1 //===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief SI Implementation of TargetInstrInfo. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "SIInstrInfo.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "GCNHazardRecognizer.h" 18 #include "SIDefines.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/ScheduleDAG.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/CodeGen/RegisterScavenging.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/Support/Debug.h" 28 29 using namespace llvm; 30 31 SIInstrInfo::SIInstrInfo(const SISubtarget &ST) 32 : AMDGPUInstrInfo(ST), RI(), ST(ST) {} 33 34 //===----------------------------------------------------------------------===// 35 // TargetInstrInfo callbacks 36 //===----------------------------------------------------------------------===// 37 38 static unsigned getNumOperandsNoGlue(SDNode *Node) { 39 unsigned N = Node->getNumOperands(); 40 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 41 --N; 42 return N; 43 } 44 45 static SDValue findChainOperand(SDNode *Load) { 46 SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1); 47 assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node"); 48 return LastOp; 49 } 50 51 /// \brief Returns true if both nodes have the same value for the given 52 /// operand \p Op, or if both nodes do not have this operand. 53 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { 54 unsigned Opc0 = N0->getMachineOpcode(); 55 unsigned Opc1 = N1->getMachineOpcode(); 56 57 int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); 58 int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); 59 60 if (Op0Idx == -1 && Op1Idx == -1) 61 return true; 62 63 64 if ((Op0Idx == -1 && Op1Idx != -1) || 65 (Op1Idx == -1 && Op0Idx != -1)) 66 return false; 67 68 // getNamedOperandIdx returns the index for the MachineInstr's operands, 69 // which includes the result as the first operand. We are indexing into the 70 // MachineSDNode's operands, so we need to skip the result operand to get 71 // the real index. 72 --Op0Idx; 73 --Op1Idx; 74 75 return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); 76 } 77 78 bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 79 AliasAnalysis *AA) const { 80 // TODO: The generic check fails for VALU instructions that should be 81 // rematerializable due to implicit reads of exec. We really want all of the 82 // generic logic for this except for this. 83 switch (MI.getOpcode()) { 84 case AMDGPU::V_MOV_B32_e32: 85 case AMDGPU::V_MOV_B32_e64: 86 case AMDGPU::V_MOV_B64_PSEUDO: 87 return true; 88 default: 89 return false; 90 } 91 } 92 93 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, 94 int64_t &Offset0, 95 int64_t &Offset1) const { 96 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) 97 return false; 98 99 unsigned Opc0 = Load0->getMachineOpcode(); 100 unsigned Opc1 = Load1->getMachineOpcode(); 101 102 // Make sure both are actually loads. 103 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) 104 return false; 105 106 if (isDS(Opc0) && isDS(Opc1)) { 107 108 // FIXME: Handle this case: 109 if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) 110 return false; 111 112 // Check base reg. 113 if (Load0->getOperand(1) != Load1->getOperand(1)) 114 return false; 115 116 // Check chain. 117 if (findChainOperand(Load0) != findChainOperand(Load1)) 118 return false; 119 120 // Skip read2 / write2 variants for simplicity. 121 // TODO: We should report true if the used offsets are adjacent (excluded 122 // st64 versions). 123 if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 || 124 AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1) 125 return false; 126 127 Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue(); 128 Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue(); 129 return true; 130 } 131 132 if (isSMRD(Opc0) && isSMRD(Opc1)) { 133 assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1)); 134 135 // Check base reg. 136 if (Load0->getOperand(0) != Load1->getOperand(0)) 137 return false; 138 139 const ConstantSDNode *Load0Offset = 140 dyn_cast<ConstantSDNode>(Load0->getOperand(1)); 141 const ConstantSDNode *Load1Offset = 142 dyn_cast<ConstantSDNode>(Load1->getOperand(1)); 143 144 if (!Load0Offset || !Load1Offset) 145 return false; 146 147 // Check chain. 148 if (findChainOperand(Load0) != findChainOperand(Load1)) 149 return false; 150 151 Offset0 = Load0Offset->getZExtValue(); 152 Offset1 = Load1Offset->getZExtValue(); 153 return true; 154 } 155 156 // MUBUF and MTBUF can access the same addresses. 157 if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { 158 159 // MUBUF and MTBUF have vaddr at different indices. 160 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || 161 findChainOperand(Load0) != findChainOperand(Load1) || 162 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || 163 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) 164 return false; 165 166 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 167 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 168 169 if (OffIdx0 == -1 || OffIdx1 == -1) 170 return false; 171 172 // getNamedOperandIdx returns the index for MachineInstrs. Since they 173 // inlcude the output in the operand list, but SDNodes don't, we need to 174 // subtract the index by one. 175 --OffIdx0; 176 --OffIdx1; 177 178 SDValue Off0 = Load0->getOperand(OffIdx0); 179 SDValue Off1 = Load1->getOperand(OffIdx1); 180 181 // The offset might be a FrameIndexSDNode. 182 if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) 183 return false; 184 185 Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue(); 186 Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue(); 187 return true; 188 } 189 190 return false; 191 } 192 193 static bool isStride64(unsigned Opc) { 194 switch (Opc) { 195 case AMDGPU::DS_READ2ST64_B32: 196 case AMDGPU::DS_READ2ST64_B64: 197 case AMDGPU::DS_WRITE2ST64_B32: 198 case AMDGPU::DS_WRITE2ST64_B64: 199 return true; 200 default: 201 return false; 202 } 203 } 204 205 bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg, 206 int64_t &Offset, 207 const TargetRegisterInfo *TRI) const { 208 unsigned Opc = LdSt.getOpcode(); 209 210 if (isDS(LdSt)) { 211 const MachineOperand *OffsetImm = 212 getNamedOperand(LdSt, AMDGPU::OpName::offset); 213 if (OffsetImm) { 214 // Normal, single offset LDS instruction. 215 const MachineOperand *AddrReg = 216 getNamedOperand(LdSt, AMDGPU::OpName::addr); 217 218 BaseReg = AddrReg->getReg(); 219 Offset = OffsetImm->getImm(); 220 return true; 221 } 222 223 // The 2 offset instructions use offset0 and offset1 instead. We can treat 224 // these as a load with a single offset if the 2 offsets are consecutive. We 225 // will use this for some partially aligned loads. 226 const MachineOperand *Offset0Imm = 227 getNamedOperand(LdSt, AMDGPU::OpName::offset0); 228 const MachineOperand *Offset1Imm = 229 getNamedOperand(LdSt, AMDGPU::OpName::offset1); 230 231 uint8_t Offset0 = Offset0Imm->getImm(); 232 uint8_t Offset1 = Offset1Imm->getImm(); 233 234 if (Offset1 > Offset0 && Offset1 - Offset0 == 1) { 235 // Each of these offsets is in element sized units, so we need to convert 236 // to bytes of the individual reads. 237 238 unsigned EltSize; 239 if (LdSt.mayLoad()) 240 EltSize = getOpRegClass(LdSt, 0)->getSize() / 2; 241 else { 242 assert(LdSt.mayStore()); 243 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 244 EltSize = getOpRegClass(LdSt, Data0Idx)->getSize(); 245 } 246 247 if (isStride64(Opc)) 248 EltSize *= 64; 249 250 const MachineOperand *AddrReg = 251 getNamedOperand(LdSt, AMDGPU::OpName::addr); 252 BaseReg = AddrReg->getReg(); 253 Offset = EltSize * Offset0; 254 return true; 255 } 256 257 return false; 258 } 259 260 if (isMUBUF(LdSt) || isMTBUF(LdSt)) { 261 if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1) 262 return false; 263 264 const MachineOperand *AddrReg = 265 getNamedOperand(LdSt, AMDGPU::OpName::vaddr); 266 if (!AddrReg) 267 return false; 268 269 const MachineOperand *OffsetImm = 270 getNamedOperand(LdSt, AMDGPU::OpName::offset); 271 BaseReg = AddrReg->getReg(); 272 Offset = OffsetImm->getImm(); 273 return true; 274 } 275 276 if (isSMRD(LdSt)) { 277 const MachineOperand *OffsetImm = 278 getNamedOperand(LdSt, AMDGPU::OpName::offset); 279 if (!OffsetImm) 280 return false; 281 282 const MachineOperand *SBaseReg = 283 getNamedOperand(LdSt, AMDGPU::OpName::sbase); 284 BaseReg = SBaseReg->getReg(); 285 Offset = OffsetImm->getImm(); 286 return true; 287 } 288 289 if (isFLAT(LdSt)) { 290 const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::addr); 291 BaseReg = AddrReg->getReg(); 292 Offset = 0; 293 return true; 294 } 295 296 return false; 297 } 298 299 bool SIInstrInfo::shouldClusterMemOps(MachineInstr &FirstLdSt, 300 MachineInstr &SecondLdSt, 301 unsigned NumLoads) const { 302 const MachineOperand *FirstDst = nullptr; 303 const MachineOperand *SecondDst = nullptr; 304 305 if (isDS(FirstLdSt) && isDS(SecondLdSt)) { 306 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdst); 307 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdst); 308 } 309 310 if (isSMRD(FirstLdSt) && isSMRD(SecondLdSt)) { 311 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::sdst); 312 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::sdst); 313 } 314 315 if ((isMUBUF(FirstLdSt) && isMUBUF(SecondLdSt)) || 316 (isMTBUF(FirstLdSt) && isMTBUF(SecondLdSt))) { 317 FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdata); 318 SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdata); 319 } 320 321 if (!FirstDst || !SecondDst) 322 return false; 323 324 // Try to limit clustering based on the total number of bytes loaded 325 // rather than the number of instructions. This is done to help reduce 326 // register pressure. The method used is somewhat inexact, though, 327 // because it assumes that all loads in the cluster will load the 328 // same number of bytes as FirstLdSt. 329 330 // The unit of this value is bytes. 331 // FIXME: This needs finer tuning. 332 unsigned LoadClusterThreshold = 16; 333 334 const MachineRegisterInfo &MRI = 335 FirstLdSt.getParent()->getParent()->getRegInfo(); 336 const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg()); 337 338 return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold; 339 } 340 341 void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 342 MachineBasicBlock::iterator MI, 343 const DebugLoc &DL, unsigned DestReg, 344 unsigned SrcReg, bool KillSrc) const { 345 346 // If we are trying to copy to or from SCC, there is a bug somewhere else in 347 // the backend. While it may be theoretically possible to do this, it should 348 // never be necessary. 349 assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC); 350 351 static const int16_t Sub0_15[] = { 352 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 353 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 354 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, 355 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 356 }; 357 358 static const int16_t Sub0_15_64[] = { 359 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 360 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 361 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, 362 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, 363 }; 364 365 static const int16_t Sub0_7[] = { 366 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 367 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 368 }; 369 370 static const int16_t Sub0_7_64[] = { 371 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 372 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 373 }; 374 375 static const int16_t Sub0_3[] = { 376 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 377 }; 378 379 static const int16_t Sub0_3_64[] = { 380 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 381 }; 382 383 static const int16_t Sub0_2[] = { 384 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, 385 }; 386 387 static const int16_t Sub0_1[] = { 388 AMDGPU::sub0, AMDGPU::sub1, 389 }; 390 391 unsigned Opcode; 392 ArrayRef<int16_t> SubIndices; 393 394 if (AMDGPU::SReg_32RegClass.contains(DestReg)) { 395 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 396 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 397 .addReg(SrcReg, getKillRegState(KillSrc)); 398 return; 399 400 } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) { 401 if (DestReg == AMDGPU::VCC) { 402 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 403 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) 404 .addReg(SrcReg, getKillRegState(KillSrc)); 405 } else { 406 // FIXME: Hack until VReg_1 removed. 407 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 408 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32)) 409 .addImm(0) 410 .addReg(SrcReg, getKillRegState(KillSrc)); 411 } 412 413 return; 414 } 415 416 assert(AMDGPU::SReg_64RegClass.contains(SrcReg)); 417 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 418 .addReg(SrcReg, getKillRegState(KillSrc)); 419 return; 420 421 } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) { 422 assert(AMDGPU::SReg_128RegClass.contains(SrcReg)); 423 Opcode = AMDGPU::S_MOV_B64; 424 SubIndices = Sub0_3_64; 425 426 } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) { 427 assert(AMDGPU::SReg_256RegClass.contains(SrcReg)); 428 Opcode = AMDGPU::S_MOV_B64; 429 SubIndices = Sub0_7_64; 430 431 } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) { 432 assert(AMDGPU::SReg_512RegClass.contains(SrcReg)); 433 Opcode = AMDGPU::S_MOV_B64; 434 SubIndices = Sub0_15_64; 435 436 } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) { 437 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || 438 AMDGPU::SReg_32RegClass.contains(SrcReg)); 439 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) 440 .addReg(SrcReg, getKillRegState(KillSrc)); 441 return; 442 443 } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) { 444 assert(AMDGPU::VReg_64RegClass.contains(SrcReg) || 445 AMDGPU::SReg_64RegClass.contains(SrcReg)); 446 Opcode = AMDGPU::V_MOV_B32_e32; 447 SubIndices = Sub0_1; 448 449 } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) { 450 assert(AMDGPU::VReg_96RegClass.contains(SrcReg)); 451 Opcode = AMDGPU::V_MOV_B32_e32; 452 SubIndices = Sub0_2; 453 454 } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) { 455 assert(AMDGPU::VReg_128RegClass.contains(SrcReg) || 456 AMDGPU::SReg_128RegClass.contains(SrcReg)); 457 Opcode = AMDGPU::V_MOV_B32_e32; 458 SubIndices = Sub0_3; 459 460 } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) { 461 assert(AMDGPU::VReg_256RegClass.contains(SrcReg) || 462 AMDGPU::SReg_256RegClass.contains(SrcReg)); 463 Opcode = AMDGPU::V_MOV_B32_e32; 464 SubIndices = Sub0_7; 465 466 } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) { 467 assert(AMDGPU::VReg_512RegClass.contains(SrcReg) || 468 AMDGPU::SReg_512RegClass.contains(SrcReg)); 469 Opcode = AMDGPU::V_MOV_B32_e32; 470 SubIndices = Sub0_15; 471 472 } else { 473 llvm_unreachable("Can't copy register!"); 474 } 475 476 bool Forward = RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg); 477 478 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 479 unsigned SubIdx; 480 if (Forward) 481 SubIdx = SubIndices[Idx]; 482 else 483 SubIdx = SubIndices[SubIndices.size() - Idx - 1]; 484 485 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, 486 get(Opcode), RI.getSubReg(DestReg, SubIdx)); 487 488 Builder.addReg(RI.getSubReg(SrcReg, SubIdx)); 489 490 if (Idx == SubIndices.size() - 1) 491 Builder.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); 492 493 if (Idx == 0) 494 Builder.addReg(DestReg, RegState::Define | RegState::Implicit); 495 496 Builder.addReg(SrcReg, RegState::Implicit); 497 } 498 } 499 500 int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const { 501 const unsigned Opcode = MI.getOpcode(); 502 503 int NewOpc; 504 505 // Try to map original to commuted opcode 506 NewOpc = AMDGPU::getCommuteRev(Opcode); 507 if (NewOpc != -1) 508 // Check if the commuted (REV) opcode exists on the target. 509 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 510 511 // Try to map commuted to original opcode 512 NewOpc = AMDGPU::getCommuteOrig(Opcode); 513 if (NewOpc != -1) 514 // Check if the original (non-REV) opcode exists on the target. 515 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 516 517 return Opcode; 518 } 519 520 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { 521 522 if (DstRC->getSize() == 4) { 523 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 524 } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) { 525 return AMDGPU::S_MOV_B64; 526 } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) { 527 return AMDGPU::V_MOV_B64_PSEUDO; 528 } 529 return AMDGPU::COPY; 530 } 531 532 static unsigned getSGPRSpillSaveOpcode(unsigned Size) { 533 switch (Size) { 534 case 4: 535 return AMDGPU::SI_SPILL_S32_SAVE; 536 case 8: 537 return AMDGPU::SI_SPILL_S64_SAVE; 538 case 16: 539 return AMDGPU::SI_SPILL_S128_SAVE; 540 case 32: 541 return AMDGPU::SI_SPILL_S256_SAVE; 542 case 64: 543 return AMDGPU::SI_SPILL_S512_SAVE; 544 default: 545 llvm_unreachable("unknown register size"); 546 } 547 } 548 549 static unsigned getVGPRSpillSaveOpcode(unsigned Size) { 550 switch (Size) { 551 case 4: 552 return AMDGPU::SI_SPILL_V32_SAVE; 553 case 8: 554 return AMDGPU::SI_SPILL_V64_SAVE; 555 case 12: 556 return AMDGPU::SI_SPILL_V96_SAVE; 557 case 16: 558 return AMDGPU::SI_SPILL_V128_SAVE; 559 case 32: 560 return AMDGPU::SI_SPILL_V256_SAVE; 561 case 64: 562 return AMDGPU::SI_SPILL_V512_SAVE; 563 default: 564 llvm_unreachable("unknown register size"); 565 } 566 } 567 568 void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 569 MachineBasicBlock::iterator MI, 570 unsigned SrcReg, bool isKill, 571 int FrameIndex, 572 const TargetRegisterClass *RC, 573 const TargetRegisterInfo *TRI) const { 574 MachineFunction *MF = MBB.getParent(); 575 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 576 MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 577 DebugLoc DL = MBB.findDebugLoc(MI); 578 579 unsigned Size = FrameInfo->getObjectSize(FrameIndex); 580 unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); 581 MachinePointerInfo PtrInfo 582 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 583 MachineMemOperand *MMO 584 = MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 585 Size, Align); 586 587 if (RI.isSGPRClass(RC)) { 588 MFI->setHasSpilledSGPRs(); 589 590 if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RC->getSize() == 4) { 591 // m0 may not be allowed for readlane. 592 MachineRegisterInfo &MRI = MF->getRegInfo(); 593 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0RegClass); 594 } 595 596 // We are only allowed to create one new instruction when spilling 597 // registers, so we need to use pseudo instruction for spilling 598 // SGPRs. 599 unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize()); 600 BuildMI(MBB, MI, DL, get(Opcode)) 601 .addReg(SrcReg, getKillRegState(isKill)) // src 602 .addFrameIndex(FrameIndex) // frame_idx 603 .addMemOperand(MMO); 604 605 return; 606 } 607 608 if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { 609 LLVMContext &Ctx = MF->getFunction()->getContext(); 610 Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to" 611 " spill register"); 612 BuildMI(MBB, MI, DL, get(AMDGPU::KILL)) 613 .addReg(SrcReg); 614 615 return; 616 } 617 618 assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); 619 620 unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize()); 621 MFI->setHasSpilledVGPRs(); 622 BuildMI(MBB, MI, DL, get(Opcode)) 623 .addReg(SrcReg, getKillRegState(isKill)) // src 624 .addFrameIndex(FrameIndex) // frame_idx 625 .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc 626 .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset 627 .addImm(0) // offset 628 .addMemOperand(MMO); 629 } 630 631 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { 632 switch (Size) { 633 case 4: 634 return AMDGPU::SI_SPILL_S32_RESTORE; 635 case 8: 636 return AMDGPU::SI_SPILL_S64_RESTORE; 637 case 16: 638 return AMDGPU::SI_SPILL_S128_RESTORE; 639 case 32: 640 return AMDGPU::SI_SPILL_S256_RESTORE; 641 case 64: 642 return AMDGPU::SI_SPILL_S512_RESTORE; 643 default: 644 llvm_unreachable("unknown register size"); 645 } 646 } 647 648 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { 649 switch (Size) { 650 case 4: 651 return AMDGPU::SI_SPILL_V32_RESTORE; 652 case 8: 653 return AMDGPU::SI_SPILL_V64_RESTORE; 654 case 12: 655 return AMDGPU::SI_SPILL_V96_RESTORE; 656 case 16: 657 return AMDGPU::SI_SPILL_V128_RESTORE; 658 case 32: 659 return AMDGPU::SI_SPILL_V256_RESTORE; 660 case 64: 661 return AMDGPU::SI_SPILL_V512_RESTORE; 662 default: 663 llvm_unreachable("unknown register size"); 664 } 665 } 666 667 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 668 MachineBasicBlock::iterator MI, 669 unsigned DestReg, int FrameIndex, 670 const TargetRegisterClass *RC, 671 const TargetRegisterInfo *TRI) const { 672 MachineFunction *MF = MBB.getParent(); 673 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 674 MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 675 DebugLoc DL = MBB.findDebugLoc(MI); 676 unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); 677 unsigned Size = FrameInfo->getObjectSize(FrameIndex); 678 679 MachinePointerInfo PtrInfo 680 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 681 682 MachineMemOperand *MMO = MF->getMachineMemOperand( 683 PtrInfo, MachineMemOperand::MOLoad, Size, Align); 684 685 if (RI.isSGPRClass(RC)) { 686 // FIXME: Maybe this should not include a memoperand because it will be 687 // lowered to non-memory instructions. 688 unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize()); 689 690 if (TargetRegisterInfo::isVirtualRegister(DestReg) && RC->getSize() == 4) { 691 // m0 may not be allowed for readlane. 692 MachineRegisterInfo &MRI = MF->getRegInfo(); 693 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0RegClass); 694 } 695 696 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 697 .addFrameIndex(FrameIndex) // frame_idx 698 .addMemOperand(MMO); 699 700 return; 701 } 702 703 if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { 704 LLVMContext &Ctx = MF->getFunction()->getContext(); 705 Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to" 706 " restore register"); 707 BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg); 708 709 return; 710 } 711 712 assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); 713 714 unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize()); 715 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 716 .addFrameIndex(FrameIndex) // frame_idx 717 .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc 718 .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset 719 .addImm(0) // offset 720 .addMemOperand(MMO); 721 } 722 723 /// \param @Offset Offset in bytes of the FrameIndex being spilled 724 unsigned SIInstrInfo::calculateLDSSpillAddress( 725 MachineBasicBlock &MBB, MachineInstr &MI, RegScavenger *RS, unsigned TmpReg, 726 unsigned FrameOffset, unsigned Size) const { 727 MachineFunction *MF = MBB.getParent(); 728 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 729 const SISubtarget &ST = MF->getSubtarget<SISubtarget>(); 730 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 731 DebugLoc DL = MBB.findDebugLoc(MI); 732 unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF); 733 unsigned WavefrontSize = ST.getWavefrontSize(); 734 735 unsigned TIDReg = MFI->getTIDReg(); 736 if (!MFI->hasCalculatedTID()) { 737 MachineBasicBlock &Entry = MBB.getParent()->front(); 738 MachineBasicBlock::iterator Insert = Entry.front(); 739 DebugLoc DL = Insert->getDebugLoc(); 740 741 TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass); 742 if (TIDReg == AMDGPU::NoRegister) 743 return TIDReg; 744 745 if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) && 746 WorkGroupSize > WavefrontSize) { 747 748 unsigned TIDIGXReg 749 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X); 750 unsigned TIDIGYReg 751 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y); 752 unsigned TIDIGZReg 753 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z); 754 unsigned InputPtrReg = 755 TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR); 756 for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) { 757 if (!Entry.isLiveIn(Reg)) 758 Entry.addLiveIn(Reg); 759 } 760 761 RS->enterBasicBlock(Entry); 762 // FIXME: Can we scavenge an SReg_64 and access the subregs? 763 unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); 764 unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); 765 BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0) 766 .addReg(InputPtrReg) 767 .addImm(SI::KernelInputOffsets::NGROUPS_Z); 768 BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1) 769 .addReg(InputPtrReg) 770 .addImm(SI::KernelInputOffsets::NGROUPS_Y); 771 772 // NGROUPS.X * NGROUPS.Y 773 BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1) 774 .addReg(STmp1) 775 .addReg(STmp0); 776 // (NGROUPS.X * NGROUPS.Y) * TIDIG.X 777 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg) 778 .addReg(STmp1) 779 .addReg(TIDIGXReg); 780 // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X) 781 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg) 782 .addReg(STmp0) 783 .addReg(TIDIGYReg) 784 .addReg(TIDReg); 785 // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z 786 BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg) 787 .addReg(TIDReg) 788 .addReg(TIDIGZReg); 789 } else { 790 // Get the wave id 791 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64), 792 TIDReg) 793 .addImm(-1) 794 .addImm(0); 795 796 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64), 797 TIDReg) 798 .addImm(-1) 799 .addReg(TIDReg); 800 } 801 802 BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32), 803 TIDReg) 804 .addImm(2) 805 .addReg(TIDReg); 806 MFI->setTIDReg(TIDReg); 807 } 808 809 // Add FrameIndex to LDS offset 810 unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize); 811 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg) 812 .addImm(LDSOffset) 813 .addReg(TIDReg); 814 815 return TmpReg; 816 } 817 818 void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB, 819 MachineBasicBlock::iterator MI, 820 int Count) const { 821 DebugLoc DL = MBB.findDebugLoc(MI); 822 while (Count > 0) { 823 int Arg; 824 if (Count >= 8) 825 Arg = 7; 826 else 827 Arg = Count - 1; 828 Count -= 8; 829 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)) 830 .addImm(Arg); 831 } 832 } 833 834 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, 835 MachineBasicBlock::iterator MI) const { 836 insertWaitStates(MBB, MI, 1); 837 } 838 839 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const { 840 switch (MI.getOpcode()) { 841 default: return 1; // FIXME: Do wait states equal cycles? 842 843 case AMDGPU::S_NOP: 844 return MI.getOperand(0).getImm() + 1; 845 } 846 } 847 848 bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 849 MachineBasicBlock &MBB = *MI.getParent(); 850 DebugLoc DL = MBB.findDebugLoc(MI); 851 switch (MI.getOpcode()) { 852 default: return AMDGPUInstrInfo::expandPostRAPseudo(MI); 853 854 case AMDGPU::V_MOV_B64_PSEUDO: { 855 unsigned Dst = MI.getOperand(0).getReg(); 856 unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 857 unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 858 859 const MachineOperand &SrcOp = MI.getOperand(1); 860 // FIXME: Will this work for 64-bit floating point immediates? 861 assert(!SrcOp.isFPImm()); 862 if (SrcOp.isImm()) { 863 APInt Imm(64, SrcOp.getImm()); 864 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 865 .addImm(Imm.getLoBits(32).getZExtValue()) 866 .addReg(Dst, RegState::Implicit | RegState::Define); 867 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 868 .addImm(Imm.getHiBits(32).getZExtValue()) 869 .addReg(Dst, RegState::Implicit | RegState::Define); 870 } else { 871 assert(SrcOp.isReg()); 872 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 873 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) 874 .addReg(Dst, RegState::Implicit | RegState::Define); 875 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 876 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) 877 .addReg(Dst, RegState::Implicit | RegState::Define); 878 } 879 MI.eraseFromParent(); 880 break; 881 } 882 883 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 884 unsigned Dst = MI.getOperand(0).getReg(); 885 unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 886 unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 887 unsigned Src0 = MI.getOperand(1).getReg(); 888 unsigned Src1 = MI.getOperand(2).getReg(); 889 const MachineOperand &SrcCond = MI.getOperand(3); 890 891 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 892 .addReg(RI.getSubReg(Src0, AMDGPU::sub0)) 893 .addReg(RI.getSubReg(Src1, AMDGPU::sub0)) 894 .addReg(SrcCond.getReg()) 895 .addReg(Dst, RegState::Implicit | RegState::Define); 896 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 897 .addReg(RI.getSubReg(Src0, AMDGPU::sub1)) 898 .addReg(RI.getSubReg(Src1, AMDGPU::sub1)) 899 .addReg(SrcCond.getReg(), getKillRegState(SrcCond.isKill())) 900 .addReg(Dst, RegState::Implicit | RegState::Define); 901 MI.eraseFromParent(); 902 break; 903 } 904 905 case AMDGPU::SI_PC_ADD_REL_OFFSET: { 906 const SIRegisterInfo *TRI 907 = static_cast<const SIRegisterInfo *>(ST.getRegisterInfo()); 908 MachineFunction &MF = *MBB.getParent(); 909 unsigned Reg = MI.getOperand(0).getReg(); 910 unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0); 911 unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1); 912 913 // Create a bundle so these instructions won't be re-ordered by the 914 // post-RA scheduler. 915 MIBundleBuilder Bundler(MBB, MI); 916 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); 917 918 // Add 32-bit offset from this instruction to the start of the 919 // constant data. 920 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo) 921 .addReg(RegLo) 922 .addOperand(MI.getOperand(1))); 923 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) 924 .addReg(RegHi) 925 .addImm(0)); 926 927 llvm::finalizeBundle(MBB, Bundler.begin()); 928 929 MI.eraseFromParent(); 930 break; 931 } 932 } 933 return true; 934 } 935 936 /// Commutes the operands in the given instruction. 937 /// The commutable operands are specified by their indices OpIdx0 and OpIdx1. 938 /// 939 /// Do not call this method for a non-commutable instruction or for 940 /// non-commutable pair of operand indices OpIdx0 and OpIdx1. 941 /// Even though the instruction is commutable, the method may still 942 /// fail to commute the operands, null pointer is returned in such cases. 943 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, 944 unsigned OpIdx0, 945 unsigned OpIdx1) const { 946 int CommutedOpcode = commuteOpcode(MI); 947 if (CommutedOpcode == -1) 948 return nullptr; 949 950 int Src0Idx = 951 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 952 MachineOperand &Src0 = MI.getOperand(Src0Idx); 953 if (!Src0.isReg()) 954 return nullptr; 955 956 int Src1Idx = 957 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src1); 958 959 if ((OpIdx0 != static_cast<unsigned>(Src0Idx) || 960 OpIdx1 != static_cast<unsigned>(Src1Idx)) && 961 (OpIdx0 != static_cast<unsigned>(Src1Idx) || 962 OpIdx1 != static_cast<unsigned>(Src0Idx))) 963 return nullptr; 964 965 MachineOperand &Src1 = MI.getOperand(Src1Idx); 966 967 if (isVOP2(MI) || isVOPC(MI)) { 968 const MCInstrDesc &InstrDesc = MI.getDesc(); 969 // For VOP2 and VOPC instructions, any operand type is valid to use for 970 // src0. Make sure we can use the src0 as src1. 971 // 972 // We could be stricter here and only allow commuting if there is a reason 973 // to do so. i.e. if both operands are VGPRs there is no real benefit, 974 // although MachineCSE attempts to find matches by commuting. 975 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 976 if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) 977 return nullptr; 978 } 979 980 MachineInstr *CommutedMI = &MI; 981 if (!Src1.isReg()) { 982 // Allow commuting instructions with Imm operands. 983 if (NewMI || !Src1.isImm() || (!isVOP2(MI) && !isVOP3(MI))) { 984 return nullptr; 985 } 986 // Be sure to copy the source modifiers to the right place. 987 if (MachineOperand *Src0Mods = 988 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)) { 989 MachineOperand *Src1Mods = 990 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers); 991 992 int Src0ModsVal = Src0Mods->getImm(); 993 if (!Src1Mods && Src0ModsVal != 0) 994 return nullptr; 995 996 // XXX - This assert might be a lie. It might be useful to have a neg 997 // modifier with 0.0. 998 int Src1ModsVal = Src1Mods->getImm(); 999 assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates"); 1000 1001 Src1Mods->setImm(Src0ModsVal); 1002 Src0Mods->setImm(Src1ModsVal); 1003 } 1004 1005 unsigned Reg = Src0.getReg(); 1006 unsigned SubReg = Src0.getSubReg(); 1007 if (Src1.isImm()) 1008 Src0.ChangeToImmediate(Src1.getImm()); 1009 else 1010 llvm_unreachable("Should only have immediates"); 1011 1012 Src1.ChangeToRegister(Reg, false); 1013 Src1.setSubReg(SubReg); 1014 } else { 1015 CommutedMI = 1016 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1); 1017 } 1018 1019 if (CommutedMI) 1020 CommutedMI->setDesc(get(CommutedOpcode)); 1021 1022 return CommutedMI; 1023 } 1024 1025 // This needs to be implemented because the source modifiers may be inserted 1026 // between the true commutable operands, and the base 1027 // TargetInstrInfo::commuteInstruction uses it. 1028 bool SIInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx0, 1029 unsigned &SrcOpIdx1) const { 1030 const MCInstrDesc &MCID = MI.getDesc(); 1031 if (!MCID.isCommutable()) 1032 return false; 1033 1034 unsigned Opc = MI.getOpcode(); 1035 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1036 if (Src0Idx == -1) 1037 return false; 1038 1039 // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on 1040 // immediate. Also, immediate src0 operand is not handled in 1041 // SIInstrInfo::commuteInstruction(); 1042 if (!MI.getOperand(Src0Idx).isReg()) 1043 return false; 1044 1045 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1046 if (Src1Idx == -1) 1047 return false; 1048 1049 MachineOperand &Src1 = MI.getOperand(Src1Idx); 1050 if (Src1.isImm()) { 1051 // SIInstrInfo::commuteInstruction() does support commuting the immediate 1052 // operand src1 in 2 and 3 operand instructions. 1053 if (!isVOP2(MI.getOpcode()) && !isVOP3(MI.getOpcode())) 1054 return false; 1055 } else if (Src1.isReg()) { 1056 // If any source modifiers are set, the generic instruction commuting won't 1057 // understand how to copy the source modifiers. 1058 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1059 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)) 1060 return false; 1061 } else 1062 return false; 1063 1064 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); 1065 } 1066 1067 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { 1068 switch (Cond) { 1069 case SIInstrInfo::SCC_TRUE: 1070 return AMDGPU::S_CBRANCH_SCC1; 1071 case SIInstrInfo::SCC_FALSE: 1072 return AMDGPU::S_CBRANCH_SCC0; 1073 case SIInstrInfo::VCCNZ: 1074 return AMDGPU::S_CBRANCH_VCCNZ; 1075 case SIInstrInfo::VCCZ: 1076 return AMDGPU::S_CBRANCH_VCCZ; 1077 case SIInstrInfo::EXECNZ: 1078 return AMDGPU::S_CBRANCH_EXECNZ; 1079 case SIInstrInfo::EXECZ: 1080 return AMDGPU::S_CBRANCH_EXECZ; 1081 default: 1082 llvm_unreachable("invalid branch predicate"); 1083 } 1084 } 1085 1086 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { 1087 switch (Opcode) { 1088 case AMDGPU::S_CBRANCH_SCC0: 1089 return SCC_FALSE; 1090 case AMDGPU::S_CBRANCH_SCC1: 1091 return SCC_TRUE; 1092 case AMDGPU::S_CBRANCH_VCCNZ: 1093 return VCCNZ; 1094 case AMDGPU::S_CBRANCH_VCCZ: 1095 return VCCZ; 1096 case AMDGPU::S_CBRANCH_EXECNZ: 1097 return EXECNZ; 1098 case AMDGPU::S_CBRANCH_EXECZ: 1099 return EXECZ; 1100 default: 1101 return INVALID_BR; 1102 } 1103 } 1104 1105 bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 1106 MachineBasicBlock *&FBB, 1107 SmallVectorImpl<MachineOperand> &Cond, 1108 bool AllowModify) const { 1109 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 1110 1111 if (I == MBB.end()) 1112 return false; 1113 1114 if (I->getOpcode() == AMDGPU::S_BRANCH) { 1115 // Unconditional Branch 1116 TBB = I->getOperand(0).getMBB(); 1117 return false; 1118 } 1119 1120 BranchPredicate Pred = getBranchPredicate(I->getOpcode()); 1121 if (Pred == INVALID_BR) 1122 return true; 1123 1124 MachineBasicBlock *CondBB = I->getOperand(0).getMBB(); 1125 Cond.push_back(MachineOperand::CreateImm(Pred)); 1126 1127 ++I; 1128 1129 if (I == MBB.end()) { 1130 // Conditional branch followed by fall-through. 1131 TBB = CondBB; 1132 return false; 1133 } 1134 1135 if (I->getOpcode() == AMDGPU::S_BRANCH) { 1136 TBB = CondBB; 1137 FBB = I->getOperand(0).getMBB(); 1138 return false; 1139 } 1140 1141 return true; 1142 } 1143 1144 unsigned SIInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 1145 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 1146 1147 unsigned Count = 0; 1148 while (I != MBB.end()) { 1149 MachineBasicBlock::iterator Next = std::next(I); 1150 I->eraseFromParent(); 1151 ++Count; 1152 I = Next; 1153 } 1154 1155 return Count; 1156 } 1157 1158 unsigned SIInstrInfo::InsertBranch(MachineBasicBlock &MBB, 1159 MachineBasicBlock *TBB, 1160 MachineBasicBlock *FBB, 1161 ArrayRef<MachineOperand> Cond, 1162 const DebugLoc &DL) const { 1163 1164 if (!FBB && Cond.empty()) { 1165 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 1166 .addMBB(TBB); 1167 return 1; 1168 } 1169 1170 assert(TBB && Cond[0].isImm()); 1171 1172 unsigned Opcode 1173 = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm())); 1174 1175 if (!FBB) { 1176 BuildMI(&MBB, DL, get(Opcode)) 1177 .addMBB(TBB); 1178 return 1; 1179 } 1180 1181 assert(TBB && FBB); 1182 1183 BuildMI(&MBB, DL, get(Opcode)) 1184 .addMBB(TBB); 1185 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 1186 .addMBB(FBB); 1187 1188 return 2; 1189 } 1190 1191 bool SIInstrInfo::ReverseBranchCondition( 1192 SmallVectorImpl<MachineOperand> &Cond) const { 1193 assert(Cond.size() == 1); 1194 Cond[0].setImm(-Cond[0].getImm()); 1195 return false; 1196 } 1197 1198 static void removeModOperands(MachineInstr &MI) { 1199 unsigned Opc = MI.getOpcode(); 1200 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1201 AMDGPU::OpName::src0_modifiers); 1202 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1203 AMDGPU::OpName::src1_modifiers); 1204 int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1205 AMDGPU::OpName::src2_modifiers); 1206 1207 MI.RemoveOperand(Src2ModIdx); 1208 MI.RemoveOperand(Src1ModIdx); 1209 MI.RemoveOperand(Src0ModIdx); 1210 } 1211 1212 // TODO: Maybe this should be removed this and custom fold everything in 1213 // SIFoldOperands? 1214 bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1215 unsigned Reg, MachineRegisterInfo *MRI) const { 1216 if (!MRI->hasOneNonDBGUse(Reg)) 1217 return false; 1218 1219 unsigned Opc = UseMI.getOpcode(); 1220 if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) { 1221 // Don't fold if we are using source modifiers. The new VOP2 instructions 1222 // don't have them. 1223 if (hasModifiersSet(UseMI, AMDGPU::OpName::src0_modifiers) || 1224 hasModifiersSet(UseMI, AMDGPU::OpName::src1_modifiers) || 1225 hasModifiersSet(UseMI, AMDGPU::OpName::src2_modifiers)) { 1226 return false; 1227 } 1228 1229 const MachineOperand &ImmOp = DefMI.getOperand(1); 1230 1231 // If this is a free constant, there's no reason to do this. 1232 // TODO: We could fold this here instead of letting SIFoldOperands do it 1233 // later. 1234 if (isInlineConstant(ImmOp, 4)) 1235 return false; 1236 1237 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0); 1238 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1); 1239 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2); 1240 1241 // Multiplied part is the constant: Use v_madmk_f32 1242 // We should only expect these to be on src0 due to canonicalizations. 1243 if (Src0->isReg() && Src0->getReg() == Reg) { 1244 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) 1245 return false; 1246 1247 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) 1248 return false; 1249 1250 // We need to swap operands 0 and 1 since madmk constant is at operand 1. 1251 1252 const int64_t Imm = DefMI.getOperand(1).getImm(); 1253 1254 // FIXME: This would be a lot easier if we could return a new instruction 1255 // instead of having to modify in place. 1256 1257 // Remove these first since they are at the end. 1258 UseMI.RemoveOperand( 1259 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); 1260 UseMI.RemoveOperand( 1261 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); 1262 1263 unsigned Src1Reg = Src1->getReg(); 1264 unsigned Src1SubReg = Src1->getSubReg(); 1265 Src0->setReg(Src1Reg); 1266 Src0->setSubReg(Src1SubReg); 1267 Src0->setIsKill(Src1->isKill()); 1268 1269 if (Opc == AMDGPU::V_MAC_F32_e64) { 1270 UseMI.untieRegOperand( 1271 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 1272 } 1273 1274 Src1->ChangeToImmediate(Imm); 1275 1276 removeModOperands(UseMI); 1277 UseMI.setDesc(get(AMDGPU::V_MADMK_F32)); 1278 1279 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1280 if (DeleteDef) 1281 DefMI.eraseFromParent(); 1282 1283 return true; 1284 } 1285 1286 // Added part is the constant: Use v_madak_f32 1287 if (Src2->isReg() && Src2->getReg() == Reg) { 1288 // Not allowed to use constant bus for another operand. 1289 // We can however allow an inline immediate as src0. 1290 if (!Src0->isImm() && 1291 (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg())))) 1292 return false; 1293 1294 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) 1295 return false; 1296 1297 const int64_t Imm = DefMI.getOperand(1).getImm(); 1298 1299 // FIXME: This would be a lot easier if we could return a new instruction 1300 // instead of having to modify in place. 1301 1302 // Remove these first since they are at the end. 1303 UseMI.RemoveOperand( 1304 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod)); 1305 UseMI.RemoveOperand( 1306 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp)); 1307 1308 if (Opc == AMDGPU::V_MAC_F32_e64) { 1309 UseMI.untieRegOperand( 1310 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 1311 } 1312 1313 // ChangingToImmediate adds Src2 back to the instruction. 1314 Src2->ChangeToImmediate(Imm); 1315 1316 // These come before src2. 1317 removeModOperands(UseMI); 1318 UseMI.setDesc(get(AMDGPU::V_MADAK_F32)); 1319 1320 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1321 if (DeleteDef) 1322 DefMI.eraseFromParent(); 1323 1324 return true; 1325 } 1326 } 1327 1328 return false; 1329 } 1330 1331 static bool offsetsDoNotOverlap(int WidthA, int OffsetA, 1332 int WidthB, int OffsetB) { 1333 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1334 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1335 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1336 return LowOffset + LowWidth <= HighOffset; 1337 } 1338 1339 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr &MIa, 1340 MachineInstr &MIb) const { 1341 unsigned BaseReg0, BaseReg1; 1342 int64_t Offset0, Offset1; 1343 1344 if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) && 1345 getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) { 1346 1347 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) { 1348 // FIXME: Handle ds_read2 / ds_write2. 1349 return false; 1350 } 1351 unsigned Width0 = (*MIa.memoperands_begin())->getSize(); 1352 unsigned Width1 = (*MIb.memoperands_begin())->getSize(); 1353 if (BaseReg0 == BaseReg1 && 1354 offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) { 1355 return true; 1356 } 1357 } 1358 1359 return false; 1360 } 1361 1362 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr &MIa, 1363 MachineInstr &MIb, 1364 AliasAnalysis *AA) const { 1365 assert((MIa.mayLoad() || MIa.mayStore()) && 1366 "MIa must load from or modify a memory location"); 1367 assert((MIb.mayLoad() || MIb.mayStore()) && 1368 "MIb must load from or modify a memory location"); 1369 1370 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects()) 1371 return false; 1372 1373 // XXX - Can we relax this between address spaces? 1374 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef()) 1375 return false; 1376 1377 // TODO: Should we check the address space from the MachineMemOperand? That 1378 // would allow us to distinguish objects we know don't alias based on the 1379 // underlying address space, even if it was lowered to a different one, 1380 // e.g. private accesses lowered to use MUBUF instructions on a scratch 1381 // buffer. 1382 if (isDS(MIa)) { 1383 if (isDS(MIb)) 1384 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1385 1386 return !isFLAT(MIb); 1387 } 1388 1389 if (isMUBUF(MIa) || isMTBUF(MIa)) { 1390 if (isMUBUF(MIb) || isMTBUF(MIb)) 1391 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1392 1393 return !isFLAT(MIb) && !isSMRD(MIb); 1394 } 1395 1396 if (isSMRD(MIa)) { 1397 if (isSMRD(MIb)) 1398 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1399 1400 return !isFLAT(MIb) && !isMUBUF(MIa) && !isMTBUF(MIa); 1401 } 1402 1403 if (isFLAT(MIa)) { 1404 if (isFLAT(MIb)) 1405 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1406 1407 return false; 1408 } 1409 1410 return false; 1411 } 1412 1413 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB, 1414 MachineInstr &MI, 1415 LiveVariables *LV) const { 1416 1417 switch (MI.getOpcode()) { 1418 default: 1419 return nullptr; 1420 case AMDGPU::V_MAC_F32_e64: 1421 break; 1422 case AMDGPU::V_MAC_F32_e32: { 1423 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); 1424 if (Src0->isImm() && !isInlineConstant(*Src0, 4)) 1425 return nullptr; 1426 break; 1427 } 1428 } 1429 1430 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 1431 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0); 1432 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1); 1433 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2); 1434 1435 return BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::V_MAD_F32)) 1436 .addOperand(*Dst) 1437 .addImm(0) // Src0 mods 1438 .addOperand(*Src0) 1439 .addImm(0) // Src1 mods 1440 .addOperand(*Src1) 1441 .addImm(0) // Src mods 1442 .addOperand(*Src2) 1443 .addImm(0) // clamp 1444 .addImm(0); // omod 1445 } 1446 1447 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1448 const MachineBasicBlock *MBB, 1449 const MachineFunction &MF) const { 1450 // XXX - Do we want the SP check in the base implementation? 1451 1452 // Target-independent instructions do not have an implicit-use of EXEC, even 1453 // when they operate on VGPRs. Treating EXEC modifications as scheduling 1454 // boundaries prevents incorrect movements of such instructions. 1455 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF) || 1456 MI.modifiesRegister(AMDGPU::EXEC, &RI); 1457 } 1458 1459 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { 1460 int64_t SVal = Imm.getSExtValue(); 1461 if (SVal >= -16 && SVal <= 64) 1462 return true; 1463 1464 if (Imm.getBitWidth() == 64) { 1465 uint64_t Val = Imm.getZExtValue(); 1466 return (DoubleToBits(0.0) == Val) || 1467 (DoubleToBits(1.0) == Val) || 1468 (DoubleToBits(-1.0) == Val) || 1469 (DoubleToBits(0.5) == Val) || 1470 (DoubleToBits(-0.5) == Val) || 1471 (DoubleToBits(2.0) == Val) || 1472 (DoubleToBits(-2.0) == Val) || 1473 (DoubleToBits(4.0) == Val) || 1474 (DoubleToBits(-4.0) == Val); 1475 } 1476 1477 // The actual type of the operand does not seem to matter as long 1478 // as the bits match one of the inline immediate values. For example: 1479 // 1480 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1481 // so it is a legal inline immediate. 1482 // 1483 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1484 // floating-point, so it is a legal inline immediate. 1485 uint32_t Val = Imm.getZExtValue(); 1486 1487 return (FloatToBits(0.0f) == Val) || 1488 (FloatToBits(1.0f) == Val) || 1489 (FloatToBits(-1.0f) == Val) || 1490 (FloatToBits(0.5f) == Val) || 1491 (FloatToBits(-0.5f) == Val) || 1492 (FloatToBits(2.0f) == Val) || 1493 (FloatToBits(-2.0f) == Val) || 1494 (FloatToBits(4.0f) == Val) || 1495 (FloatToBits(-4.0f) == Val); 1496 } 1497 1498 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, 1499 unsigned OpSize) const { 1500 if (MO.isImm()) { 1501 // MachineOperand provides no way to tell the true operand size, since it 1502 // only records a 64-bit value. We need to know the size to determine if a 1503 // 32-bit floating point immediate bit pattern is legal for an integer 1504 // immediate. It would be for any 32-bit integer operand, but would not be 1505 // for a 64-bit one. 1506 1507 unsigned BitSize = 8 * OpSize; 1508 return isInlineConstant(APInt(BitSize, MO.getImm(), true)); 1509 } 1510 1511 return false; 1512 } 1513 1514 bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO, 1515 unsigned OpSize) const { 1516 return MO.isImm() && !isInlineConstant(MO, OpSize); 1517 } 1518 1519 static bool compareMachineOp(const MachineOperand &Op0, 1520 const MachineOperand &Op1) { 1521 if (Op0.getType() != Op1.getType()) 1522 return false; 1523 1524 switch (Op0.getType()) { 1525 case MachineOperand::MO_Register: 1526 return Op0.getReg() == Op1.getReg(); 1527 case MachineOperand::MO_Immediate: 1528 return Op0.getImm() == Op1.getImm(); 1529 default: 1530 llvm_unreachable("Didn't expect to be comparing these operand types"); 1531 } 1532 } 1533 1534 bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo, 1535 const MachineOperand &MO) const { 1536 const MCOperandInfo &OpInfo = get(MI.getOpcode()).OpInfo[OpNo]; 1537 1538 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); 1539 1540 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) 1541 return true; 1542 1543 if (OpInfo.RegClass < 0) 1544 return false; 1545 1546 unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize(); 1547 if (isLiteralConstant(MO, OpSize)) 1548 return RI.opCanUseLiteralConstant(OpInfo.OperandType); 1549 1550 return RI.opCanUseInlineConstant(OpInfo.OperandType); 1551 } 1552 1553 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { 1554 int Op32 = AMDGPU::getVOPe32(Opcode); 1555 if (Op32 == -1) 1556 return false; 1557 1558 return pseudoToMCOpcode(Op32) != -1; 1559 } 1560 1561 bool SIInstrInfo::hasModifiers(unsigned Opcode) const { 1562 // The src0_modifier operand is present on all instructions 1563 // that have modifiers. 1564 1565 return AMDGPU::getNamedOperandIdx(Opcode, 1566 AMDGPU::OpName::src0_modifiers) != -1; 1567 } 1568 1569 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, 1570 unsigned OpName) const { 1571 const MachineOperand *Mods = getNamedOperand(MI, OpName); 1572 return Mods && Mods->getImm(); 1573 } 1574 1575 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, 1576 const MachineOperand &MO, 1577 unsigned OpSize) const { 1578 // Literal constants use the constant bus. 1579 if (isLiteralConstant(MO, OpSize)) 1580 return true; 1581 1582 if (!MO.isReg() || !MO.isUse()) 1583 return false; 1584 1585 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1586 return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); 1587 1588 // FLAT_SCR is just an SGPR pair. 1589 if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR)) 1590 return true; 1591 1592 // EXEC register uses the constant bus. 1593 if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC) 1594 return true; 1595 1596 // SGPRs use the constant bus 1597 return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 || 1598 (!MO.isImplicit() && 1599 (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) || 1600 AMDGPU::SGPR_64RegClass.contains(MO.getReg())))); 1601 } 1602 1603 static unsigned findImplicitSGPRRead(const MachineInstr &MI) { 1604 for (const MachineOperand &MO : MI.implicit_operands()) { 1605 // We only care about reads. 1606 if (MO.isDef()) 1607 continue; 1608 1609 switch (MO.getReg()) { 1610 case AMDGPU::VCC: 1611 case AMDGPU::M0: 1612 case AMDGPU::FLAT_SCR: 1613 return MO.getReg(); 1614 1615 default: 1616 break; 1617 } 1618 } 1619 1620 return AMDGPU::NoRegister; 1621 } 1622 1623 static bool shouldReadExec(const MachineInstr &MI) { 1624 if (SIInstrInfo::isVALU(MI)) { 1625 switch (MI.getOpcode()) { 1626 case AMDGPU::V_READLANE_B32: 1627 case AMDGPU::V_READLANE_B32_si: 1628 case AMDGPU::V_READLANE_B32_vi: 1629 case AMDGPU::V_WRITELANE_B32: 1630 case AMDGPU::V_WRITELANE_B32_si: 1631 case AMDGPU::V_WRITELANE_B32_vi: 1632 return false; 1633 } 1634 1635 return true; 1636 } 1637 1638 if (SIInstrInfo::isGenericOpcode(MI.getOpcode()) || 1639 SIInstrInfo::isSALU(MI) || 1640 SIInstrInfo::isSMRD(MI)) 1641 return false; 1642 1643 return true; 1644 } 1645 1646 static bool isSubRegOf(const SIRegisterInfo &TRI, 1647 const MachineOperand &SuperVec, 1648 const MachineOperand &SubReg) { 1649 if (TargetRegisterInfo::isPhysicalRegister(SubReg.getReg())) 1650 return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg()); 1651 1652 return SubReg.getSubReg() != AMDGPU::NoSubRegister && 1653 SubReg.getReg() == SuperVec.getReg(); 1654 } 1655 1656 bool SIInstrInfo::verifyInstruction(const MachineInstr &MI, 1657 StringRef &ErrInfo) const { 1658 uint16_t Opcode = MI.getOpcode(); 1659 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 1660 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 1661 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); 1662 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); 1663 1664 // Make sure the number of operands is correct. 1665 const MCInstrDesc &Desc = get(Opcode); 1666 if (!Desc.isVariadic() && 1667 Desc.getNumOperands() != MI.getNumExplicitOperands()) { 1668 ErrInfo = "Instruction has wrong number of operands."; 1669 return false; 1670 } 1671 1672 // Make sure the register classes are correct. 1673 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { 1674 if (MI.getOperand(i).isFPImm()) { 1675 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " 1676 "all fp values to integers."; 1677 return false; 1678 } 1679 1680 int RegClass = Desc.OpInfo[i].RegClass; 1681 1682 switch (Desc.OpInfo[i].OperandType) { 1683 case MCOI::OPERAND_REGISTER: 1684 if (MI.getOperand(i).isImm()) { 1685 ErrInfo = "Illegal immediate value for operand."; 1686 return false; 1687 } 1688 break; 1689 case AMDGPU::OPERAND_REG_IMM32: 1690 break; 1691 case AMDGPU::OPERAND_REG_INLINE_C: 1692 if (isLiteralConstant(MI.getOperand(i), 1693 RI.getRegClass(RegClass)->getSize())) { 1694 ErrInfo = "Illegal immediate value for operand."; 1695 return false; 1696 } 1697 break; 1698 case MCOI::OPERAND_IMMEDIATE: 1699 case AMDGPU::OPERAND_KIMM32: 1700 // Check if this operand is an immediate. 1701 // FrameIndex operands will be replaced by immediates, so they are 1702 // allowed. 1703 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) { 1704 ErrInfo = "Expected immediate, but got non-immediate"; 1705 return false; 1706 } 1707 // Fall-through 1708 default: 1709 continue; 1710 } 1711 1712 if (!MI.getOperand(i).isReg()) 1713 continue; 1714 1715 if (RegClass != -1) { 1716 unsigned Reg = MI.getOperand(i).getReg(); 1717 if (Reg == AMDGPU::NoRegister || 1718 TargetRegisterInfo::isVirtualRegister(Reg)) 1719 continue; 1720 1721 const TargetRegisterClass *RC = RI.getRegClass(RegClass); 1722 if (!RC->contains(Reg)) { 1723 ErrInfo = "Operand has incorrect register class."; 1724 return false; 1725 } 1726 } 1727 } 1728 1729 // Verify VOP* 1730 if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI)) { 1731 // Only look at the true operands. Only a real operand can use the constant 1732 // bus, and we don't want to check pseudo-operands like the source modifier 1733 // flags. 1734 const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx }; 1735 1736 unsigned ConstantBusCount = 0; 1737 1738 if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1) 1739 ++ConstantBusCount; 1740 1741 unsigned SGPRUsed = findImplicitSGPRRead(MI); 1742 if (SGPRUsed != AMDGPU::NoRegister) 1743 ++ConstantBusCount; 1744 1745 for (int OpIdx : OpIndices) { 1746 if (OpIdx == -1) 1747 break; 1748 const MachineOperand &MO = MI.getOperand(OpIdx); 1749 if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) { 1750 if (MO.isReg()) { 1751 if (MO.getReg() != SGPRUsed) 1752 ++ConstantBusCount; 1753 SGPRUsed = MO.getReg(); 1754 } else { 1755 ++ConstantBusCount; 1756 } 1757 } 1758 } 1759 if (ConstantBusCount > 1) { 1760 ErrInfo = "VOP* instruction uses the constant bus more than once"; 1761 return false; 1762 } 1763 } 1764 1765 // Verify misc. restrictions on specific instructions. 1766 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 || 1767 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) { 1768 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 1769 const MachineOperand &Src1 = MI.getOperand(Src1Idx); 1770 const MachineOperand &Src2 = MI.getOperand(Src2Idx); 1771 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { 1772 if (!compareMachineOp(Src0, Src1) && 1773 !compareMachineOp(Src0, Src2)) { 1774 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; 1775 return false; 1776 } 1777 } 1778 } 1779 1780 if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 || 1781 Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 || 1782 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 1783 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) { 1784 const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 || 1785 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64; 1786 1787 const unsigned StaticNumOps = Desc.getNumOperands() + 1788 Desc.getNumImplicitUses(); 1789 const unsigned NumImplicitOps = IsDst ? 2 : 1; 1790 1791 if (MI.getNumOperands() != StaticNumOps + NumImplicitOps) { 1792 ErrInfo = "missing implicit register operands"; 1793 return false; 1794 } 1795 1796 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst); 1797 if (IsDst) { 1798 if (!Dst->isUse()) { 1799 ErrInfo = "v_movreld_b32 vdst should be a use operand"; 1800 return false; 1801 } 1802 1803 unsigned UseOpIdx; 1804 if (!MI.isRegTiedToUseOperand(StaticNumOps, &UseOpIdx) || 1805 UseOpIdx != StaticNumOps + 1) { 1806 ErrInfo = "movrel implicit operands should be tied"; 1807 return false; 1808 } 1809 } 1810 1811 const MachineOperand &Src0 = MI.getOperand(Src0Idx); 1812 const MachineOperand &ImpUse 1813 = MI.getOperand(StaticNumOps + NumImplicitOps - 1); 1814 if (!ImpUse.isReg() || !ImpUse.isUse() || 1815 !isSubRegOf(RI, ImpUse, IsDst ? *Dst : Src0)) { 1816 ErrInfo = "src0 should be subreg of implicit vector use"; 1817 return false; 1818 } 1819 } 1820 1821 // Make sure we aren't losing exec uses in the td files. This mostly requires 1822 // being careful when using let Uses to try to add other use registers. 1823 if (shouldReadExec(MI)) { 1824 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { 1825 ErrInfo = "VALU instruction does not implicitly read exec mask"; 1826 return false; 1827 } 1828 } 1829 1830 return true; 1831 } 1832 1833 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) { 1834 switch (MI.getOpcode()) { 1835 default: return AMDGPU::INSTRUCTION_LIST_END; 1836 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; 1837 case AMDGPU::COPY: return AMDGPU::COPY; 1838 case AMDGPU::PHI: return AMDGPU::PHI; 1839 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; 1840 case AMDGPU::S_MOV_B32: 1841 return MI.getOperand(1).isReg() ? 1842 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; 1843 case AMDGPU::S_ADD_I32: 1844 case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32; 1845 case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32; 1846 case AMDGPU::S_SUB_I32: 1847 case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32; 1848 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; 1849 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32; 1850 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32; 1851 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32; 1852 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32; 1853 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32; 1854 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32; 1855 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32; 1856 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32; 1857 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; 1858 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64; 1859 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; 1860 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64; 1861 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; 1862 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64; 1863 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32; 1864 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32; 1865 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32; 1866 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32; 1867 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; 1868 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; 1869 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; 1870 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; 1871 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32; 1872 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32; 1873 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32; 1874 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32; 1875 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32; 1876 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32; 1877 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32; 1878 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32; 1879 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32; 1880 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32; 1881 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32; 1882 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32; 1883 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; 1884 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; 1885 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; 1886 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; 1887 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; 1888 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; 1889 } 1890 } 1891 1892 bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const { 1893 return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END; 1894 } 1895 1896 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, 1897 unsigned OpNo) const { 1898 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 1899 const MCInstrDesc &Desc = get(MI.getOpcode()); 1900 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || 1901 Desc.OpInfo[OpNo].RegClass == -1) { 1902 unsigned Reg = MI.getOperand(OpNo).getReg(); 1903 1904 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1905 return MRI.getRegClass(Reg); 1906 return RI.getPhysRegClass(Reg); 1907 } 1908 1909 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1910 return RI.getRegClass(RCID); 1911 } 1912 1913 bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const { 1914 switch (MI.getOpcode()) { 1915 case AMDGPU::COPY: 1916 case AMDGPU::REG_SEQUENCE: 1917 case AMDGPU::PHI: 1918 case AMDGPU::INSERT_SUBREG: 1919 return RI.hasVGPRs(getOpRegClass(MI, 0)); 1920 default: 1921 return RI.hasVGPRs(getOpRegClass(MI, OpNo)); 1922 } 1923 } 1924 1925 void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const { 1926 MachineBasicBlock::iterator I = MI; 1927 MachineBasicBlock *MBB = MI.getParent(); 1928 MachineOperand &MO = MI.getOperand(OpIdx); 1929 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1930 unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass; 1931 const TargetRegisterClass *RC = RI.getRegClass(RCID); 1932 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1933 if (MO.isReg()) 1934 Opcode = AMDGPU::COPY; 1935 else if (RI.isSGPRClass(RC)) 1936 Opcode = AMDGPU::S_MOV_B32; 1937 1938 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); 1939 if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC)) 1940 VRC = &AMDGPU::VReg_64RegClass; 1941 else 1942 VRC = &AMDGPU::VGPR_32RegClass; 1943 1944 unsigned Reg = MRI.createVirtualRegister(VRC); 1945 DebugLoc DL = MBB->findDebugLoc(I); 1946 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).addOperand(MO); 1947 MO.ChangeToRegister(Reg, false); 1948 } 1949 1950 unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI, 1951 MachineRegisterInfo &MRI, 1952 MachineOperand &SuperReg, 1953 const TargetRegisterClass *SuperRC, 1954 unsigned SubIdx, 1955 const TargetRegisterClass *SubRC) 1956 const { 1957 MachineBasicBlock *MBB = MI->getParent(); 1958 DebugLoc DL = MI->getDebugLoc(); 1959 unsigned SubReg = MRI.createVirtualRegister(SubRC); 1960 1961 if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) { 1962 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 1963 .addReg(SuperReg.getReg(), 0, SubIdx); 1964 return SubReg; 1965 } 1966 1967 // Just in case the super register is itself a sub-register, copy it to a new 1968 // value so we don't need to worry about merging its subreg index with the 1969 // SubIdx passed to this function. The register coalescer should be able to 1970 // eliminate this extra copy. 1971 unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC); 1972 1973 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg) 1974 .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg()); 1975 1976 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 1977 .addReg(NewSuperReg, 0, SubIdx); 1978 1979 return SubReg; 1980 } 1981 1982 MachineOperand SIInstrInfo::buildExtractSubRegOrImm( 1983 MachineBasicBlock::iterator MII, 1984 MachineRegisterInfo &MRI, 1985 MachineOperand &Op, 1986 const TargetRegisterClass *SuperRC, 1987 unsigned SubIdx, 1988 const TargetRegisterClass *SubRC) const { 1989 if (Op.isImm()) { 1990 // XXX - Is there a better way to do this? 1991 if (SubIdx == AMDGPU::sub0) 1992 return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF); 1993 if (SubIdx == AMDGPU::sub1) 1994 return MachineOperand::CreateImm(Op.getImm() >> 32); 1995 1996 llvm_unreachable("Unhandled register index for immediate"); 1997 } 1998 1999 unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, 2000 SubIdx, SubRC); 2001 return MachineOperand::CreateReg(SubReg, false); 2002 } 2003 2004 // Change the order of operands from (0, 1, 2) to (0, 2, 1) 2005 void SIInstrInfo::swapOperands(MachineInstr &Inst) const { 2006 assert(Inst.getNumExplicitOperands() == 3); 2007 MachineOperand Op1 = Inst.getOperand(1); 2008 Inst.RemoveOperand(1); 2009 Inst.addOperand(Op1); 2010 } 2011 2012 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, 2013 const MCOperandInfo &OpInfo, 2014 const MachineOperand &MO) const { 2015 if (!MO.isReg()) 2016 return false; 2017 2018 unsigned Reg = MO.getReg(); 2019 const TargetRegisterClass *RC = 2020 TargetRegisterInfo::isVirtualRegister(Reg) ? 2021 MRI.getRegClass(Reg) : 2022 RI.getPhysRegClass(Reg); 2023 2024 const SIRegisterInfo *TRI = 2025 static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo()); 2026 RC = TRI->getSubRegClass(RC, MO.getSubReg()); 2027 2028 // In order to be legal, the common sub-class must be equal to the 2029 // class of the current operand. For example: 2030 // 2031 // v_mov_b32 s0 ; Operand defined as vsrc_32 2032 // ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL 2033 // 2034 // s_sendmsg 0, s0 ; Operand defined as m0reg 2035 // ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL 2036 2037 return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC; 2038 } 2039 2040 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, 2041 const MCOperandInfo &OpInfo, 2042 const MachineOperand &MO) const { 2043 if (MO.isReg()) 2044 return isLegalRegOperand(MRI, OpInfo, MO); 2045 2046 // Handle non-register types that are treated like immediates. 2047 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); 2048 return true; 2049 } 2050 2051 bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx, 2052 const MachineOperand *MO) const { 2053 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2054 const MCInstrDesc &InstDesc = MI.getDesc(); 2055 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx]; 2056 const TargetRegisterClass *DefinedRC = 2057 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; 2058 if (!MO) 2059 MO = &MI.getOperand(OpIdx); 2060 2061 if (isVALU(MI) && usesConstantBus(MRI, *MO, DefinedRC->getSize())) { 2062 2063 RegSubRegPair SGPRUsed; 2064 if (MO->isReg()) 2065 SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg()); 2066 2067 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2068 if (i == OpIdx) 2069 continue; 2070 const MachineOperand &Op = MI.getOperand(i); 2071 if (Op.isReg()) { 2072 if ((Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) && 2073 usesConstantBus(MRI, Op, getOpSize(MI, i))) { 2074 return false; 2075 } 2076 } else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) { 2077 return false; 2078 } 2079 } 2080 } 2081 2082 if (MO->isReg()) { 2083 assert(DefinedRC); 2084 return isLegalRegOperand(MRI, OpInfo, *MO); 2085 } 2086 2087 // Handle non-register types that are treated like immediates. 2088 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI()); 2089 2090 if (!DefinedRC) { 2091 // This operand expects an immediate. 2092 return true; 2093 } 2094 2095 return isImmOperandLegal(MI, OpIdx, *MO); 2096 } 2097 2098 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, 2099 MachineInstr &MI) const { 2100 unsigned Opc = MI.getOpcode(); 2101 const MCInstrDesc &InstrDesc = get(Opc); 2102 2103 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 2104 MachineOperand &Src1 = MI.getOperand(Src1Idx); 2105 2106 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 2107 // we need to only have one constant bus use. 2108 // 2109 // Note we do not need to worry about literal constants here. They are 2110 // disabled for the operand type for instructions because they will always 2111 // violate the one constant bus use rule. 2112 bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister; 2113 if (HasImplicitSGPR) { 2114 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2115 MachineOperand &Src0 = MI.getOperand(Src0Idx); 2116 2117 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) 2118 legalizeOpWithMove(MI, Src0Idx); 2119 } 2120 2121 // VOP2 src0 instructions support all operand types, so we don't need to check 2122 // their legality. If src1 is already legal, we don't need to do anything. 2123 if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1)) 2124 return; 2125 2126 // We do not use commuteInstruction here because it is too aggressive and will 2127 // commute if it is possible. We only want to commute here if it improves 2128 // legality. This can be called a fairly large number of times so don't waste 2129 // compile time pointlessly swapping and checking legality again. 2130 if (HasImplicitSGPR || !MI.isCommutable()) { 2131 legalizeOpWithMove(MI, Src1Idx); 2132 return; 2133 } 2134 2135 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2136 MachineOperand &Src0 = MI.getOperand(Src0Idx); 2137 2138 // If src0 can be used as src1, commuting will make the operands legal. 2139 // Otherwise we have to give up and insert a move. 2140 // 2141 // TODO: Other immediate-like operand kinds could be commuted if there was a 2142 // MachineOperand::ChangeTo* for them. 2143 if ((!Src1.isImm() && !Src1.isReg()) || 2144 !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) { 2145 legalizeOpWithMove(MI, Src1Idx); 2146 return; 2147 } 2148 2149 int CommutedOpc = commuteOpcode(MI); 2150 if (CommutedOpc == -1) { 2151 legalizeOpWithMove(MI, Src1Idx); 2152 return; 2153 } 2154 2155 MI.setDesc(get(CommutedOpc)); 2156 2157 unsigned Src0Reg = Src0.getReg(); 2158 unsigned Src0SubReg = Src0.getSubReg(); 2159 bool Src0Kill = Src0.isKill(); 2160 2161 if (Src1.isImm()) 2162 Src0.ChangeToImmediate(Src1.getImm()); 2163 else if (Src1.isReg()) { 2164 Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); 2165 Src0.setSubReg(Src1.getSubReg()); 2166 } else 2167 llvm_unreachable("Should only have register or immediate operands"); 2168 2169 Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); 2170 Src1.setSubReg(Src0SubReg); 2171 } 2172 2173 // Legalize VOP3 operands. Because all operand types are supported for any 2174 // operand, and since literal constants are not allowed and should never be 2175 // seen, we only need to worry about inserting copies if we use multiple SGPR 2176 // operands. 2177 void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI, 2178 MachineInstr &MI) const { 2179 unsigned Opc = MI.getOpcode(); 2180 2181 int VOP3Idx[3] = { 2182 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 2183 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), 2184 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) 2185 }; 2186 2187 // Find the one SGPR operand we are allowed to use. 2188 unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx); 2189 2190 for (unsigned i = 0; i < 3; ++i) { 2191 int Idx = VOP3Idx[i]; 2192 if (Idx == -1) 2193 break; 2194 MachineOperand &MO = MI.getOperand(Idx); 2195 2196 // We should never see a VOP3 instruction with an illegal immediate operand. 2197 if (!MO.isReg()) 2198 continue; 2199 2200 if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg()))) 2201 continue; // VGPRs are legal 2202 2203 if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) { 2204 SGPRReg = MO.getReg(); 2205 // We can use one SGPR in each VOP3 instruction. 2206 continue; 2207 } 2208 2209 // If we make it this far, then the operand is not legal and we must 2210 // legalize it. 2211 legalizeOpWithMove(MI, Idx); 2212 } 2213 } 2214 2215 unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr &UseMI, 2216 MachineRegisterInfo &MRI) const { 2217 const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); 2218 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); 2219 unsigned DstReg = MRI.createVirtualRegister(SRC); 2220 unsigned SubRegs = VRC->getSize() / 4; 2221 2222 SmallVector<unsigned, 8> SRegs; 2223 for (unsigned i = 0; i < SubRegs; ++i) { 2224 unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2225 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 2226 get(AMDGPU::V_READFIRSTLANE_B32), SGPR) 2227 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); 2228 SRegs.push_back(SGPR); 2229 } 2230 2231 MachineInstrBuilder MIB = 2232 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), 2233 get(AMDGPU::REG_SEQUENCE), DstReg); 2234 for (unsigned i = 0; i < SubRegs; ++i) { 2235 MIB.addReg(SRegs[i]); 2236 MIB.addImm(RI.getSubRegFromChannel(i)); 2237 } 2238 return DstReg; 2239 } 2240 2241 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, 2242 MachineInstr &MI) const { 2243 2244 // If the pointer is store in VGPRs, then we need to move them to 2245 // SGPRs using v_readfirstlane. This is safe because we only select 2246 // loads with uniform pointers to SMRD instruction so we know the 2247 // pointer value is uniform. 2248 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase); 2249 if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { 2250 unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); 2251 SBase->setReg(SGPR); 2252 } 2253 } 2254 2255 void SIInstrInfo::legalizeOperands(MachineInstr &MI) const { 2256 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2257 2258 // Legalize VOP2 2259 if (isVOP2(MI) || isVOPC(MI)) { 2260 legalizeOperandsVOP2(MRI, MI); 2261 return; 2262 } 2263 2264 // Legalize VOP3 2265 if (isVOP3(MI)) { 2266 legalizeOperandsVOP3(MRI, MI); 2267 return; 2268 } 2269 2270 // Legalize SMRD 2271 if (isSMRD(MI)) { 2272 legalizeOperandsSMRD(MRI, MI); 2273 return; 2274 } 2275 2276 // Legalize REG_SEQUENCE and PHI 2277 // The register class of the operands much be the same type as the register 2278 // class of the output. 2279 if (MI.getOpcode() == AMDGPU::PHI) { 2280 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; 2281 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2282 if (!MI.getOperand(i).isReg() || 2283 !TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg())) 2284 continue; 2285 const TargetRegisterClass *OpRC = 2286 MRI.getRegClass(MI.getOperand(i).getReg()); 2287 if (RI.hasVGPRs(OpRC)) { 2288 VRC = OpRC; 2289 } else { 2290 SRC = OpRC; 2291 } 2292 } 2293 2294 // If any of the operands are VGPR registers, then they all most be 2295 // otherwise we will create illegal VGPR->SGPR copies when legalizing 2296 // them. 2297 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) { 2298 if (!VRC) { 2299 assert(SRC); 2300 VRC = RI.getEquivalentVGPRClass(SRC); 2301 } 2302 RC = VRC; 2303 } else { 2304 RC = SRC; 2305 } 2306 2307 // Update all the operands so they have the same type. 2308 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2309 MachineOperand &Op = MI.getOperand(I); 2310 if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 2311 continue; 2312 unsigned DstReg = MRI.createVirtualRegister(RC); 2313 2314 // MI is a PHI instruction. 2315 MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB(); 2316 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); 2317 2318 BuildMI(*InsertBB, Insert, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg) 2319 .addOperand(Op); 2320 Op.setReg(DstReg); 2321 } 2322 } 2323 2324 // REG_SEQUENCE doesn't really require operand legalization, but if one has a 2325 // VGPR dest type and SGPR sources, insert copies so all operands are 2326 // VGPRs. This seems to help operand folding / the register coalescer. 2327 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) { 2328 MachineBasicBlock *MBB = MI.getParent(); 2329 const TargetRegisterClass *DstRC = getOpRegClass(MI, 0); 2330 if (RI.hasVGPRs(DstRC)) { 2331 // Update all the operands so they are VGPR register classes. These may 2332 // not be the same register class because REG_SEQUENCE supports mixing 2333 // subregister index types e.g. sub0_sub1 + sub2 + sub3 2334 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { 2335 MachineOperand &Op = MI.getOperand(I); 2336 if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 2337 continue; 2338 2339 const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); 2340 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); 2341 if (VRC == OpRC) 2342 continue; 2343 2344 unsigned DstReg = MRI.createVirtualRegister(VRC); 2345 2346 BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg) 2347 .addOperand(Op); 2348 2349 Op.setReg(DstReg); 2350 Op.setIsKill(); 2351 } 2352 } 2353 2354 return; 2355 } 2356 2357 // Legalize INSERT_SUBREG 2358 // src0 must have the same register class as dst 2359 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) { 2360 unsigned Dst = MI.getOperand(0).getReg(); 2361 unsigned Src0 = MI.getOperand(1).getReg(); 2362 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 2363 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); 2364 if (DstRC != Src0RC) { 2365 MachineBasicBlock &MBB = *MI.getParent(); 2366 unsigned NewSrc0 = MRI.createVirtualRegister(DstRC); 2367 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), NewSrc0) 2368 .addReg(Src0); 2369 MI.getOperand(1).setReg(NewSrc0); 2370 } 2371 return; 2372 } 2373 2374 // Legalize MIMG 2375 if (isMIMG(MI)) { 2376 MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc); 2377 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) { 2378 unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI); 2379 SRsrc->setReg(SGPR); 2380 } 2381 2382 MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp); 2383 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) { 2384 unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI); 2385 SSamp->setReg(SGPR); 2386 } 2387 return; 2388 } 2389 2390 // Legalize MUBUF* instructions 2391 // FIXME: If we start using the non-addr64 instructions for compute, we 2392 // may need to legalize them here. 2393 int SRsrcIdx = 2394 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc); 2395 if (SRsrcIdx != -1) { 2396 // We have an MUBUF instruction 2397 MachineOperand *SRsrc = &MI.getOperand(SRsrcIdx); 2398 unsigned SRsrcRC = get(MI.getOpcode()).OpInfo[SRsrcIdx].RegClass; 2399 if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()), 2400 RI.getRegClass(SRsrcRC))) { 2401 // The operands are legal. 2402 // FIXME: We may need to legalize operands besided srsrc. 2403 return; 2404 } 2405 2406 MachineBasicBlock &MBB = *MI.getParent(); 2407 2408 // Extract the ptr from the resource descriptor. 2409 unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc, 2410 &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); 2411 2412 // Create an empty resource descriptor 2413 unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2414 unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2415 unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2416 unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass); 2417 uint64_t RsrcDataFormat = getDefaultRsrcDataFormat(); 2418 2419 // Zero64 = 0 2420 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B64), Zero64) 2421 .addImm(0); 2422 2423 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} 2424 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatLo) 2425 .addImm(RsrcDataFormat & 0xFFFFFFFF); 2426 2427 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} 2428 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatHi) 2429 .addImm(RsrcDataFormat >> 32); 2430 2431 // NewSRsrc = {Zero64, SRsrcFormat} 2432 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc) 2433 .addReg(Zero64) 2434 .addImm(AMDGPU::sub0_sub1) 2435 .addReg(SRsrcFormatLo) 2436 .addImm(AMDGPU::sub2) 2437 .addReg(SRsrcFormatHi) 2438 .addImm(AMDGPU::sub3); 2439 2440 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr); 2441 unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2442 if (VAddr) { 2443 // This is already an ADDR64 instruction so we need to add the pointer 2444 // extracted from the resource descriptor to the current value of VAddr. 2445 unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2446 unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2447 2448 // NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0 2449 DebugLoc DL = MI.getDebugLoc(); 2450 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo) 2451 .addReg(SRsrcPtr, 0, AMDGPU::sub0) 2452 .addReg(VAddr->getReg(), 0, AMDGPU::sub0); 2453 2454 // NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1 2455 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi) 2456 .addReg(SRsrcPtr, 0, AMDGPU::sub1) 2457 .addReg(VAddr->getReg(), 0, AMDGPU::sub1); 2458 2459 // NewVaddr = {NewVaddrHi, NewVaddrLo} 2460 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) 2461 .addReg(NewVAddrLo) 2462 .addImm(AMDGPU::sub0) 2463 .addReg(NewVAddrHi) 2464 .addImm(AMDGPU::sub1); 2465 } else { 2466 // This instructions is the _OFFSET variant, so we need to convert it to 2467 // ADDR64. 2468 assert(MBB.getParent()->getSubtarget<SISubtarget>().getGeneration() 2469 < SISubtarget::VOLCANIC_ISLANDS && 2470 "FIXME: Need to emit flat atomics here"); 2471 2472 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata); 2473 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset); 2474 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset); 2475 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode()); 2476 2477 // Atomics rith return have have an additional tied operand and are 2478 // missing some of the special bits. 2479 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in); 2480 MachineInstr *Addr64; 2481 2482 if (!VDataIn) { 2483 // Regular buffer load / store. 2484 MachineInstrBuilder MIB = 2485 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 2486 .addOperand(*VData) 2487 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. 2488 // This will be replaced later 2489 // with the new value of vaddr. 2490 .addOperand(*SRsrc) 2491 .addOperand(*SOffset) 2492 .addOperand(*Offset); 2493 2494 // Atomics do not have this operand. 2495 if (const MachineOperand *GLC = 2496 getNamedOperand(MI, AMDGPU::OpName::glc)) { 2497 MIB.addImm(GLC->getImm()); 2498 } 2499 2500 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc)); 2501 2502 if (const MachineOperand *TFE = 2503 getNamedOperand(MI, AMDGPU::OpName::tfe)) { 2504 MIB.addImm(TFE->getImm()); 2505 } 2506 2507 MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 2508 Addr64 = MIB; 2509 } else { 2510 // Atomics with return. 2511 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode)) 2512 .addOperand(*VData) 2513 .addOperand(*VDataIn) 2514 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. 2515 // This will be replaced later 2516 // with the new value of vaddr. 2517 .addOperand(*SRsrc) 2518 .addOperand(*SOffset) 2519 .addOperand(*Offset) 2520 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc)) 2521 .setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 2522 } 2523 2524 MI.removeFromParent(); 2525 2526 // NewVaddr = {NewVaddrHi, NewVaddrLo} 2527 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), 2528 NewVAddr) 2529 .addReg(SRsrcPtr, 0, AMDGPU::sub0) 2530 .addImm(AMDGPU::sub0) 2531 .addReg(SRsrcPtr, 0, AMDGPU::sub1) 2532 .addImm(AMDGPU::sub1); 2533 2534 VAddr = getNamedOperand(*Addr64, AMDGPU::OpName::vaddr); 2535 SRsrc = getNamedOperand(*Addr64, AMDGPU::OpName::srsrc); 2536 } 2537 2538 // Update the instruction to use NewVaddr 2539 VAddr->setReg(NewVAddr); 2540 // Update the instruction to use NewSRsrc 2541 SRsrc->setReg(NewSRsrc); 2542 } 2543 } 2544 2545 void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const { 2546 SmallVector<MachineInstr *, 128> Worklist; 2547 Worklist.push_back(&TopInst); 2548 2549 while (!Worklist.empty()) { 2550 MachineInstr &Inst = *Worklist.pop_back_val(); 2551 MachineBasicBlock *MBB = Inst.getParent(); 2552 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 2553 2554 unsigned Opcode = Inst.getOpcode(); 2555 unsigned NewOpcode = getVALUOp(Inst); 2556 2557 // Handle some special cases 2558 switch (Opcode) { 2559 default: 2560 break; 2561 case AMDGPU::S_AND_B64: 2562 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64); 2563 Inst.eraseFromParent(); 2564 continue; 2565 2566 case AMDGPU::S_OR_B64: 2567 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64); 2568 Inst.eraseFromParent(); 2569 continue; 2570 2571 case AMDGPU::S_XOR_B64: 2572 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64); 2573 Inst.eraseFromParent(); 2574 continue; 2575 2576 case AMDGPU::S_NOT_B64: 2577 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32); 2578 Inst.eraseFromParent(); 2579 continue; 2580 2581 case AMDGPU::S_BCNT1_I32_B64: 2582 splitScalar64BitBCNT(Worklist, Inst); 2583 Inst.eraseFromParent(); 2584 continue; 2585 2586 case AMDGPU::S_BFE_I64: { 2587 splitScalar64BitBFE(Worklist, Inst); 2588 Inst.eraseFromParent(); 2589 continue; 2590 } 2591 2592 case AMDGPU::S_LSHL_B32: 2593 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2594 NewOpcode = AMDGPU::V_LSHLREV_B32_e64; 2595 swapOperands(Inst); 2596 } 2597 break; 2598 case AMDGPU::S_ASHR_I32: 2599 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2600 NewOpcode = AMDGPU::V_ASHRREV_I32_e64; 2601 swapOperands(Inst); 2602 } 2603 break; 2604 case AMDGPU::S_LSHR_B32: 2605 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2606 NewOpcode = AMDGPU::V_LSHRREV_B32_e64; 2607 swapOperands(Inst); 2608 } 2609 break; 2610 case AMDGPU::S_LSHL_B64: 2611 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2612 NewOpcode = AMDGPU::V_LSHLREV_B64; 2613 swapOperands(Inst); 2614 } 2615 break; 2616 case AMDGPU::S_ASHR_I64: 2617 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2618 NewOpcode = AMDGPU::V_ASHRREV_I64; 2619 swapOperands(Inst); 2620 } 2621 break; 2622 case AMDGPU::S_LSHR_B64: 2623 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 2624 NewOpcode = AMDGPU::V_LSHRREV_B64; 2625 swapOperands(Inst); 2626 } 2627 break; 2628 2629 case AMDGPU::S_ABS_I32: 2630 lowerScalarAbs(Worklist, Inst); 2631 Inst.eraseFromParent(); 2632 continue; 2633 2634 case AMDGPU::S_CBRANCH_SCC0: 2635 case AMDGPU::S_CBRANCH_SCC1: 2636 // Clear unused bits of vcc 2637 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::S_AND_B64), 2638 AMDGPU::VCC) 2639 .addReg(AMDGPU::EXEC) 2640 .addReg(AMDGPU::VCC); 2641 break; 2642 2643 case AMDGPU::S_BFE_U64: 2644 case AMDGPU::S_BFM_B64: 2645 llvm_unreachable("Moving this op to VALU not implemented"); 2646 } 2647 2648 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { 2649 // We cannot move this instruction to the VALU, so we should try to 2650 // legalize its operands instead. 2651 legalizeOperands(Inst); 2652 continue; 2653 } 2654 2655 // Use the new VALU Opcode. 2656 const MCInstrDesc &NewDesc = get(NewOpcode); 2657 Inst.setDesc(NewDesc); 2658 2659 // Remove any references to SCC. Vector instructions can't read from it, and 2660 // We're just about to add the implicit use / defs of VCC, and we don't want 2661 // both. 2662 for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) { 2663 MachineOperand &Op = Inst.getOperand(i); 2664 if (Op.isReg() && Op.getReg() == AMDGPU::SCC) { 2665 Inst.RemoveOperand(i); 2666 addSCCDefUsersToVALUWorklist(Inst, Worklist); 2667 } 2668 } 2669 2670 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { 2671 // We are converting these to a BFE, so we need to add the missing 2672 // operands for the size and offset. 2673 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; 2674 Inst.addOperand(MachineOperand::CreateImm(0)); 2675 Inst.addOperand(MachineOperand::CreateImm(Size)); 2676 2677 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { 2678 // The VALU version adds the second operand to the result, so insert an 2679 // extra 0 operand. 2680 Inst.addOperand(MachineOperand::CreateImm(0)); 2681 } 2682 2683 Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent()); 2684 2685 if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { 2686 const MachineOperand &OffsetWidthOp = Inst.getOperand(2); 2687 // If we need to move this to VGPRs, we need to unpack the second operand 2688 // back into the 2 separate ones for bit offset and width. 2689 assert(OffsetWidthOp.isImm() && 2690 "Scalar BFE is only implemented for constant width and offset"); 2691 uint32_t Imm = OffsetWidthOp.getImm(); 2692 2693 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 2694 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 2695 Inst.RemoveOperand(2); // Remove old immediate. 2696 Inst.addOperand(MachineOperand::CreateImm(Offset)); 2697 Inst.addOperand(MachineOperand::CreateImm(BitWidth)); 2698 } 2699 2700 bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef(); 2701 unsigned NewDstReg = AMDGPU::NoRegister; 2702 if (HasDst) { 2703 // Update the destination register class. 2704 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst); 2705 if (!NewDstRC) 2706 continue; 2707 2708 unsigned DstReg = Inst.getOperand(0).getReg(); 2709 NewDstReg = MRI.createVirtualRegister(NewDstRC); 2710 MRI.replaceRegWith(DstReg, NewDstReg); 2711 } 2712 2713 // Legalize the operands 2714 legalizeOperands(Inst); 2715 2716 if (HasDst) 2717 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 2718 } 2719 } 2720 2721 void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist, 2722 MachineInstr &Inst) const { 2723 MachineBasicBlock &MBB = *Inst.getParent(); 2724 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2725 MachineBasicBlock::iterator MII = Inst; 2726 DebugLoc DL = Inst.getDebugLoc(); 2727 2728 MachineOperand &Dest = Inst.getOperand(0); 2729 MachineOperand &Src = Inst.getOperand(1); 2730 unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2731 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2732 2733 BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg) 2734 .addImm(0) 2735 .addReg(Src.getReg()); 2736 2737 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) 2738 .addReg(Src.getReg()) 2739 .addReg(TmpReg); 2740 2741 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2742 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2743 } 2744 2745 void SIInstrInfo::splitScalar64BitUnaryOp( 2746 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst, 2747 unsigned Opcode) const { 2748 MachineBasicBlock &MBB = *Inst.getParent(); 2749 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2750 2751 MachineOperand &Dest = Inst.getOperand(0); 2752 MachineOperand &Src0 = Inst.getOperand(1); 2753 DebugLoc DL = Inst.getDebugLoc(); 2754 2755 MachineBasicBlock::iterator MII = Inst; 2756 2757 const MCInstrDesc &InstDesc = get(Opcode); 2758 const TargetRegisterClass *Src0RC = Src0.isReg() ? 2759 MRI.getRegClass(Src0.getReg()) : 2760 &AMDGPU::SGPR_32RegClass; 2761 2762 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 2763 2764 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2765 AMDGPU::sub0, Src0SubRC); 2766 2767 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 2768 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 2769 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 2770 2771 unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 2772 BuildMI(MBB, MII, DL, InstDesc, DestSub0) 2773 .addOperand(SrcReg0Sub0); 2774 2775 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2776 AMDGPU::sub1, Src0SubRC); 2777 2778 unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 2779 BuildMI(MBB, MII, DL, InstDesc, DestSub1) 2780 .addOperand(SrcReg0Sub1); 2781 2782 unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); 2783 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 2784 .addReg(DestSub0) 2785 .addImm(AMDGPU::sub0) 2786 .addReg(DestSub1) 2787 .addImm(AMDGPU::sub1); 2788 2789 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 2790 2791 // We don't need to legalizeOperands here because for a single operand, src0 2792 // will support any kind of input. 2793 2794 // Move all users of this moved value. 2795 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 2796 } 2797 2798 void SIInstrInfo::splitScalar64BitBinaryOp( 2799 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst, 2800 unsigned Opcode) const { 2801 MachineBasicBlock &MBB = *Inst.getParent(); 2802 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2803 2804 MachineOperand &Dest = Inst.getOperand(0); 2805 MachineOperand &Src0 = Inst.getOperand(1); 2806 MachineOperand &Src1 = Inst.getOperand(2); 2807 DebugLoc DL = Inst.getDebugLoc(); 2808 2809 MachineBasicBlock::iterator MII = Inst; 2810 2811 const MCInstrDesc &InstDesc = get(Opcode); 2812 const TargetRegisterClass *Src0RC = Src0.isReg() ? 2813 MRI.getRegClass(Src0.getReg()) : 2814 &AMDGPU::SGPR_32RegClass; 2815 2816 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 2817 const TargetRegisterClass *Src1RC = Src1.isReg() ? 2818 MRI.getRegClass(Src1.getReg()) : 2819 &AMDGPU::SGPR_32RegClass; 2820 2821 const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); 2822 2823 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2824 AMDGPU::sub0, Src0SubRC); 2825 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 2826 AMDGPU::sub0, Src1SubRC); 2827 2828 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 2829 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 2830 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 2831 2832 unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 2833 MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0) 2834 .addOperand(SrcReg0Sub0) 2835 .addOperand(SrcReg1Sub0); 2836 2837 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2838 AMDGPU::sub1, Src0SubRC); 2839 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 2840 AMDGPU::sub1, Src1SubRC); 2841 2842 unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 2843 MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1) 2844 .addOperand(SrcReg0Sub1) 2845 .addOperand(SrcReg1Sub1); 2846 2847 unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); 2848 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 2849 .addReg(DestSub0) 2850 .addImm(AMDGPU::sub0) 2851 .addReg(DestSub1) 2852 .addImm(AMDGPU::sub1); 2853 2854 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 2855 2856 // Try to legalize the operands in case we need to swap the order to keep it 2857 // valid. 2858 legalizeOperands(LoHalf); 2859 legalizeOperands(HiHalf); 2860 2861 // Move all users of this moved vlaue. 2862 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 2863 } 2864 2865 void SIInstrInfo::splitScalar64BitBCNT( 2866 SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst) const { 2867 MachineBasicBlock &MBB = *Inst.getParent(); 2868 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2869 2870 MachineBasicBlock::iterator MII = Inst; 2871 DebugLoc DL = Inst.getDebugLoc(); 2872 2873 MachineOperand &Dest = Inst.getOperand(0); 2874 MachineOperand &Src = Inst.getOperand(1); 2875 2876 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); 2877 const TargetRegisterClass *SrcRC = Src.isReg() ? 2878 MRI.getRegClass(Src.getReg()) : 2879 &AMDGPU::SGPR_32RegClass; 2880 2881 unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2882 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2883 2884 const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0); 2885 2886 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 2887 AMDGPU::sub0, SrcSubRC); 2888 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 2889 AMDGPU::sub1, SrcSubRC); 2890 2891 BuildMI(MBB, MII, DL, InstDesc, MidReg) 2892 .addOperand(SrcRegSub0) 2893 .addImm(0); 2894 2895 BuildMI(MBB, MII, DL, InstDesc, ResultReg) 2896 .addOperand(SrcRegSub1) 2897 .addReg(MidReg); 2898 2899 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2900 2901 // We don't need to legalize operands here. src0 for etiher instruction can be 2902 // an SGPR, and the second input is unused or determined here. 2903 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2904 } 2905 2906 void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist, 2907 MachineInstr &Inst) const { 2908 MachineBasicBlock &MBB = *Inst.getParent(); 2909 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2910 MachineBasicBlock::iterator MII = Inst; 2911 DebugLoc DL = Inst.getDebugLoc(); 2912 2913 MachineOperand &Dest = Inst.getOperand(0); 2914 uint32_t Imm = Inst.getOperand(2).getImm(); 2915 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 2916 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 2917 2918 (void) Offset; 2919 2920 // Only sext_inreg cases handled. 2921 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 && 2922 Offset == 0 && "Not implemented"); 2923 2924 if (BitWidth < 32) { 2925 unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2926 unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2927 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2928 2929 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo) 2930 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0) 2931 .addImm(0) 2932 .addImm(BitWidth); 2933 2934 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) 2935 .addImm(31) 2936 .addReg(MidRegLo); 2937 2938 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 2939 .addReg(MidRegLo) 2940 .addImm(AMDGPU::sub0) 2941 .addReg(MidRegHi) 2942 .addImm(AMDGPU::sub1); 2943 2944 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2945 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2946 return; 2947 } 2948 2949 MachineOperand &Src = Inst.getOperand(1); 2950 unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2951 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2952 2953 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) 2954 .addImm(31) 2955 .addReg(Src.getReg(), 0, AMDGPU::sub0); 2956 2957 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 2958 .addReg(Src.getReg(), 0, AMDGPU::sub0) 2959 .addImm(AMDGPU::sub0) 2960 .addReg(TmpReg) 2961 .addImm(AMDGPU::sub1); 2962 2963 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2964 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2965 } 2966 2967 void SIInstrInfo::addUsersToMoveToVALUWorklist( 2968 unsigned DstReg, 2969 MachineRegisterInfo &MRI, 2970 SmallVectorImpl<MachineInstr *> &Worklist) const { 2971 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), 2972 E = MRI.use_end(); I != E; ++I) { 2973 MachineInstr &UseMI = *I->getParent(); 2974 if (!canReadVGPR(UseMI, I.getOperandNo())) { 2975 Worklist.push_back(&UseMI); 2976 } 2977 } 2978 } 2979 2980 void SIInstrInfo::addSCCDefUsersToVALUWorklist( 2981 MachineInstr &SCCDefInst, SmallVectorImpl<MachineInstr *> &Worklist) const { 2982 // This assumes that all the users of SCC are in the same block 2983 // as the SCC def. 2984 for (MachineInstr &MI : 2985 llvm::make_range(MachineBasicBlock::iterator(SCCDefInst), 2986 SCCDefInst.getParent()->end())) { 2987 // Exit if we find another SCC def. 2988 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC) != -1) 2989 return; 2990 2991 if (MI.findRegisterUseOperandIdx(AMDGPU::SCC) != -1) 2992 Worklist.push_back(&MI); 2993 } 2994 } 2995 2996 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( 2997 const MachineInstr &Inst) const { 2998 const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); 2999 3000 switch (Inst.getOpcode()) { 3001 // For target instructions, getOpRegClass just returns the virtual register 3002 // class associated with the operand, so we need to find an equivalent VGPR 3003 // register class in order to move the instruction to the VALU. 3004 case AMDGPU::COPY: 3005 case AMDGPU::PHI: 3006 case AMDGPU::REG_SEQUENCE: 3007 case AMDGPU::INSERT_SUBREG: 3008 if (RI.hasVGPRs(NewDstRC)) 3009 return nullptr; 3010 3011 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 3012 if (!NewDstRC) 3013 return nullptr; 3014 return NewDstRC; 3015 default: 3016 return NewDstRC; 3017 } 3018 } 3019 3020 // Find the one SGPR operand we are allowed to use. 3021 unsigned SIInstrInfo::findUsedSGPR(const MachineInstr &MI, 3022 int OpIndices[3]) const { 3023 const MCInstrDesc &Desc = MI.getDesc(); 3024 3025 // Find the one SGPR operand we are allowed to use. 3026 // 3027 // First we need to consider the instruction's operand requirements before 3028 // legalizing. Some operands are required to be SGPRs, such as implicit uses 3029 // of VCC, but we are still bound by the constant bus requirement to only use 3030 // one. 3031 // 3032 // If the operand's class is an SGPR, we can never move it. 3033 3034 unsigned SGPRReg = findImplicitSGPRRead(MI); 3035 if (SGPRReg != AMDGPU::NoRegister) 3036 return SGPRReg; 3037 3038 unsigned UsedSGPRs[3] = { AMDGPU::NoRegister }; 3039 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 3040 3041 for (unsigned i = 0; i < 3; ++i) { 3042 int Idx = OpIndices[i]; 3043 if (Idx == -1) 3044 break; 3045 3046 const MachineOperand &MO = MI.getOperand(Idx); 3047 if (!MO.isReg()) 3048 continue; 3049 3050 // Is this operand statically required to be an SGPR based on the operand 3051 // constraints? 3052 const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass); 3053 bool IsRequiredSGPR = RI.isSGPRClass(OpRC); 3054 if (IsRequiredSGPR) 3055 return MO.getReg(); 3056 3057 // If this could be a VGPR or an SGPR, Check the dynamic register class. 3058 unsigned Reg = MO.getReg(); 3059 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); 3060 if (RI.isSGPRClass(RegRC)) 3061 UsedSGPRs[i] = Reg; 3062 } 3063 3064 // We don't have a required SGPR operand, so we have a bit more freedom in 3065 // selecting operands to move. 3066 3067 // Try to select the most used SGPR. If an SGPR is equal to one of the 3068 // others, we choose that. 3069 // 3070 // e.g. 3071 // V_FMA_F32 v0, s0, s0, s0 -> No moves 3072 // V_FMA_F32 v0, s0, s1, s0 -> Move s1 3073 3074 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should 3075 // prefer those. 3076 3077 if (UsedSGPRs[0] != AMDGPU::NoRegister) { 3078 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) 3079 SGPRReg = UsedSGPRs[0]; 3080 } 3081 3082 if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) { 3083 if (UsedSGPRs[1] == UsedSGPRs[2]) 3084 SGPRReg = UsedSGPRs[1]; 3085 } 3086 3087 return SGPRReg; 3088 } 3089 3090 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, 3091 unsigned OperandName) const { 3092 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); 3093 if (Idx == -1) 3094 return nullptr; 3095 3096 return &MI.getOperand(Idx); 3097 } 3098 3099 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { 3100 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; 3101 if (ST.isAmdHsaOS()) { 3102 RsrcDataFormat |= (1ULL << 56); 3103 3104 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) 3105 // Set MTYPE = 2 3106 RsrcDataFormat |= (2ULL << 59); 3107 } 3108 3109 return RsrcDataFormat; 3110 } 3111 3112 uint64_t SIInstrInfo::getScratchRsrcWords23() const { 3113 uint64_t Rsrc23 = getDefaultRsrcDataFormat() | 3114 AMDGPU::RSRC_TID_ENABLE | 3115 0xffffffff; // Size; 3116 3117 uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1; 3118 3119 Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT) | 3120 // IndexStride = 64 3121 (UINT64_C(3) << AMDGPU::RSRC_INDEX_STRIDE_SHIFT); 3122 3123 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. 3124 // Clear them unless we want a huge stride. 3125 if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) 3126 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; 3127 3128 return Rsrc23; 3129 } 3130 3131 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const { 3132 unsigned Opc = MI.getOpcode(); 3133 3134 return isSMRD(Opc); 3135 } 3136 3137 bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr &MI) const { 3138 unsigned Opc = MI.getOpcode(); 3139 3140 return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc); 3141 } 3142 3143 unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 3144 unsigned Opc = MI.getOpcode(); 3145 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc); 3146 unsigned DescSize = Desc.getSize(); 3147 3148 // If we have a definitive size, we can use it. Otherwise we need to inspect 3149 // the operands to know the size. 3150 if (DescSize == 8 || DescSize == 4) 3151 return DescSize; 3152 3153 assert(DescSize == 0); 3154 3155 // 4-byte instructions may have a 32-bit literal encoded after them. Check 3156 // operands that coud ever be literals. 3157 if (isVALU(MI) || isSALU(MI)) { 3158 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 3159 if (Src0Idx == -1) 3160 return 4; // No operands. 3161 3162 if (isLiteralConstant(MI.getOperand(Src0Idx), getOpSize(MI, Src0Idx))) 3163 return 8; 3164 3165 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 3166 if (Src1Idx == -1) 3167 return 4; 3168 3169 if (isLiteralConstant(MI.getOperand(Src1Idx), getOpSize(MI, Src1Idx))) 3170 return 8; 3171 3172 return 4; 3173 } 3174 3175 switch (Opc) { 3176 case TargetOpcode::IMPLICIT_DEF: 3177 case TargetOpcode::KILL: 3178 case TargetOpcode::DBG_VALUE: 3179 case TargetOpcode::BUNDLE: 3180 case TargetOpcode::EH_LABEL: 3181 return 0; 3182 case TargetOpcode::INLINEASM: { 3183 const MachineFunction *MF = MI.getParent()->getParent(); 3184 const char *AsmStr = MI.getOperand(0).getSymbolName(); 3185 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 3186 } 3187 default: 3188 llvm_unreachable("unable to find instruction size"); 3189 } 3190 } 3191 3192 ArrayRef<std::pair<int, const char *>> 3193 SIInstrInfo::getSerializableTargetIndices() const { 3194 static const std::pair<int, const char *> TargetIndices[] = { 3195 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, 3196 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, 3197 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, 3198 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, 3199 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; 3200 return makeArrayRef(TargetIndices); 3201 } 3202 3203 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The 3204 /// post-RA version of misched uses CreateTargetMIHazardRecognizer. 3205 ScheduleHazardRecognizer * 3206 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 3207 const ScheduleDAG *DAG) const { 3208 return new GCNHazardRecognizer(DAG->MF); 3209 } 3210 3211 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer 3212 /// pass. 3213 ScheduleHazardRecognizer * 3214 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 3215 return new GCNHazardRecognizer(MF); 3216 } 3217