand(MMO); 1717 } 1718 1719 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, 1720 MachineBasicBlock::iterator MI) const { 1721 insertNoops(MBB, MI, 1); 1722 } 1723 1724 void SIInstrInfo::insertNoops(MachineBasicBlock &MBB, 1725 MachineBasicBlock::iterator MI, 1726 unsigned Quantity) const { 1727 DebugLoc DL = MBB.findDebugLoc(MI); 1728 while (Quantity > 0) { 1729 unsigned Arg = std::min(Quantity, 8u); 1730 Quantity -= Arg; 1731 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1); 1732 } 1733 } 1734 1735 void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const { 1736 auto MF = MBB.getParent(); 1737 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>(); 1738 1739 assert(Info->isEntryFunction()); 1740 1741 if (MBB.succ_empty()) { 1742 bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end(); 1743 if (HasNoTerminator) { 1744 if (Info->returnsVoid()) { 1745 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0); 1746 } else { 1747 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG)); 1748 } 1749 } 1750 } 1751 } 1752 1753 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) { 1754 switch (MI.getOpcode()) { 1755 default: 1756 if (MI.isMetaInstruction()) 1757 return 0; 1758 return 1; // FIXME: Do wait states equal cycles? 1759 1760 case AMDGPU::S_NOP: 1761 return MI.getOperand(0).getImm() + 1; 1762 1763 // FIXME: Any other pseudo instruction? 1764 // SI_RETURN_TO_EPILOG is a fallthrough to code outside of the function. The 1765 // hazard, even if one exist, won't really be visible. Should we handle it? 1766 case AMDGPU::SI_MASKED_UNREACHABLE: 1767 case AMDGPU::WAVE_BARRIER: 1768 return 0; 1769 } 1770 } 1771 1772 bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1773 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1774 MachineBasicBlock &MBB = *MI.getParent(); 1775 DebugLoc DL = MBB.findDebugLoc(MI); 1776 switch (MI.getOpcode()) { 1777 default: return TargetInstrInfo::expandPostRAPseudo(MI); 1778 case AMDGPU::S_MOV_B64_term: 1779 // This is only a terminator to get the correct spill code placement during 1780 // register allocation. 1781 MI.setDesc(get(AMDGPU::S_MOV_B64)); 1782 break; 1783 1784 case AMDGPU::S_MOV_B32_term: 1785 // This is only a terminator to get the correct spill code placement during 1786 // register allocation. 1787 MI.setDesc(get(AMDGPU::S_MOV_B32)); 1788 break; 1789 1790 case AMDGPU::S_XOR_B64_term: 1791 // This is only a terminator to get the correct spill code placement during 1792 // register allocation. 1793 MI.setDesc(get(AMDGPU::S_XOR_B64)); 1794 break; 1795 1796 case AMDGPU::S_XOR_B32_term: 1797 // This is only a terminator to get the correct spill code placement during 1798 // register allocation. 1799 MI.setDesc(get(AMDGPU::S_XOR_B32)); 1800 break; 1801 case AMDGPU::S_OR_B64_term: 1802 // This is only a terminator to get the correct spill code placement during 1803 // register allocation. 1804 MI.setDesc(get(AMDGPU::S_OR_B64)); 1805 break; 1806 case AMDGPU::S_OR_B32_term: 1807 // This is only a terminator to get the correct spill code placement during 1808 // register allocation. 1809 MI.setDesc(get(AMDGPU::S_OR_B32)); 1810 break; 1811 1812 case AMDGPU::S_ANDN2_B64_term: 1813 // This is only a terminator to get the correct spill code placement during 1814 // register allocation. 1815 MI.setDesc(get(AMDGPU::S_ANDN2_B64)); 1816 break; 1817 1818 case AMDGPU::S_ANDN2_B32_term: 1819 // This is only a terminator to get the correct spill code placement during 1820 // register allocation. 1821 MI.setDesc(get(AMDGPU::S_ANDN2_B32)); 1822 break; 1823 1824 case AMDGPU::S_AND_B64_term: 1825 // This is only a terminator to get the correct spill code placement during 1826 // register allocation. 1827 MI.setDesc(get(AMDGPU::S_AND_B64)); 1828 break; 1829 1830 case AMDGPU::S_AND_B32_term: 1831 // This is only a terminator to get the correct spill code placement during 1832 // register allocation. 1833 MI.setDesc(get(AMDGPU::S_AND_B32)); 1834 break; 1835 1836 case AMDGPU::V_MOV_B64_PSEUDO: { 1837 Register Dst = MI.getOperand(0).getReg(); 1838 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 1839 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 1840 1841 const MachineOperand &SrcOp = MI.getOperand(1); 1842 // FIXME: Will this work for 64-bit floating point immediates? 1843 assert(!SrcOp.isFPImm()); 1844 if (ST.hasMovB64()) { 1845 MI.setDesc(get(AMDGPU::V_MOV_B64_e32)); 1846 if (!isLiteralConstant(MI, 1) || isUInt<32>(SrcOp.getImm())) 1847 break; 1848 } 1849 if (SrcOp.isImm()) { 1850 APInt Imm(64, SrcOp.getImm()); 1851 APInt Lo(32, Imm.getLoBits(32).getZExtValue()); 1852 APInt Hi(32, Imm.getHiBits(32).getZExtValue()); 1853 if (ST.hasPackedFP32Ops() && Lo == Hi && isInlineConstant(Lo)) { 1854 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) 1855 .addImm(SISrcMods::OP_SEL_1) 1856 .addImm(Lo.getSExtValue()) 1857 .addImm(SISrcMods::OP_SEL_1) 1858 .addImm(Lo.getSExtValue()) 1859 .addImm(0) // op_sel_lo 1860 .addImm(0) // op_sel_hi 1861 .addImm(0) // neg_lo 1862 .addImm(0) // neg_hi 1863 .addImm(0); // clamp 1864 } else { 1865 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 1866 .addImm(Lo.getSExtValue()) 1867 .addReg(Dst, RegState::Implicit | RegState::Define); 1868 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 1869 .addImm(Hi.getSExtValue()) 1870 .addReg(Dst, RegState::Implicit | RegState::Define); 1871 } 1872 } else { 1873 assert(SrcOp.isReg()); 1874 if (ST.hasPackedFP32Ops() && 1875 !RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) { 1876 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst) 1877 .addImm(SISrcMods::OP_SEL_1) // src0_mod 1878 .addReg(SrcOp.getReg()) 1879 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod 1880 .addReg(SrcOp.getReg()) 1881 .addImm(0) // op_sel_lo 1882 .addImm(0) // op_sel_hi 1883 .addImm(0) // neg_lo 1884 .addImm(0) // neg_hi 1885 .addImm(0); // clamp 1886 } else { 1887 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 1888 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) 1889 .addReg(Dst, RegState::Implicit | RegState::Define); 1890 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 1891 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) 1892 .addReg(Dst, RegState::Implicit | RegState::Define); 1893 } 1894 } 1895 MI.eraseFromParent(); 1896 break; 1897 } 1898 case AMDGPU::V_MOV_B64_DPP_PSEUDO: { 1899 expandMovDPP64(MI); 1900 break; 1901 } 1902 case AMDGPU::S_MOV_B64_IMM_PSEUDO: { 1903 const MachineOperand &SrcOp = MI.getOperand(1); 1904 assert(!SrcOp.isFPImm()); 1905 APInt Imm(64, SrcOp.getImm()); 1906 if (Imm.isIntN(32) || isInlineConstant(Imm)) { 1907 MI.setDesc(get(AMDGPU::S_MOV_B64)); 1908 break; 1909 } 1910 1911 Register Dst = MI.getOperand(0).getReg(); 1912 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 1913 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 1914 1915 APInt Lo(32, Imm.getLoBits(32).getZExtValue()); 1916 APInt Hi(32, Imm.getHiBits(32).getZExtValue()); 1917 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo) 1918 .addImm(Lo.getSExtValue()) 1919 .addReg(Dst, RegState::Implicit | RegState::Define); 1920 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi) 1921 .addImm(Hi.getSExtValue()) 1922 .addReg(Dst, RegState::Implicit | RegState::Define); 1923 MI.eraseFromParent(); 1924 break; 1925 } 1926 case AMDGPU::V_SET_INACTIVE_B32: { 1927 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64; 1928 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 1929 // FIXME: We may possibly optimize the COPY once we find ways to make LLVM 1930 // optimizations (mainly Register Coalescer) aware of WWM register liveness. 1931 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg()) 1932 .add(MI.getOperand(1)); 1933 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec); 1934 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten 1935 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg()) 1936 .add(MI.getOperand(2)); 1937 BuildMI(MBB, MI, DL, get(NotOpc), Exec) 1938 .addReg(Exec); 1939 MI.eraseFromParent(); 1940 break; 1941 } 1942 case AMDGPU::V_SET_INACTIVE_B64: { 1943 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64; 1944 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 1945 MachineInstr *Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), 1946 MI.getOperand(0).getReg()) 1947 .add(MI.getOperand(1)); 1948 expandPostRAPseudo(*Copy); 1949 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec); 1950 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten 1951 Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), 1952 MI.getOperand(0).getReg()) 1953 .add(MI.getOperand(2)); 1954 expandPostRAPseudo(*Copy); 1955 BuildMI(MBB, MI, DL, get(NotOpc), Exec) 1956 .addReg(Exec); 1957 MI.eraseFromParent(); 1958 break; 1959 } 1960 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1: 1961 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2: 1962 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3: 1963 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4: 1964 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5: 1965 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8: 1966 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16: 1967 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32: 1968 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1: 1969 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2: 1970 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3: 1971 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4: 1972 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5: 1973 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8: 1974 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16: 1975 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32: 1976 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1: 1977 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2: 1978 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4: 1979 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8: 1980 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: { 1981 const TargetRegisterClass *EltRC = getOpRegClass(MI, 2); 1982 1983 unsigned Opc; 1984 if (RI.hasVGPRs(EltRC)) { 1985 Opc = AMDGPU::V_MOVRELD_B32_e32; 1986 } else { 1987 Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64 1988 : AMDGPU::S_MOVRELD_B32; 1989 } 1990 1991 const MCInstrDesc &OpDesc = get(Opc); 1992 Register VecReg = MI.getOperand(0).getReg(); 1993 bool IsUndef = MI.getOperand(1).isUndef(); 1994 unsigned SubReg = MI.getOperand(3).getImm(); 1995 assert(VecReg == MI.getOperand(1).getReg()); 1996 1997 MachineInstrBuilder MIB = 1998 BuildMI(MBB, MI, DL, OpDesc) 1999 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2000 .add(MI.getOperand(2)) 2001 .addReg(VecReg, RegState::ImplicitDefine) 2002 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2003 2004 const int ImpDefIdx = 2005 OpDesc.getNumOperands() + OpDesc.getNumImplicitUses(); 2006 const int ImpUseIdx = ImpDefIdx + 1; 2007 MIB->tieOperands(ImpDefIdx, ImpUseIdx); 2008 MI.eraseFromParent(); 2009 break; 2010 } 2011 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1: 2012 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2: 2013 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3: 2014 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4: 2015 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5: 2016 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8: 2017 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16: 2018 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: { 2019 assert(ST.useVGPRIndexMode()); 2020 Register VecReg = MI.getOperand(0).getReg(); 2021 bool IsUndef = MI.getOperand(1).isUndef(); 2022 Register Idx = MI.getOperand(3).getReg(); 2023 Register SubReg = MI.getOperand(4).getImm(); 2024 2025 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) 2026 .addReg(Idx) 2027 .addImm(AMDGPU::VGPRIndexMode::DST_ENABLE); 2028 SetOn->getOperand(3).setIsUndef(); 2029 2030 const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect_write); 2031 MachineInstrBuilder MIB = 2032 BuildMI(MBB, MI, DL, OpDesc) 2033 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2034 .add(MI.getOperand(2)) 2035 .addReg(VecReg, RegState::ImplicitDefine) 2036 .addReg(VecReg, 2037 RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2038 2039 const int ImpDefIdx = OpDesc.getNumOperands() + OpDesc.getNumImplicitUses(); 2040 const int ImpUseIdx = ImpDefIdx + 1; 2041 MIB->tieOperands(ImpDefIdx, ImpUseIdx); 2042 2043 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); 2044 2045 finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); 2046 2047 MI.eraseFromParent(); 2048 break; 2049 } 2050 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1: 2051 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2: 2052 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3: 2053 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4: 2054 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5: 2055 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8: 2056 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16: 2057 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: { 2058 assert(ST.useVGPRIndexMode()); 2059 Register Dst = MI.getOperand(0).getReg(); 2060 Register VecReg = MI.getOperand(1).getReg(); 2061 bool IsUndef = MI.getOperand(1).isUndef(); 2062 Register Idx = MI.getOperand(2).getReg(); 2063 Register SubReg = MI.getOperand(3).getImm(); 2064 2065 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON)) 2066 .addReg(Idx) 2067 .addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE); 2068 SetOn->getOperand(3).setIsUndef(); 2069 2070 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_indirect_read)) 2071 .addDef(Dst) 2072 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef) 2073 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0)); 2074 2075 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF)); 2076 2077 finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator())); 2078 2079 MI.eraseFromParent(); 2080 break; 2081 } 2082 case AMDGPU::SI_PC_ADD_REL_OFFSET: { 2083 MachineFunction &MF = *MBB.getParent(); 2084 Register Reg = MI.getOperand(0).getReg(); 2085 Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0); 2086 Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1); 2087 2088 // Create a bundle so these instructions won't be re-ordered by the 2089 // post-RA scheduler. 2090 MIBundleBuilder Bundler(MBB, MI); 2091 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); 2092 2093 // Add 32-bit offset from this instruction to the start of the 2094 // constant data. 2095 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo) 2096 .addReg(RegLo) 2097 .add(MI.getOperand(1))); 2098 2099 MachineInstrBuilder MIB = BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) 2100 .addReg(RegHi); 2101 MIB.add(MI.getOperand(2)); 2102 2103 Bundler.append(MIB); 2104 finalizeBundle(MBB, Bundler.begin()); 2105 2106 MI.eraseFromParent(); 2107 break; 2108 } 2109 case AMDGPU::ENTER_STRICT_WWM: { 2110 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2111 // Whole Wave Mode is entered. 2112 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32 2113 : AMDGPU::S_OR_SAVEEXEC_B64)); 2114 break; 2115 } 2116 case AMDGPU::ENTER_STRICT_WQM: { 2117 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2118 // STRICT_WQM is entered. 2119 const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 2120 const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64; 2121 const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 2122 BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(0).getReg()).addReg(Exec); 2123 BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec); 2124 2125 MI.eraseFromParent(); 2126 break; 2127 } 2128 case AMDGPU::EXIT_STRICT_WWM: 2129 case AMDGPU::EXIT_STRICT_WQM: { 2130 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when 2131 // WWM/STICT_WQM is exited. 2132 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64)); 2133 break; 2134 } 2135 case AMDGPU::SI_RETURN: { 2136 const MachineFunction *MF = MBB.getParent(); 2137 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 2138 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 2139 // Hiding the return address use with SI_RETURN may lead to extra kills in 2140 // the function and missing live-ins. We are fine in practice because callee 2141 // saved register handling ensures the register value is restored before 2142 // RET, but we need the undef flag here to appease the MachineVerifier 2143 // liveness checks. 2144 MachineInstrBuilder MIB = 2145 BuildMI(MBB, MI, DL, get(AMDGPU::S_SETPC_B64_return)) 2146 .addReg(TRI->getReturnAddressReg(*MF), RegState::Undef); 2147 2148 MIB.copyImplicitOps(MI); 2149 MI.eraseFromParent(); 2150 break; 2151 } 2152 } 2153 return true; 2154 } 2155 2156 std::pair<MachineInstr*, MachineInstr*> 2157 SIInstrInfo::expandMovDPP64(MachineInstr &MI) const { 2158 assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO); 2159 2160 if (ST.hasMovB64() && 2161 AMDGPU::isLegal64BitDPPControl( 2162 getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl)->getImm())) { 2163 MI.setDesc(get(AMDGPU::V_MOV_B64_dpp)); 2164 return std::make_pair(&MI, nullptr); 2165 } 2166 2167 MachineBasicBlock &MBB = *MI.getParent(); 2168 DebugLoc DL = MBB.findDebugLoc(MI); 2169 MachineFunction *MF = MBB.getParent(); 2170 MachineRegisterInfo &MRI = MF->getRegInfo(); 2171 Register Dst = MI.getOperand(0).getReg(); 2172 unsigned Part = 0; 2173 MachineInstr *Split[2]; 2174 2175 for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) { 2176 auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp)); 2177 if (Dst.isPhysical()) { 2178 MovDPP.addDef(RI.getSubReg(Dst, Sub)); 2179 } else { 2180 assert(MRI.isSSA()); 2181 auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2182 MovDPP.addDef(Tmp); 2183 } 2184 2185 for (unsigned I = 1; I <= 2; ++I) { // old and src operands. 2186 const MachineOperand &SrcOp = MI.getOperand(I); 2187 assert(!SrcOp.isFPImm()); 2188 if (SrcOp.isImm()) { 2189 APInt Imm(64, SrcOp.getImm()); 2190 Imm.ashrInPlace(Part * 32); 2191 MovDPP.addImm(Imm.getLoBits(32).getZExtValue()); 2192 } else { 2193 assert(SrcOp.isReg()); 2194 Register Src = SrcOp.getReg(); 2195 if (Src.isPhysical()) 2196 MovDPP.addReg(RI.getSubReg(Src, Sub)); 2197 else 2198 MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub); 2199 } 2200 } 2201 2202 for (unsigned I = 3; I < MI.getNumExplicitOperands(); ++I) 2203 MovDPP.addImm(MI.getOperand(I).getImm()); 2204 2205 Split[Part] = MovDPP; 2206 ++Part; 2207 } 2208 2209 if (Dst.isVirtual()) 2210 BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst) 2211 .addReg(Split[0]->getOperand(0).getReg()) 2212 .addImm(AMDGPU::sub0) 2213 .addReg(Split[1]->getOperand(0).getReg()) 2214 .addImm(AMDGPU::sub1); 2215 2216 MI.eraseFromParent(); 2217 return std::make_pair(Split[0], Split[1]); 2218 } 2219 2220 bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI, 2221 MachineOperand &Src0, 2222 unsigned Src0OpName, 2223 MachineOperand &Src1, 2224 unsigned Src1OpName) const { 2225 MachineOperand *Src0Mods = getNamedOperand(MI, Src0OpName); 2226 if (!Src0Mods) 2227 return false; 2228 2229 MachineOperand *Src1Mods = getNamedOperand(MI, Src1OpName); 2230 assert(Src1Mods && 2231 "All commutable instructions have both src0 and src1 modifiers"); 2232 2233 int Src0ModsVal = Src0Mods->getImm(); 2234 int Src1ModsVal = Src1Mods->getImm(); 2235 2236 Src1Mods->setImm(Src0ModsVal); 2237 Src0Mods->setImm(Src1ModsVal); 2238 return true; 2239 } 2240 2241 static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI, 2242 MachineOperand &RegOp, 2243 MachineOperand &NonRegOp) { 2244 Register Reg = RegOp.getReg(); 2245 unsigned SubReg = RegOp.getSubReg(); 2246 bool IsKill = RegOp.isKill(); 2247 bool IsDead = RegOp.isDead(); 2248 bool IsUndef = RegOp.isUndef(); 2249 bool IsDebug = RegOp.isDebug(); 2250 2251 if (NonRegOp.isImm()) 2252 RegOp.ChangeToImmediate(NonRegOp.getImm()); 2253 else if (NonRegOp.isFI()) 2254 RegOp.ChangeToFrameIndex(NonRegOp.getIndex()); 2255 else if (NonRegOp.isGlobal()) { 2256 RegOp.ChangeToGA(NonRegOp.getGlobal(), NonRegOp.getOffset(), 2257 NonRegOp.getTargetFlags()); 2258 } else 2259 return nullptr; 2260 2261 // Make sure we don't reinterpret a subreg index in the target flags. 2262 RegOp.setTargetFlags(NonRegOp.getTargetFlags()); 2263 2264 NonRegOp.ChangeToRegister(Reg, false, false, IsKill, IsDead, IsUndef, IsDebug); 2265 NonRegOp.setSubReg(SubReg); 2266 2267 return &MI; 2268 } 2269 2270 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 2271 unsigned Src0Idx, 2272 unsigned Src1Idx) const { 2273 assert(!NewMI && "this should never be used"); 2274 2275 unsigned Opc = MI.getOpcode(); 2276 int CommutedOpcode = commuteOpcode(Opc); 2277 if (CommutedOpcode == -1) 2278 return nullptr; 2279 2280 assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) == 2281 static_cast<int>(Src0Idx) && 2282 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) == 2283 static_cast<int>(Src1Idx) && 2284 "inconsistency with findCommutedOpIndices"); 2285 2286 MachineOperand &Src0 = MI.getOperand(Src0Idx); 2287 MachineOperand &Src1 = MI.getOperand(Src1Idx); 2288 2289 MachineInstr *CommutedMI = nullptr; 2290 if (Src0.isReg() && Src1.isReg()) { 2291 if (isOperandLegal(MI, Src1Idx, &Src0)) { 2292 // Be sure to copy the source modifiers to the right place. 2293 CommutedMI 2294 = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx); 2295 } 2296 2297 } else if (Src0.isReg() && !Src1.isReg()) { 2298 // src0 should always be able to support any operand type, so no need to 2299 // check operand legality. 2300 CommutedMI = swapRegAndNonRegOperand(MI, Src0, Src1); 2301 } else if (!Src0.isReg() && Src1.isReg()) { 2302 if (isOperandLegal(MI, Src1Idx, &Src0)) 2303 CommutedMI = swapRegAndNonRegOperand(MI, Src1, Src0); 2304 } else { 2305 // FIXME: Found two non registers to commute. This does happen. 2306 return nullptr; 2307 } 2308 2309 if (CommutedMI) { 2310 swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers, 2311 Src1, AMDGPU::OpName::src1_modifiers); 2312 2313 CommutedMI->setDesc(get(CommutedOpcode)); 2314 } 2315 2316 return CommutedMI; 2317 } 2318 2319 // This needs to be implemented because the source modifiers may be inserted 2320 // between the true commutable operands, and the base 2321 // TargetInstrInfo::commuteInstruction uses it. 2322 bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 2323 unsigned &SrcOpIdx0, 2324 unsigned &SrcOpIdx1) const { 2325 return findCommutedOpIndices(MI.getDesc(), SrcOpIdx0, SrcOpIdx1); 2326 } 2327 2328 bool SIInstrInfo::findCommutedOpIndices(MCInstrDesc Desc, unsigned &SrcOpIdx0, 2329 unsigned &SrcOpIdx1) const { 2330 if (!Desc.isCommutable()) 2331 return false; 2332 2333 unsigned Opc = Desc.getOpcode(); 2334 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2335 if (Src0Idx == -1) 2336 return false; 2337 2338 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 2339 if (Src1Idx == -1) 2340 return false; 2341 2342 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); 2343 } 2344 2345 bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp, 2346 int64_t BrOffset) const { 2347 // BranchRelaxation should never have to check s_setpc_b64 because its dest 2348 // block is unanalyzable. 2349 assert(BranchOp != AMDGPU::S_SETPC_B64); 2350 2351 // Convert to dwords. 2352 BrOffset /= 4; 2353 2354 // The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is 2355 // from the next instruction. 2356 BrOffset -= 1; 2357 2358 return isIntN(BranchOffsetBits, BrOffset); 2359 } 2360 2361 MachineBasicBlock *SIInstrInfo::getBranchDestBlock( 2362 const MachineInstr &MI) const { 2363 if (MI.getOpcode() == AMDGPU::S_SETPC_B64) { 2364 // This would be a difficult analysis to perform, but can always be legal so 2365 // there's no need to analyze it. 2366 return nullptr; 2367 } 2368 2369 return MI.getOperand(0).getMBB(); 2370 } 2371 2372 void SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB, 2373 MachineBasicBlock &DestBB, 2374 MachineBasicBlock &RestoreBB, 2375 const DebugLoc &DL, int64_t BrOffset, 2376 RegScavenger *RS) const { 2377 assert(RS && "RegScavenger required for long branching"); 2378 assert(MBB.empty() && 2379 "new block should be inserted for expanding unconditional branch"); 2380 assert(MBB.pred_size() == 1); 2381 assert(RestoreBB.empty() && 2382 "restore block should be inserted for restoring clobbered registers"); 2383 2384 MachineFunction *MF = MBB.getParent(); 2385 MachineRegisterInfo &MRI = MF->getRegInfo(); 2386 2387 // FIXME: Virtual register workaround for RegScavenger not working with empty 2388 // blocks. 2389 Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2390 2391 auto I = MBB.end(); 2392 2393 // We need to compute the offset relative to the instruction immediately after 2394 // s_getpc_b64. Insert pc arithmetic code before last terminator. 2395 MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg); 2396 2397 auto &MCCtx = MF->getContext(); 2398 MCSymbol *PostGetPCLabel = 2399 MCCtx.createTempSymbol("post_getpc", /*AlwaysAddSuffix=*/true); 2400 GetPC->setPostInstrSymbol(*MF, PostGetPCLabel); 2401 2402 MCSymbol *OffsetLo = 2403 MCCtx.createTempSymbol("offset_lo", /*AlwaysAddSuffix=*/true); 2404 MCSymbol *OffsetHi = 2405 MCCtx.createTempSymbol("offset_hi", /*AlwaysAddSuffix=*/true); 2406 BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32)) 2407 .addReg(PCReg, RegState::Define, AMDGPU::sub0) 2408 .addReg(PCReg, 0, AMDGPU::sub0) 2409 .addSym(OffsetLo, MO_FAR_BRANCH_OFFSET); 2410 BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32)) 2411 .addReg(PCReg, RegState::Define, AMDGPU::sub1) 2412 .addReg(PCReg, 0, AMDGPU::sub1) 2413 .addSym(OffsetHi, MO_FAR_BRANCH_OFFSET); 2414 2415 // Insert the indirect branch after the other terminator. 2416 BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64)) 2417 .addReg(PCReg); 2418 2419 // FIXME: If spilling is necessary, this will fail because this scavenger has 2420 // no emergency stack slots. It is non-trivial to spill in this situation, 2421 // because the restore code needs to be specially placed after the 2422 // jump. BranchRelaxation then needs to be made aware of the newly inserted 2423 // block. 2424 // 2425 // If a spill is needed for the pc register pair, we need to insert a spill 2426 // restore block right before the destination block, and insert a short branch 2427 // into the old destination block's fallthrough predecessor. 2428 // e.g.: 2429 // 2430 // s_cbranch_scc0 skip_long_branch: 2431 // 2432 // long_branch_bb: 2433 // spill s[8:9] 2434 // s_getpc_b64 s[8:9] 2435 // s_add_u32 s8, s8, restore_bb 2436 // s_addc_u32 s9, s9, 0 2437 // s_setpc_b64 s[8:9] 2438 // 2439 // skip_long_branch: 2440 // foo; 2441 // 2442 // ..... 2443 // 2444 // dest_bb_fallthrough_predecessor: 2445 // bar; 2446 // s_branch dest_bb 2447 // 2448 // restore_bb: 2449 // restore s[8:9] 2450 // fallthrough dest_bb 2451 /// 2452 // dest_bb: 2453 // buzz; 2454 2455 RS->enterBasicBlockEnd(MBB); 2456 Register Scav = RS->scavengeRegisterBackwards( 2457 AMDGPU::SReg_64RegClass, MachineBasicBlock::iterator(GetPC), 2458 /* RestoreAfter */ false, 0, /* AllowSpill */ false); 2459 if (Scav) { 2460 RS->setRegUsed(Scav); 2461 MRI.replaceRegWith(PCReg, Scav); 2462 MRI.clearVirtRegs(); 2463 } else { 2464 // As SGPR needs VGPR to be spilled, we reuse the slot of temporary VGPR for 2465 // SGPR spill. 2466 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>(); 2467 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 2468 TRI->spillEmergencySGPR(GetPC, RestoreBB, AMDGPU::SGPR0_SGPR1, RS); 2469 MRI.replaceRegWith(PCReg, AMDGPU::SGPR0_SGPR1); 2470 MRI.clearVirtRegs(); 2471 } 2472 2473 MCSymbol *DestLabel = Scav ? DestBB.getSymbol() : RestoreBB.getSymbol(); 2474 // Now, the distance could be defined. 2475 auto *Offset = MCBinaryExpr::createSub( 2476 MCSymbolRefExpr::create(DestLabel, MCCtx), 2477 MCSymbolRefExpr::create(PostGetPCLabel, MCCtx), MCCtx); 2478 // Add offset assignments. 2479 auto *Mask = MCConstantExpr::create(0xFFFFFFFFULL, MCCtx); 2480 OffsetLo->setVariableValue(MCBinaryExpr::createAnd(Offset, Mask, MCCtx)); 2481 auto *ShAmt = MCConstantExpr::create(32, MCCtx); 2482 OffsetHi->setVariableValue(MCBinaryExpr::createAShr(Offset, ShAmt, MCCtx)); 2483 } 2484 2485 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { 2486 switch (Cond) { 2487 case SIInstrInfo::SCC_TRUE: 2488 return AMDGPU::S_CBRANCH_SCC1; 2489 case SIInstrInfo::SCC_FALSE: 2490 return AMDGPU::S_CBRANCH_SCC0; 2491 case SIInstrInfo::VCCNZ: 2492 return AMDGPU::S_CBRANCH_VCCNZ; 2493 case SIInstrInfo::VCCZ: 2494 return AMDGPU::S_CBRANCH_VCCZ; 2495 case SIInstrInfo::EXECNZ: 2496 return AMDGPU::S_CBRANCH_EXECNZ; 2497 case SIInstrInfo::EXECZ: 2498 return AMDGPU::S_CBRANCH_EXECZ; 2499 default: 2500 llvm_unreachable("invalid branch predicate"); 2501 } 2502 } 2503 2504 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { 2505 switch (Opcode) { 2506 case AMDGPU::S_CBRANCH_SCC0: 2507 return SCC_FALSE; 2508 case AMDGPU::S_CBRANCH_SCC1: 2509 return SCC_TRUE; 2510 case AMDGPU::S_CBRANCH_VCCNZ: 2511 return VCCNZ; 2512 case AMDGPU::S_CBRANCH_VCCZ: 2513 return VCCZ; 2514 case AMDGPU::S_CBRANCH_EXECNZ: 2515 return EXECNZ; 2516 case AMDGPU::S_CBRANCH_EXECZ: 2517 return EXECZ; 2518 default: 2519 return INVALID_BR; 2520 } 2521 } 2522 2523 bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB, 2524 MachineBasicBlock::iterator I, 2525 MachineBasicBlock *&TBB, 2526 MachineBasicBlock *&FBB, 2527 SmallVectorImpl<MachineOperand> &Cond, 2528 bool AllowModify) const { 2529 if (I->getOpcode() == AMDGPU::S_BRANCH) { 2530 // Unconditional Branch 2531 TBB = I->getOperand(0).getMBB(); 2532 return false; 2533 } 2534 2535 MachineBasicBlock *CondBB = nullptr; 2536 2537 if (I->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 2538 CondBB = I->getOperand(1).getMBB(); 2539 Cond.push_back(I->getOperand(0)); 2540 } else { 2541 BranchPredicate Pred = getBranchPredicate(I->getOpcode()); 2542 if (Pred == INVALID_BR) 2543 return true; 2544 2545 CondBB = I->getOperand(0).getMBB(); 2546 Cond.push_back(MachineOperand::CreateImm(Pred)); 2547 Cond.push_back(I->getOperand(1)); // Save the branch register. 2548 } 2549 ++I; 2550 2551 if (I == MBB.end()) { 2552 // Conditional branch followed by fall-through. 2553 TBB = CondBB; 2554 return false; 2555 } 2556 2557 if (I->getOpcode() == AMDGPU::S_BRANCH) { 2558 TBB = CondBB; 2559 FBB = I->getOperand(0).getMBB(); 2560 return false; 2561 } 2562 2563 return true; 2564 } 2565 2566 bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 2567 MachineBasicBlock *&FBB, 2568 SmallVectorImpl<MachineOperand> &Cond, 2569 bool AllowModify) const { 2570 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 2571 auto E = MBB.end(); 2572 if (I == E) 2573 return false; 2574 2575 // Skip over the instructions that are artificially terminators for special 2576 // exec management. 2577 while (I != E && !I->isBranch() && !I->isReturn()) { 2578 switch (I->getOpcode()) { 2579 case AMDGPU::S_MOV_B64_term: 2580 case AMDGPU::S_XOR_B64_term: 2581 case AMDGPU::S_OR_B64_term: 2582 case AMDGPU::S_ANDN2_B64_term: 2583 case AMDGPU::S_AND_B64_term: 2584 case AMDGPU::S_MOV_B32_term: 2585 case AMDGPU::S_XOR_B32_term: 2586 case AMDGPU::S_OR_B32_term: 2587 case AMDGPU::S_ANDN2_B32_term: 2588 case AMDGPU::S_AND_B32_term: 2589 break; 2590 case AMDGPU::SI_IF: 2591 case AMDGPU::SI_ELSE: 2592 case AMDGPU::SI_KILL_I1_TERMINATOR: 2593 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 2594 // FIXME: It's messy that these need to be considered here at all. 2595 return true; 2596 default: 2597 llvm_unreachable("unexpected non-branch terminator inst"); 2598 } 2599 2600 ++I; 2601 } 2602 2603 if (I == E) 2604 return false; 2605 2606 return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify); 2607 } 2608 2609 unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB, 2610 int *BytesRemoved) const { 2611 unsigned Count = 0; 2612 unsigned RemovedSize = 0; 2613 for (MachineInstr &MI : llvm::make_early_inc_range(MBB.terminators())) { 2614 // Skip over artificial terminators when removing instructions. 2615 if (MI.isBranch() || MI.isReturn()) { 2616 RemovedSize += getInstSizeInBytes(MI); 2617 MI.eraseFromParent(); 2618 ++Count; 2619 } 2620 } 2621 2622 if (BytesRemoved) 2623 *BytesRemoved = RemovedSize; 2624 2625 return Count; 2626 } 2627 2628 // Copy the flags onto the implicit condition register operand. 2629 static void preserveCondRegFlags(MachineOperand &CondReg, 2630 const MachineOperand &OrigCond) { 2631 CondReg.setIsUndef(OrigCond.isUndef()); 2632 CondReg.setIsKill(OrigCond.isKill()); 2633 } 2634 2635 unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB, 2636 MachineBasicBlock *TBB, 2637 MachineBasicBlock *FBB, 2638 ArrayRef<MachineOperand> Cond, 2639 const DebugLoc &DL, 2640 int *BytesAdded) const { 2641 if (!FBB && Cond.empty()) { 2642 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 2643 .addMBB(TBB); 2644 if (BytesAdded) 2645 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; 2646 return 1; 2647 } 2648 2649 if(Cond.size() == 1 && Cond[0].isReg()) { 2650 BuildMI(&MBB, DL, get(AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO)) 2651 .add(Cond[0]) 2652 .addMBB(TBB); 2653 return 1; 2654 } 2655 2656 assert(TBB && Cond[0].isImm()); 2657 2658 unsigned Opcode 2659 = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm())); 2660 2661 if (!FBB) { 2662 Cond[1].isUndef(); 2663 MachineInstr *CondBr = 2664 BuildMI(&MBB, DL, get(Opcode)) 2665 .addMBB(TBB); 2666 2667 // Copy the flags onto the implicit condition register operand. 2668 preserveCondRegFlags(CondBr->getOperand(1), Cond[1]); 2669 fixImplicitOperands(*CondBr); 2670 2671 if (BytesAdded) 2672 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4; 2673 return 1; 2674 } 2675 2676 assert(TBB && FBB); 2677 2678 MachineInstr *CondBr = 2679 BuildMI(&MBB, DL, get(Opcode)) 2680 .addMBB(TBB); 2681 fixImplicitOperands(*CondBr); 2682 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 2683 .addMBB(FBB); 2684 2685 MachineOperand &CondReg = CondBr->getOperand(1); 2686 CondReg.setIsUndef(Cond[1].isUndef()); 2687 CondReg.setIsKill(Cond[1].isKill()); 2688 2689 if (BytesAdded) 2690 *BytesAdded = ST.hasOffset3fBug() ? 16 : 8; 2691 2692 return 2; 2693 } 2694 2695 bool SIInstrInfo::reverseBranchCondition( 2696 SmallVectorImpl<MachineOperand> &Cond) const { 2697 if (Cond.size() != 2) { 2698 return true; 2699 } 2700 2701 if (Cond[0].isImm()) { 2702 Cond[0].setImm(-Cond[0].getImm()); 2703 return false; 2704 } 2705 2706 return true; 2707 } 2708 2709 bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 2710 ArrayRef<MachineOperand> Cond, 2711 Register DstReg, Register TrueReg, 2712 Register FalseReg, int &CondCycles, 2713 int &TrueCycles, int &FalseCycles) const { 2714 switch (Cond[0].getImm()) { 2715 case VCCNZ: 2716 case VCCZ: { 2717 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2718 const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); 2719 if (MRI.getRegClass(FalseReg) != RC) 2720 return false; 2721 2722 int NumInsts = AMDGPU::getRegBitWidth(RC->getID()) / 32; 2723 CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? 2724 2725 // Limit to equal cost for branch vs. N v_cndmask_b32s. 2726 return RI.hasVGPRs(RC) && NumInsts <= 6; 2727 } 2728 case SCC_TRUE: 2729 case SCC_FALSE: { 2730 // FIXME: We could insert for VGPRs if we could replace the original compare 2731 // with a vector one. 2732 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2733 const TargetRegisterClass *RC = MRI.getRegClass(TrueReg); 2734 if (MRI.getRegClass(FalseReg) != RC) 2735 return false; 2736 2737 int NumInsts = AMDGPU::getRegBitWidth(RC->getID()) / 32; 2738 2739 // Multiples of 8 can do s_cselect_b64 2740 if (NumInsts % 2 == 0) 2741 NumInsts /= 2; 2742 2743 CondCycles = TrueCycles = FalseCycles = NumInsts; // ??? 2744 return RI.isSGPRClass(RC); 2745 } 2746 default: 2747 return false; 2748 } 2749 } 2750 2751 void SIInstrInfo::insertSelect(MachineBasicBlock &MBB, 2752 MachineBasicBlock::iterator I, const DebugLoc &DL, 2753 Register DstReg, ArrayRef<MachineOperand> Cond, 2754 Register TrueReg, Register FalseReg) const { 2755 BranchPredicate Pred = static_cast<BranchPredicate>(Cond[0].getImm()); 2756 if (Pred == VCCZ || Pred == SCC_FALSE) { 2757 Pred = static_cast<BranchPredicate>(-Pred); 2758 std::swap(TrueReg, FalseReg); 2759 } 2760 2761 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2762 const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg); 2763 unsigned DstSize = RI.getRegSizeInBits(*DstRC); 2764 2765 if (DstSize == 32) { 2766 MachineInstr *Select; 2767 if (Pred == SCC_TRUE) { 2768 Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg) 2769 .addReg(TrueReg) 2770 .addReg(FalseReg); 2771 } else { 2772 // Instruction's operands are backwards from what is expected. 2773 Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg) 2774 .addReg(FalseReg) 2775 .addReg(TrueReg); 2776 } 2777 2778 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 2779 return; 2780 } 2781 2782 if (DstSize == 64 && Pred == SCC_TRUE) { 2783 MachineInstr *Select = 2784 BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg) 2785 .addReg(TrueReg) 2786 .addReg(FalseReg); 2787 2788 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 2789 return; 2790 } 2791 2792 static const int16_t Sub0_15[] = { 2793 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 2794 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 2795 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, 2796 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 2797 }; 2798 2799 static const int16_t Sub0_15_64[] = { 2800 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 2801 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 2802 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, 2803 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, 2804 }; 2805 2806 unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32; 2807 const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass; 2808 const int16_t *SubIndices = Sub0_15; 2809 int NElts = DstSize / 32; 2810 2811 // 64-bit select is only available for SALU. 2812 // TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit. 2813 if (Pred == SCC_TRUE) { 2814 if (NElts % 2) { 2815 SelOp = AMDGPU::S_CSELECT_B32; 2816 EltRC = &AMDGPU::SGPR_32RegClass; 2817 } else { 2818 SelOp = AMDGPU::S_CSELECT_B64; 2819 EltRC = &AMDGPU::SGPR_64RegClass; 2820 SubIndices = Sub0_15_64; 2821 NElts /= 2; 2822 } 2823 } 2824 2825 MachineInstrBuilder MIB = BuildMI( 2826 MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg); 2827 2828 I = MIB->getIterator(); 2829 2830 SmallVector<Register, 8> Regs; 2831 for (int Idx = 0; Idx != NElts; ++Idx) { 2832 Register DstElt = MRI.createVirtualRegister(EltRC); 2833 Regs.push_back(DstElt); 2834 2835 unsigned SubIdx = SubIndices[Idx]; 2836 2837 MachineInstr *Select; 2838 if (SelOp == AMDGPU::V_CNDMASK_B32_e32) { 2839 Select = 2840 BuildMI(MBB, I, DL, get(SelOp), DstElt) 2841 .addReg(FalseReg, 0, SubIdx) 2842 .addReg(TrueReg, 0, SubIdx); 2843 } else { 2844 Select = 2845 BuildMI(MBB, I, DL, get(SelOp), DstElt) 2846 .addReg(TrueReg, 0, SubIdx) 2847 .addReg(FalseReg, 0, SubIdx); 2848 } 2849 2850 preserveCondRegFlags(Select->getOperand(3), Cond[1]); 2851 fixImplicitOperands(*Select); 2852 2853 MIB.addReg(DstElt) 2854 .addImm(SubIdx); 2855 } 2856 } 2857 2858 bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) { 2859 switch (MI.getOpcode()) { 2860 case AMDGPU::V_MOV_B32_e32: 2861 case AMDGPU::V_MOV_B32_e64: 2862 case AMDGPU::V_MOV_B64_PSEUDO: 2863 case AMDGPU::V_MOV_B64_e32: 2864 case AMDGPU::V_MOV_B64_e64: 2865 case AMDGPU::S_MOV_B32: 2866 case AMDGPU::S_MOV_B64: 2867 case AMDGPU::COPY: 2868 case AMDGPU::V_ACCVGPR_WRITE_B32_e64: 2869 case AMDGPU::V_ACCVGPR_READ_B32_e64: 2870 case AMDGPU::V_ACCVGPR_MOV_B32: 2871 return true; 2872 default: 2873 return false; 2874 } 2875 } 2876 2877 unsigned SIInstrInfo::getAddressSpaceForPseudoSourceKind( 2878 unsigned Kind) const { 2879 switch(Kind) { 2880 case PseudoSourceValue::Stack: 2881 case PseudoSourceValue::FixedStack: 2882 return AMDGPUAS::PRIVATE_ADDRESS; 2883 case PseudoSourceValue::ConstantPool: 2884 case PseudoSourceValue::GOT: 2885 case PseudoSourceValue::JumpTable: 2886 case PseudoSourceValue::GlobalValueCallEntry: 2887 case PseudoSourceValue::ExternalSymbolCallEntry: 2888 case PseudoSourceValue::TargetCustom: 2889 return AMDGPUAS::CONSTANT_ADDRESS; 2890 } 2891 return AMDGPUAS::FLAT_ADDRESS; 2892 } 2893 2894 static void removeModOperands(MachineInstr &MI) { 2895 unsigned Opc = MI.getOpcode(); 2896 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, 2897 AMDGPU::OpName::src0_modifiers); 2898 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, 2899 AMDGPU::OpName::src1_modifiers); 2900 int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc, 2901 AMDGPU::OpName::src2_modifiers); 2902 2903 MI.RemoveOperand(Src2ModIdx); 2904 MI.RemoveOperand(Src1ModIdx); 2905 MI.RemoveOperand(Src0ModIdx); 2906 } 2907 2908 bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 2909 Register Reg, MachineRegisterInfo *MRI) const { 2910 if (!MRI->hasOneNonDBGUse(Reg)) 2911 return false; 2912 2913 switch (DefMI.getOpcode()) { 2914 default: 2915 return false; 2916 case AMDGPU::S_MOV_B64: 2917 // TODO: We could fold 64-bit immediates, but this get complicated 2918 // when there are sub-registers. 2919 return false; 2920 2921 case AMDGPU::V_MOV_B32_e32: 2922 case AMDGPU::S_MOV_B32: 2923 case AMDGPU::V_ACCVGPR_WRITE_B32_e64: 2924 break; 2925 } 2926 2927 const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0); 2928 assert(ImmOp); 2929 // FIXME: We could handle FrameIndex values here. 2930 if (!ImmOp->isImm()) 2931 return false; 2932 2933 unsigned Opc = UseMI.getOpcode(); 2934 if (Opc == AMDGPU::COPY) { 2935 Register DstReg = UseMI.getOperand(0).getReg(); 2936 bool Is16Bit = getOpSize(UseMI, 0) == 2; 2937 bool isVGPRCopy = RI.isVGPR(*MRI, DstReg); 2938 unsigned NewOpc = isVGPRCopy ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32; 2939 APInt Imm(32, ImmOp->getImm()); 2940 2941 if (UseMI.getOperand(1).getSubReg() == AMDGPU::hi16) 2942 Imm = Imm.ashr(16); 2943 2944 if (RI.isAGPR(*MRI, DstReg)) { 2945 if (!isInlineConstant(Imm)) 2946 return false; 2947 NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64; 2948 } 2949 2950 if (Is16Bit) { 2951 if (isVGPRCopy) 2952 return false; // Do not clobber vgpr_hi16 2953 2954 if (DstReg.isVirtual() && UseMI.getOperand(0).getSubReg() != AMDGPU::lo16) 2955 return false; 2956 2957 UseMI.getOperand(0).setSubReg(0); 2958 if (DstReg.isPhysical()) { 2959 DstReg = RI.get32BitRegister(DstReg); 2960 UseMI.getOperand(0).setReg(DstReg); 2961 } 2962 assert(UseMI.getOperand(1).getReg().isVirtual()); 2963 } 2964 2965 UseMI.setDesc(get(NewOpc)); 2966 UseMI.getOperand(1).ChangeToImmediate(Imm.getSExtValue()); 2967 UseMI.addImplicitDefUseOperands(*UseMI.getParent()->getParent()); 2968 return true; 2969 } 2970 2971 if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || 2972 Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 2973 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || 2974 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64) { 2975 // Don't fold if we are using source or output modifiers. The new VOP2 2976 // instructions don't have them. 2977 if (hasAnyModifiersSet(UseMI)) 2978 return false; 2979 2980 // If this is a free constant, there's no reason to do this. 2981 // TODO: We could fold this here instead of letting SIFoldOperands do it 2982 // later. 2983 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0); 2984 2985 // Any src operand can be used for the legality check. 2986 if (isInlineConstant(UseMI, *Src0, *ImmOp)) 2987 return false; 2988 2989 bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 || 2990 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64; 2991 bool IsFMA = Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 || 2992 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64; 2993 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1); 2994 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2); 2995 2996 // Multiplied part is the constant: Use v_madmk_{f16, f32}. 2997 // We should only expect these to be on src0 due to canonicalization. 2998 if (Src0->isReg() && Src0->getReg() == Reg) { 2999 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) 3000 return false; 3001 3002 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) 3003 return false; 3004 3005 unsigned NewOpc = 3006 IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32 : AMDGPU::V_FMAMK_F16) 3007 : (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16); 3008 if (pseudoToMCOpcode(NewOpc) == -1) 3009 return false; 3010 3011 // We need to swap operands 0 and 1 since madmk constant is at operand 1. 3012 3013 const int64_t Imm = ImmOp->getImm(); 3014 3015 // FIXME: This would be a lot easier if we could return a new instruction 3016 // instead of having to modify in place. 3017 3018 // Remove these first since they are at the end. 3019 UseMI.RemoveOperand( 3020 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); 3021 UseMI.RemoveOperand( 3022 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); 3023 3024 Register Src1Reg = Src1->getReg(); 3025 unsigned Src1SubReg = Src1->getSubReg(); 3026 Src0->setReg(Src1Reg); 3027 Src0->setSubReg(Src1SubReg); 3028 Src0->setIsKill(Src1->isKill()); 3029 3030 if (Opc == AMDGPU::V_MAC_F32_e64 || 3031 Opc == AMDGPU::V_MAC_F16_e64 || 3032 Opc == AMDGPU::V_FMAC_F32_e64 || 3033 Opc == AMDGPU::V_FMAC_F16_e64) 3034 UseMI.untieRegOperand( 3035 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 3036 3037 Src1->ChangeToImmediate(Imm); 3038 3039 removeModOperands(UseMI); 3040 UseMI.setDesc(get(NewOpc)); 3041 3042 bool DeleteDef = MRI->use_nodbg_empty(Reg); 3043 if (DeleteDef) 3044 DefMI.eraseFromParent(); 3045 3046 return true; 3047 } 3048 3049 // Added part is the constant: Use v_madak_{f16, f32}. 3050 if (Src2->isReg() && Src2->getReg() == Reg) { 3051 // Not allowed to use constant bus for another operand. 3052 // We can however allow an inline immediate as src0. 3053 bool Src0Inlined = false; 3054 if (Src0->isReg()) { 3055 // Try to inline constant if possible. 3056 // If the Def moves immediate and the use is single 3057 // We are saving VGPR here. 3058 MachineInstr *Def = MRI->getUniqueVRegDef(Src0->getReg()); 3059 if (Def && Def->isMoveImmediate() && 3060 isInlineConstant(Def->getOperand(1)) && 3061 MRI->hasOneUse(Src0->getReg())) { 3062 Src0->ChangeToImmediate(Def->getOperand(1).getImm()); 3063 Src0Inlined = true; 3064 } else if ((Src0->getReg().isPhysical() && 3065 (ST.getConstantBusLimit(Opc) <= 1 && 3066 RI.isSGPRClass(RI.getPhysRegClass(Src0->getReg())))) || 3067 (Src0->getReg().isVirtual() && 3068 (ST.getConstantBusLimit(Opc) <= 1 && 3069 RI.isSGPRClass(MRI->getRegClass(Src0->getReg()))))) 3070 return false; 3071 // VGPR is okay as Src0 - fallthrough 3072 } 3073 3074 if (Src1->isReg() && !Src0Inlined ) { 3075 // We have one slot for inlinable constant so far - try to fill it 3076 MachineInstr *Def = MRI->getUniqueVRegDef(Src1->getReg()); 3077 if (Def && Def->isMoveImmediate() && 3078 isInlineConstant(Def->getOperand(1)) && 3079 MRI->hasOneUse(Src1->getReg()) && 3080 commuteInstruction(UseMI)) { 3081 Src0->ChangeToImmediate(Def->getOperand(1).getImm()); 3082 } else if ((Src1->getReg().isPhysical() && 3083 RI.isSGPRClass(RI.getPhysRegClass(Src1->getReg()))) || 3084 (Src1->getReg().isVirtual() && 3085 RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))) 3086 return false; 3087 // VGPR is okay as Src1 - fallthrough 3088 } 3089 3090 unsigned NewOpc = 3091 IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32 : AMDGPU::V_FMAAK_F16) 3092 : (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16); 3093 if (pseudoToMCOpcode(NewOpc) == -1) 3094 return false; 3095 3096 const int64_t Imm = ImmOp->getImm(); 3097 3098 // FIXME: This would be a lot easier if we could return a new instruction 3099 // instead of having to modify in place. 3100 3101 // Remove these first since they are at the end. 3102 UseMI.RemoveOperand( 3103 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); 3104 UseMI.RemoveOperand( 3105 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); 3106 3107 if (Opc == AMDGPU::V_MAC_F32_e64 || 3108 Opc == AMDGPU::V_MAC_F16_e64 || 3109 Opc == AMDGPU::V_FMAC_F32_e64 || 3110 Opc == AMDGPU::V_FMAC_F16_e64) 3111 UseMI.untieRegOperand( 3112 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 3113 3114 // ChangingToImmediate adds Src2 back to the instruction. 3115 Src2->ChangeToImmediate(Imm); 3116 3117 // These come before src2. 3118 removeModOperands(UseMI); 3119 UseMI.setDesc(get(NewOpc)); 3120 // It might happen that UseMI was commuted 3121 // and we now have SGPR as SRC1. If so 2 inlined 3122 // constant and SGPR are illegal. 3123 legalizeOperands(UseMI); 3124 3125 bool DeleteDef = MRI->use_nodbg_empty(Reg); 3126 if (DeleteDef) 3127 DefMI.eraseFromParent(); 3128 3129 return true; 3130 } 3131 } 3132 3133 return false; 3134 } 3135 3136 static bool 3137 memOpsHaveSameBaseOperands(ArrayRef<const MachineOperand *> BaseOps1, 3138 ArrayRef<const MachineOperand *> BaseOps2) { 3139 if (BaseOps1.size() != BaseOps2.size()) 3140 return false; 3141 for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) { 3142 if (!BaseOps1[I]->isIdenticalTo(*BaseOps2[I])) 3143 return false; 3144 } 3145 return true; 3146 } 3147 3148 static bool offsetsDoNotOverlap(int WidthA, int OffsetA, 3149 int WidthB, int OffsetB) { 3150 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 3151 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 3152 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 3153 return LowOffset + LowWidth <= HighOffset; 3154 } 3155 3156 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa, 3157 const MachineInstr &MIb) const { 3158 SmallVector<const MachineOperand *, 4> BaseOps0, BaseOps1; 3159 int64_t Offset0, Offset1; 3160 unsigned Dummy0, Dummy1; 3161 bool Offset0IsScalable, Offset1IsScalable; 3162 if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable, 3163 Dummy0, &RI) || 3164 !getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable, 3165 Dummy1, &RI)) 3166 return false; 3167 3168 if (!memOpsHaveSameBaseOperands(BaseOps0, BaseOps1)) 3169 return false; 3170 3171 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) { 3172 // FIXME: Handle ds_read2 / ds_write2. 3173 return false; 3174 } 3175 unsigned Width0 = MIa.memoperands().front()->getSize(); 3176 unsigned Width1 = MIb.memoperands().front()->getSize(); 3177 return offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1); 3178 } 3179 3180 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 3181 const MachineInstr &MIb) const { 3182 assert(MIa.mayLoadOrStore() && 3183 "MIa must load from or modify a memory location"); 3184 assert(MIb.mayLoadOrStore() && 3185 "MIb must load from or modify a memory location"); 3186 3187 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects()) 3188 return false; 3189 3190 // XXX - Can we relax this between address spaces? 3191 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 3192 return false; 3193 3194 // TODO: Should we check the address space from the MachineMemOperand? That 3195 // would allow us to distinguish objects we know don't alias based on the 3196 // underlying address space, even if it was lowered to a different one, 3197 // e.g. private accesses lowered to use MUBUF instructions on a scratch 3198 // buffer. 3199 if (isDS(MIa)) { 3200 if (isDS(MIb)) 3201 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3202 3203 return !isFLAT(MIb) || isSegmentSpecificFLAT(MIb); 3204 } 3205 3206 if (isMUBUF(MIa) || isMTBUF(MIa)) { 3207 if (isMUBUF(MIb) || isMTBUF(MIb)) 3208 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3209 3210 return !isFLAT(MIb) && !isSMRD(MIb); 3211 } 3212 3213 if (isSMRD(MIa)) { 3214 if (isSMRD(MIb)) 3215 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3216 3217 return !isFLAT(MIb) && !isMUBUF(MIb) && !isMTBUF(MIb); 3218 } 3219 3220 if (isFLAT(MIa)) { 3221 if (isFLAT(MIb)) 3222 return checkInstOffsetsDoNotOverlap(MIa, MIb); 3223 3224 return false; 3225 } 3226 3227 return false; 3228 } 3229 3230 static bool getFoldableImm(Register Reg, const MachineRegisterInfo &MRI, 3231 int64_t &Imm, MachineInstr **DefMI = nullptr) { 3232 if (Reg.isPhysical()) 3233 return false; 3234 auto *Def = MRI.getUniqueVRegDef(Reg); 3235 if (Def && SIInstrInfo::isFoldableCopy(*Def) && Def->getOperand(1).isImm()) { 3236 Imm = Def->getOperand(1).getImm(); 3237 if (DefMI) 3238 *DefMI = Def; 3239 return true; 3240 } 3241 return false; 3242 } 3243 3244 static bool getFoldableImm(const MachineOperand *MO, int64_t &Imm, 3245 MachineInstr **DefMI = nullptr) { 3246 if (!MO->isReg()) 3247 return false; 3248 const MachineFunction *MF = MO->getParent()->getParent()->getParent(); 3249 const MachineRegisterInfo &MRI = MF->getRegInfo(); 3250 return getFoldableImm(MO->getReg(), MRI, Imm, DefMI); 3251 } 3252 3253 static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI, 3254 MachineInstr &NewMI) { 3255 if (LV) { 3256 unsigned NumOps = MI.getNumOperands(); 3257 for (unsigned I = 1; I < NumOps; ++I) { 3258 MachineOperand &Op = MI.getOperand(I); 3259 if (Op.isReg() && Op.isKill()) 3260 LV->replaceKillInstruction(Op.getReg(), MI, NewMI); 3261 } 3262 } 3263 } 3264 3265 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineInstr &MI, 3266 LiveVariables *LV, 3267 LiveIntervals *LIS) const { 3268 MachineBasicBlock &MBB = *MI.getParent(); 3269 unsigned Opc = MI.getOpcode(); 3270 3271 // Handle MFMA. 3272 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opc); 3273 if (NewMFMAOpc != -1) { 3274 MachineInstrBuilder MIB = 3275 BuildMI(MBB, MI, MI.getDebugLoc(), get(NewMFMAOpc)); 3276 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) 3277 MIB.add(MI.getOperand(I)); 3278 updateLiveVariables(LV, MI, *MIB); 3279 if (LIS) 3280 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3281 return MIB; 3282 } 3283 3284 // Handle MAC/FMAC. 3285 bool IsF16 = Opc == AMDGPU::V_MAC_F16_e32 || Opc == AMDGPU::V_MAC_F16_e64 || 3286 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64; 3287 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 || 3288 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || 3289 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64 || 3290 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 || 3291 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; 3292 bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64; 3293 bool IsLegacy = Opc == AMDGPU::V_MAC_LEGACY_F32_e32 || 3294 Opc == AMDGPU::V_MAC_LEGACY_F32_e64 || 3295 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 || 3296 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64; 3297 bool Src0Literal = false; 3298 3299 switch (Opc) { 3300 default: 3301 return nullptr; 3302 case AMDGPU::V_MAC_F16_e64: 3303 case AMDGPU::V_FMAC_F16_e64: 3304 case AMDGPU::V_MAC_F32_e64: 3305 case AMDGPU::V_MAC_LEGACY_F32_e64: 3306 case AMDGPU::V_FMAC_F32_e64: 3307 case AMDGPU::V_FMAC_LEGACY_F32_e64: 3308 case AMDGPU::V_FMAC_F64_e64: 3309 break; 3310 case AMDGPU::V_MAC_F16_e32: 3311 case AMDGPU::V_FMAC_F16_e32: 3312 case AMDGPU::V_MAC_F32_e32: 3313 case AMDGPU::V_MAC_LEGACY_F32_e32: 3314 case AMDGPU::V_FMAC_F32_e32: 3315 case AMDGPU::V_FMAC_LEGACY_F32_e32: 3316 case AMDGPU::V_FMAC_F64_e32: { 3317 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), 3318 AMDGPU::OpName::src0); 3319 const MachineOperand *Src0 = &MI.getOperand(Src0Idx); 3320 if (!Src0->isReg() && !Src0->isImm()) 3321 return nullptr; 3322 3323 if (Src0->isImm() && !isInlineConstant(MI, Src0Idx, *Src0)) 3324 Src0Literal = true; 3325 3326 break; 3327 } 3328 } 3329 3330 MachineInstrBuilder MIB; 3331 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 3332 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); 3333 const MachineOperand *Src0Mods = 3334 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers); 3335 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 3336 const MachineOperand *Src1Mods = 3337 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); 3338 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 3339 const MachineOperand *Src2Mods = 3340 getNamedOperand(MI, AMDGPU::OpName::src2_modifiers); 3341 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); 3342 const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod); 3343 3344 if (!Src0Mods && !Src1Mods && !Src2Mods && !Clamp && !Omod && !IsF64 && 3345 !IsLegacy && 3346 // If we have an SGPR input, we will violate the constant bus restriction. 3347 (ST.getConstantBusLimit(Opc) > 1 || !Src0->isReg() || 3348 !RI.isSGPRReg(MBB.getParent()->getRegInfo(), Src0->getReg()))) { 3349 MachineInstr *DefMI; 3350 const auto killDef = [&DefMI, &MBB, this]() -> void { 3351 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 3352 // The only user is the instruction which will be killed. 3353 if (!MRI.hasOneNonDBGUse(DefMI->getOperand(0).getReg())) 3354 return; 3355 // We cannot just remove the DefMI here, calling pass will crash. 3356 DefMI->setDesc(get(AMDGPU::IMPLICIT_DEF)); 3357 for (unsigned I = DefMI->getNumOperands() - 1; I != 0; --I) 3358 DefMI->RemoveOperand(I); 3359 }; 3360 3361 int64_t Imm; 3362 if (!Src0Literal && getFoldableImm(Src2, Imm, &DefMI)) { 3363 unsigned NewOpc = 3364 IsFMA ? (IsF16 ? AMDGPU::V_FMAAK_F16 : AMDGPU::V_FMAAK_F32) 3365 : (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32); 3366 if (pseudoToMCOpcode(NewOpc) != -1) { 3367 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3368 .add(*Dst) 3369 .add(*Src0) 3370 .add(*Src1) 3371 .addImm(Imm); 3372 updateLiveVariables(LV, MI, *MIB); 3373 if (LIS) 3374 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3375 killDef(); 3376 return MIB; 3377 } 3378 } 3379 unsigned NewOpc = IsFMA 3380 ? (IsF16 ? AMDGPU::V_FMAMK_F16 : AMDGPU::V_FMAMK_F32) 3381 : (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32); 3382 if (!Src0Literal && getFoldableImm(Src1, Imm, &DefMI)) { 3383 if (pseudoToMCOpcode(NewOpc) != -1) { 3384 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3385 .add(*Dst) 3386 .add(*Src0) 3387 .addImm(Imm) 3388 .add(*Src2); 3389 updateLiveVariables(LV, MI, *MIB); 3390 if (LIS) 3391 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3392 killDef(); 3393 return MIB; 3394 } 3395 } 3396 if (Src0Literal || getFoldableImm(Src0, Imm, &DefMI)) { 3397 if (Src0Literal) { 3398 Imm = Src0->getImm(); 3399 DefMI = nullptr; 3400 } 3401 if (pseudoToMCOpcode(NewOpc) != -1 && 3402 isOperandLegal( 3403 MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0), 3404 Src1)) { 3405 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3406 .add(*Dst) 3407 .add(*Src1) 3408 .addImm(Imm) 3409 .add(*Src2); 3410 updateLiveVariables(LV, MI, *MIB); 3411 if (LIS) 3412 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3413 if (DefMI) 3414 killDef(); 3415 return MIB; 3416 } 3417 } 3418 } 3419 3420 // VOP2 mac/fmac with a literal operand cannot be converted to VOP3 mad/fma 3421 // because VOP3 does not allow a literal operand. 3422 // TODO: Remove this restriction for GFX10. 3423 if (Src0Literal) 3424 return nullptr; 3425 3426 unsigned NewOpc = IsFMA ? IsF16 ? AMDGPU::V_FMA_F16_gfx9_e64 3427 : IsF64 ? AMDGPU::V_FMA_F64_e64 3428 : IsLegacy 3429 ? AMDGPU::V_FMA_LEGACY_F32_e64 3430 : AMDGPU::V_FMA_F32_e64 3431 : IsF16 ? AMDGPU::V_MAD_F16_e64 3432 : IsLegacy ? AMDGPU::V_MAD_LEGACY_F32_e64 3433 : AMDGPU::V_MAD_F32_e64; 3434 if (pseudoToMCOpcode(NewOpc) == -1) 3435 return nullptr; 3436 3437 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc)) 3438 .add(*Dst) 3439 .addImm(Src0Mods ? Src0Mods->getImm() : 0) 3440 .add(*Src0) 3441 .addImm(Src1Mods ? Src1Mods->getImm() : 0) 3442 .add(*Src1) 3443 .addImm(Src2Mods ? Src2Mods->getImm() : 0) 3444 .add(*Src2) 3445 .addImm(Clamp ? Clamp->getImm() : 0) 3446 .addImm(Omod ? Omod->getImm() : 0); 3447 updateLiveVariables(LV, MI, *MIB); 3448 if (LIS) 3449 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 3450 return MIB; 3451 } 3452 3453 // It's not generally safe to move VALU instructions across these since it will 3454 // start using the register as a base index rather than directly. 3455 // XXX - Why isn't hasSideEffects sufficient for these? 3456 static bool changesVGPRIndexingMode(const MachineInstr &MI) { 3457 switch (MI.getOpcode()) { 3458 case AMDGPU::S_SET_GPR_IDX_ON: 3459 case AMDGPU::S_SET_GPR_IDX_MODE: 3460 case AMDGPU::S_SET_GPR_IDX_OFF: 3461 return true; 3462 default: 3463 return false; 3464 } 3465 } 3466 3467 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 3468 const MachineBasicBlock *MBB, 3469 const MachineFunction &MF) const { 3470 // Skipping the check for SP writes in the base implementation. The reason it 3471 // was added was apparently due to compile time concerns. 3472 // 3473 // TODO: Do we really want this barrier? It triggers unnecessary hazard nops 3474 // but is probably avoidable. 3475 3476 // Copied from base implementation. 3477 // Terminators and labels can't be scheduled around. 3478 if (MI.isTerminator() || MI.isPosition()) 3479 return true; 3480 3481 // INLINEASM_BR can jump to another block 3482 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 3483 return true; 3484 3485 // Target-independent instructions do not have an implicit-use of EXEC, even 3486 // when they operate on VGPRs. Treating EXEC modifications as scheduling 3487 // boundaries prevents incorrect movements of such instructions. 3488 return MI.modifiesRegister(AMDGPU::EXEC, &RI) || 3489 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 || 3490 MI.getOpcode() == AMDGPU::S_SETREG_B32 || 3491 changesVGPRIndexingMode(MI); 3492 } 3493 3494 bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const { 3495 return Opcode == AMDGPU::DS_ORDERED_COUNT || 3496 Opcode == AMDGPU::DS_GWS_INIT || 3497 Opcode == AMDGPU::DS_GWS_SEMA_V || 3498 Opcode == AMDGPU::DS_GWS_SEMA_BR || 3499 Opcode == AMDGPU::DS_GWS_SEMA_P || 3500 Opcode == AMDGPU::DS_GWS_SEMA_RELEASE_ALL || 3501 Opcode == AMDGPU::DS_GWS_BARRIER; 3502 } 3503 3504 bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) { 3505 // Skip the full operand and register alias search modifiesRegister 3506 // does. There's only a handful of instructions that touch this, it's only an 3507 // implicit def, and doesn't alias any other registers. 3508 if (const MCPhysReg *ImpDef = MI.getDesc().getImplicitDefs()) { 3509 for (; ImpDef && *ImpDef; ++ImpDef) { 3510 if (*ImpDef == AMDGPU::MODE) 3511 return true; 3512 } 3513 } 3514 3515 return false; 3516 } 3517 3518 bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const { 3519 unsigned Opcode = MI.getOpcode(); 3520 3521 if (MI.mayStore() && isSMRD(MI)) 3522 return true; // scalar store or atomic 3523 3524 // This will terminate the function when other lanes may need to continue. 3525 if (MI.isReturn()) 3526 return true; 3527 3528 // These instructions cause shader I/O that may cause hardware lockups 3529 // when executed with an empty EXEC mask. 3530 // 3531 // Note: exp with VM = DONE = 0 is automatically skipped by hardware when 3532 // EXEC = 0, but checking for that case here seems not worth it 3533 // given the typical code patterns. 3534 if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT || 3535 isEXP(Opcode) || 3536 Opcode == AMDGPU::DS_ORDERED_COUNT || Opcode == AMDGPU::S_TRAP || 3537 Opcode == AMDGPU::DS_GWS_INIT || Opcode == AMDGPU::DS_GWS_BARRIER) 3538 return true; 3539 3540 if (MI.isCall() || MI.isInlineAsm()) 3541 return true; // conservative assumption 3542 3543 // A mode change is a scalar operation that influences vector instructions. 3544 if (modifiesModeRegister(MI)) 3545 return true; 3546 3547 // These are like SALU instructions in terms of effects, so it's questionable 3548 // whether we should return true for those. 3549 // 3550 // However, executing them with EXEC = 0 causes them to operate on undefined 3551 // data, which we avoid by returning true here. 3552 if (Opcode == AMDGPU::V_READFIRSTLANE_B32 || 3553 Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32) 3554 return true; 3555 3556 return false; 3557 } 3558 3559 bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI, 3560 const MachineInstr &MI) const { 3561 if (MI.isMetaInstruction()) 3562 return false; 3563 3564 // This won't read exec if this is an SGPR->SGPR copy. 3565 if (MI.isCopyLike()) { 3566 if (!RI.isSGPRReg(MRI, MI.getOperand(0).getReg())) 3567 return true; 3568 3569 // Make sure this isn't copying exec as a normal operand 3570 return MI.readsRegister(AMDGPU::EXEC, &RI); 3571 } 3572 3573 // Make a conservative assumption about the callee. 3574 if (MI.isCall()) 3575 return true; 3576 3577 // Be conservative with any unhandled generic opcodes. 3578 if (!isTargetSpecificOpcode(MI.getOpcode())) 3579 return true; 3580 3581 return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI); 3582 } 3583 3584 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { 3585 switch (Imm.getBitWidth()) { 3586 case 1: // This likely will be a condition code mask. 3587 return true; 3588 3589 case 32: 3590 return AMDGPU::isInlinableLiteral32(Imm.getSExtValue(), 3591 ST.hasInv2PiInlineImm()); 3592 case 64: 3593 return AMDGPU::isInlinableLiteral64(Imm.getSExtValue(), 3594 ST.hasInv2PiInlineImm()); 3595 case 16: 3596 return ST.has16BitInsts() && 3597 AMDGPU::isInlinableLiteral16(Imm.getSExtValue(), 3598 ST.hasInv2PiInlineImm()); 3599 default: 3600 llvm_unreachable("invalid bitwidth"); 3601 } 3602 } 3603 3604 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, 3605 uint8_t OperandType) const { 3606 if (!MO.isImm() || 3607 OperandType < AMDGPU::OPERAND_SRC_FIRST || 3608 OperandType > AMDGPU::OPERAND_SRC_LAST) 3609 return false; 3610 3611 // MachineOperand provides no way to tell the true operand size, since it only 3612 // records a 64-bit value. We need to know the size to determine if a 32-bit 3613 // floating point immediate bit pattern is legal for an integer immediate. It 3614 // would be for any 32-bit integer operand, but would not be for a 64-bit one. 3615 3616 int64_t Imm = MO.getImm(); 3617 switch (OperandType) { 3618 case AMDGPU::OPERAND_REG_IMM_INT32: 3619 case AMDGPU::OPERAND_REG_IMM_FP32: 3620 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 3621 case AMDGPU::OPERAND_REG_INLINE_C_INT32: 3622 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 3623 case AMDGPU::OPERAND_REG_IMM_V2FP32: 3624 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32: 3625 case AMDGPU::OPERAND_REG_IMM_V2INT32: 3626 case AMDGPU::OPERAND_REG_INLINE_C_V2INT32: 3627 case AMDGPU::OPERAND_REG_INLINE_AC_INT32: 3628 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: { 3629 int32_t Trunc = static_cast<int32_t>(Imm); 3630 return AMDGPU::isInlinableLiteral32(Trunc, ST.hasInv2PiInlineImm()); 3631 } 3632 case AMDGPU::OPERAND_REG_IMM_INT64: 3633 case AMDGPU::OPERAND_REG_IMM_FP64: 3634 case AMDGPU::OPERAND_REG_INLINE_C_INT64: 3635 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 3636 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: 3637 return AMDGPU::isInlinableLiteral64(MO.getImm(), 3638 ST.hasInv2PiInlineImm()); 3639 case AMDGPU::OPERAND_REG_IMM_INT16: 3640 case AMDGPU::OPERAND_REG_INLINE_C_INT16: 3641 case AMDGPU::OPERAND_REG_INLINE_AC_INT16: 3642 // We would expect inline immediates to not be concerned with an integer/fp 3643 // distinction. However, in the case of 16-bit integer operations, the 3644 // "floating point" values appear to not work. It seems read the low 16-bits 3645 // of 32-bit immediates, which happens to always work for the integer 3646 // values. 3647 // 3648 // See llvm bugzilla 46302. 3649 // 3650 // TODO: Theoretically we could use op-sel to use the high bits of the 3651 // 32-bit FP values. 3652 return AMDGPU::isInlinableIntLiteral(Imm); 3653 case AMDGPU::OPERAND_REG_IMM_V2INT16: 3654 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 3655 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16: 3656 // This suffers the same problem as the scalar 16-bit cases. 3657 return AMDGPU::isInlinableIntLiteralV216(Imm); 3658 case AMDGPU::OPERAND_REG_IMM_FP16: 3659 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED: 3660 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 3661 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: { 3662 if (isInt<16>(Imm) || isUInt<16>(Imm)) { 3663 // A few special case instructions have 16-bit operands on subtargets 3664 // where 16-bit instructions are not legal. 3665 // TODO: Do the 32-bit immediates work? We shouldn't really need to handle 3666 // constants in these cases 3667 int16_t Trunc = static_cast<int16_t>(Imm); 3668 return ST.has16BitInsts() && 3669 AMDGPU::isInlinableLiteral16(Trunc, ST.hasInv2PiInlineImm()); 3670 } 3671 3672 return false; 3673 } 3674 case AMDGPU::OPERAND_REG_IMM_V2FP16: 3675 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 3676 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: { 3677 uint32_t Trunc = static_cast<uint32_t>(Imm); 3678 return AMDGPU::isInlinableLiteralV216(Trunc, ST.hasInv2PiInlineImm()); 3679 } 3680 case AMDGPU::OPERAND_KIMM32: 3681 case AMDGPU::OPERAND_KIMM16: 3682 return false; 3683 default: 3684 llvm_unreachable("invalid bitwidth"); 3685 } 3686 } 3687 3688 bool SIInstrInfo::isLiteralConstantLike(const MachineOperand &MO, 3689 const MCOperandInfo &OpInfo) const { 3690 switch (MO.getType()) { 3691 case MachineOperand::MO_Register: 3692 return false; 3693 case MachineOperand::MO_Immediate: 3694 return !isInlineConstant(MO, OpInfo); 3695 case MachineOperand::MO_FrameIndex: 3696 case MachineOperand::MO_MachineBasicBlock: 3697 case MachineOperand::MO_ExternalSymbol: 3698 case MachineOperand::MO_GlobalAddress: 3699 case MachineOperand::MO_MCSymbol: 3700 return true; 3701 default: 3702 llvm_unreachable("unexpected operand type"); 3703 } 3704 } 3705 3706 static bool compareMachineOp(const MachineOperand &Op0, 3707 const MachineOperand &Op1) { 3708 if (Op0.getType() != Op1.getType()) 3709 return false; 3710 3711 switch (Op0.getType()) { 3712 case MachineOperand::MO_Register: 3713 return Op0.getReg() == Op1.getReg(); 3714 case MachineOperand::MO_Immediate: 3715 return Op0.getImm() == Op1.getImm(); 3716 default: 3717 llvm_unreachable("Didn't expect to be comparing these operand types"); 3718 } 3719 } 3720 3721 bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, 3722 const MachineOperand &MO) const { 3723 const MCInstrDesc &InstDesc = MI.getDesc(); 3724 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 3725 3726 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); 3727 3728 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) 3729 return true; 3730 3731 if (OpInfo.RegClass < 0) 3732 return false; 3733 3734 if (MO.isImm() && isInlineConstant(MO, OpInfo)) { 3735 if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() && 3736 OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(), 3737 AMDGPU::OpName::src2)) 3738 return false; 3739 return RI.opCanUseInlineConstant(OpInfo.OperandType); 3740 } 3741 3742 if (!RI.opCanUseLiteralConstant(OpInfo.OperandType)) 3743 return false; 3744 3745 if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(InstDesc, OpNo)) 3746 return true; 3747 3748 return ST.hasVOP3Literal(); 3749 } 3750 3751 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { 3752 // GFX90A does not have V_MUL_LEGACY_F32_e32. 3753 if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts()) 3754 return false; 3755 3756 int Op32 = AMDGPU::getVOPe32(Opcode); 3757 if (Op32 == -1) 3758 return false; 3759 3760 return pseudoToMCOpcode(Op32) != -1; 3761 } 3762 3763 bool SIInstrInfo::hasModifiers(unsigned Opcode) const { 3764 // The src0_modifier operand is present on all instructions 3765 // that have modifiers. 3766 3767 return AMDGPU::getNamedOperandIdx(Opcode, 3768 AMDGPU::OpName::src0_modifiers) != -1; 3769 } 3770 3771 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, 3772 unsigned OpName) const { 3773 const MachineOperand *Mods = getNamedOperand(MI, OpName); 3774 return Mods && Mods->getImm(); 3775 } 3776 3777 bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const { 3778 return hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 3779 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 3780 hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers) || 3781 hasModifiersSet(MI, AMDGPU::OpName::clamp) || 3782 hasModifiersSet(MI, AMDGPU::OpName::omod); 3783 } 3784 3785 bool SIInstrInfo::canShrink(const MachineInstr &MI, 3786 const MachineRegisterInfo &MRI) const { 3787 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 3788 // Can't shrink instruction with three operands. 3789 if (Src2) { 3790 switch (MI.getOpcode()) { 3791 default: return false; 3792 3793 case AMDGPU::V_ADDC_U32_e64: 3794 case AMDGPU::V_SUBB_U32_e64: 3795 case AMDGPU::V_SUBBREV_U32_e64: { 3796 const MachineOperand *Src1 3797 = getNamedOperand(MI, AMDGPU::OpName::src1); 3798 if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg())) 3799 return false; 3800 // Additional verification is needed for sdst/src2. 3801 return true; 3802 } 3803 case AMDGPU::V_MAC_F16_e64: 3804 case AMDGPU::V_MAC_F32_e64: 3805 case AMDGPU::V_MAC_LEGACY_F32_e64: 3806 case AMDGPU::V_FMAC_F16_e64: 3807 case AMDGPU::V_FMAC_F32_e64: 3808 case AMDGPU::V_FMAC_F64_e64: 3809 case AMDGPU::V_FMAC_LEGACY_F32_e64: 3810 if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) || 3811 hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers)) 3812 return false; 3813 break; 3814 3815 case AMDGPU::V_CNDMASK_B32_e64: 3816 break; 3817 } 3818 } 3819 3820 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 3821 if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) || 3822 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers))) 3823 return false; 3824 3825 // We don't need to check src0, all input types are legal, so just make sure 3826 // src0 isn't using any modifiers. 3827 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers)) 3828 return false; 3829 3830 // Can it be shrunk to a valid 32 bit opcode? 3831 if (!hasVALU32BitEncoding(MI.getOpcode())) 3832 return false; 3833 3834 // Check output modifiers 3835 return !hasModifiersSet(MI, AMDGPU::OpName::omod) && 3836 !hasModifiersSet(MI, AMDGPU::OpName::clamp); 3837 } 3838 3839 // Set VCC operand with all flags from \p Orig, except for setting it as 3840 // implicit. 3841 static void copyFlagsToImplicitVCC(MachineInstr &MI, 3842 const MachineOperand &Orig) { 3843 3844 for (MachineOperand &Use : MI.implicit_operands()) { 3845 if (Use.isUse() && 3846 (Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) { 3847 Use.setIsUndef(Orig.isUndef()); 3848 Use.setIsKill(Orig.isKill()); 3849 return; 3850 } 3851 } 3852 } 3853 3854 MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI, 3855 unsigned Op32) const { 3856 MachineBasicBlock *MBB = MI.getParent();; 3857 MachineInstrBuilder Inst32 = 3858 BuildMI(*MBB, MI, MI.getDebugLoc(), get(Op32)) 3859 .setMIFlags(MI.getFlags()); 3860 3861 // Add the dst operand if the 32-bit encoding also has an explicit $vdst. 3862 // For VOPC instructions, this is replaced by an implicit def of vcc. 3863 int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst); 3864 if (Op32DstIdx != -1) { 3865 // dst 3866 Inst32.add(MI.getOperand(0)); 3867 } else { 3868 assert(((MI.getOperand(0).getReg() == AMDGPU::VCC) || 3869 (MI.getOperand(0).getReg() == AMDGPU::VCC_LO)) && 3870 "Unexpected case"); 3871 } 3872 3873 Inst32.add(*getNamedOperand(MI, AMDGPU::OpName::src0)); 3874 3875 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 3876 if (Src1) 3877 Inst32.add(*Src1); 3878 3879 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 3880 3881 if (Src2) { 3882 int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2); 3883 if (Op32Src2Idx != -1) { 3884 Inst32.add(*Src2); 3885 } else { 3886 // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is 3887 // replaced with an implicit read of vcc or vcc_lo. The implicit read 3888 // of vcc was already added during the initial BuildMI, but we 3889 // 1) may need to change vcc to vcc_lo to preserve the original register 3890 // 2) have to preserve the original flags. 3891 fixImplicitOperands(*Inst32); 3892 copyFlagsToImplicitVCC(*Inst32, *Src2); 3893 } 3894 } 3895 3896 return Inst32; 3897 } 3898 3899 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, 3900 const MachineOperand &MO, 3901 const MCOperandInfo &OpInfo) const { 3902 // Literal constants use the constant bus. 3903 //if (isLiteralConstantLike(MO, OpInfo)) 3904 // return true; 3905 if (MO.isImm()) 3906 return !isInlineConstant(MO, OpInfo); 3907 3908 if (!MO.isReg()) 3909 return true; // Misc other operands like FrameIndex 3910 3911 if (!MO.isUse()) 3912 return false; 3913 3914 if (MO.getReg().isVirtual()) 3915 return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); 3916 3917 // Null is free 3918 if (MO.getReg() == AMDGPU::SGPR_NULL) 3919 return false; 3920 3921 // SGPRs use the constant bus 3922 if (MO.isImplicit()) { 3923 return MO.getReg() == AMDGPU::M0 || 3924 MO.getReg() == AMDGPU::VCC || 3925 MO.getReg() == AMDGPU::VCC_LO; 3926 } else { 3927 return AMDGPU::SReg_32RegClass.contains(MO.getReg()) || 3928 AMDGPU::SReg_64RegClass.contains(MO.getReg()); 3929 } 3930 } 3931 3932 static Register findImplicitSGPRRead(const MachineInstr &MI) { 3933 for (const MachineOperand &MO : MI.implicit_operands()) { 3934 // We only care about reads. 3935 if (MO.isDef()) 3936 continue; 3937 3938 switch (MO.getReg()) { 3939 case AMDGPU::VCC: 3940 case AMDGPU::VCC_LO: 3941 case AMDGPU::VCC_HI: 3942 case AMDGPU::M0: 3943 case AMDGPU::FLAT_SCR: 3944 return MO.getReg(); 3945 3946 default: 3947 break; 3948 } 3949 } 3950 3951 return AMDGPU::NoRegister; 3952 } 3953 3954 static bool shouldReadExec(const MachineInstr &MI) { 3955 if (SIInstrInfo::isVALU(MI)) { 3956 switch (MI.getOpcode()) { 3957 case AMDGPU::V_READLANE_B32: 3958 case AMDGPU::V_WRITELANE_B32: 3959 return false; 3960 } 3961 3962 return true; 3963 } 3964 3965 if (MI.isPreISelOpcode() || 3966 SIInstrInfo::isGenericOpcode(MI.getOpcode()) || 3967 SIInstrInfo::isSALU(MI) || 3968 SIInstrInfo::isSMRD(MI)) 3969 return false; 3970 3971 return true; 3972 } 3973 3974 static bool isSubRegOf(const SIRegisterInfo &TRI, 3975 const MachineOperand &SuperVec, 3976 const MachineOperand &SubReg) { 3977 if (SubReg.getReg().isPhysical()) 3978 return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg()); 3979 3980 return SubReg.getSubReg() != AMDGPU::NoSubRegister && 3981 SubReg.getReg() == SuperVec.getReg(); 3982 } 3983 3984 bool SIInstrInfo::verifyInstruction(const MachineInstr &MI, 3985 StringRef &ErrInfo) const { 3986 uint16_t Opcode = MI.getOpcode(); 3987 if (SIInstrInfo::isGenericOpcode(MI.getOpcode())) 3988 return true; 3989 3990 const MachineFunction *MF = MI.getParent()->getParent(); 3991 const MachineRegisterInfo &MRI = MF->getRegInfo(); 3992 3993 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 3994 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); 3995 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); 3996 3997 // Make sure the number of operands is correct. 3998 const MCInstrDesc &Desc = get(Opcode); 3999 if (!Desc.isVariadic() && 4000 Desc.getNumOperands() != MI.getNumExplicitOperands()) { 4001 ErrInfo = "Instruction has wrong number of operands."; 4002 return false; 4003 } 4004 4005 if (MI.isInlineAsm()) { 4006 // Verify register classes for inlineasm constraints. 4007 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands(); 4008 I != E; ++I) { 4009 const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI); 4010 if (!RC) 4011 continue; 4012 4013 const MachineOperand &Op = MI.getOperand(I); 4014 if (!Op.isReg()) 4015 continue; 4016 4017 Register Reg = Op.getReg(); 4018 if (!Reg.isVirtual() && !RC->contains(Reg)) { 4019 ErrInfo = "inlineasm operand has incorrect register class."; 4020 return false; 4021 } 4022 } 4023 4024 return true; 4025 } 4026 4027 if (isMIMG(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) { 4028 ErrInfo = "missing memory operand from MIMG instruction."; 4029 return false; 4030 } 4031 4032 // Make sure the register classes are correct. 4033 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { 4034 const MachineOperand &MO = MI.getOperand(i); 4035 if (MO.isFPImm()) { 4036 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " 4037 "all fp values to integers."; 4038 return false; 4039 } 4040 4041 int RegClass = Desc.OpInfo[i].RegClass; 4042 4043 switch (Desc.OpInfo[i].OperandType) { 4044 case MCOI::OPERAND_REGISTER: 4045 if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) { 4046 ErrInfo = "Illegal immediate value for operand."; 4047 return false; 4048 } 4049 break; 4050 case AMDGPU::OPERAND_REG_IMM_INT32: 4051 case AMDGPU::OPERAND_REG_IMM_FP32: 4052 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED: 4053 break; 4054 case AMDGPU::OPERAND_REG_INLINE_C_INT32: 4055 case AMDGPU::OPERAND_REG_INLINE_C_FP32: 4056 case AMDGPU::OPERAND_REG_INLINE_C_INT64: 4057 case AMDGPU::OPERAND_REG_INLINE_C_FP64: 4058 case AMDGPU::OPERAND_REG_INLINE_C_INT16: 4059 case AMDGPU::OPERAND_REG_INLINE_C_FP16: 4060 case AMDGPU::OPERAND_REG_INLINE_AC_INT32: 4061 case AMDGPU::OPERAND_REG_INLINE_AC_FP32: 4062 case AMDGPU::OPERAND_REG_INLINE_AC_INT16: 4063 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: 4064 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: { 4065 if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, i))) { 4066 ErrInfo = "Illegal immediate value for operand."; 4067 return false; 4068 } 4069 break; 4070 } 4071 case MCOI::OPERAND_IMMEDIATE: 4072 case AMDGPU::OPERAND_KIMM32: 4073 // Check if this operand is an immediate. 4074 // FrameIndex operands will be replaced by immediates, so they are 4075 // allowed. 4076 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) { 4077 ErrInfo = "Expected immediate, but got non-immediate"; 4078 return false; 4079 } 4080 LLVM_FALLTHROUGH; 4081 default: 4082 continue; 4083 } 4084 4085 if (!MO.isReg()) 4086 continue; 4087 Register Reg = MO.getReg(); 4088 if (!Reg) 4089 continue; 4090 4091 // FIXME: Ideally we would have separate instruction definitions with the 4092 // aligned register constraint. 4093 // FIXME: We do not verify inline asm operands, but custom inline asm 4094 // verification is broken anyway 4095 if (ST.needsAlignedVGPRs()) { 4096 const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg); 4097 if (RI.hasVectorRegisters(RC) && MO.getSubReg()) { 4098 const TargetRegisterClass *SubRC = 4099 RI.getSubRegClass(RC, MO.getSubReg()); 4100 RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg()); 4101 if (RC) 4102 RC = SubRC; 4103 } 4104 4105 // Check that this is the aligned version of the class. 4106 if (!RC || !RI.isProperlyAlignedRC(*RC)) { 4107 ErrInfo = "Subtarget requires even aligned vector registers"; 4108 return false; 4109 } 4110 } 4111 4112 if (RegClass != -1) { 4113 if (Reg.isVirtual()) 4114 continue; 4115 4116 const TargetRegisterClass *RC = RI.getRegClass(RegClass); 4117 if (!RC->contains(Reg)) { 4118 ErrInfo = "Operand has incorrect register class."; 4119 return false; 4120 } 4121 } 4122 } 4123 4124 // Verify SDWA 4125 if (isSDWA(MI)) { 4126 if (!ST.hasSDWA()) { 4127 ErrInfo = "SDWA is not supported on this target"; 4128 return false; 4129 } 4130 4131 int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst); 4132 4133 const int OpIndices[] = {DstIdx, Src0Idx, Src1Idx, Src2Idx}; 4134 4135 for (int OpIdx : OpIndices) { 4136 if (OpIdx == -1) 4137 continue; 4138 const MachineOperand &MO = MI.getOperand(OpIdx); 4139 4140 if (!ST.hasSDWAScalar()) { 4141 // Only VGPRS on VI 4142 if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) { 4143 ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI"; 4144 return false; 4145 } 4146 } else { 4147 // No immediates on GFX9 4148 if (!MO.isReg()) { 4149 ErrInfo = 4150 "Only reg allowed as operands in SDWA instructions on GFX9+"; 4151 return false; 4152 } 4153 } 4154 } 4155 4156 if (!ST.hasSDWAOmod()) { 4157 // No omod allowed on VI 4158 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); 4159 if (OMod != nullptr && 4160 (!OMod->isImm() || OMod->getImm() != 0)) { 4161 ErrInfo = "OMod not allowed in SDWA instructions on VI"; 4162 return false; 4163 } 4164 } 4165 4166 uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode); 4167 if (isVOPC(BasicOpcode)) { 4168 if (!ST.hasSDWASdst() && DstIdx != -1) { 4169 // Only vcc allowed as dst on VI for VOPC 4170 const MachineOperand &Dst = MI.getOperand(DstIdx); 4171 if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) { 4172 ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI"; 4173 return false; 4174 } 4175 } else if (!ST.hasSDWAOutModsVOPC()) { 4176 // No clamp allowed on GFX9 for VOPC 4177 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp); 4178 if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) { 4179 ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI"; 4180 return false; 4181 } 4182 4183 // No omod allowed on GFX9 for VOPC 4184 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod); 4185 if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) { 4186 ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI"; 4187 return false; 4188 } 4189 } 4190 } 4191 4192 const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused); 4193 if (DstUnused && DstUnused->isImm() && 4194 DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) { 4195 const MachineOperand &Dst = MI.getOperand(DstIdx); 4196 if (!Dst.isReg() || !Dst.isTied()) { 4197 ErrInfo = "Dst register should have tied register"; 4198 return false; 4199 } 4200 4201 const MachineOperand &TiedMO = 4202 MI.getOperand(MI.findTiedOperandIdx(DstIdx)); 4203 if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) { 4204 ErrInfo = 4205 "Dst register should be tied to implicit use of preserved register"; 4206 return false; 4207 } else if (TiedMO.getReg().isPhysical() && 4208 Dst.getReg() != TiedMO.getReg()) { 4209 ErrInfo = "Dst register should use same physical register as preserved"; 4210 return false; 4211 } 4212 } 4213 } 4214 4215 // Verify MIMG 4216 if (isMIMG(MI.getOpcode()) && !MI.mayStore()) { 4217 // Ensure that the return type used is large enough for all the options 4218 // being used TFE/LWE require an extra result register. 4219 const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask); 4220 if (DMask) { 4221 uint64_t DMaskImm = DMask->getImm(); 4222 uint32_t RegCount = 4223 isGather4(MI.getOpcode()) ? 4 : countPopulation(DMaskImm); 4224 const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe); 4225 const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe); 4226 const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16); 4227 4228 // Adjust for packed 16 bit values 4229 if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem()) 4230 RegCount >>= 1; 4231 4232 // Adjust if using LWE or TFE 4233 if ((LWE && LWE->getImm()) || (TFE && TFE->getImm())) 4234 RegCount += 1; 4235 4236 const uint32_t DstIdx = 4237 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata); 4238 const MachineOperand &Dst = MI.getOperand(DstIdx); 4239 if (Dst.isReg()) { 4240 const TargetRegisterClass *DstRC = getOpRegClass(MI, DstIdx); 4241 uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32; 4242 if (RegCount > DstSize) { 4243 ErrInfo = "MIMG instruction returns too many registers for dst " 4244 "register class"; 4245 return false; 4246 } 4247 } 4248 } 4249 } 4250 4251 // Verify VOP*. Ignore multiple sgpr operands on writelane. 4252 if (Desc.getOpcode() != AMDGPU::V_WRITELANE_B32 4253 && (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI) || isSDWA(MI))) { 4254 // Only look at the true operands. Only a real operand can use the constant 4255 // bus, and we don't want to check pseudo-operands like the source modifier 4256 // flags. 4257 const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx }; 4258 4259 unsigned ConstantBusCount = 0; 4260 bool UsesLiteral = false; 4261 const MachineOperand *LiteralVal = nullptr; 4262 4263 if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1) 4264 ++ConstantBusCount; 4265 4266 SmallVector<Register, 2> SGPRsUsed; 4267 Register SGPRUsed; 4268 4269 for (int OpIdx : OpIndices) { 4270 if (OpIdx == -1) 4271 break; 4272 const MachineOperand &MO = MI.getOperand(OpIdx); 4273 if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) { 4274 if (MO.isReg()) { 4275 SGPRUsed = MO.getReg(); 4276 if (llvm::all_of(SGPRsUsed, [SGPRUsed](unsigned SGPR) { 4277 return SGPRUsed != SGPR; 4278 })) { 4279 ++ConstantBusCount; 4280 SGPRsUsed.push_back(SGPRUsed); 4281 } 4282 } else { 4283 if (!UsesLiteral) { 4284 ++ConstantBusCount; 4285 UsesLiteral = true; 4286 LiteralVal = &MO; 4287 } else if (!MO.isIdenticalTo(*LiteralVal)) { 4288 assert(isVOP3(MI)); 4289 ErrInfo = "VOP3 instruction uses more than one literal"; 4290 return false; 4291 } 4292 } 4293 } 4294 } 4295 4296 SGPRUsed = findImplicitSGPRRead(MI); 4297 if (SGPRUsed != AMDGPU::NoRegister) { 4298 // Implicit uses may safely overlap true operands 4299 if (llvm::all_of(SGPRsUsed, [this, SGPRUsed](unsigned SGPR) { 4300 return !RI.regsOverlap(SGPRUsed, SGPR); 4301 })) { 4302 ++ConstantBusCount; 4303 SGPRsUsed.push_back(SGPRUsed); 4304 } 4305 } 4306 4307 // v_writelane_b32 is an exception from constant bus restriction: 4308 // vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const 4309 if (ConstantBusCount > ST.getConstantBusLimit(Opcode) && 4310 Opcode != AMDGPU::V_WRITELANE_B32) { 4311 ErrInfo = "VOP* instruction violates constant bus restriction"; 4312 return false; 4313 } 4314 4315 if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) { 4316 ErrInfo = "VOP3 instruction uses literal"; 4317 return false; 4318 } 4319 } 4320 4321 // Special case for writelane - this can break the multiple constant bus rule, 4322 // but still can't use more than one SGPR register 4323 if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) { 4324 unsigned SGPRCount = 0; 4325 Register SGPRUsed = AMDGPU::NoRegister; 4326 4327 for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx}) { 4328 if (OpIdx == -1) 4329 break; 4330 4331 const MachineOperand &MO = MI.getOperand(OpIdx); 4332 4333 if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) { 4334 if (MO.isReg() && MO.getReg() != AMDGPU::M0) { 4335 if (MO.getReg() != SGPRUsed) 4336 ++SGPRCount; 4337 SGPRUsed = MO.getReg(); 4338 } 4339 } 4340 if (SGPRCount > ST.getConstantBusLimit(Opcode)) { 4341 ErrInfo = "WRITELANE instruction violates constant bus restriction"; 4342 return false; 4343 } 4344 } 4345 } 4346 4347 // Verify misc. restrictions on specific instructions. 4348 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 || 4349 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) { 4350 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 4351 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 4352 const MachineOperand &Src2 = MI.getOperand(Src2Idx); 4353 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { 4354 if (!compareMachineOp(Src0, Src1) && 4355 !compareMachineOp(Src0, Src2)) { 4356 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; 4357 return false; 4358 } 4359 } 4360 if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() & 4361 SISrcMods::ABS) || 4362 (getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() & 4363 SISrcMods::ABS) || 4364 (getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() & 4365 SISrcMods::ABS)) { 4366 ErrInfo = "ABS not allowed in VOP3B instructions"; 4367 return false; 4368 } 4369 } 4370 4371 if (isSOP2(MI) || isSOPC(MI)) { 4372 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 4373 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 4374 unsigned Immediates = 0; 4375 4376 if (!Src0.isReg() && 4377 !isInlineConstant(Src0, Desc.OpInfo[Src0Idx].OperandType)) 4378 Immediates++; 4379 if (!Src1.isReg() && 4380 !isInlineConstant(Src1, Desc.OpInfo[Src1Idx].OperandType)) 4381 Immediates++; 4382 4383 if (Immediates > 1) { 4384 ErrInfo = "SOP2/SOPC instruction requires too many immediate constants"; 4385 return false; 4386 } 4387 } 4388 4389 if (isSOPK(MI)) { 4390 auto Op = getNamedOperand(MI, AMDGPU::OpName::simm16); 4391 if (Desc.isBranch()) { 4392 if (!Op->isMBB()) { 4393 ErrInfo = "invalid branch target for SOPK instruction"; 4394 return false; 4395 } 4396 } else { 4397 uint64_t Imm = Op->getImm(); 4398 if (sopkIsZext(MI)) { 4399 if (!isUInt<16>(Imm)) { 4400 ErrInfo = "invalid immediate for SOPK instruction"; 4401 return false; 4402 } 4403 } else { 4404 if (!isInt<16>(Imm)) { 4405 ErrInfo = "invalid immediate for SOPK instruction"; 4406 return false; 4407 } 4408 } 4409 } 4410 } 4411 4412 if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 || 4413 Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 || 4414 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 4415 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) { 4416 const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 4417 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64; 4418 4419 const unsigned StaticNumOps = Desc.getNumOperands() + 4420 Desc.getNumImplicitUses(); 4421 const unsigned NumImplicitOps = IsDst ? 2 : 1; 4422 4423 // Allow additional implicit operands. This allows a fixup done by the post 4424 // RA scheduler where the main implicit operand is killed and implicit-defs 4425 // are added for sub-registers that remain live after this instruction. 4426 if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) { 4427 ErrInfo = "missing implicit register operands"; 4428 return false; 4429 } 4430 4431 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 4432 if (IsDst) { 4433 if (!Dst->isUse()) { 4434 ErrInfo = "v_movreld_b32 vdst should be a use operand"; 4435 return false; 4436 } 4437 4438 unsigned UseOpIdx; 4439 if (!MI.isRegTiedToUseOperand(StaticNumOps, &UseOpIdx) || 4440 UseOpIdx != StaticNumOps + 1) { 4441 ErrInfo = "movrel implicit operands should be tied"; 4442 return false; 4443 } 4444 } 4445 4446 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 4447 const MachineOperand &ImpUse 4448 = MI.getOperand(StaticNumOps + NumImplicitOps - 1); 4449 if (!ImpUse.isReg() || !ImpUse.isUse() || 4450 !isSubRegOf(RI, ImpUse, IsDst ? *Dst : Src0)) { 4451 ErrInfo = "src0 should be subreg of implicit vector use"; 4452 return false; 4453 } 4454 } 4455 4456 // Make sure we aren't losing exec uses in the td files. This mostly requires 4457 // being careful when using let Uses to try to add other use registers. 4458 if (shouldReadExec(MI)) { 4459 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { 4460 ErrInfo = "VALU instruction does not implicitly read exec mask"; 4461 return false; 4462 } 4463 } 4464 4465 if (isSMRD(MI)) { 4466 if (MI.mayStore()) { 4467 // The register offset form of scalar stores may only use m0 as the 4468 // soffset register. 4469 const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soff); 4470 if (Soff && Soff->getReg() != AMDGPU::M0) { 4471 ErrInfo = "scalar stores must use m0 as offset register"; 4472 return false; 4473 } 4474 } 4475 } 4476 4477 if (isFLAT(MI) && !ST.hasFlatInstOffsets()) { 4478 const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 4479 if (Offset->getImm() != 0) { 4480 ErrInfo = "subtarget does not support offsets in flat instructions"; 4481 return false; 4482 } 4483 } 4484 4485 if (isMIMG(MI)) { 4486 const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim); 4487 if (DimOp) { 4488 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode, 4489 AMDGPU::OpName::vaddr0); 4490 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc); 4491 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opcode); 4492 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = 4493 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 4494 const AMDGPU::MIMGDimInfo *Dim = 4495 AMDGPU::getMIMGDimInfoByEncoding(DimOp->getImm()); 4496 4497 if (!Dim) { 4498 ErrInfo = "dim is out of range"; 4499 return false; 4500 } 4501 4502 bool IsA16 = false; 4503 if (ST.hasR128A16()) { 4504 const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128); 4505 IsA16 = R128A16->getImm() != 0; 4506 } else if (ST.hasGFX10A16()) { 4507 const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16); 4508 IsA16 = A16->getImm() != 0; 4509 } 4510 4511 bool IsNSA = SRsrcIdx - VAddr0Idx > 1; 4512 4513 unsigned AddrWords = 4514 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, ST.hasG16()); 4515 4516 unsigned VAddrWords; 4517 if (IsNSA) { 4518 VAddrWords = SRsrcIdx - VAddr0Idx; 4519 } else { 4520 const TargetRegisterClass *RC = getOpRegClass(MI, VAddr0Idx); 4521 VAddrWords = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 32; 4522 if (AddrWords > 8) 4523 AddrWords = 16; 4524 } 4525 4526 if (VAddrWords != AddrWords) { 4527 LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords 4528 << " but got " << VAddrWords << "\n"); 4529 ErrInfo = "bad vaddr size"; 4530 return false; 4531 } 4532 } 4533 } 4534 4535 const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl); 4536 if (DppCt) { 4537 using namespace AMDGPU::DPP; 4538 4539 unsigned DC = DppCt->getImm(); 4540 if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 || 4541 DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST || 4542 (DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) || 4543 (DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) || 4544 (DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) || 4545 (DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) || 4546 (DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) { 4547 ErrInfo = "Invalid dpp_ctrl value"; 4548 return false; 4549 } 4550 if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 && 4551 ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 4552 ErrInfo = "Invalid dpp_ctrl value: " 4553 "wavefront shifts are not supported on GFX10+"; 4554 return false; 4555 } 4556 if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 && 4557 ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 4558 ErrInfo = "Invalid dpp_ctrl value: " 4559 "broadcasts are not supported on GFX10+"; 4560 return false; 4561 } 4562 if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST && 4563 ST.getGeneration() < AMDGPUSubtarget::GFX10) { 4564 if (DC >= DppCtrl::ROW_NEWBCAST_FIRST && 4565 DC <= DppCtrl::ROW_NEWBCAST_LAST && 4566 !ST.hasGFX90AInsts()) { 4567 ErrInfo = "Invalid dpp_ctrl value: " 4568 "row_newbroadcast/row_share is not supported before " 4569 "GFX90A/GFX10"; 4570 return false; 4571 } else if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) { 4572 ErrInfo = "Invalid dpp_ctrl value: " 4573 "row_share and row_xmask are not supported before GFX10"; 4574 return false; 4575 } 4576 } 4577 4578 int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst); 4579 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 4580 4581 if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO && 4582 ((DstIdx >= 0 && 4583 (Desc.OpInfo[DstIdx].RegClass == AMDGPU::VReg_64RegClassID || 4584 Desc.OpInfo[DstIdx].RegClass == AMDGPU::VReg_64_Align2RegClassID)) || 4585 ((Src0Idx >= 0 && 4586 (Desc.OpInfo[Src0Idx].RegClass == AMDGPU::VReg_64RegClassID || 4587 Desc.OpInfo[Src0Idx].RegClass == 4588 AMDGPU::VReg_64_Align2RegClassID)))) && 4589 !AMDGPU::isLegal64BitDPPControl(DC)) { 4590 ErrInfo = "Invalid dpp_ctrl value: " 4591 "64 bit dpp only support row_newbcast"; 4592 return false; 4593 } 4594 } 4595 4596 if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) { 4597 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 4598 uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0 4599 : AMDGPU::OpName::vdata; 4600 const MachineOperand *Data = getNamedOperand(MI, DataNameIdx); 4601 const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1); 4602 if (Data && !Data->isReg()) 4603 Data = nullptr; 4604 4605 if (ST.hasGFX90AInsts()) { 4606 if (Dst && Data && 4607 (RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) { 4608 ErrInfo = "Invalid register class: " 4609 "vdata and vdst should be both VGPR or AGPR"; 4610 return false; 4611 } 4612 if (Data && Data2 && 4613 (RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) { 4614 ErrInfo = "Invalid register class: " 4615 "both data operands should be VGPR or AGPR"; 4616 return false; 4617 } 4618 } else { 4619 if ((Dst && RI.isAGPR(MRI, Dst->getReg())) || 4620 (Data && RI.isAGPR(MRI, Data->getReg())) || 4621 (Data2 && RI.isAGPR(MRI, Data2->getReg()))) { 4622 ErrInfo = "Invalid register class: " 4623 "agpr loads and stores not supported on this GPU"; 4624 return false; 4625 } 4626 } 4627 } 4628 4629 if (ST.needsAlignedVGPRs() && 4630 (MI.getOpcode() == AMDGPU::DS_GWS_INIT || 4631 MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 4632 MI.getOpcode() == AMDGPU::DS_GWS_BARRIER)) { 4633 const MachineOperand *Op = getNamedOperand(MI, AMDGPU::OpName::data0); 4634 Register Reg = Op->getReg(); 4635 bool Aligned = true; 4636 if (Reg.isPhysical()) { 4637 Aligned = !(RI.getHWRegIndex(Reg) & 1); 4638 } else { 4639 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 4640 Aligned = RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) && 4641 !(RI.getChannelFromSubReg(Op->getSubReg()) & 1); 4642 } 4643 4644 if (!Aligned) { 4645 ErrInfo = "Subtarget requires even aligned vector registers " 4646 "for DS_GWS instructions"; 4647 return false; 4648 } 4649 } 4650 4651 if (Desc.getOpcode() == AMDGPU::G_AMDGPU_WAVE_ADDRESS) { 4652 const MachineOperand &SrcOp = MI.getOperand(1); 4653 if (!SrcOp.isReg() || SrcOp.getReg().isVirtual()) { 4654 ErrInfo = "pseudo expects only physical SGPRs"; 4655 return false; 4656 } 4657 } 4658 4659 return true; 4660 } 4661 4662 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const { 4663 switch (MI.getOpcode()) { 4664 default: return AMDGPU::INSTRUCTION_LIST_END; 4665 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; 4666 case AMDGPU::COPY: return AMDGPU::COPY; 4667 case AMDGPU::PHI: return AMDGPU::PHI; 4668 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; 4669 case AMDGPU::WQM: return AMDGPU::WQM; 4670 case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM; 4671 case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM; 4672 case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM; 4673 case AMDGPU::S_MOV_B32: { 4674 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4675 return MI.getOperand(1).isReg() || 4676 RI.isAGPR(MRI, MI.getOperand(0).getReg()) ? 4677 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; 4678 } 4679 case AMDGPU::S_ADD_I32: 4680 return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32; 4681 case AMDGPU::S_ADDC_U32: 4682 return AMDGPU::V_ADDC_U32_e32; 4683 case AMDGPU::S_SUB_I32: 4684 return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32; 4685 // FIXME: These are not consistently handled, and selected when the carry is 4686 // used. 4687 case AMDGPU::S_ADD_U32: 4688 return AMDGPU::V_ADD_CO_U32_e32; 4689 case AMDGPU::S_SUB_U32: 4690 return AMDGPU::V_SUB_CO_U32_e32; 4691 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; 4692 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64; 4693 case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64; 4694 case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64; 4695 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64; 4696 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64; 4697 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64; 4698 case AMDGPU::S_XNOR_B32: 4699 return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END; 4700 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64; 4701 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64; 4702 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64; 4703 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64; 4704 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; 4705 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64; 4706 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; 4707 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64; 4708 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; 4709 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64; 4710 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64; 4711 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64; 4712 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64; 4713 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64; 4714 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; 4715 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; 4716 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; 4717 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; 4718 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e64; 4719 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e64; 4720 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e64; 4721 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e64; 4722 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e64; 4723 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e64; 4724 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e64; 4725 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e64; 4726 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e64; 4727 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e64; 4728 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e64; 4729 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e64; 4730 case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e64; 4731 case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e64; 4732 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; 4733 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; 4734 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; 4735 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; 4736 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; 4737 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; 4738 } 4739 llvm_unreachable( 4740 "Unexpected scalar opcode without corresponding vector one!"); 4741 } 4742 4743 static const TargetRegisterClass * 4744 adjustAllocatableRegClass(const GCNSubtarget &ST, const SIRegisterInfo &RI, 4745 const MachineRegisterInfo &MRI, 4746 const MCInstrDesc &TID, unsigned RCID, 4747 bool IsAllocatable) { 4748 if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && 4749 (((TID.mayLoad() || TID.mayStore()) && 4750 !(TID.TSFlags & SIInstrFlags::VGPRSpill)) || 4751 (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) { 4752 switch (RCID) { 4753 case AMDGPU::AV_32RegClassID: 4754 RCID = AMDGPU::VGPR_32RegClassID; 4755 break; 4756 case AMDGPU::AV_64RegClassID: 4757 RCID = AMDGPU::VReg_64RegClassID; 4758 break; 4759 case AMDGPU::AV_96RegClassID: 4760 RCID = AMDGPU::VReg_96RegClassID; 4761 break; 4762 case AMDGPU::AV_128RegClassID: 4763 RCID = AMDGPU::VReg_128RegClassID; 4764 break; 4765 case AMDGPU::AV_160RegClassID: 4766 RCID = AMDGPU::VReg_160RegClassID; 4767 break; 4768 default: 4769 break; 4770 } 4771 } 4772 4773 return RI.getProperlyAlignedRC(RI.getRegClass(RCID)); 4774 } 4775 4776 const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID, 4777 unsigned OpNum, const TargetRegisterInfo *TRI, 4778 const MachineFunction &MF) 4779 const { 4780 if (OpNum >= TID.getNumOperands()) 4781 return nullptr; 4782 auto RegClass = TID.OpInfo[OpNum].RegClass; 4783 bool IsAllocatable = false; 4784 if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) { 4785 // vdst and vdata should be both VGPR or AGPR, same for the DS instructions 4786 // with two data operands. Request register class constrained to VGPR only 4787 // of both operands present as Machine Copy Propagation can not check this 4788 // constraint and possibly other passes too. 4789 // 4790 // The check is limited to FLAT and DS because atomics in non-flat encoding 4791 // have their vdst and vdata tied to be the same register. 4792 const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, 4793 AMDGPU::OpName::vdst); 4794 const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode, 4795 (TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0 4796 : AMDGPU::OpName::vdata); 4797 if (DataIdx != -1) { 4798 IsAllocatable = VDstIdx != -1 || 4799 AMDGPU::getNamedOperandIdx(TID.Opcode, 4800 AMDGPU::OpName::data1) != -1; 4801 } 4802 } 4803 return adjustAllocatableRegClass(ST, RI, MF.getRegInfo(), TID, RegClass, 4804 IsAllocatable); 4805 } 4806 4807 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, 4808 unsigned OpNo) const { 4809 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 4810 const MCInstrDesc &Desc = get(MI.getOpcode()); 4811 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || 4812 Desc.OpInfo[OpNo].RegClass == -1) { 4813 Register Reg = MI.getOperand(OpNo).getReg(); 4814 4815 if (Reg.isVirtual()) 4816 return MRI.getRegClass(Reg); 4817 return RI.getPhysRegClass(Reg); 4818 } 4819 4820 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 4821 return adjustAllocatableRegClass(ST, RI, MRI, Desc, RCID, true); 4822 } 4823 4824 void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const { 4825 MachineBasicBlock::iterator I = MI; 4826 MachineBasicBlock *MBB = MI.getParent(); 4827 MachineOperand &MO = MI.getOperand(OpIdx); 4828 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 4829 unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass; 4830 const TargetRegisterClass *RC = RI.getRegClass(RCID); 4831 unsigned Size = RI.getRegSizeInBits(*RC); 4832 unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32; 4833 if (MO.isReg()) 4834 Opcode = AMDGPU::COPY; 4835 else if (RI.isSGPRClass(RC)) 4836 Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32; 4837 4838 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); 4839 const TargetRegisterClass *VRC64 = RI.getVGPR64Class(); 4840 if (RI.getCommonSubClass(VRC64, VRC)) 4841 VRC = VRC64; 4842 else 4843 VRC = &AMDGPU::VGPR_32RegClass; 4844 4845 Register Reg = MRI.createVirtualRegister(VRC); 4846 DebugLoc DL = MBB->findDebugLoc(I); 4847 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO); 4848 MO.ChangeToRegister(Reg, false); 4849 } 4850 4851 unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI, 4852 MachineRegisterInfo &MRI, 4853 MachineOperand &SuperReg, 4854 const TargetRegisterClass *SuperRC, 4855 unsigned SubIdx, 4856 const TargetRegisterClass *SubRC) 4857 const { 4858 MachineBasicBlock *MBB = MI->getParent(); 4859 DebugLoc DL = MI->getDebugLoc(); 4860 Register SubReg = MRI.createVirtualRegister(SubRC); 4861 4862 if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) { 4863 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 4864 .addReg(SuperReg.getReg(), 0, SubIdx); 4865 return SubReg; 4866 } 4867 4868 // Just in case the super register is itself a sub-register, copy it to a new 4869 // value so we don't need to worry about merging its subreg index with the 4870 // SubIdx passed to this function. The register coalescer should be able to 4871 // eliminate this extra copy. 4872 Register NewSuperReg = MRI.createVirtualRegister(SuperRC); 4873 4874 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg) 4875 .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg()); 4876 4877 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 4878 .addReg(NewSuperReg, 0, SubIdx); 4879 4880 return SubReg; 4881 } 4882 4883 MachineOperand SIInstrInfo::buildExtractSubRegOrImm( 4884 MachineBasicBlock::iterator MII, 4885 MachineRegisterInfo &MRI, 4886 MachineOperand &Op, 4887 const TargetRegisterClass *SuperRC, 4888 unsigned SubIdx, 4889 const TargetRegisterClass *SubRC) const { 4890 if (Op.isImm()) { 4891 if (SubIdx == AMDGPU::sub0) 4892 return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm())); 4893 if (SubIdx == AMDGPU::sub1) 4894 return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm() >> 32)); 4895 4896 llvm_unreachable("Unhandled register index for immediate"); 4897 } 4898 4899 unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, 4900 SubIdx, SubRC); 4901 return MachineOperand::CreateReg(SubReg, false); 4902 } 4903 4904 // Change the order of operands from (0, 1, 2) to (0, 2, 1) 4905 void SIInstrInfo::swapOperands(MachineInstr &Inst) const { 4906 assert(Inst.getNumExplicitOperands() == 3); 4907 MachineOperand Op1 = Inst.getOperand(1); 4908 Inst.RemoveOperand(1); 4909 Inst.addOperand(Op1); 4910 } 4911 4912 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, 4913 const MCOperandInfo &OpInfo, 4914 const MachineOperand &MO) const { 4915 if (!MO.isReg()) 4916 return false; 4917 4918 Register Reg = MO.getReg(); 4919 4920 const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass); 4921 if (Reg.isPhysical()) 4922 return DRC->contains(Reg); 4923 4924 const TargetRegisterClass *RC = MRI.getRegClass(Reg); 4925 4926 if (MO.getSubReg()) { 4927 const MachineFunction *MF = MO.getParent()->getParent()->getParent(); 4928 const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF); 4929 if (!SuperRC) 4930 return false; 4931 4932 DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg()); 4933 if (!DRC) 4934 return false; 4935 } 4936 return RC->hasSuperClassEq(DRC); 4937 } 4938 4939 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, 4940 const MCOperandInfo &OpInfo, 4941 const MachineOperand &MO) const { 4942 if (MO.isReg()) 4943 return isLegalRegOperand(MRI, OpInfo, MO); 4944 4945 // Handle non-register types that are treated like immediates. 4946 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal()); 4947 return true; 4948 } 4949 4950 bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx, 4951 const MachineOperand *MO) const { 4952 const MachineFunction &MF = *MI.getParent()->getParent(); 4953 const MachineRegisterInfo &MRI = MF.getRegInfo(); 4954 const MCInstrDesc &InstDesc = MI.getDesc(); 4955 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx]; 4956 const TargetRegisterClass *DefinedRC = 4957 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; 4958 if (!MO) 4959 MO = &MI.getOperand(OpIdx); 4960 4961 int ConstantBusLimit = ST.getConstantBusLimit(MI.getOpcode()); 4962 int VOP3LiteralLimit = ST.hasVOP3Literal() ? 1 : 0; 4963 if (isVALU(MI) && usesConstantBus(MRI, *MO, OpInfo)) { 4964 if (isVOP3(MI) && isLiteralConstantLike(*MO, OpInfo) && !VOP3LiteralLimit--) 4965 return false; 4966 4967 SmallDenseSet<RegSubRegPair> SGPRsUsed; 4968 if (MO->isReg()) 4969 SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg())); 4970 4971 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 4972 if (i == OpIdx) 4973 continue; 4974 const MachineOperand &Op = MI.getOperand(i); 4975 if (Op.isReg()) { 4976 RegSubRegPair SGPR(Op.getReg(), Op.getSubReg()); 4977 if (!SGPRsUsed.count(SGPR) && 4978 usesConstantBus(MRI, Op, InstDesc.OpInfo[i])) { 4979 if (--ConstantBusLimit <= 0) 4980 return false; 4981 SGPRsUsed.insert(SGPR); 4982 } 4983 } else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) { 4984 if (--ConstantBusLimit <= 0) 4985 return false; 4986 } else if (isVOP3(MI) && AMDGPU::isSISrcOperand(InstDesc, i) && 4987 isLiteralConstantLike(Op, InstDesc.OpInfo[i])) { 4988 if (!VOP3LiteralLimit--) 4989 return false; 4990 if (--ConstantBusLimit <= 0) 4991 return false; 4992 } 4993 } 4994 } 4995 4996 if (MO->isReg()) { 4997 assert(DefinedRC); 4998 if (!isLegalRegOperand(MRI, OpInfo, *MO)) 4999 return false; 5000 bool IsAGPR = RI.isAGPR(MRI, MO->getReg()); 5001 if (IsAGPR && !ST.hasMAIInsts()) 5002 return false; 5003 unsigned Opc = MI.getOpcode(); 5004 if (IsAGPR && 5005 (!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) && 5006 (MI.mayLoad() || MI.mayStore() || isDS(Opc) || isMIMG(Opc))) 5007 return false; 5008 // Atomics should have both vdst and vdata either vgpr or agpr. 5009 const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst); 5010 const int DataIdx = AMDGPU::getNamedOperandIdx(Opc, 5011 isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata); 5012 if ((int)OpIdx == VDstIdx && DataIdx != -1 && 5013 MI.getOperand(DataIdx).isReg() && 5014 RI.isAGPR(MRI, MI.getOperand(DataIdx).getReg()) != IsAGPR) 5015 return false; 5016 if ((int)OpIdx == DataIdx) { 5017 if (VDstIdx != -1 && 5018 RI.isAGPR(MRI, MI.getOperand(VDstIdx).getReg()) != IsAGPR) 5019 return false; 5020 // DS instructions with 2 src operands also must have tied RC. 5021 const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc, 5022 AMDGPU::OpName::data1); 5023 if (Data1Idx != -1 && MI.getOperand(Data1Idx).isReg() && 5024 RI.isAGPR(MRI, MI.getOperand(Data1Idx).getReg()) != IsAGPR) 5025 return false; 5026 } 5027 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && 5028 (int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) && 5029 RI.isSGPRReg(MRI, MO->getReg())) 5030 return false; 5031 return true; 5032 } 5033 5034 // Handle non-register types that are treated like immediates. 5035 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal()); 5036 5037 if (!DefinedRC) { 5038 // This operand expects an immediate. 5039 return true; 5040 } 5041 5042 return isImmOperandLegal(MI, OpIdx, *MO); 5043 } 5044 5045 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, 5046 MachineInstr &MI) const { 5047 unsigned Opc = MI.getOpcode(); 5048 const MCInstrDesc &InstrDesc = get(Opc); 5049 5050 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 5051 MachineOperand &Src0 = MI.getOperand(Src0Idx); 5052 5053 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 5054 MachineOperand &Src1 = MI.getOperand(Src1Idx); 5055 5056 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 5057 // we need to only have one constant bus use before GFX10. 5058 bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister; 5059 if (HasImplicitSGPR && ST.getConstantBusLimit(Opc) <= 1 && 5060 Src0.isReg() && (RI.isSGPRReg(MRI, Src0.getReg()) || 5061 isLiteralConstantLike(Src0, InstrDesc.OpInfo[Src0Idx]))) 5062 legalizeOpWithMove(MI, Src0Idx); 5063 5064 // Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for 5065 // both the value to write (src0) and lane select (src1). Fix up non-SGPR 5066 // src0/src1 with V_READFIRSTLANE. 5067 if (Opc == AMDGPU::V_WRITELANE_B32) { 5068 const DebugLoc &DL = MI.getDebugLoc(); 5069 if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) { 5070 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5071 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5072 .add(Src0); 5073 Src0.ChangeToRegister(Reg, false); 5074 } 5075 if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) { 5076 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5077 const DebugLoc &DL = MI.getDebugLoc(); 5078 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5079 .add(Src1); 5080 Src1.ChangeToRegister(Reg, false); 5081 } 5082 return; 5083 } 5084 5085 // No VOP2 instructions support AGPRs. 5086 if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg())) 5087 legalizeOpWithMove(MI, Src0Idx); 5088 5089 if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg())) 5090 legalizeOpWithMove(MI, Src1Idx); 5091 5092 // VOP2 src0 instructions support all operand types, so we don't need to check 5093 // their legality. If src1 is already legal, we don't need to do anything. 5094 if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1)) 5095 return; 5096 5097 // Special case: V_READLANE_B32 accepts only immediate or SGPR operands for 5098 // lane select. Fix up using V_READFIRSTLANE, since we assume that the lane 5099 // select is uniform. 5100 if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() && 5101 RI.isVGPR(MRI, Src1.getReg())) { 5102 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5103 const DebugLoc &DL = MI.getDebugLoc(); 5104 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5105 .add(Src1); 5106 Src1.ChangeToRegister(Reg, false); 5107 return; 5108 } 5109 5110 // We do not use commuteInstruction here because it is too aggressive and will 5111 // commute if it is possible. We only want to commute here if it improves 5112 // legality. This can be called a fairly large number of times so don't waste 5113 // compile time pointlessly swapping and checking legality again. 5114 if (HasImplicitSGPR || !MI.isCommutable()) { 5115 legalizeOpWithMove(MI, Src1Idx); 5116 return; 5117 } 5118 5119 // If src0 can be used as src1, commuting will make the operands legal. 5120 // Otherwise we have to give up and insert a move. 5121 // 5122 // TODO: Other immediate-like operand kinds could be commuted if there was a 5123 // MachineOperand::ChangeTo* for them. 5124 if ((!Src1.isImm() && !Src1.isReg()) || 5125 !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) { 5126 legalizeOpWithMove(MI, Src1Idx); 5127 return; 5128 } 5129 5130 int CommutedOpc = commuteOpcode(MI); 5131 if (CommutedOpc == -1) { 5132 legalizeOpWithMove(MI, Src1Idx); 5133 return; 5134 } 5135 5136 MI.setDesc(get(CommutedOpc)); 5137 5138 Register Src0Reg = Src0.getReg(); 5139 unsigned Src0SubReg = Src0.getSubReg(); 5140 bool Src0Kill = Src0.isKill(); 5141 5142 if (Src1.isImm()) 5143 Src0.ChangeToImmediate(Src1.getImm()); 5144 else if (Src1.isReg()) { 5145 Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); 5146 Src0.setSubReg(Src1.getSubReg()); 5147 } else 5148 llvm_unreachable("Should only have register or immediate operands"); 5149 5150 Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); 5151 Src1.setSubReg(Src0SubReg); 5152 fixImplicitOperands(MI); 5153 } 5154 5155 // Legalize VOP3 operands. All operand types are supported for any operand 5156 // but only one literal constant and only starting from GFX10. 5157 void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI, 5158 MachineInstr &MI) const { 5159 unsigned Opc = MI.getOpcode(); 5160 5161 int VOP3Idx[3] = { 5162 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 5163 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), 5164 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) 5165 }; 5166 5167 if (Opc == AMDGPU::V_PERMLANE16_B32_e64 || 5168 Opc == AMDGPU::V_PERMLANEX16_B32_e64) { 5169 // src1 and src2 must be scalar 5170 MachineOperand &Src1 = MI.getOperand(VOP3Idx[1]); 5171 MachineOperand &Src2 = MI.getOperand(VOP3Idx[2]); 5172 const DebugLoc &DL = MI.getDebugLoc(); 5173 if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) { 5174 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5175 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5176 .add(Src1); 5177 Src1.ChangeToRegister(Reg, false); 5178 } 5179 if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src2.getReg()))) { 5180 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 5181 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg) 5182 .add(Src2); 5183 Src2.ChangeToRegister(Reg, false); 5184 } 5185 } 5186 5187 // Find the one SGPR operand we are allowed to use. 5188 int ConstantBusLimit = ST.getConstantBusLimit(Opc); 5189 int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0; 5190 SmallDenseSet<unsigned> SGPRsUsed; 5191 Register SGPRReg = findUsedSGPR(MI, VOP3Idx); 5192 if (SGPRReg != AMDGPU::NoRegister) { 5193 SGPRsUsed.insert(SGPRReg); 5194 --ConstantBusLimit; 5195 } 5196 5197 for (int Idx : VOP3Idx) { 5198 if (Idx == -1) 5199 break; 5200 MachineOperand &MO = MI.getOperand(Idx); 5201 5202 if (!MO.isReg()) { 5203 if (!isLiteralConstantLike(MO, get(Opc).OpInfo[Idx])) 5204 continue; 5205 5206 if (LiteralLimit > 0 && ConstantBusLimit > 0) { 5207 --LiteralLimit; 5208 --ConstantBusLimit; 5209 continue; 5210 } 5211 5212 --LiteralLimit; 5213 --ConstantBusLimit; 5214 legalizeOpWithMove(MI, Idx); 5215 continue; 5216 } 5217 5218 if (RI.hasAGPRs(RI.getRegClassForReg(MRI, MO.getReg())) && 5219 !isOperandLegal(MI, Idx, &MO)) { 5220 legalizeOpWithMove(MI, Idx); 5221 continue; 5222 } 5223 5224 if (!RI.isSGPRClass(RI.getRegClassForReg(MRI, MO.getReg()))) 5225 continue; // VGPRs are legal 5226 5227 // We can use one SGPR in each VOP3 instruction prior to GFX10 5228 // and two starting from GFX10. 5229 if (SGPRsUsed.count(MO.getReg())) 5230 continue; 5231 if (ConstantBusLimit > 0) { 5232 SGPRsUsed.insert(MO.getReg()); 5233 --ConstantBusLimit; 5234 continue; 5235 } 5236 5237 // If we make it this far, then the operand is not legal and we must 5238 // legalize it. 5239 legalizeOpWithMove(MI, Idx); 5240 } 5241 } 5242 5243 Register SIInstrInfo::readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI, 5244 MachineRegisterInfo &MRI) const { 5245 const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); 5246 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); 5247 Register DstReg = MRI.createVirtualRegister(SRC); 5248 unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32; 5249 5250 if (RI.hasAGPRs(VRC)) { 5251 VRC = RI.getEquivalentVGPRClass(VRC); 5252 Register NewSrcReg = MRI.createVirtualRegister(VRC); 5253 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 5254 get(TargetOpcode::COPY), NewSrcReg) 5255 .addReg(SrcReg); 5256 SrcReg = NewSrcReg; 5257 } 5258 5259 if (SubRegs == 1) { 5260 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 5261 get(AMDGPU::V_READFIRSTLANE_B32), DstReg) 5262 .addReg(SrcReg); 5263 return DstReg; 5264 } 5265 5266 SmallVector<unsigned, 8> SRegs; 5267 for (unsigned i = 0; i < SubRegs; ++i) { 5268 Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5269 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 5270 get(AMDGPU::V_READFIRSTLANE_B32), SGPR) 5271 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); 5272 SRegs.push_back(SGPR); 5273 } 5274 5275 MachineInstrBuilder MIB = 5276 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 5277 get(AMDGPU::REG_SEQUENCE), DstReg); 5278 for (unsigned i = 0; i < SubRegs; ++i) { 5279 MIB.addReg(SRegs[i]); 5280 MIB.addImm(RI.getSubRegFromChannel(i)); 5281 } 5282 return DstReg; 5283 } 5284 5285 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, 5286 MachineInstr &MI) const { 5287 5288 // If the pointer is store in VGPRs, then we need to move them to 5289 // SGPRs using v_readfirstlane. This is safe because we only select 5290 // loads with uniform pointers to SMRD instruction so we know the 5291 // pointer value is uniform. 5292 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase); 5293 if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { 5294 Register SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); 5295 SBase->setReg(SGPR); 5296 } 5297 MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soff); 5298 if (SOff && !RI.isSGPRClass(MRI.getRegClass(SOff->getReg()))) { 5299 Register SGPR = readlaneVGPRToSGPR(SOff->getReg(), MI, MRI); 5300 SOff->setReg(SGPR); 5301 } 5302 } 5303 5304 bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const { 5305 unsigned Opc = Inst.getOpcode(); 5306 int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr); 5307 if (OldSAddrIdx < 0) 5308 return false; 5309 5310 assert(isSegmentSpecificFLAT(Inst)); 5311 5312 int NewOpc = AMDGPU::getGlobalVaddrOp(Opc); 5313 if (NewOpc < 0) 5314 NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opc); 5315 if (NewOpc < 0) 5316 return false; 5317 5318 MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo(); 5319 MachineOperand &SAddr = Inst.getOperand(OldSAddrIdx); 5320 if (RI.isSGPRReg(MRI, SAddr.getReg())) 5321 return false; 5322 5323 int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr); 5324 if (NewVAddrIdx < 0) 5325 return false; 5326 5327 int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr); 5328 5329 // Check vaddr, it shall be zero or absent. 5330 MachineInstr *VAddrDef = nullptr; 5331 if (OldVAddrIdx >= 0) { 5332 MachineOperand &VAddr = Inst.getOperand(OldVAddrIdx); 5333 VAddrDef = MRI.getUniqueVRegDef(VAddr.getReg()); 5334 if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 || 5335 !VAddrDef->getOperand(1).isImm() || 5336 VAddrDef->getOperand(1).getImm() != 0) 5337 return false; 5338 } 5339 5340 const MCInstrDesc &NewDesc = get(NewOpc); 5341 Inst.setDesc(NewDesc); 5342 5343 // Callers expect iterator to be valid after this call, so modify the 5344 // instruction in place. 5345 if (OldVAddrIdx == NewVAddrIdx) { 5346 MachineOperand &NewVAddr = Inst.getOperand(NewVAddrIdx); 5347 // Clear use list from the old vaddr holding a zero register. 5348 MRI.removeRegOperandFromUseList(&NewVAddr); 5349 MRI.moveOperands(&NewVAddr, &SAddr, 1); 5350 Inst.RemoveOperand(OldSAddrIdx); 5351 // Update the use list with the pointer we have just moved from vaddr to 5352 // saddr position. Otherwise new vaddr will be missing from the use list. 5353 MRI.removeRegOperandFromUseList(&NewVAddr); 5354 MRI.addRegOperandToUseList(&NewVAddr); 5355 } else { 5356 assert(OldSAddrIdx == NewVAddrIdx); 5357 5358 if (OldVAddrIdx >= 0) { 5359 int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc, 5360 AMDGPU::OpName::vdst_in); 5361 5362 // RemoveOperand doesn't try to fixup tied operand indexes at it goes, so 5363 // it asserts. Untie the operands for now and retie them afterwards. 5364 if (NewVDstIn != -1) { 5365 int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in); 5366 Inst.untieRegOperand(OldVDstIn); 5367 } 5368 5369 Inst.RemoveOperand(OldVAddrIdx); 5370 5371 if (NewVDstIn != -1) { 5372 int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst); 5373 Inst.tieOperands(NewVDst, NewVDstIn); 5374 } 5375 } 5376 } 5377 5378 if (VAddrDef && MRI.use_nodbg_empty(VAddrDef->getOperand(0).getReg())) 5379 VAddrDef->eraseFromParent(); 5380 5381 return true; 5382 } 5383 5384 // FIXME: Remove this when SelectionDAG is obsoleted. 5385 void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI, 5386 MachineInstr &MI) const { 5387 if (!isSegmentSpecificFLAT(MI)) 5388 return; 5389 5390 // Fixup SGPR operands in VGPRs. We only select these when the DAG divergence 5391 // thinks they are uniform, so a readfirstlane should be valid. 5392 MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr); 5393 if (!SAddr || RI.isSGPRClass(MRI.getRegClass(SAddr->getReg()))) 5394 return; 5395 5396 if (moveFlatAddrToVGPR(MI)) 5397 return; 5398 5399 Register ToSGPR = readlaneVGPRToSGPR(SAddr->getReg(), MI, MRI); 5400 SAddr->setReg(ToSGPR); 5401 } 5402 5403 void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB, 5404 MachineBasicBlock::iterator I, 5405 const TargetRegisterClass *DstRC, 5406 MachineOperand &Op, 5407 MachineRegisterInfo &MRI, 5408 const DebugLoc &DL) const { 5409 Register OpReg = Op.getReg(); 5410 unsigned OpSubReg = Op.getSubReg(); 5411 5412 const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg( 5413 RI.getRegClassForReg(MRI, OpReg), OpSubReg); 5414 5415 // Check if operand is already the correct register class. 5416 if (DstRC == OpRC) 5417 return; 5418 5419 Register DstReg = MRI.createVirtualRegister(DstRC); 5420 auto Copy = BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).add(Op); 5421 5422 Op.setReg(DstReg); 5423 Op.setSubReg(0); 5424 5425 MachineInstr *Def = MRI.getVRegDef(OpReg); 5426 if (!Def) 5427 return; 5428 5429 // Try to eliminate the copy if it is copying an immediate value. 5430 if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass) 5431 FoldImmediate(*Copy, *Def, OpReg, &MRI); 5432 5433 bool ImpDef = Def->isImplicitDef(); 5434 while (!ImpDef && Def && Def->isCopy()) { 5435 if (Def->getOperand(1).getReg().isPhysical()) 5436 break; 5437 Def = MRI.getUniqueVRegDef(Def->getOperand(1).getReg()); 5438 ImpDef = Def && Def->isImplicitDef(); 5439 } 5440 if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) && 5441 !ImpDef) 5442 Copy.addReg(AMDGPU::EXEC, RegState::Implicit); 5443 } 5444 5445 // Emit the actual waterfall loop, executing the wrapped instruction for each 5446 // unique value of \p Rsrc across all lanes. In the best case we execute 1 5447 // iteration, in the worst case we execute 64 (once per lane). 5448 static void 5449 emitLoadSRsrcFromVGPRLoop(const SIInstrInfo &TII, MachineRegisterInfo &MRI, 5450 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB, 5451 const DebugLoc &DL, MachineOperand &Rsrc) { 5452 MachineFunction &MF = *OrigBB.getParent(); 5453 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 5454 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5455 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 5456 unsigned SaveExecOpc = 5457 ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64; 5458 unsigned XorTermOpc = 5459 ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term; 5460 unsigned AndOpc = 5461 ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; 5462 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 5463 5464 MachineBasicBlock::iterator I = LoopBB.begin(); 5465 5466 SmallVector<Register, 8> ReadlanePieces; 5467 Register CondReg = AMDGPU::NoRegister; 5468 5469 Register VRsrc = Rsrc.getReg(); 5470 unsigned VRsrcUndef = getUndefRegState(Rsrc.isUndef()); 5471 5472 unsigned RegSize = TRI->getRegSizeInBits(Rsrc.getReg(), MRI); 5473 unsigned NumSubRegs = RegSize / 32; 5474 assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 && "Unhandled register size"); 5475 5476 for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) { 5477 5478 Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5479 Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5480 5481 // Read the next variant <- also loop target. 5482 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo) 5483 .addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx)); 5484 5485 // Read the next variant <- also loop target. 5486 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi) 5487 .addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx + 1)); 5488 5489 ReadlanePieces.push_back(CurRegLo); 5490 ReadlanePieces.push_back(CurRegHi); 5491 5492 // Comparison is to be done as 64-bit. 5493 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass); 5494 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg) 5495 .addReg(CurRegLo) 5496 .addImm(AMDGPU::sub0) 5497 .addReg(CurRegHi) 5498 .addImm(AMDGPU::sub1); 5499 5500 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC); 5501 auto Cmp = 5502 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64), NewCondReg) 5503 .addReg(CurReg); 5504 if (NumSubRegs <= 2) 5505 Cmp.addReg(VRsrc); 5506 else 5507 Cmp.addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx, 2)); 5508 5509 // Combine the comparison results with AND. 5510 if (CondReg == AMDGPU::NoRegister) // First. 5511 CondReg = NewCondReg; 5512 else { // If not the first, we create an AND. 5513 Register AndReg = MRI.createVirtualRegister(BoolXExecRC); 5514 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg) 5515 .addReg(CondReg) 5516 .addReg(NewCondReg); 5517 CondReg = AndReg; 5518 } 5519 } // End for loop. 5520 5521 auto SRsrcRC = TRI->getEquivalentSGPRClass(MRI.getRegClass(VRsrc)); 5522 Register SRsrc = MRI.createVirtualRegister(SRsrcRC); 5523 5524 // Build scalar Rsrc. 5525 auto Merge = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SRsrc); 5526 unsigned Channel = 0; 5527 for (Register Piece : ReadlanePieces) { 5528 Merge.addReg(Piece) 5529 .addImm(TRI->getSubRegFromChannel(Channel++)); 5530 } 5531 5532 // Update Rsrc operand to use the SGPR Rsrc. 5533 Rsrc.setReg(SRsrc); 5534 Rsrc.setIsKill(true); 5535 5536 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 5537 MRI.setSimpleHint(SaveExec, CondReg); 5538 5539 // Update EXEC to matching lanes, saving original to SaveExec. 5540 BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec) 5541 .addReg(CondReg, RegState::Kill); 5542 5543 // The original instruction is here; we insert the terminators after it. 5544 I = LoopBB.end(); 5545 5546 // Update EXEC, switch all done bits to 0 and all todo bits to 1. 5547 BuildMI(LoopBB, I, DL, TII.get(XorTermOpc), Exec) 5548 .addReg(Exec) 5549 .addReg(SaveExec); 5550 5551 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB); 5552 } 5553 5554 // Build a waterfall loop around \p MI, replacing the VGPR \p Rsrc register 5555 // with SGPRs by iterating over all unique values across all lanes. 5556 // Returns the loop basic block that now contains \p MI. 5557 static MachineBasicBlock * 5558 loadSRsrcFromVGPR(const SIInstrInfo &TII, MachineInstr &MI, 5559 MachineOperand &Rsrc, MachineDominatorTree *MDT, 5560 MachineBasicBlock::iterator Begin = nullptr, 5561 MachineBasicBlock::iterator End = nullptr) { 5562 MachineBasicBlock &MBB = *MI.getParent(); 5563 MachineFunction &MF = *MBB.getParent(); 5564 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 5565 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 5566 MachineRegisterInfo &MRI = MF.getRegInfo(); 5567 if (!Begin.isValid()) 5568 Begin = &MI; 5569 if (!End.isValid()) { 5570 End = &MI; 5571 ++End; 5572 } 5573 const DebugLoc &DL = MI.getDebugLoc(); 5574 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 5575 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 5576 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 5577 5578 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC); 5579 5580 // Save the EXEC mask 5581 BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec); 5582 5583 // Killed uses in the instruction we are waterfalling around will be 5584 // incorrect due to the added control-flow. 5585 MachineBasicBlock::iterator AfterMI = MI; 5586 ++AfterMI; 5587 for (auto I = Begin; I != AfterMI; I++) { 5588 for (auto &MO : I->uses()) { 5589 if (MO.isReg() && MO.isUse()) { 5590 MRI.clearKillFlags(MO.getReg()); 5591 } 5592 } 5593 } 5594 5595 // To insert the loop we need to split the block. Move everything after this 5596 // point to a new block, and insert a new empty block between the two. 5597 MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock(); 5598 MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock(); 5599 MachineFunction::iterator MBBI(MBB); 5600 ++MBBI; 5601 5602 MF.insert(MBBI, LoopBB); 5603 MF.insert(MBBI, RemainderBB); 5604 5605 LoopBB->addSuccessor(LoopBB); 5606 LoopBB->addSuccessor(RemainderBB); 5607 5608 // Move Begin to MI to the LoopBB, and the remainder of the block to 5609 // RemainderBB. 5610 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB); 5611 RemainderBB->splice(RemainderBB->begin(), &MBB, End, MBB.end()); 5612 LoopBB->splice(LoopBB->begin(), &MBB, Begin, MBB.end()); 5613 5614 MBB.addSuccessor(LoopBB); 5615 5616 // Update dominators. We know that MBB immediately dominates LoopBB, that 5617 // LoopBB immediately dominates RemainderBB, and that RemainderBB immediately 5618 // dominates all of the successors transferred to it from MBB that MBB used 5619 // to properly dominate. 5620 if (MDT) { 5621 MDT->addNewBlock(LoopBB, &MBB); 5622 MDT->addNewBlock(RemainderBB, LoopBB); 5623 for (auto &Succ : RemainderBB->successors()) { 5624 if (MDT->properlyDominates(&MBB, Succ)) { 5625 MDT->changeImmediateDominator(Succ, RemainderBB); 5626 } 5627 } 5628 } 5629 5630 emitLoadSRsrcFromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, Rsrc); 5631 5632 // Restore the EXEC mask 5633 MachineBasicBlock::iterator First = RemainderBB->begin(); 5634 BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec); 5635 return LoopBB; 5636 } 5637 5638 // Extract pointer from Rsrc and return a zero-value Rsrc replacement. 5639 static std::tuple<unsigned, unsigned> 5640 extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) { 5641 MachineBasicBlock &MBB = *MI.getParent(); 5642 MachineFunction &MF = *MBB.getParent(); 5643 MachineRegisterInfo &MRI = MF.getRegInfo(); 5644 5645 // Extract the ptr from the resource descriptor. 5646 unsigned RsrcPtr = 5647 TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass, 5648 AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); 5649 5650 // Create an empty resource descriptor 5651 Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 5652 Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5653 Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 5654 Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass); 5655 uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat(); 5656 5657 // Zero64 = 0 5658 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64) 5659 .addImm(0); 5660 5661 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} 5662 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo) 5663 .addImm(RsrcDataFormat & 0xFFFFFFFF); 5664 5665 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} 5666 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi) 5667 .addImm(RsrcDataFormat >> 32); 5668 5669 // NewSRsrc = {Zero64, SRsrcFormat} 5670 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc) 5671 .addReg(Zero64) 5672 .addImm(AMDGPU::sub0_sub1) 5673 .addReg(SRsrcFormatLo) 5674 .addImm(AMDGPU::sub2) 5675 .addReg(SRsrcFormatHi) 5676 .addImm(AMDGPU::sub3); 5677 5678 return std::make_tuple(RsrcPtr, NewSRsrc); 5679 } 5680 5681 MachineBasicBlock * 5682 SIInstrInfo::legalizeOperands(MachineInstr &MI, 5683 MachineDominatorTree *MDT) const { 5684 MachineFunction &MF = *MI.getParent()->getParent(); 5685 MachineRegisterInfo &MRI = MF.getRegInfo(); 5686 MachineBasicBlock *CreatedBB = nullptr; 5687 5688 // Legalize VOP2 5689 if (isVOP2(MI) || isVOPC(MI)) { 5690 legalizeOperandsVOP2(MRI, MI); 5691 return CreatedBB; 5692 } 5693 5694 // Legalize VOP3 5695 if (isVOP3(MI)) { 5696 legalizeOperandsVOP3(MRI, MI); 5697 return CreatedBB; 5698 } 5699 5700 // Legalize SMRD 5701 if (isSMRD(MI)) { 5702 legalizeOperandsSMRD(MRI, MI); 5703 return CreatedBB; 5704 } 5705 5706 // Legalize FLAT 5707 if (isFLAT(MI)) { 5708 legalizeOperandsFLAT(MRI, MI); 5709 return CreatedBB; 5710 } 5711 5712 // Legalize REG_SEQUENCE and PHI 5713 // The register class of the operands much be the same type as the register 5714 // class of the output. 5715 if (MI.getOpcode() == AMDGPU::PHI) { 5716 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; 5717 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 5718 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual()) 5719 continue; 5720 const TargetRegisterClass *OpRC = 5721 MRI.getRegClass(MI.getOperand(i).getReg()); 5722 if (RI.hasVectorRegisters(OpRC)) { 5723 VRC = OpRC; 5724 } else { 5725 SRC = OpRC; 5726 } 5727 } 5728 5729 // If any of the operands are VGPR registers, then they all most be 5730 // otherwise we will create illegal VGPR->SGPR copies when legalizing 5731 // them. 5732 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) { 5733 if (!VRC) { 5734 assert(SRC); 5735 if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) { 5736 VRC = &AMDGPU::VReg_1RegClass; 5737 } else 5738 VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) 5739 ? RI.getEquivalentAGPRClass(SRC) 5740 : RI.getEquivalentVGPRClass(SRC); 5741 } else { 5742 VRC = RI.isAGPRClass(getOpRegClass(MI, 0)) 5743 ? RI.getEquivalentAGPRClass(VRC) 5744 : RI.getEquivalentVGPRClass(VRC); 5745 } 5746 RC = VRC; 5747 } else { 5748 RC = SRC; 5749 } 5750 5751 // Update all the operands so they have the same type. 5752 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 5753 MachineOperand &Op = MI.getOperand(I); 5754 if (!Op.isReg() || !Op.getReg().isVirtual()) 5755 continue; 5756 5757 // MI is a PHI instruction. 5758 MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB(); 5759 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); 5760 5761 // Avoid creating no-op copies with the same src and dst reg class. These 5762 // confuse some of the machine passes. 5763 legalizeGenericOperand(*InsertBB, Insert, RC, Op, MRI, MI.getDebugLoc()); 5764 } 5765 } 5766 5767 // REG_SEQUENCE doesn't really require operand legalization, but if one has a 5768 // VGPR dest type and SGPR sources, insert copies so all operands are 5769 // VGPRs. This seems to help operand folding / the register coalescer. 5770 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) { 5771 MachineBasicBlock *MBB = MI.getParent(); 5772 const TargetRegisterClass *DstRC = getOpRegClass(MI, 0); 5773 if (RI.hasVGPRs(DstRC)) { 5774 // Update all the operands so they are VGPR register classes. These may 5775 // not be the same register class because REG_SEQUENCE supports mixing 5776 // subregister index types e.g. sub0_sub1 + sub2 + sub3 5777 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 5778 MachineOperand &Op = MI.getOperand(I); 5779 if (!Op.isReg() || !Op.getReg().isVirtual()) 5780 continue; 5781 5782 const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); 5783 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); 5784 if (VRC == OpRC) 5785 continue; 5786 5787 legalizeGenericOperand(*MBB, MI, VRC, Op, MRI, MI.getDebugLoc()); 5788 Op.setIsKill(); 5789 } 5790 } 5791 5792 return CreatedBB; 5793 } 5794 5795 // Legalize INSERT_SUBREG 5796 // src0 must have the same register class as dst 5797 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) { 5798 Register Dst = MI.getOperand(0).getReg(); 5799 Register Src0 = MI.getOperand(1).getReg(); 5800 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 5801 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); 5802 if (DstRC != Src0RC) { 5803 MachineBasicBlock *MBB = MI.getParent(); 5804 MachineOperand &Op = MI.getOperand(1); 5805 legalizeGenericOperand(*MBB, MI, DstRC, Op, MRI, MI.getDebugLoc()); 5806 } 5807 return CreatedBB; 5808 } 5809 5810 // Legalize SI_INIT_M0 5811 if (MI.getOpcode() == AMDGPU::SI_INIT_M0) { 5812 MachineOperand &Src = MI.getOperand(0); 5813 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg()))) 5814 Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI)); 5815 return CreatedBB; 5816 } 5817 5818 // Legalize MIMG and MUBUF/MTBUF for shaders. 5819 // 5820 // Shaders only generate MUBUF/MTBUF instructions via intrinsics or via 5821 // scratch memory access. In both cases, the legalization never involves 5822 // conversion to the addr64 form. 5823 if (isMIMG(MI) || (AMDGPU::isGraphics(MF.getFunction().getCallingConv()) && 5824 (isMUBUF(MI) || isMTBUF(MI)))) { 5825 MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc); 5826 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) 5827 CreatedBB = loadSRsrcFromVGPR(*this, MI, *SRsrc, MDT); 5828 5829 MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp); 5830 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) 5831 CreatedBB = loadSRsrcFromVGPR(*this, MI, *SSamp, MDT); 5832 5833 return CreatedBB; 5834 } 5835 5836 // Legalize SI_CALL 5837 if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) { 5838 MachineOperand *Dest = &MI.getOperand(0); 5839 if (!RI.isSGPRClass(MRI.getRegClass(Dest->getReg()))) { 5840 // Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and 5841 // following copies, we also need to move copies from and to physical 5842 // registers into the loop block. 5843 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 5844 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 5845 5846 // Also move the copies to physical registers into the loop block 5847 MachineBasicBlock &MBB = *MI.getParent(); 5848 MachineBasicBlock::iterator Start(&MI); 5849 while (Start->getOpcode() != FrameSetupOpcode) 5850 --Start; 5851 MachineBasicBlock::iterator End(&MI); 5852 while (End->getOpcode() != FrameDestroyOpcode) 5853 ++End; 5854 // Also include following copies of the return value 5855 ++End; 5856 while (End != MBB.end() && End->isCopy() && End->getOperand(1).isReg() && 5857 MI.definesRegister(End->getOperand(1).getReg())) 5858 ++End; 5859 CreatedBB = loadSRsrcFromVGPR(*this, MI, *Dest, MDT, Start, End); 5860 } 5861 } 5862 5863 // Legalize MUBUF* instructions. 5864 int RsrcIdx = 5865 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 5866 if (RsrcIdx != -1) { 5867 // We have an MUBUF instruction 5868 MachineOperand *Rsrc = &MI.getOperand(RsrcIdx); 5869 unsigned RsrcRC = get(MI.getOpcode()).OpInfo[RsrcIdx].RegClass; 5870 if (RI.getCommonSubClass(MRI.getRegClass(Rsrc->getReg()), 5871 RI.getRegClass(RsrcRC))) { 5872 // The operands are legal. 5873 // FIXME: We may need to legalize operands besides srsrc. 5874 return CreatedBB; 5875 } 5876 5877 // Legalize a VGPR Rsrc. 5878 // 5879 // If the instruction is _ADDR64, we can avoid a waterfall by extracting 5880 // the base pointer from the VGPR Rsrc, adding it to the VAddr, then using 5881 // a zero-value SRsrc. 5882 // 5883 // If the instruction is _OFFSET (both idxen and offen disabled), and we 5884 // support ADDR64 instructions, we can convert to ADDR64 and do the same as 5885 // above. 5886 // 5887 // Otherwise we are on non-ADDR64 hardware, and/or we have 5888 // idxen/offen/bothen and we fall back to a waterfall loop. 5889 5890 MachineBasicBlock &MBB = *MI.getParent(); 5891 5892 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 5893 if (VAddr && AMDGPU::getIfAddr64Inst(MI.getOpcode()) != -1) { 5894 // This is already an ADDR64 instruction so we need to add the pointer 5895 // extracted from the resource descriptor to the current value of VAddr. 5896 Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 5897 Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 5898 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 5899 5900 const auto *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 5901 Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC); 5902 Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC); 5903 5904 unsigned RsrcPtr, NewSRsrc; 5905 std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); 5906 5907 // NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0 5908 const DebugLoc &DL = MI.getDebugLoc(); 5909 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo) 5910 .addDef(CondReg0) 5911 .addReg(RsrcPtr, 0, AMDGPU::sub0) 5912 .addReg(VAddr->getReg(), 0, AMDGPU::sub0) 5913 .addImm(0); 5914 5915 // NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1 5916 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi) 5917 .addDef(CondReg1, RegState::Dead) 5918 .addReg(RsrcPtr, 0, AMDGPU::sub1) 5919 .addReg(VAddr->getReg(), 0, AMDGPU::sub1) 5920 .addReg(CondReg0, RegState::Kill) 5921 .addImm(0); 5922 5923 // NewVaddr = {NewVaddrHi, NewVaddrLo} 5924 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) 5925 .addReg(NewVAddrLo) 5926 .addImm(AMDGPU::sub0) 5927 .addReg(NewVAddrHi) 5928 .addImm(AMDGPU::sub1); 5929 5930 VAddr->setReg(NewVAddr); 5931 Rsrc->setReg(NewSRsrc); 5932 } else if (!VAddr && ST.hasAddr64()) { 5933 // This instructions is the _OFFSET variant, so we need to convert it to 5934 // ADDR64. 5935 assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS && 5936 "FIXME: Need to emit flat atomics here"); 5937 5938 unsigned RsrcPtr, NewSRsrc; 5939 std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc); 5940 5941 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 5942 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata); 5943 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 5944 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 5945 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode()); 5946 5947 // Atomics with return have an additional tied operand and are 5948 // missing some of the special bits. 5949 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in); 5950 MachineInstr *Addr64; 5951 5952 if (!VDataIn) { 5953 // Regular buffer load / store. 5954 MachineInstrBuilder MIB = 5955 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 5956 .add(*VData) 5957 .addReg(NewVAddr) 5958 .addReg(NewSRsrc) 5959 .add(*SOffset) 5960 .add(*Offset); 5961 5962 if (const MachineOperand *CPol = 5963 getNamedOperand(MI, AMDGPU::OpName::cpol)) { 5964 MIB.addImm(CPol->getImm()); 5965 } 5966 5967 if (const MachineOperand *TFE = 5968 getNamedOperand(MI, AMDGPU::OpName::tfe)) { 5969 MIB.addImm(TFE->getImm()); 5970 } 5971 5972 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz)); 5973 5974 MIB.cloneMemRefs(MI); 5975 Addr64 = MIB; 5976 } else { 5977 // Atomics with return. 5978 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 5979 .add(*VData) 5980 .add(*VDataIn) 5981 .addReg(NewVAddr) 5982 .addReg(NewSRsrc) 5983 .add(*SOffset) 5984 .add(*Offset) 5985 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol)) 5986 .cloneMemRefs(MI); 5987 } 5988 5989 MI.removeFromParent(); 5990 5991 // NewVaddr = {NewVaddrHi, NewVaddrLo} 5992 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), 5993 NewVAddr) 5994 .addReg(RsrcPtr, 0, AMDGPU::sub0) 5995 .addImm(AMDGPU::sub0) 5996 .addReg(RsrcPtr, 0, AMDGPU::sub1) 5997 .addImm(AMDGPU::sub1); 5998 } else { 5999 // This is another variant; legalize Rsrc with waterfall loop from VGPRs 6000 // to SGPRs. 6001 CreatedBB = loadSRsrcFromVGPR(*this, MI, *Rsrc, MDT); 6002 return CreatedBB; 6003 } 6004 } 6005 return CreatedBB; 6006 } 6007 6008 MachineBasicBlock *SIInstrInfo::moveToVALU(MachineInstr &TopInst, 6009 MachineDominatorTree *MDT) const { 6010 SetVectorType Worklist; 6011 Worklist.insert(&TopInst); 6012 MachineBasicBlock *CreatedBB = nullptr; 6013 MachineBasicBlock *CreatedBBTmp = nullptr; 6014 6015 while (!Worklist.empty()) { 6016 MachineInstr &Inst = *Worklist.pop_back_val(); 6017 MachineBasicBlock *MBB = Inst.getParent(); 6018 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 6019 6020 unsigned Opcode = Inst.getOpcode(); 6021 unsigned NewOpcode = getVALUOp(Inst); 6022 6023 // Handle some special cases 6024 switch (Opcode) { 6025 default: 6026 break; 6027 case AMDGPU::S_ADD_U64_PSEUDO: 6028 case AMDGPU::S_SUB_U64_PSEUDO: 6029 splitScalar64BitAddSub(Worklist, Inst, MDT); 6030 Inst.eraseFromParent(); 6031 continue; 6032 case AMDGPU::S_ADD_I32: 6033 case AMDGPU::S_SUB_I32: { 6034 // FIXME: The u32 versions currently selected use the carry. 6035 bool Changed; 6036 std::tie(Changed, CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT); 6037 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6038 CreatedBB = CreatedBBTmp; 6039 if (Changed) 6040 continue; 6041 6042 // Default handling 6043 break; 6044 } 6045 case AMDGPU::S_AND_B64: 6046 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT); 6047 Inst.eraseFromParent(); 6048 continue; 6049 6050 case AMDGPU::S_OR_B64: 6051 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT); 6052 Inst.eraseFromParent(); 6053 continue; 6054 6055 case AMDGPU::S_XOR_B64: 6056 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT); 6057 Inst.eraseFromParent(); 6058 continue; 6059 6060 case AMDGPU::S_NAND_B64: 6061 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT); 6062 Inst.eraseFromParent(); 6063 continue; 6064 6065 case AMDGPU::S_NOR_B64: 6066 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT); 6067 Inst.eraseFromParent(); 6068 continue; 6069 6070 case AMDGPU::S_XNOR_B64: 6071 if (ST.hasDLInsts()) 6072 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT); 6073 else 6074 splitScalar64BitXnor(Worklist, Inst, MDT); 6075 Inst.eraseFromParent(); 6076 continue; 6077 6078 case AMDGPU::S_ANDN2_B64: 6079 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT); 6080 Inst.eraseFromParent(); 6081 continue; 6082 6083 case AMDGPU::S_ORN2_B64: 6084 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT); 6085 Inst.eraseFromParent(); 6086 continue; 6087 6088 case AMDGPU::S_BREV_B64: 6089 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true); 6090 Inst.eraseFromParent(); 6091 continue; 6092 6093 case AMDGPU::S_NOT_B64: 6094 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32); 6095 Inst.eraseFromParent(); 6096 continue; 6097 6098 case AMDGPU::S_BCNT1_I32_B64: 6099 splitScalar64BitBCNT(Worklist, Inst); 6100 Inst.eraseFromParent(); 6101 continue; 6102 6103 case AMDGPU::S_BFE_I64: 6104 splitScalar64BitBFE(Worklist, Inst); 6105 Inst.eraseFromParent(); 6106 continue; 6107 6108 case AMDGPU::S_LSHL_B32: 6109 if (ST.hasOnlyRevVALUShifts()) { 6110 NewOpcode = AMDGPU::V_LSHLREV_B32_e64; 6111 swapOperands(Inst); 6112 } 6113 break; 6114 case AMDGPU::S_ASHR_I32: 6115 if (ST.hasOnlyRevVALUShifts()) { 6116 NewOpcode = AMDGPU::V_ASHRREV_I32_e64; 6117 swapOperands(Inst); 6118 } 6119 break; 6120 case AMDGPU::S_LSHR_B32: 6121 if (ST.hasOnlyRevVALUShifts()) { 6122 NewOpcode = AMDGPU::V_LSHRREV_B32_e64; 6123 swapOperands(Inst); 6124 } 6125 break; 6126 case AMDGPU::S_LSHL_B64: 6127 if (ST.hasOnlyRevVALUShifts()) { 6128 NewOpcode = AMDGPU::V_LSHLREV_B64_e64; 6129 swapOperands(Inst); 6130 } 6131 break; 6132 case AMDGPU::S_ASHR_I64: 6133 if (ST.hasOnlyRevVALUShifts()) { 6134 NewOpcode = AMDGPU::V_ASHRREV_I64_e64; 6135 swapOperands(Inst); 6136 } 6137 break; 6138 case AMDGPU::S_LSHR_B64: 6139 if (ST.hasOnlyRevVALUShifts()) { 6140 NewOpcode = AMDGPU::V_LSHRREV_B64_e64; 6141 swapOperands(Inst); 6142 } 6143 break; 6144 6145 case AMDGPU::S_ABS_I32: 6146 lowerScalarAbs(Worklist, Inst); 6147 Inst.eraseFromParent(); 6148 continue; 6149 6150 case AMDGPU::S_CBRANCH_SCC0: 6151 case AMDGPU::S_CBRANCH_SCC1: { 6152 // Clear unused bits of vcc 6153 Register CondReg = Inst.getOperand(1).getReg(); 6154 bool IsSCC = CondReg == AMDGPU::SCC; 6155 Register VCC = RI.getVCC(); 6156 Register EXEC = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC; 6157 unsigned Opc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64; 6158 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(Opc), VCC) 6159 .addReg(EXEC) 6160 .addReg(IsSCC ? VCC : CondReg); 6161 Inst.RemoveOperand(1); 6162 } 6163 break; 6164 6165 case AMDGPU::S_BFE_U64: 6166 case AMDGPU::S_BFM_B64: 6167 llvm_unreachable("Moving this op to VALU not implemented"); 6168 6169 case AMDGPU::S_PACK_LL_B32_B16: 6170 case AMDGPU::S_PACK_LH_B32_B16: 6171 case AMDGPU::S_PACK_HH_B32_B16: 6172 movePackToVALU(Worklist, MRI, Inst); 6173 Inst.eraseFromParent(); 6174 continue; 6175 6176 case AMDGPU::S_XNOR_B32: 6177 lowerScalarXnor(Worklist, Inst); 6178 Inst.eraseFromParent(); 6179 continue; 6180 6181 case AMDGPU::S_NAND_B32: 6182 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32); 6183 Inst.eraseFromParent(); 6184 continue; 6185 6186 case AMDGPU::S_NOR_B32: 6187 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32); 6188 Inst.eraseFromParent(); 6189 continue; 6190 6191 case AMDGPU::S_ANDN2_B32: 6192 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32); 6193 Inst.eraseFromParent(); 6194 continue; 6195 6196 case AMDGPU::S_ORN2_B32: 6197 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32); 6198 Inst.eraseFromParent(); 6199 continue; 6200 6201 // TODO: remove as soon as everything is ready 6202 // to replace VGPR to SGPR copy with V_READFIRSTLANEs. 6203 // S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO 6204 // can only be selected from the uniform SDNode. 6205 case AMDGPU::S_ADD_CO_PSEUDO: 6206 case AMDGPU::S_SUB_CO_PSEUDO: { 6207 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) 6208 ? AMDGPU::V_ADDC_U32_e64 6209 : AMDGPU::V_SUBB_U32_e64; 6210 const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6211 6212 Register CarryInReg = Inst.getOperand(4).getReg(); 6213 if (!MRI.constrainRegClass(CarryInReg, CarryRC)) { 6214 Register NewCarryReg = MRI.createVirtualRegister(CarryRC); 6215 BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg) 6216 .addReg(CarryInReg); 6217 } 6218 6219 Register CarryOutReg = Inst.getOperand(1).getReg(); 6220 6221 Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass( 6222 MRI.getRegClass(Inst.getOperand(0).getReg()))); 6223 MachineInstr *CarryOp = 6224 BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg) 6225 .addReg(CarryOutReg, RegState::Define) 6226 .add(Inst.getOperand(2)) 6227 .add(Inst.getOperand(3)) 6228 .addReg(CarryInReg) 6229 .addImm(0); 6230 CreatedBBTmp = legalizeOperands(*CarryOp); 6231 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6232 CreatedBB = CreatedBBTmp; 6233 MRI.replaceRegWith(Inst.getOperand(0).getReg(), DestReg); 6234 addUsersToMoveToVALUWorklist(DestReg, MRI, Worklist); 6235 Inst.eraseFromParent(); 6236 } 6237 continue; 6238 case AMDGPU::S_UADDO_PSEUDO: 6239 case AMDGPU::S_USUBO_PSEUDO: { 6240 const DebugLoc &DL = Inst.getDebugLoc(); 6241 MachineOperand &Dest0 = Inst.getOperand(0); 6242 MachineOperand &Dest1 = Inst.getOperand(1); 6243 MachineOperand &Src0 = Inst.getOperand(2); 6244 MachineOperand &Src1 = Inst.getOperand(3); 6245 6246 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO) 6247 ? AMDGPU::V_ADD_CO_U32_e64 6248 : AMDGPU::V_SUB_CO_U32_e64; 6249 const TargetRegisterClass *NewRC = 6250 RI.getEquivalentVGPRClass(MRI.getRegClass(Dest0.getReg())); 6251 Register DestReg = MRI.createVirtualRegister(NewRC); 6252 MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg) 6253 .addReg(Dest1.getReg(), RegState::Define) 6254 .add(Src0) 6255 .add(Src1) 6256 .addImm(0); // clamp bit 6257 6258 CreatedBBTmp = legalizeOperands(*NewInstr, MDT); 6259 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6260 CreatedBB = CreatedBBTmp; 6261 6262 MRI.replaceRegWith(Dest0.getReg(), DestReg); 6263 addUsersToMoveToVALUWorklist(NewInstr->getOperand(0).getReg(), MRI, 6264 Worklist); 6265 Inst.eraseFromParent(); 6266 } 6267 continue; 6268 6269 case AMDGPU::S_CSELECT_B32: 6270 case AMDGPU::S_CSELECT_B64: 6271 lowerSelect(Worklist, Inst, MDT); 6272 Inst.eraseFromParent(); 6273 continue; 6274 case AMDGPU::S_CMP_EQ_I32: 6275 case AMDGPU::S_CMP_LG_I32: 6276 case AMDGPU::S_CMP_GT_I32: 6277 case AMDGPU::S_CMP_GE_I32: 6278 case AMDGPU::S_CMP_LT_I32: 6279 case AMDGPU::S_CMP_LE_I32: 6280 case AMDGPU::S_CMP_EQ_U32: 6281 case AMDGPU::S_CMP_LG_U32: 6282 case AMDGPU::S_CMP_GT_U32: 6283 case AMDGPU::S_CMP_GE_U32: 6284 case AMDGPU::S_CMP_LT_U32: 6285 case AMDGPU::S_CMP_LE_U32: 6286 case AMDGPU::S_CMP_EQ_U64: 6287 case AMDGPU::S_CMP_LG_U64: { 6288 const MCInstrDesc &NewDesc = get(NewOpcode); 6289 Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass()); 6290 MachineInstr *NewInstr = 6291 BuildMI(*MBB, Inst, Inst.getDebugLoc(), NewDesc, CondReg) 6292 .add(Inst.getOperand(0)) 6293 .add(Inst.getOperand(1)); 6294 legalizeOperands(*NewInstr, MDT); 6295 int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC); 6296 MachineOperand SCCOp = Inst.getOperand(SCCIdx); 6297 addSCCDefUsersToVALUWorklist(SCCOp, Inst, Worklist, CondReg); 6298 Inst.eraseFromParent(); 6299 } 6300 continue; 6301 } 6302 6303 6304 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { 6305 // We cannot move this instruction to the VALU, so we should try to 6306 // legalize its operands instead. 6307 CreatedBBTmp = legalizeOperands(Inst, MDT); 6308 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6309 CreatedBB = CreatedBBTmp; 6310 continue; 6311 } 6312 6313 // Use the new VALU Opcode. 6314 const MCInstrDesc &NewDesc = get(NewOpcode); 6315 Inst.setDesc(NewDesc); 6316 6317 // Remove any references to SCC. Vector instructions can't read from it, and 6318 // We're just about to add the implicit use / defs of VCC, and we don't want 6319 // both. 6320 for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) { 6321 MachineOperand &Op = Inst.getOperand(i); 6322 if (Op.isReg() && Op.getReg() == AMDGPU::SCC) { 6323 // Only propagate through live-def of SCC. 6324 if (Op.isDef() && !Op.isDead()) 6325 addSCCDefUsersToVALUWorklist(Op, Inst, Worklist); 6326 if (Op.isUse()) 6327 addSCCDefsToVALUWorklist(Op, Worklist); 6328 Inst.RemoveOperand(i); 6329 } 6330 } 6331 6332 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { 6333 // We are converting these to a BFE, so we need to add the missing 6334 // operands for the size and offset. 6335 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; 6336 Inst.addOperand(MachineOperand::CreateImm(0)); 6337 Inst.addOperand(MachineOperand::CreateImm(Size)); 6338 6339 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { 6340 // The VALU version adds the second operand to the result, so insert an 6341 // extra 0 operand. 6342 Inst.addOperand(MachineOperand::CreateImm(0)); 6343 } 6344 6345 Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent()); 6346 fixImplicitOperands(Inst); 6347 6348 if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { 6349 const MachineOperand &OffsetWidthOp = Inst.getOperand(2); 6350 // If we need to move this to VGPRs, we need to unpack the second operand 6351 // back into the 2 separate ones for bit offset and width. 6352 assert(OffsetWidthOp.isImm() && 6353 "Scalar BFE is only implemented for constant width and offset"); 6354 uint32_t Imm = OffsetWidthOp.getImm(); 6355 6356 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 6357 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 6358 Inst.RemoveOperand(2); // Remove old immediate. 6359 Inst.addOperand(MachineOperand::CreateImm(Offset)); 6360 Inst.addOperand(MachineOperand::CreateImm(BitWidth)); 6361 } 6362 6363 bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef(); 6364 unsigned NewDstReg = AMDGPU::NoRegister; 6365 if (HasDst) { 6366 Register DstReg = Inst.getOperand(0).getReg(); 6367 if (DstReg.isPhysical()) 6368 continue; 6369 6370 // Update the destination register class. 6371 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst); 6372 if (!NewDstRC) 6373 continue; 6374 6375 if (Inst.isCopy() && Inst.getOperand(1).getReg().isVirtual() && 6376 NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(1).getReg())) { 6377 // Instead of creating a copy where src and dst are the same register 6378 // class, we just replace all uses of dst with src. These kinds of 6379 // copies interfere with the heuristics MachineSink uses to decide 6380 // whether or not to split a critical edge. Since the pass assumes 6381 // that copies will end up as machine instructions and not be 6382 // eliminated. 6383 addUsersToMoveToVALUWorklist(DstReg, MRI, Worklist); 6384 MRI.replaceRegWith(DstReg, Inst.getOperand(1).getReg()); 6385 MRI.clearKillFlags(Inst.getOperand(1).getReg()); 6386 Inst.getOperand(0).setReg(DstReg); 6387 6388 // Make sure we don't leave around a dead VGPR->SGPR copy. Normally 6389 // these are deleted later, but at -O0 it would leave a suspicious 6390 // looking illegal copy of an undef register. 6391 for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I) 6392 Inst.RemoveOperand(I); 6393 Inst.setDesc(get(AMDGPU::IMPLICIT_DEF)); 6394 continue; 6395 } 6396 6397 NewDstReg = MRI.createVirtualRegister(NewDstRC); 6398 MRI.replaceRegWith(DstReg, NewDstReg); 6399 } 6400 6401 // Legalize the operands 6402 CreatedBBTmp = legalizeOperands(Inst, MDT); 6403 if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp) 6404 CreatedBB = CreatedBBTmp; 6405 6406 if (HasDst) 6407 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 6408 } 6409 return CreatedBB; 6410 } 6411 6412 // Add/sub require special handling to deal with carry outs. 6413 std::pair<bool, MachineBasicBlock *> 6414 SIInstrInfo::moveScalarAddSub(SetVectorType &Worklist, MachineInstr &Inst, 6415 MachineDominatorTree *MDT) const { 6416 if (ST.hasAddNoCarry()) { 6417 // Assume there is no user of scc since we don't select this in that case. 6418 // Since scc isn't used, it doesn't really matter if the i32 or u32 variant 6419 // is used. 6420 6421 MachineBasicBlock &MBB = *Inst.getParent(); 6422 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6423 6424 Register OldDstReg = Inst.getOperand(0).getReg(); 6425 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6426 6427 unsigned Opc = Inst.getOpcode(); 6428 assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32); 6429 6430 unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ? 6431 AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64; 6432 6433 assert(Inst.getOperand(3).getReg() == AMDGPU::SCC); 6434 Inst.RemoveOperand(3); 6435 6436 Inst.setDesc(get(NewOpc)); 6437 Inst.addOperand(MachineOperand::CreateImm(0)); // clamp bit 6438 Inst.addImplicitDefUseOperands(*MBB.getParent()); 6439 MRI.replaceRegWith(OldDstReg, ResultReg); 6440 MachineBasicBlock *NewBB = legalizeOperands(Inst, MDT); 6441 6442 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6443 return std::make_pair(true, NewBB); 6444 } 6445 6446 return std::make_pair(false, nullptr); 6447 } 6448 6449 void SIInstrInfo::lowerSelect(SetVectorType &Worklist, MachineInstr &Inst, 6450 MachineDominatorTree *MDT) const { 6451 6452 MachineBasicBlock &MBB = *Inst.getParent(); 6453 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6454 MachineBasicBlock::iterator MII = Inst; 6455 DebugLoc DL = Inst.getDebugLoc(); 6456 6457 MachineOperand &Dest = Inst.getOperand(0); 6458 MachineOperand &Src0 = Inst.getOperand(1); 6459 MachineOperand &Src1 = Inst.getOperand(2); 6460 MachineOperand &Cond = Inst.getOperand(3); 6461 6462 Register SCCSource = Cond.getReg(); 6463 bool IsSCC = (SCCSource == AMDGPU::SCC); 6464 6465 // If this is a trivial select where the condition is effectively not SCC 6466 // (SCCSource is a source of copy to SCC), then the select is semantically 6467 // equivalent to copying SCCSource. Hence, there is no need to create 6468 // V_CNDMASK, we can just use that and bail out. 6469 if (!IsSCC && Src0.isImm() && (Src0.getImm() == -1) && Src1.isImm() && 6470 (Src1.getImm() == 0)) { 6471 MRI.replaceRegWith(Dest.getReg(), SCCSource); 6472 return; 6473 } 6474 6475 const TargetRegisterClass *TC = 6476 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6477 6478 Register CopySCC = MRI.createVirtualRegister(TC); 6479 6480 if (IsSCC) { 6481 // Now look for the closest SCC def if it is a copy 6482 // replacing the SCCSource with the COPY source register 6483 bool CopyFound = false; 6484 for (MachineInstr &CandI : 6485 make_range(std::next(MachineBasicBlock::reverse_iterator(Inst)), 6486 Inst.getParent()->rend())) { 6487 if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != 6488 -1) { 6489 if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) { 6490 BuildMI(MBB, MII, DL, get(AMDGPU::COPY), CopySCC) 6491 .addReg(CandI.getOperand(1).getReg()); 6492 CopyFound = true; 6493 } 6494 break; 6495 } 6496 } 6497 if (!CopyFound) { 6498 // SCC def is not a copy 6499 // Insert a trivial select instead of creating a copy, because a copy from 6500 // SCC would semantically mean just copying a single bit, but we may need 6501 // the result to be a vector condition mask that needs preserving. 6502 unsigned Opcode = (ST.getWavefrontSize() == 64) ? AMDGPU::S_CSELECT_B64 6503 : AMDGPU::S_CSELECT_B32; 6504 auto NewSelect = 6505 BuildMI(MBB, MII, DL, get(Opcode), CopySCC).addImm(-1).addImm(0); 6506 NewSelect->getOperand(3).setIsUndef(Cond.isUndef()); 6507 } 6508 } 6509 6510 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6511 6512 auto UpdatedInst = 6513 BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), ResultReg) 6514 .addImm(0) 6515 .add(Src1) // False 6516 .addImm(0) 6517 .add(Src0) // True 6518 .addReg(IsSCC ? CopySCC : SCCSource); 6519 6520 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6521 legalizeOperands(*UpdatedInst, MDT); 6522 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6523 } 6524 6525 void SIInstrInfo::lowerScalarAbs(SetVectorType &Worklist, 6526 MachineInstr &Inst) const { 6527 MachineBasicBlock &MBB = *Inst.getParent(); 6528 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6529 MachineBasicBlock::iterator MII = Inst; 6530 DebugLoc DL = Inst.getDebugLoc(); 6531 6532 MachineOperand &Dest = Inst.getOperand(0); 6533 MachineOperand &Src = Inst.getOperand(1); 6534 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6535 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6536 6537 unsigned SubOp = ST.hasAddNoCarry() ? 6538 AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32; 6539 6540 BuildMI(MBB, MII, DL, get(SubOp), TmpReg) 6541 .addImm(0) 6542 .addReg(Src.getReg()); 6543 6544 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) 6545 .addReg(Src.getReg()) 6546 .addReg(TmpReg); 6547 6548 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6549 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6550 } 6551 6552 void SIInstrInfo::lowerScalarXnor(SetVectorType &Worklist, 6553 MachineInstr &Inst) const { 6554 MachineBasicBlock &MBB = *Inst.getParent(); 6555 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6556 MachineBasicBlock::iterator MII = Inst; 6557 const DebugLoc &DL = Inst.getDebugLoc(); 6558 6559 MachineOperand &Dest = Inst.getOperand(0); 6560 MachineOperand &Src0 = Inst.getOperand(1); 6561 MachineOperand &Src1 = Inst.getOperand(2); 6562 6563 if (ST.hasDLInsts()) { 6564 Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6565 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL); 6566 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL); 6567 6568 BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest) 6569 .add(Src0) 6570 .add(Src1); 6571 6572 MRI.replaceRegWith(Dest.getReg(), NewDest); 6573 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 6574 } else { 6575 // Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can 6576 // invert either source and then perform the XOR. If either source is a 6577 // scalar register, then we can leave the inversion on the scalar unit to 6578 // achieve a better distribution of scalar and vector instructions. 6579 bool Src0IsSGPR = Src0.isReg() && 6580 RI.isSGPRClass(MRI.getRegClass(Src0.getReg())); 6581 bool Src1IsSGPR = Src1.isReg() && 6582 RI.isSGPRClass(MRI.getRegClass(Src1.getReg())); 6583 MachineInstr *Xor; 6584 Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6585 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6586 6587 // Build a pair of scalar instructions and add them to the work list. 6588 // The next iteration over the work list will lower these to the vector 6589 // unit as necessary. 6590 if (Src0IsSGPR) { 6591 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0); 6592 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) 6593 .addReg(Temp) 6594 .add(Src1); 6595 } else if (Src1IsSGPR) { 6596 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1); 6597 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest) 6598 .add(Src0) 6599 .addReg(Temp); 6600 } else { 6601 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp) 6602 .add(Src0) 6603 .add(Src1); 6604 MachineInstr *Not = 6605 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp); 6606 Worklist.insert(Not); 6607 } 6608 6609 MRI.replaceRegWith(Dest.getReg(), NewDest); 6610 6611 Worklist.insert(Xor); 6612 6613 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 6614 } 6615 } 6616 6617 void SIInstrInfo::splitScalarNotBinop(SetVectorType &Worklist, 6618 MachineInstr &Inst, 6619 unsigned Opcode) const { 6620 MachineBasicBlock &MBB = *Inst.getParent(); 6621 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6622 MachineBasicBlock::iterator MII = Inst; 6623 const DebugLoc &DL = Inst.getDebugLoc(); 6624 6625 MachineOperand &Dest = Inst.getOperand(0); 6626 MachineOperand &Src0 = Inst.getOperand(1); 6627 MachineOperand &Src1 = Inst.getOperand(2); 6628 6629 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6630 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); 6631 6632 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm) 6633 .add(Src0) 6634 .add(Src1); 6635 6636 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest) 6637 .addReg(Interm); 6638 6639 Worklist.insert(&Op); 6640 Worklist.insert(&Not); 6641 6642 MRI.replaceRegWith(Dest.getReg(), NewDest); 6643 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 6644 } 6645 6646 void SIInstrInfo::splitScalarBinOpN2(SetVectorType& Worklist, 6647 MachineInstr &Inst, 6648 unsigned Opcode) const { 6649 MachineBasicBlock &MBB = *Inst.getParent(); 6650 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6651 MachineBasicBlock::iterator MII = Inst; 6652 const DebugLoc &DL = Inst.getDebugLoc(); 6653 6654 MachineOperand &Dest = Inst.getOperand(0); 6655 MachineOperand &Src0 = Inst.getOperand(1); 6656 MachineOperand &Src1 = Inst.getOperand(2); 6657 6658 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6659 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 6660 6661 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm) 6662 .add(Src1); 6663 6664 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest) 6665 .add(Src0) 6666 .addReg(Interm); 6667 6668 Worklist.insert(&Not); 6669 Worklist.insert(&Op); 6670 6671 MRI.replaceRegWith(Dest.getReg(), NewDest); 6672 addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist); 6673 } 6674 6675 void SIInstrInfo::splitScalar64BitUnaryOp( 6676 SetVectorType &Worklist, MachineInstr &Inst, 6677 unsigned Opcode, bool Swap) const { 6678 MachineBasicBlock &MBB = *Inst.getParent(); 6679 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6680 6681 MachineOperand &Dest = Inst.getOperand(0); 6682 MachineOperand &Src0 = Inst.getOperand(1); 6683 DebugLoc DL = Inst.getDebugLoc(); 6684 6685 MachineBasicBlock::iterator MII = Inst; 6686 6687 const MCInstrDesc &InstDesc = get(Opcode); 6688 const TargetRegisterClass *Src0RC = Src0.isReg() ? 6689 MRI.getRegClass(Src0.getReg()) : 6690 &AMDGPU::SGPR_32RegClass; 6691 6692 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 6693 6694 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6695 AMDGPU::sub0, Src0SubRC); 6696 6697 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 6698 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 6699 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 6700 6701 Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 6702 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0).add(SrcReg0Sub0); 6703 6704 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6705 AMDGPU::sub1, Src0SubRC); 6706 6707 Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 6708 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1).add(SrcReg0Sub1); 6709 6710 if (Swap) 6711 std::swap(DestSub0, DestSub1); 6712 6713 Register FullDestReg = MRI.createVirtualRegister(NewDestRC); 6714 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 6715 .addReg(DestSub0) 6716 .addImm(AMDGPU::sub0) 6717 .addReg(DestSub1) 6718 .addImm(AMDGPU::sub1); 6719 6720 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 6721 6722 Worklist.insert(&LoHalf); 6723 Worklist.insert(&HiHalf); 6724 6725 // We don't need to legalizeOperands here because for a single operand, src0 6726 // will support any kind of input. 6727 6728 // Move all users of this moved value. 6729 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 6730 } 6731 6732 void SIInstrInfo::splitScalar64BitAddSub(SetVectorType &Worklist, 6733 MachineInstr &Inst, 6734 MachineDominatorTree *MDT) const { 6735 bool IsAdd = (Inst.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO); 6736 6737 MachineBasicBlock &MBB = *Inst.getParent(); 6738 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6739 const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID); 6740 6741 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6742 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6743 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6744 6745 Register CarryReg = MRI.createVirtualRegister(CarryRC); 6746 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC); 6747 6748 MachineOperand &Dest = Inst.getOperand(0); 6749 MachineOperand &Src0 = Inst.getOperand(1); 6750 MachineOperand &Src1 = Inst.getOperand(2); 6751 const DebugLoc &DL = Inst.getDebugLoc(); 6752 MachineBasicBlock::iterator MII = Inst; 6753 6754 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg()); 6755 const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg()); 6756 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 6757 const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); 6758 6759 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6760 AMDGPU::sub0, Src0SubRC); 6761 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 6762 AMDGPU::sub0, Src1SubRC); 6763 6764 6765 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6766 AMDGPU::sub1, Src0SubRC); 6767 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 6768 AMDGPU::sub1, Src1SubRC); 6769 6770 unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 6771 MachineInstr *LoHalf = 6772 BuildMI(MBB, MII, DL, get(LoOpc), DestSub0) 6773 .addReg(CarryReg, RegState::Define) 6774 .add(SrcReg0Sub0) 6775 .add(SrcReg1Sub0) 6776 .addImm(0); // clamp bit 6777 6778 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64; 6779 MachineInstr *HiHalf = 6780 BuildMI(MBB, MII, DL, get(HiOpc), DestSub1) 6781 .addReg(DeadCarryReg, RegState::Define | RegState::Dead) 6782 .add(SrcReg0Sub1) 6783 .add(SrcReg1Sub1) 6784 .addReg(CarryReg, RegState::Kill) 6785 .addImm(0); // clamp bit 6786 6787 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 6788 .addReg(DestSub0) 6789 .addImm(AMDGPU::sub0) 6790 .addReg(DestSub1) 6791 .addImm(AMDGPU::sub1); 6792 6793 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 6794 6795 // Try to legalize the operands in case we need to swap the order to keep it 6796 // valid. 6797 legalizeOperands(*LoHalf, MDT); 6798 legalizeOperands(*HiHalf, MDT); 6799 6800 // Move all users of this moved value. 6801 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 6802 } 6803 6804 void SIInstrInfo::splitScalar64BitBinaryOp(SetVectorType &Worklist, 6805 MachineInstr &Inst, unsigned Opcode, 6806 MachineDominatorTree *MDT) const { 6807 MachineBasicBlock &MBB = *Inst.getParent(); 6808 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6809 6810 MachineOperand &Dest = Inst.getOperand(0); 6811 MachineOperand &Src0 = Inst.getOperand(1); 6812 MachineOperand &Src1 = Inst.getOperand(2); 6813 DebugLoc DL = Inst.getDebugLoc(); 6814 6815 MachineBasicBlock::iterator MII = Inst; 6816 6817 const MCInstrDesc &InstDesc = get(Opcode); 6818 const TargetRegisterClass *Src0RC = Src0.isReg() ? 6819 MRI.getRegClass(Src0.getReg()) : 6820 &AMDGPU::SGPR_32RegClass; 6821 6822 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 6823 const TargetRegisterClass *Src1RC = Src1.isReg() ? 6824 MRI.getRegClass(Src1.getReg()) : 6825 &AMDGPU::SGPR_32RegClass; 6826 6827 const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); 6828 6829 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6830 AMDGPU::sub0, Src0SubRC); 6831 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 6832 AMDGPU::sub0, Src1SubRC); 6833 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 6834 AMDGPU::sub1, Src0SubRC); 6835 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 6836 AMDGPU::sub1, Src1SubRC); 6837 6838 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 6839 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 6840 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 6841 6842 Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 6843 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0) 6844 .add(SrcReg0Sub0) 6845 .add(SrcReg1Sub0); 6846 6847 Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 6848 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1) 6849 .add(SrcReg0Sub1) 6850 .add(SrcReg1Sub1); 6851 6852 Register FullDestReg = MRI.createVirtualRegister(NewDestRC); 6853 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 6854 .addReg(DestSub0) 6855 .addImm(AMDGPU::sub0) 6856 .addReg(DestSub1) 6857 .addImm(AMDGPU::sub1); 6858 6859 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 6860 6861 Worklist.insert(&LoHalf); 6862 Worklist.insert(&HiHalf); 6863 6864 // Move all users of this moved value. 6865 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 6866 } 6867 6868 void SIInstrInfo::splitScalar64BitXnor(SetVectorType &Worklist, 6869 MachineInstr &Inst, 6870 MachineDominatorTree *MDT) const { 6871 MachineBasicBlock &MBB = *Inst.getParent(); 6872 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6873 6874 MachineOperand &Dest = Inst.getOperand(0); 6875 MachineOperand &Src0 = Inst.getOperand(1); 6876 MachineOperand &Src1 = Inst.getOperand(2); 6877 const DebugLoc &DL = Inst.getDebugLoc(); 6878 6879 MachineBasicBlock::iterator MII = Inst; 6880 6881 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 6882 6883 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 6884 6885 MachineOperand* Op0; 6886 MachineOperand* Op1; 6887 6888 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) { 6889 Op0 = &Src0; 6890 Op1 = &Src1; 6891 } else { 6892 Op0 = &Src1; 6893 Op1 = &Src0; 6894 } 6895 6896 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm) 6897 .add(*Op0); 6898 6899 Register NewDest = MRI.createVirtualRegister(DestRC); 6900 6901 MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest) 6902 .addReg(Interm) 6903 .add(*Op1); 6904 6905 MRI.replaceRegWith(Dest.getReg(), NewDest); 6906 6907 Worklist.insert(&Xor); 6908 } 6909 6910 void SIInstrInfo::splitScalar64BitBCNT( 6911 SetVectorType &Worklist, MachineInstr &Inst) const { 6912 MachineBasicBlock &MBB = *Inst.getParent(); 6913 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6914 6915 MachineBasicBlock::iterator MII = Inst; 6916 const DebugLoc &DL = Inst.getDebugLoc(); 6917 6918 MachineOperand &Dest = Inst.getOperand(0); 6919 MachineOperand &Src = Inst.getOperand(1); 6920 6921 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); 6922 const TargetRegisterClass *SrcRC = Src.isReg() ? 6923 MRI.getRegClass(Src.getReg()) : 6924 &AMDGPU::SGPR_32RegClass; 6925 6926 Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6927 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6928 6929 const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0); 6930 6931 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 6932 AMDGPU::sub0, SrcSubRC); 6933 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 6934 AMDGPU::sub1, SrcSubRC); 6935 6936 BuildMI(MBB, MII, DL, InstDesc, MidReg).add(SrcRegSub0).addImm(0); 6937 6938 BuildMI(MBB, MII, DL, InstDesc, ResultReg).add(SrcRegSub1).addReg(MidReg); 6939 6940 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6941 6942 // We don't need to legalize operands here. src0 for either instruction can be 6943 // an SGPR, and the second input is unused or determined here. 6944 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6945 } 6946 6947 void SIInstrInfo::splitScalar64BitBFE(SetVectorType &Worklist, 6948 MachineInstr &Inst) const { 6949 MachineBasicBlock &MBB = *Inst.getParent(); 6950 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 6951 MachineBasicBlock::iterator MII = Inst; 6952 const DebugLoc &DL = Inst.getDebugLoc(); 6953 6954 MachineOperand &Dest = Inst.getOperand(0); 6955 uint32_t Imm = Inst.getOperand(2).getImm(); 6956 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 6957 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 6958 6959 (void) Offset; 6960 6961 // Only sext_inreg cases handled. 6962 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 && 6963 Offset == 0 && "Not implemented"); 6964 6965 if (BitWidth < 32) { 6966 Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6967 Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6968 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6969 6970 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo) 6971 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0) 6972 .addImm(0) 6973 .addImm(BitWidth); 6974 6975 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) 6976 .addImm(31) 6977 .addReg(MidRegLo); 6978 6979 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 6980 .addReg(MidRegLo) 6981 .addImm(AMDGPU::sub0) 6982 .addReg(MidRegHi) 6983 .addImm(AMDGPU::sub1); 6984 6985 MRI.replaceRegWith(Dest.getReg(), ResultReg); 6986 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 6987 return; 6988 } 6989 6990 MachineOperand &Src = Inst.getOperand(1); 6991 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 6992 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 6993 6994 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) 6995 .addImm(31) 6996 .addReg(Src.getReg(), 0, AMDGPU::sub0); 6997 6998 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 6999 .addReg(Src.getReg(), 0, AMDGPU::sub0) 7000 .addImm(AMDGPU::sub0) 7001 .addReg(TmpReg) 7002 .addImm(AMDGPU::sub1); 7003 7004 MRI.replaceRegWith(Dest.getReg(), ResultReg); 7005 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 7006 } 7007 7008 void SIInstrInfo::addUsersToMoveToVALUWorklist( 7009 Register DstReg, 7010 MachineRegisterInfo &MRI, 7011 SetVectorType &Worklist) const { 7012 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), 7013 E = MRI.use_end(); I != E;) { 7014 MachineInstr &UseMI = *I->getParent(); 7015 7016 unsigned OpNo = 0; 7017 7018 switch (UseMI.getOpcode()) { 7019 case AMDGPU::COPY: 7020 case AMDGPU::WQM: 7021 case AMDGPU::SOFT_WQM: 7022 case AMDGPU::STRICT_WWM: 7023 case AMDGPU::STRICT_WQM: 7024 case AMDGPU::REG_SEQUENCE: 7025 case AMDGPU::PHI: 7026 case AMDGPU::INSERT_SUBREG: 7027 break; 7028 default: 7029 OpNo = I.getOperandNo(); 7030 break; 7031 } 7032 7033 if (!RI.hasVectorRegisters(getOpRegClass(UseMI, OpNo))) { 7034 Worklist.insert(&UseMI); 7035 7036 do { 7037 ++I; 7038 } while (I != E && I->getParent() == &UseMI); 7039 } else { 7040 ++I; 7041 } 7042 } 7043 } 7044 7045 void SIInstrInfo::movePackToVALU(SetVectorType &Worklist, 7046 MachineRegisterInfo &MRI, 7047 MachineInstr &Inst) const { 7048 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7049 MachineBasicBlock *MBB = Inst.getParent(); 7050 MachineOperand &Src0 = Inst.getOperand(1); 7051 MachineOperand &Src1 = Inst.getOperand(2); 7052 const DebugLoc &DL = Inst.getDebugLoc(); 7053 7054 switch (Inst.getOpcode()) { 7055 case AMDGPU::S_PACK_LL_B32_B16: { 7056 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7057 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7058 7059 // FIXME: Can do a lot better if we know the high bits of src0 or src1 are 7060 // 0. 7061 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 7062 .addImm(0xffff); 7063 7064 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg) 7065 .addReg(ImmReg, RegState::Kill) 7066 .add(Src0); 7067 7068 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg) 7069 .add(Src1) 7070 .addImm(16) 7071 .addReg(TmpReg, RegState::Kill); 7072 break; 7073 } 7074 case AMDGPU::S_PACK_LH_B32_B16: { 7075 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7076 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 7077 .addImm(0xffff); 7078 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg) 7079 .addReg(ImmReg, RegState::Kill) 7080 .add(Src0) 7081 .add(Src1); 7082 break; 7083 } 7084 case AMDGPU::S_PACK_HH_B32_B16: { 7085 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7086 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 7087 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg) 7088 .addImm(16) 7089 .add(Src0); 7090 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg) 7091 .addImm(0xffff0000); 7092 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg) 7093 .add(Src1) 7094 .addReg(ImmReg, RegState::Kill) 7095 .addReg(TmpReg, RegState::Kill); 7096 break; 7097 } 7098 default: 7099 llvm_unreachable("unhandled s_pack_* instruction"); 7100 } 7101 7102 MachineOperand &Dest = Inst.getOperand(0); 7103 MRI.replaceRegWith(Dest.getReg(), ResultReg); 7104 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 7105 } 7106 7107 void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op, 7108 MachineInstr &SCCDefInst, 7109 SetVectorType &Worklist, 7110 Register NewCond) const { 7111 7112 // Ensure that def inst defines SCC, which is still live. 7113 assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() && 7114 !Op.isDead() && Op.getParent() == &SCCDefInst); 7115 SmallVector<MachineInstr *, 4> CopyToDelete; 7116 // This assumes that all the users of SCC are in the same block 7117 // as the SCC def. 7118 for (MachineInstr &MI : // Skip the def inst itself. 7119 make_range(std::next(MachineBasicBlock::iterator(SCCDefInst)), 7120 SCCDefInst.getParent()->end())) { 7121 // Check if SCC is used first. 7122 int SCCIdx = MI.findRegisterUseOperandIdx(AMDGPU::SCC, false, &RI); 7123 if (SCCIdx != -1) { 7124 if (MI.isCopy()) { 7125 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 7126 Register DestReg = MI.getOperand(0).getReg(); 7127 7128 MRI.replaceRegWith(DestReg, NewCond); 7129 CopyToDelete.push_back(&MI); 7130 } else { 7131 7132 if (NewCond.isValid()) 7133 MI.getOperand(SCCIdx).setReg(NewCond); 7134 7135 Worklist.insert(&MI); 7136 } 7137 } 7138 // Exit if we find another SCC def. 7139 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != -1) 7140 break; 7141 } 7142 for (auto &Copy : CopyToDelete) 7143 Copy->eraseFromParent(); 7144 } 7145 7146 // Instructions that use SCC may be converted to VALU instructions. When that 7147 // happens, the SCC register is changed to VCC_LO. The instruction that defines 7148 // SCC must be changed to an instruction that defines VCC. This function makes 7149 // sure that the instruction that defines SCC is added to the moveToVALU 7150 // worklist. 7151 void SIInstrInfo::addSCCDefsToVALUWorklist(MachineOperand &Op, 7152 SetVectorType &Worklist) const { 7153 assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isUse()); 7154 7155 MachineInstr *SCCUseInst = Op.getParent(); 7156 // Look for a preceding instruction that either defines VCC or SCC. If VCC 7157 // then there is nothing to do because the defining instruction has been 7158 // converted to a VALU already. If SCC then that instruction needs to be 7159 // converted to a VALU. 7160 for (MachineInstr &MI : 7161 make_range(std::next(MachineBasicBlock::reverse_iterator(SCCUseInst)), 7162 SCCUseInst->getParent()->rend())) { 7163 if (MI.modifiesRegister(AMDGPU::VCC, &RI)) 7164 break; 7165 if (MI.definesRegister(AMDGPU::SCC, &RI)) { 7166 Worklist.insert(&MI); 7167 break; 7168 } 7169 } 7170 } 7171 7172 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( 7173 const MachineInstr &Inst) const { 7174 const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); 7175 7176 switch (Inst.getOpcode()) { 7177 // For target instructions, getOpRegClass just returns the virtual register 7178 // class associated with the operand, so we need to find an equivalent VGPR 7179 // register class in order to move the instruction to the VALU. 7180 case AMDGPU::COPY: 7181 case AMDGPU::PHI: 7182 case AMDGPU::REG_SEQUENCE: 7183 case AMDGPU::INSERT_SUBREG: 7184 case AMDGPU::WQM: 7185 case AMDGPU::SOFT_WQM: 7186 case AMDGPU::STRICT_WWM: 7187 case AMDGPU::STRICT_WQM: { 7188 const TargetRegisterClass *SrcRC = getOpRegClass(Inst, 1); 7189 if (RI.isAGPRClass(SrcRC)) { 7190 if (RI.isAGPRClass(NewDstRC)) 7191 return nullptr; 7192 7193 switch (Inst.getOpcode()) { 7194 case AMDGPU::PHI: 7195 case AMDGPU::REG_SEQUENCE: 7196 case AMDGPU::INSERT_SUBREG: 7197 NewDstRC = RI.getEquivalentAGPRClass(NewDstRC); 7198 break; 7199 default: 7200 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 7201 } 7202 7203 if (!NewDstRC) 7204 return nullptr; 7205 } else { 7206 if (RI.isVGPRClass(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass) 7207 return nullptr; 7208 7209 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 7210 if (!NewDstRC) 7211 return nullptr; 7212 } 7213 7214 return NewDstRC; 7215 } 7216 default: 7217 return NewDstRC; 7218 } 7219 } 7220 7221 // Find the one SGPR operand we are allowed to use. 7222 Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI, 7223 int OpIndices[3]) const { 7224 const MCInstrDesc &Desc = MI.getDesc(); 7225 7226 // Find the one SGPR operand we are allowed to use. 7227 // 7228 // First we need to consider the instruction's operand requirements before 7229 // legalizing. Some operands are required to be SGPRs, such as implicit uses 7230 // of VCC, but we are still bound by the constant bus requirement to only use 7231 // one. 7232 // 7233 // If the operand's class is an SGPR, we can never move it. 7234 7235 Register SGPRReg = findImplicitSGPRRead(MI); 7236 if (SGPRReg != AMDGPU::NoRegister) 7237 return SGPRReg; 7238 7239 Register UsedSGPRs[3] = { AMDGPU::NoRegister }; 7240 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 7241 7242 for (unsigned i = 0; i < 3; ++i) { 7243 int Idx = OpIndices[i]; 7244 if (Idx == -1) 7245 break; 7246 7247 const MachineOperand &MO = MI.getOperand(Idx); 7248 if (!MO.isReg()) 7249 continue; 7250 7251 // Is this operand statically required to be an SGPR based on the operand 7252 // constraints? 7253 const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass); 7254 bool IsRequiredSGPR = RI.isSGPRClass(OpRC); 7255 if (IsRequiredSGPR) 7256 return MO.getReg(); 7257 7258 // If this could be a VGPR or an SGPR, Check the dynamic register class. 7259 Register Reg = MO.getReg(); 7260 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); 7261 if (RI.isSGPRClass(RegRC)) 7262 UsedSGPRs[i] = Reg; 7263 } 7264 7265 // We don't have a required SGPR operand, so we have a bit more freedom in 7266 // selecting operands to move. 7267 7268 // Try to select the most used SGPR. If an SGPR is equal to one of the 7269 // others, we choose that. 7270 // 7271 // e.g. 7272 // V_FMA_F32 v0, s0, s0, s0 -> No moves 7273 // V_FMA_F32 v0, s0, s1, s0 -> Move s1 7274 7275 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should 7276 // prefer those. 7277 7278 if (UsedSGPRs[0] != AMDGPU::NoRegister) { 7279 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) 7280 SGPRReg = UsedSGPRs[0]; 7281 } 7282 7283 if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) { 7284 if (UsedSGPRs[1] == UsedSGPRs[2]) 7285 SGPRReg = UsedSGPRs[1]; 7286 } 7287 7288 return SGPRReg; 7289 } 7290 7291 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, 7292 unsigned OperandName) const { 7293 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); 7294 if (Idx == -1) 7295 return nullptr; 7296 7297 return &MI.getOperand(Idx); 7298 } 7299 7300 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { 7301 if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) { 7302 return (AMDGPU::MTBUFFormat::UFMT_32_FLOAT << 44) | 7303 (1ULL << 56) | // RESOURCE_LEVEL = 1 7304 (3ULL << 60); // OOB_SELECT = 3 7305 } 7306 7307 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; 7308 if (ST.isAmdHsaOS()) { 7309 // Set ATC = 1. GFX9 doesn't have this bit. 7310 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) 7311 RsrcDataFormat |= (1ULL << 56); 7312 7313 // Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this. 7314 // BTW, it disables TC L2 and therefore decreases performance. 7315 if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) 7316 RsrcDataFormat |= (2ULL << 59); 7317 } 7318 7319 return RsrcDataFormat; 7320 } 7321 7322 uint64_t SIInstrInfo::getScratchRsrcWords23() const { 7323 uint64_t Rsrc23 = getDefaultRsrcDataFormat() | 7324 AMDGPU::RSRC_TID_ENABLE | 7325 0xffffffff; // Size; 7326 7327 // GFX9 doesn't have ELEMENT_SIZE. 7328 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 7329 uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize(true)) - 1; 7330 Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT; 7331 } 7332 7333 // IndexStride = 64 / 32. 7334 uint64_t IndexStride = ST.getWavefrontSize() == 64 ? 3 : 2; 7335 Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT; 7336 7337 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. 7338 // Clear them unless we want a huge stride. 7339 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 7340 ST.getGeneration() <= AMDGPUSubtarget::GFX9) 7341 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; 7342 7343 return Rsrc23; 7344 } 7345 7346 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const { 7347 unsigned Opc = MI.getOpcode(); 7348 7349 return isSMRD(Opc); 7350 } 7351 7352 bool SIInstrInfo::isHighLatencyDef(int Opc) const { 7353 return get(Opc).mayLoad() && 7354 (isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc) || isFLAT(Opc)); 7355 } 7356 7357 unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI, 7358 int &FrameIndex) const { 7359 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 7360 if (!Addr || !Addr->isFI()) 7361 return AMDGPU::NoRegister; 7362 7363 assert(!MI.memoperands_empty() && 7364 (*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS); 7365 7366 FrameIndex = Addr->getIndex(); 7367 return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg(); 7368 } 7369 7370 unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI, 7371 int &FrameIndex) const { 7372 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr); 7373 assert(Addr && Addr->isFI()); 7374 FrameIndex = Addr->getIndex(); 7375 return getNamedOperand(MI, AMDGPU::OpName::data)->getReg(); 7376 } 7377 7378 unsigned SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 7379 int &FrameIndex) const { 7380 if (!MI.mayLoad()) 7381 return AMDGPU::NoRegister; 7382 7383 if (isMUBUF(MI) || isVGPRSpill(MI)) 7384 return isStackAccess(MI, FrameIndex); 7385 7386 if (isSGPRSpill(MI)) 7387 return isSGPRStackAccess(MI, FrameIndex); 7388 7389 return AMDGPU::NoRegister; 7390 } 7391 7392 unsigned SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 7393 int &FrameIndex) const { 7394 if (!MI.mayStore()) 7395 return AMDGPU::NoRegister; 7396 7397 if (isMUBUF(MI) || isVGPRSpill(MI)) 7398 return isStackAccess(MI, FrameIndex); 7399 7400 if (isSGPRSpill(MI)) 7401 return isSGPRStackAccess(MI, FrameIndex); 7402 7403 return AMDGPU::NoRegister; 7404 } 7405 7406 unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const { 7407 unsigned Size = 0; 7408 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 7409 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 7410 while (++I != E && I->isInsideBundle()) { 7411 assert(!I->isBundle() && "No nested bundle!"); 7412 Size += getInstSizeInBytes(*I); 7413 } 7414 7415 return Size; 7416 } 7417 7418 unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 7419 unsigned Opc = MI.getOpcode(); 7420 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc); 7421 unsigned DescSize = Desc.getSize(); 7422 7423 // If we have a definitive size, we can use it. Otherwise we need to inspect 7424 // the operands to know the size. 7425 if (isFixedSize(MI)) { 7426 unsigned Size = DescSize; 7427 7428 // If we hit the buggy offset, an extra nop will be inserted in MC so 7429 // estimate the worst case. 7430 if (MI.isBranch() && ST.hasOffset3fBug()) 7431 Size += 4; 7432 7433 return Size; 7434 } 7435 7436 // Instructions may have a 32-bit literal encoded after them. Check 7437 // operands that could ever be literals. 7438 if (isVALU(MI) || isSALU(MI)) { 7439 if (isDPP(MI)) 7440 return DescSize; 7441 bool HasLiteral = false; 7442 for (int I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) { 7443 if (isLiteralConstant(MI, I)) { 7444 HasLiteral = true; 7445 break; 7446 } 7447 } 7448 return HasLiteral ? DescSize + 4 : DescSize; 7449 } 7450 7451 // Check whether we have extra NSA words. 7452 if (isMIMG(MI)) { 7453 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0); 7454 if (VAddr0Idx < 0) 7455 return 8; 7456 7457 int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc); 7458 return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4); 7459 } 7460 7461 switch (Opc) { 7462 case TargetOpcode::BUNDLE: 7463 return getInstBundleSize(MI); 7464 case TargetOpcode::INLINEASM: 7465 case TargetOpcode::INLINEASM_BR: { 7466 const MachineFunction *MF = MI.getParent()->getParent(); 7467 const char *AsmStr = MI.getOperand(0).getSymbolName(); 7468 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST); 7469 } 7470 default: 7471 if (MI.isMetaInstruction()) 7472 return 0; 7473 return DescSize; 7474 } 7475 } 7476 7477 bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const { 7478 if (!isFLAT(MI)) 7479 return false; 7480 7481 if (MI.memoperands_empty()) 7482 return true; 7483 7484 for (const MachineMemOperand *MMO : MI.memoperands()) { 7485 if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS) 7486 return true; 7487 } 7488 return false; 7489 } 7490 7491 bool SIInstrInfo::isNonUniformBranchInstr(MachineInstr &Branch) const { 7492 return Branch.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO; 7493 } 7494 7495 void SIInstrInfo::convertNonUniformIfRegion(MachineBasicBlock *IfEntry, 7496 MachineBasicBlock *IfEnd) const { 7497 MachineBasicBlock::iterator TI = IfEntry->getFirstTerminator(); 7498 assert(TI != IfEntry->end()); 7499 7500 MachineInstr *Branch = &(*TI); 7501 MachineFunction *MF = IfEntry->getParent(); 7502 MachineRegisterInfo &MRI = IfEntry->getParent()->getRegInfo(); 7503 7504 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 7505 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC()); 7506 MachineInstr *SIIF = 7507 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_IF), DstReg) 7508 .add(Branch->getOperand(0)) 7509 .add(Branch->getOperand(1)); 7510 MachineInstr *SIEND = 7511 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_END_CF)) 7512 .addReg(DstReg); 7513 7514 IfEntry->erase(TI); 7515 IfEntry->insert(IfEntry->end(), SIIF); 7516 IfEnd->insert(IfEnd->getFirstNonPHI(), SIEND); 7517 } 7518 } 7519 7520 void SIInstrInfo::convertNonUniformLoopRegion( 7521 MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const { 7522 MachineBasicBlock::iterator TI = LoopEnd->getFirstTerminator(); 7523 // We expect 2 terminators, one conditional and one unconditional. 7524 assert(TI != LoopEnd->end()); 7525 7526 MachineInstr *Branch = &(*TI); 7527 MachineFunction *MF = LoopEnd->getParent(); 7528 MachineRegisterInfo &MRI = LoopEnd->getParent()->getRegInfo(); 7529 7530 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) { 7531 7532 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC()); 7533 Register BackEdgeReg = MRI.createVirtualRegister(RI.getBoolRC()); 7534 MachineInstrBuilder HeaderPHIBuilder = 7535 BuildMI(*(MF), Branch->getDebugLoc(), get(TargetOpcode::PHI), DstReg); 7536 for (MachineBasicBlock *PMBB : LoopEntry->predecessors()) { 7537 if (PMBB == LoopEnd) { 7538 HeaderPHIBuilder.addReg(BackEdgeReg); 7539 } else { 7540 Register ZeroReg = MRI.createVirtualRegister(RI.getBoolRC()); 7541 materializeImmediate(*PMBB, PMBB->getFirstTerminator(), DebugLoc(), 7542 ZeroReg, 0); 7543 HeaderPHIBuilder.addReg(ZeroReg); 7544 } 7545 HeaderPHIBuilder.addMBB(PMBB); 7546 } 7547 MachineInstr *HeaderPhi = HeaderPHIBuilder; 7548 MachineInstr *SIIFBREAK = BuildMI(*(MF), Branch->getDebugLoc(), 7549 get(AMDGPU::SI_IF_BREAK), BackEdgeReg) 7550 .addReg(DstReg) 7551 .add(Branch->getOperand(0)); 7552 MachineInstr *SILOOP = 7553 BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_LOOP)) 7554 .addReg(BackEdgeReg) 7555 .addMBB(LoopEntry); 7556 7557 LoopEntry->insert(LoopEntry->begin(), HeaderPhi); 7558 LoopEnd->erase(TI); 7559 LoopEnd->insert(LoopEnd->end(), SIIFBREAK); 7560 LoopEnd->insert(LoopEnd->end(), SILOOP); 7561 } 7562 } 7563 7564 ArrayRef<std::pair<int, const char *>> 7565 SIInstrInfo::getSerializableTargetIndices() const { 7566 static const std::pair<int, const char *> TargetIndices[] = { 7567 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, 7568 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, 7569 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, 7570 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, 7571 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; 7572 return makeArrayRef(TargetIndices); 7573 } 7574 7575 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The 7576 /// post-RA version of misched uses CreateTargetMIHazardRecognizer. 7577 ScheduleHazardRecognizer * 7578 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 7579 const ScheduleDAG *DAG) const { 7580 return new GCNHazardRecognizer(DAG->MF); 7581 } 7582 7583 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer 7584 /// pass. 7585 ScheduleHazardRecognizer * 7586 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 7587 return new GCNHazardRecognizer(MF); 7588 } 7589 7590 // Called during: 7591 // - pre-RA scheduling and post-RA scheduling 7592 ScheduleHazardRecognizer * 7593 SIInstrInfo::CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 7594 const ScheduleDAGMI *DAG) const { 7595 // Borrowed from Arm Target 7596 // We would like to restrict this hazard recognizer to only 7597 // post-RA scheduling; we can tell that we're post-RA because we don't 7598 // track VRegLiveness. 7599 if (!DAG->hasVRegLiveness()) 7600 return new GCNHazardRecognizer(DAG->MF); 7601 return TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 7602 } 7603 7604 std::pair<unsigned, unsigned> 7605 SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 7606 return std::make_pair(TF & MO_MASK, TF & ~MO_MASK); 7607 } 7608 7609 ArrayRef<std::pair<unsigned, const char *>> 7610 SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 7611 static const std::pair<unsigned, const char *> TargetFlags[] = { 7612 { MO_GOTPCREL, "amdgpu-gotprel" }, 7613 { MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" }, 7614 { MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" }, 7615 { MO_REL32_LO, "amdgpu-rel32-lo" }, 7616 { MO_REL32_HI, "amdgpu-rel32-hi" }, 7617 { MO_ABS32_LO, "amdgpu-abs32-lo" }, 7618 { MO_ABS32_HI, "amdgpu-abs32-hi" }, 7619 }; 7620 7621 return makeArrayRef(TargetFlags); 7622 } 7623 7624 ArrayRef<std::pair<MachineMemOperand::Flags, const char *>> 7625 SIInstrInfo::getSerializableMachineMemOperandTargetFlags() const { 7626 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] = 7627 { 7628 {MONoClobber, "amdgpu-noclobber"}, 7629 }; 7630 7631 return makeArrayRef(TargetFlags); 7632 } 7633 7634 bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI) const { 7635 return !MI.isTerminator() && MI.getOpcode() != AMDGPU::COPY && 7636 MI.modifiesRegister(AMDGPU::EXEC, &RI); 7637 } 7638 7639 MachineInstrBuilder 7640 SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, 7641 MachineBasicBlock::iterator I, 7642 const DebugLoc &DL, 7643 Register DestReg) const { 7644 if (ST.hasAddNoCarry()) 7645 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg); 7646 7647 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 7648 Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC()); 7649 MRI.setRegAllocationHint(UnusedCarry, 0, RI.getVCC()); 7650 7651 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) 7652 .addReg(UnusedCarry, RegState::Define | RegState::Dead); 7653 } 7654 7655 MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB, 7656 MachineBasicBlock::iterator I, 7657 const DebugLoc &DL, 7658 Register DestReg, 7659 RegScavenger &RS) const { 7660 if (ST.hasAddNoCarry()) 7661 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg); 7662 7663 // If available, prefer to use vcc. 7664 Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC) 7665 ? Register(RI.getVCC()) 7666 : RS.scavengeRegister(RI.getBoolRC(), I, 0, false); 7667 7668 // TODO: Users need to deal with this. 7669 if (!UnusedCarry.isValid()) 7670 return MachineInstrBuilder(); 7671 7672 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg) 7673 .addReg(UnusedCarry, RegState::Define | RegState::Dead); 7674 } 7675 7676 bool SIInstrInfo::isKillTerminator(unsigned Opcode) { 7677 switch (Opcode) { 7678 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 7679 case AMDGPU::SI_KILL_I1_TERMINATOR: 7680 return true; 7681 default: 7682 return false; 7683 } 7684 } 7685 7686 const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const { 7687 switch (Opcode) { 7688 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO: 7689 return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR); 7690 case AMDGPU::SI_KILL_I1_PSEUDO: 7691 return get(AMDGPU::SI_KILL_I1_TERMINATOR); 7692 default: 7693 llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO"); 7694 } 7695 } 7696 7697 void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const { 7698 if (!ST.isWave32()) 7699 return; 7700 7701 for (auto &Op : MI.implicit_operands()) { 7702 if (Op.isReg() && Op.getReg() == AMDGPU::VCC) 7703 Op.setReg(AMDGPU::VCC_LO); 7704 } 7705 } 7706 7707 bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const { 7708 if (!isSMRD(MI)) 7709 return false; 7710 7711 // Check that it is using a buffer resource. 7712 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase); 7713 if (Idx == -1) // e.g. s_memtime 7714 return false; 7715 7716 const auto RCID = MI.getDesc().OpInfo[Idx].RegClass; 7717 return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass); 7718 } 7719 7720 // Depending on the used address space and instructions, some immediate offsets 7721 // are allowed and some are not. 7722 // In general, flat instruction offsets can only be non-negative, global and 7723 // scratch instruction offsets can also be negative. 7724 // 7725 // There are several bugs related to these offsets: 7726 // On gfx10.1, flat instructions that go into the global address space cannot 7727 // use an offset. 7728 // 7729 // For scratch instructions, the address can be either an SGPR or a VGPR. 7730 // The following offsets can be used, depending on the architecture (x means 7731 // cannot be used): 7732 // +----------------------------+------+------+ 7733 // | Address-Mode | SGPR | VGPR | 7734 // +----------------------------+------+------+ 7735 // | gfx9 | | | 7736 // | negative, 4-aligned offset | x | ok | 7737 // | negative, unaligned offset | x | ok | 7738 // +----------------------------+------+------+ 7739 // | gfx10 | | | 7740 // | negative, 4-aligned offset | ok | ok | 7741 // | negative, unaligned offset | ok | x | 7742 // +----------------------------+------+------+ 7743 // | gfx10.3 | | | 7744 // | negative, 4-aligned offset | ok | ok | 7745 // | negative, unaligned offset | ok | ok | 7746 // +----------------------------+------+------+ 7747 // 7748 // This function ignores the addressing mode, so if an offset cannot be used in 7749 // one addressing mode, it is considered illegal. 7750 bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace, 7751 uint64_t FlatVariant) const { 7752 // TODO: Should 0 be special cased? 7753 if (!ST.hasFlatInstOffsets()) 7754 return false; 7755 7756 if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT && 7757 (AddrSpace == AMDGPUAS::FLAT_ADDRESS || 7758 AddrSpace == AMDGPUAS::GLOBAL_ADDRESS)) 7759 return false; 7760 7761 bool Signed = FlatVariant != SIInstrFlags::FLAT; 7762 if (ST.hasNegativeScratchOffsetBug() && 7763 FlatVariant == SIInstrFlags::FlatScratch) 7764 Signed = false; 7765 if (ST.hasNegativeUnalignedScratchOffsetBug() && 7766 FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 && 7767 (Offset % 4) != 0) { 7768 return false; 7769 } 7770 7771 unsigned N = AMDGPU::getNumFlatOffsetBits(ST, Signed); 7772 return Signed ? isIntN(N, Offset) : isUIntN(N, Offset); 7773 } 7774 7775 // See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not. 7776 std::pair<int64_t, int64_t> 7777 SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace, 7778 uint64_t FlatVariant) const { 7779 int64_t RemainderOffset = COffsetVal; 7780 int64_t ImmField = 0; 7781 bool Signed = FlatVariant != SIInstrFlags::FLAT; 7782 if (ST.hasNegativeScratchOffsetBug() && 7783 FlatVariant == SIInstrFlags::FlatScratch) 7784 Signed = false; 7785 7786 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST, Signed); 7787 if (Signed) { 7788 // Use signed division by a power of two to truncate towards 0. 7789 int64_t D = 1LL << (NumBits - 1); 7790 RemainderOffset = (COffsetVal / D) * D; 7791 ImmField = COffsetVal - RemainderOffset; 7792 7793 if (ST.hasNegativeUnalignedScratchOffsetBug() && 7794 FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 && 7795 (ImmField % 4) != 0) { 7796 // Make ImmField a multiple of 4 7797 RemainderOffset += ImmField % 4; 7798 ImmField -= ImmField % 4; 7799 } 7800 } else if (COffsetVal >= 0) { 7801 ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits); 7802 RemainderOffset = COffsetVal - ImmField; 7803 } 7804 7805 assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant)); 7806 assert(RemainderOffset + ImmField == COffsetVal); 7807 return {ImmField, RemainderOffset}; 7808 } 7809 7810 // This must be kept in sync with the SIEncodingFamily class in SIInstrInfo.td 7811 enum SIEncodingFamily { 7812 SI = 0, 7813 VI = 1, 7814 SDWA = 2, 7815 SDWA9 = 3, 7816 GFX80 = 4, 7817 GFX9 = 5, 7818 GFX10 = 6, 7819 SDWA10 = 7, 7820 GFX90A = 8, 7821 GFX940 = 9 7822 }; 7823 7824 static SIEncodingFamily subtargetEncodingFamily(const GCNSubtarget &ST) { 7825 switch (ST.getGeneration()) { 7826 default: 7827 break; 7828 case AMDGPUSubtarget::SOUTHERN_ISLANDS: 7829 case AMDGPUSubtarget::SEA_ISLANDS: 7830 return SIEncodingFamily::SI; 7831 case AMDGPUSubtarget::VOLCANIC_ISLANDS: 7832 case AMDGPUSubtarget::GFX9: 7833 return SIEncodingFamily::VI; 7834 case AMDGPUSubtarget::GFX10: 7835 return SIEncodingFamily::GFX10; 7836 } 7837 llvm_unreachable("Unknown subtarget generation!"); 7838 } 7839 7840 bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const { 7841 switch(MCOp) { 7842 // These opcodes use indirect register addressing so 7843 // they need special handling by codegen (currently missing). 7844 // Therefore it is too risky to allow these opcodes 7845 // to be selected by dpp combiner or sdwa peepholer. 7846 case AMDGPU::V_MOVRELS_B32_dpp_gfx10: 7847 case AMDGPU::V_MOVRELS_B32_sdwa_gfx10: 7848 case AMDGPU::V_MOVRELD_B32_dpp_gfx10: 7849 case AMDGPU::V_MOVRELD_B32_sdwa_gfx10: 7850 case AMDGPU::V_MOVRELSD_B32_dpp_gfx10: 7851 case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10: 7852 case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10: 7853 case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10: 7854 return true; 7855 default: 7856 return false; 7857 } 7858 } 7859 7860 int SIInstrInfo::pseudoToMCOpcode(int Opcode) const { 7861 SIEncodingFamily Gen = subtargetEncodingFamily(ST); 7862 7863 if ((get(Opcode).TSFlags & SIInstrFlags::renamedInGFX9) != 0 && 7864 ST.getGeneration() == AMDGPUSubtarget::GFX9) 7865 Gen = SIEncodingFamily::GFX9; 7866 7867 // Adjust the encoding family to GFX80 for D16 buffer instructions when the 7868 // subtarget has UnpackedD16VMem feature. 7869 // TODO: remove this when we discard GFX80 encoding. 7870 if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf)) 7871 Gen = SIEncodingFamily::GFX80; 7872 7873 if (get(Opcode).TSFlags & SIInstrFlags::SDWA) { 7874 switch (ST.getGeneration()) { 7875 default: 7876 Gen = SIEncodingFamily::SDWA; 7877 break; 7878 case AMDGPUSubtarget::GFX9: 7879 Gen = SIEncodingFamily::SDWA9; 7880 break; 7881 case AMDGPUSubtarget::GFX10: 7882 Gen = SIEncodingFamily::SDWA10; 7883 break; 7884 } 7885 } 7886 7887 if (isMAI(Opcode)) { 7888 int MFMAOp = AMDGPU::getMFMAEarlyClobberOp(Opcode); 7889 if (MFMAOp != -1) 7890 Opcode = MFMAOp; 7891 } 7892 7893 int MCOp = AMDGPU::getMCOpcode(Opcode, Gen); 7894 7895 // -1 means that Opcode is already a native instruction. 7896 if (MCOp == -1) 7897 return Opcode; 7898 7899 if (ST.hasGFX90AInsts()) { 7900 uint16_t NMCOp = (uint16_t)-1; 7901 if (ST.hasGFX940Insts()) 7902 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX940); 7903 if (NMCOp == (uint16_t)-1) 7904 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX90A); 7905 if (NMCOp == (uint16_t)-1) 7906 NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX9); 7907 if (NMCOp != (uint16_t)-1) 7908 MCOp = NMCOp; 7909 } 7910 7911 // (uint16_t)-1 means that Opcode is a pseudo instruction that has 7912 // no encoding in the given subtarget generation. 7913 if (MCOp == (uint16_t)-1) 7914 return -1; 7915 7916 if (isAsmOnlyOpcode(MCOp)) 7917 return -1; 7918 7919 return MCOp; 7920 } 7921 7922 static 7923 TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) { 7924 assert(RegOpnd.isReg()); 7925 return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() : 7926 getRegSubRegPair(RegOpnd); 7927 } 7928 7929 TargetInstrInfo::RegSubRegPair 7930 llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) { 7931 assert(MI.isRegSequence()); 7932 for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I) 7933 if (MI.getOperand(1 + 2 * I + 1).getImm() == SubReg) { 7934 auto &RegOp = MI.getOperand(1 + 2 * I); 7935 return getRegOrUndef(RegOp); 7936 } 7937 return TargetInstrInfo::RegSubRegPair(); 7938 } 7939 7940 // Try to find the definition of reg:subreg in subreg-manipulation pseudos 7941 // Following a subreg of reg:subreg isn't supported 7942 static bool followSubRegDef(MachineInstr &MI, 7943 TargetInstrInfo::RegSubRegPair &RSR) { 7944 if (!RSR.SubReg) 7945 return false; 7946 switch (MI.getOpcode()) { 7947 default: break; 7948 case AMDGPU::REG_SEQUENCE: 7949 RSR = getRegSequenceSubReg(MI, RSR.SubReg); 7950 return true; 7951 // EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg 7952 case AMDGPU::INSERT_SUBREG: 7953 if (RSR.SubReg == (unsigned)MI.getOperand(3).getImm()) 7954 // inserted the subreg we're looking for 7955 RSR = getRegOrUndef(MI.getOperand(2)); 7956 else { // the subreg in the rest of the reg 7957 auto R1 = getRegOrUndef(MI.getOperand(1)); 7958 if (R1.SubReg) // subreg of subreg isn't supported 7959 return false; 7960 RSR.Reg = R1.Reg; 7961 } 7962 return true; 7963 } 7964 return false; 7965 } 7966 7967 MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P, 7968 MachineRegisterInfo &MRI) { 7969 assert(MRI.isSSA()); 7970 if (!P.Reg.isVirtual()) 7971 return nullptr; 7972 7973 auto RSR = P; 7974 auto *DefInst = MRI.getVRegDef(RSR.Reg); 7975 while (auto *MI = DefInst) { 7976 DefInst = nullptr; 7977 switch (MI->getOpcode()) { 7978 case AMDGPU::COPY: 7979 case AMDGPU::V_MOV_B32_e32: { 7980 auto &Op1 = MI->getOperand(1); 7981 if (Op1.isReg() && Op1.getReg().isVirtual()) { 7982 if (Op1.isUndef()) 7983 return nullptr; 7984 RSR = getRegSubRegPair(Op1); 7985 DefInst = MRI.getVRegDef(RSR.Reg); 7986 } 7987 break; 7988 } 7989 default: 7990 if (followSubRegDef(*MI, RSR)) { 7991 if (!RSR.Reg) 7992 return nullptr; 7993 DefInst = MRI.getVRegDef(RSR.Reg); 7994 } 7995 } 7996 if (!DefInst) 7997 return MI; 7998 } 7999 return nullptr; 8000 } 8001 8002 bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI, 8003 Register VReg, 8004 const MachineInstr &DefMI, 8005 const MachineInstr &UseMI) { 8006 assert(MRI.isSSA() && "Must be run on SSA"); 8007 8008 auto *TRI = MRI.getTargetRegisterInfo(); 8009 auto *DefBB = DefMI.getParent(); 8010 8011 // Don't bother searching between blocks, although it is possible this block 8012 // doesn't modify exec. 8013 if (UseMI.getParent() != DefBB) 8014 return true; 8015 8016 const int MaxInstScan = 20; 8017 int NumInst = 0; 8018 8019 // Stop scan at the use. 8020 auto E = UseMI.getIterator(); 8021 for (auto I = std::next(DefMI.getIterator()); I != E; ++I) { 8022 if (I->isDebugInstr()) 8023 continue; 8024 8025 if (++NumInst > MaxInstScan) 8026 return true; 8027 8028 if (I->modifiesRegister(AMDGPU::EXEC, TRI)) 8029 return true; 8030 } 8031 8032 return false; 8033 } 8034 8035 bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI, 8036 Register VReg, 8037 const MachineInstr &DefMI) { 8038 assert(MRI.isSSA() && "Must be run on SSA"); 8039 8040 auto *TRI = MRI.getTargetRegisterInfo(); 8041 auto *DefBB = DefMI.getParent(); 8042 8043 const int MaxUseScan = 10; 8044 int NumUse = 0; 8045 8046 for (auto &Use : MRI.use_nodbg_operands(VReg)) { 8047 auto &UseInst = *Use.getParent(); 8048 // Don't bother searching between blocks, although it is possible this block 8049 // doesn't modify exec. 8050 if (UseInst.getParent() != DefBB) 8051 return true; 8052 8053 if (++NumUse > MaxUseScan) 8054 return true; 8055 } 8056 8057 if (NumUse == 0) 8058 return false; 8059 8060 const int MaxInstScan = 20; 8061 int NumInst = 0; 8062 8063 // Stop scan when we have seen all the uses. 8064 for (auto I = std::next(DefMI.getIterator()); ; ++I) { 8065 assert(I != DefBB->end()); 8066 8067 if (I->isDebugInstr()) 8068 continue; 8069 8070 if (++NumInst > MaxInstScan) 8071 return true; 8072 8073 for (const MachineOperand &Op : I->operands()) { 8074 // We don't check reg masks here as they're used only on calls: 8075 // 1. EXEC is only considered const within one BB 8076 // 2. Call should be a terminator instruction if present in a BB 8077 8078 if (!Op.isReg()) 8079 continue; 8080 8081 Register Reg = Op.getReg(); 8082 if (Op.isUse()) { 8083 if (Reg == VReg && --NumUse == 0) 8084 return false; 8085 } else if (TRI->regsOverlap(Reg, AMDGPU::EXEC)) 8086 return true; 8087 } 8088 } 8089 } 8090 8091 MachineInstr *SIInstrInfo::createPHIDestinationCopy( 8092 MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt, 8093 const DebugLoc &DL, Register Src, Register Dst) const { 8094 auto Cur = MBB.begin(); 8095 if (Cur != MBB.end()) 8096 do { 8097 if (!Cur->isPHI() && Cur->readsRegister(Dst)) 8098 return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src); 8099 ++Cur; 8100 } while (Cur != MBB.end() && Cur != LastPHIIt); 8101 8102 return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src, 8103 Dst); 8104 } 8105 8106 MachineInstr *SIInstrInfo::createPHISourceCopy( 8107 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt, 8108 const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const { 8109 if (InsPt != MBB.end() && 8110 (InsPt->getOpcode() == AMDGPU::SI_IF || 8111 InsPt->getOpcode() == AMDGPU::SI_ELSE || 8112 InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) && 8113 InsPt->definesRegister(Src)) { 8114 InsPt++; 8115 return BuildMI(MBB, InsPt, DL, 8116 get(ST.isWave32() ? AMDGPU::S_MOV_B32_term 8117 : AMDGPU::S_MOV_B64_term), 8118 Dst) 8119 .addReg(Src, 0, SrcSubReg) 8120 .addReg(AMDGPU::EXEC, RegState::Implicit); 8121 } 8122 return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg, 8123 Dst); 8124 } 8125 8126 bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); } 8127 8128 MachineInstr *SIInstrInfo::foldMemoryOperandImpl( 8129 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 8130 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, 8131 VirtRegMap *VRM) const { 8132 // This is a bit of a hack (copied from AArch64). Consider this instruction: 8133 // 8134 // %0:sreg_32 = COPY $m0 8135 // 8136 // We explicitly chose SReg_32 for the virtual register so such a copy might 8137 // be eliminated by RegisterCoalescer. However, that may not be possible, and 8138 // %0 may even spill. We can't spill $m0 normally (it would require copying to 8139 // a numbered SGPR anyway), and since it is in the SReg_32 register class, 8140 // TargetInstrInfo::foldMemoryOperand() is going to try. 8141 // A similar issue also exists with spilling and reloading $exec registers. 8142 // 8143 // To prevent that, constrain the %0 register class here. 8144 if (MI.isFullCopy()) { 8145 Register DstReg = MI.getOperand(0).getReg(); 8146 Register SrcReg = MI.getOperand(1).getReg(); 8147 if ((DstReg.isVirtual() || SrcReg.isVirtual()) && 8148 (DstReg.isVirtual() != SrcReg.isVirtual())) { 8149 MachineRegisterInfo &MRI = MF.getRegInfo(); 8150 Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg; 8151 const TargetRegisterClass *RC = MRI.getRegClass(VirtReg); 8152 if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) { 8153 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass); 8154 return nullptr; 8155 } else if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) { 8156 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass); 8157 return nullptr; 8158 } 8159 } 8160 } 8161 8162 return nullptr; 8163 } 8164 8165 unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 8166 const MachineInstr &MI, 8167 unsigned *PredCost) const { 8168 if (MI.isBundle()) { 8169 MachineBasicBlock::const_instr_iterator I(MI.getIterator()); 8170 MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end()); 8171 unsigned Lat = 0, Count = 0; 8172 for (++I; I != E && I->isBundledWithPred(); ++I) { 8173 ++Count; 8174 Lat = std::max(Lat, SchedModel.computeInstrLatency(&*I)); 8175 } 8176 return Lat + Count - 1; 8177 } 8178 8179 return SchedModel.computeInstrLatency(&MI); 8180 } 8181 8182 unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) { 8183 switch (MF.getFunction().getCallingConv()) { 8184 case CallingConv::AMDGPU_PS: 8185 return 1; 8186 case CallingConv::AMDGPU_VS: 8187 return 2; 8188 case CallingConv::AMDGPU_GS: 8189 return 3; 8190 case CallingConv::AMDGPU_HS: 8191 case CallingConv::AMDGPU_LS: 8192 case CallingConv::AMDGPU_ES: 8193 report_fatal_error("ds_ordered_count unsupported for this calling conv"); 8194 case CallingConv::AMDGPU_CS: 8195 case CallingConv::AMDGPU_KERNEL: 8196 case CallingConv::C: 8197 case CallingConv::Fast: 8198 default: 8199 // Assume other calling conventions are various compute callable functions 8200 return 0; 8201 } 8202 } 8203 8204 bool SIInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 8205 Register &SrcReg2, int64_t &CmpMask, 8206 int64_t &CmpValue) const { 8207 if (!MI.getOperand(0).isReg() || MI.getOperand(0).getSubReg()) 8208 return false; 8209 8210 switch (MI.getOpcode()) { 8211 default: 8212 break; 8213 case AMDGPU::S_CMP_EQ_U32: 8214 case AMDGPU::S_CMP_EQ_I32: 8215 case AMDGPU::S_CMP_LG_U32: 8216 case AMDGPU::S_CMP_LG_I32: 8217 case AMDGPU::S_CMP_LT_U32: 8218 case AMDGPU::S_CMP_LT_I32: 8219 case AMDGPU::S_CMP_GT_U32: 8220 case AMDGPU::S_CMP_GT_I32: 8221 case AMDGPU::S_CMP_LE_U32: 8222 case AMDGPU::S_CMP_LE_I32: 8223 case AMDGPU::S_CMP_GE_U32: 8224 case AMDGPU::S_CMP_GE_I32: 8225 case AMDGPU::S_CMP_EQ_U64: 8226 case AMDGPU::S_CMP_LG_U64: 8227 SrcReg = MI.getOperand(0).getReg(); 8228 if (MI.getOperand(1).isReg()) { 8229 if (MI.getOperand(1).getSubReg()) 8230 return false; 8231 SrcReg2 = MI.getOperand(1).getReg(); 8232 CmpValue = 0; 8233 } else if (MI.getOperand(1).isImm()) { 8234 SrcReg2 = Register(); 8235 CmpValue = MI.getOperand(1).getImm(); 8236 } else { 8237 return false; 8238 } 8239 CmpMask = ~0; 8240 return true; 8241 case AMDGPU::S_CMPK_EQ_U32: 8242 case AMDGPU::S_CMPK_EQ_I32: 8243 case AMDGPU::S_CMPK_LG_U32: 8244 case AMDGPU::S_CMPK_LG_I32: 8245 case AMDGPU::S_CMPK_LT_U32: 8246 case AMDGPU::S_CMPK_LT_I32: 8247 case AMDGPU::S_CMPK_GT_U32: 8248 case AMDGPU::S_CMPK_GT_I32: 8249 case AMDGPU::S_CMPK_LE_U32: 8250 case AMDGPU::S_CMPK_LE_I32: 8251 case AMDGPU::S_CMPK_GE_U32: 8252 case AMDGPU::S_CMPK_GE_I32: 8253 SrcReg = MI.getOperand(0).getReg(); 8254 SrcReg2 = Register(); 8255 CmpValue = MI.getOperand(1).getImm(); 8256 CmpMask = ~0; 8257 return true; 8258 } 8259 8260 return false; 8261 } 8262 8263 bool SIInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, 8264 Register SrcReg2, int64_t CmpMask, 8265 int64_t CmpValue, 8266 const MachineRegisterInfo *MRI) const { 8267 if (!SrcReg || SrcReg.isPhysical()) 8268 return false; 8269 8270 if (SrcReg2 && !getFoldableImm(SrcReg2, *MRI, CmpValue)) 8271 return false; 8272 8273 const auto optimizeCmpAnd = [&CmpInstr, SrcReg, CmpValue, MRI, 8274 this](int64_t ExpectedValue, unsigned SrcSize, 8275 bool IsReversible, bool IsSigned) -> bool { 8276 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 8277 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 8278 // s_cmp_ge_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 8279 // s_cmp_ge_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n 8280 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 1 << n => s_and_b64 $src, 1 << n 8281 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 8282 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 8283 // s_cmp_gt_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 8284 // s_cmp_gt_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n 8285 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 0 => s_and_b64 $src, 1 << n 8286 // 8287 // Signed ge/gt are not used for the sign bit. 8288 // 8289 // If result of the AND is unused except in the compare: 8290 // s_and_b(32|64) $src, 1 << n => s_bitcmp1_b(32|64) $src, n 8291 // 8292 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n 8293 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n 8294 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 0 => s_bitcmp0_b64 $src, n 8295 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n 8296 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n 8297 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 1 << n => s_bitcmp0_b64 $src, n 8298 8299 MachineInstr *Def = MRI->getUniqueVRegDef(SrcReg); 8300 if (!Def || Def->getParent() != CmpInstr.getParent()) 8301 return false; 8302 8303 if (Def->getOpcode() != AMDGPU::S_AND_B32 && 8304 Def->getOpcode() != AMDGPU::S_AND_B64) 8305 return false; 8306 8307 int64_t Mask; 8308 const auto isMask = [&Mask, SrcSize](const MachineOperand *MO) -> bool { 8309 if (MO->isImm()) 8310 Mask = MO->getImm(); 8311 else if (!getFoldableImm(MO, Mask)) 8312 return false; 8313 Mask &= maxUIntN(SrcSize); 8314 return isPowerOf2_64(Mask); 8315 }; 8316 8317 MachineOperand *SrcOp = &Def->getOperand(1); 8318 if (isMask(SrcOp)) 8319 SrcOp = &Def->getOperand(2); 8320 else if (isMask(&Def->getOperand(2))) 8321 SrcOp = &Def->getOperand(1); 8322 else 8323 return false; 8324 8325 unsigned BitNo = countTrailingZeros((uint64_t)Mask); 8326 if (IsSigned && BitNo == SrcSize - 1) 8327 return false; 8328 8329 ExpectedValue <<= BitNo; 8330 8331 bool IsReversedCC = false; 8332 if (CmpValue != ExpectedValue) { 8333 if (!IsReversible) 8334 return false; 8335 IsReversedCC = CmpValue == (ExpectedValue ^ Mask); 8336 if (!IsReversedCC) 8337 return false; 8338 } 8339 8340 Register DefReg = Def->getOperand(0).getReg(); 8341 if (IsReversedCC && !MRI->hasOneNonDBGUse(DefReg)) 8342 return false; 8343 8344 for (auto I = std::next(Def->getIterator()), E = CmpInstr.getIterator(); 8345 I != E; ++I) { 8346 if (I->modifiesRegister(AMDGPU::SCC, &RI) || 8347 I->killsRegister(AMDGPU::SCC, &RI)) 8348 return false; 8349 } 8350 8351 MachineOperand *SccDef = Def->findRegisterDefOperand(AMDGPU::SCC); 8352 SccDef->setIsDead(false); 8353 CmpInstr.eraseFromParent(); 8354 8355 if (!MRI->use_nodbg_empty(DefReg)) { 8356 assert(!IsReversedCC); 8357 return true; 8358 } 8359 8360 // Replace AND with unused result with a S_BITCMP. 8361 MachineBasicBlock *MBB = Def->getParent(); 8362 8363 unsigned NewOpc = (SrcSize == 32) ? IsReversedCC ? AMDGPU::S_BITCMP0_B32 8364 : AMDGPU::S_BITCMP1_B32 8365 : IsReversedCC ? AMDGPU::S_BITCMP0_B64 8366 : AMDGPU::S_BITCMP1_B64; 8367 8368 BuildMI(*MBB, Def, Def->getDebugLoc(), get(NewOpc)) 8369 .add(*SrcOp) 8370 .addImm(BitNo); 8371 Def->eraseFromParent(); 8372 8373 return true; 8374 }; 8375 8376 switch (CmpInstr.getOpcode()) { 8377 default: 8378 break; 8379 case AMDGPU::S_CMP_EQ_U32: 8380 case AMDGPU::S_CMP_EQ_I32: 8381 case AMDGPU::S_CMPK_EQ_U32: 8382 case AMDGPU::S_CMPK_EQ_I32: 8383 return optimizeCmpAnd(1, 32, true, false); 8384 case AMDGPU::S_CMP_GE_U32: 8385 case AMDGPU::S_CMPK_GE_U32: 8386 return optimizeCmpAnd(1, 32, false, false); 8387 case AMDGPU::S_CMP_GE_I32: 8388 case AMDGPU::S_CMPK_GE_I32: 8389 return optimizeCmpAnd(1, 32, false, true); 8390 case AMDGPU::S_CMP_EQ_U64: 8391 return optimizeCmpAnd(1, 64, true, false); 8392 case AMDGPU::S_CMP_LG_U32: 8393 case AMDGPU::S_CMP_LG_I32: 8394 case AMDGPU::S_CMPK_LG_U32: 8395 case AMDGPU::S_CMPK_LG_I32: 8396 return optimizeCmpAnd(0, 32, true, false); 8397 case AMDGPU::S_CMP_GT_U32: 8398 case AMDGPU::S_CMPK_GT_U32: 8399 return optimizeCmpAnd(0, 32, false, false); 8400 case AMDGPU::S_CMP_GT_I32: 8401 case AMDGPU::S_CMPK_GT_I32: 8402 return optimizeCmpAnd(0, 32, false, true); 8403 case AMDGPU::S_CMP_LG_U64: 8404 return optimizeCmpAnd(0, 64, true, false); 8405 } 8406 8407 return false; 8408 } 8409