1 //===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief SI Implementation of TargetInstrInfo. 12 // 13 //===----------------------------------------------------------------------===// 14 15 16 #include "SIInstrInfo.h" 17 #include "AMDGPUTargetMachine.h" 18 #include "GCNHazardRecognizer.h" 19 #include "SIDefines.h" 20 #include "SIMachineFunctionInfo.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/ScheduleDAG.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/CodeGen/RegisterScavenging.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/Support/Debug.h" 29 30 using namespace llvm; 31 32 SIInstrInfo::SIInstrInfo(const AMDGPUSubtarget &st) 33 : AMDGPUInstrInfo(st), RI() {} 34 35 //===----------------------------------------------------------------------===// 36 // TargetInstrInfo callbacks 37 //===----------------------------------------------------------------------===// 38 39 static unsigned getNumOperandsNoGlue(SDNode *Node) { 40 unsigned N = Node->getNumOperands(); 41 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 42 --N; 43 return N; 44 } 45 46 static SDValue findChainOperand(SDNode *Load) { 47 SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1); 48 assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node"); 49 return LastOp; 50 } 51 52 /// \brief Returns true if both nodes have the same value for the given 53 /// operand \p Op, or if both nodes do not have this operand. 54 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { 55 unsigned Opc0 = N0->getMachineOpcode(); 56 unsigned Opc1 = N1->getMachineOpcode(); 57 58 int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); 59 int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); 60 61 if (Op0Idx == -1 && Op1Idx == -1) 62 return true; 63 64 65 if ((Op0Idx == -1 && Op1Idx != -1) || 66 (Op1Idx == -1 && Op0Idx != -1)) 67 return false; 68 69 // getNamedOperandIdx returns the index for the MachineInstr's operands, 70 // which includes the result as the first operand. We are indexing into the 71 // MachineSDNode's operands, so we need to skip the result operand to get 72 // the real index. 73 --Op0Idx; 74 --Op1Idx; 75 76 return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); 77 } 78 79 bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, 80 AliasAnalysis *AA) const { 81 // TODO: The generic check fails for VALU instructions that should be 82 // rematerializable due to implicit reads of exec. We really want all of the 83 // generic logic for this except for this. 84 switch (MI->getOpcode()) { 85 case AMDGPU::V_MOV_B32_e32: 86 case AMDGPU::V_MOV_B32_e64: 87 case AMDGPU::V_MOV_B64_PSEUDO: 88 return true; 89 default: 90 return false; 91 } 92 } 93 94 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, 95 int64_t &Offset0, 96 int64_t &Offset1) const { 97 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) 98 return false; 99 100 unsigned Opc0 = Load0->getMachineOpcode(); 101 unsigned Opc1 = Load1->getMachineOpcode(); 102 103 // Make sure both are actually loads. 104 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) 105 return false; 106 107 if (isDS(Opc0) && isDS(Opc1)) { 108 109 // FIXME: Handle this case: 110 if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) 111 return false; 112 113 // Check base reg. 114 if (Load0->getOperand(1) != Load1->getOperand(1)) 115 return false; 116 117 // Check chain. 118 if (findChainOperand(Load0) != findChainOperand(Load1)) 119 return false; 120 121 // Skip read2 / write2 variants for simplicity. 122 // TODO: We should report true if the used offsets are adjacent (excluded 123 // st64 versions). 124 if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 || 125 AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1) 126 return false; 127 128 Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue(); 129 Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue(); 130 return true; 131 } 132 133 if (isSMRD(Opc0) && isSMRD(Opc1)) { 134 assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1)); 135 136 // Check base reg. 137 if (Load0->getOperand(0) != Load1->getOperand(0)) 138 return false; 139 140 const ConstantSDNode *Load0Offset = 141 dyn_cast<ConstantSDNode>(Load0->getOperand(1)); 142 const ConstantSDNode *Load1Offset = 143 dyn_cast<ConstantSDNode>(Load1->getOperand(1)); 144 145 if (!Load0Offset || !Load1Offset) 146 return false; 147 148 // Check chain. 149 if (findChainOperand(Load0) != findChainOperand(Load1)) 150 return false; 151 152 Offset0 = Load0Offset->getZExtValue(); 153 Offset1 = Load1Offset->getZExtValue(); 154 return true; 155 } 156 157 // MUBUF and MTBUF can access the same addresses. 158 if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { 159 160 // MUBUF and MTBUF have vaddr at different indices. 161 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || 162 findChainOperand(Load0) != findChainOperand(Load1) || 163 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || 164 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) 165 return false; 166 167 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); 168 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); 169 170 if (OffIdx0 == -1 || OffIdx1 == -1) 171 return false; 172 173 // getNamedOperandIdx returns the index for MachineInstrs. Since they 174 // inlcude the output in the operand list, but SDNodes don't, we need to 175 // subtract the index by one. 176 --OffIdx0; 177 --OffIdx1; 178 179 SDValue Off0 = Load0->getOperand(OffIdx0); 180 SDValue Off1 = Load1->getOperand(OffIdx1); 181 182 // The offset might be a FrameIndexSDNode. 183 if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) 184 return false; 185 186 Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue(); 187 Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue(); 188 return true; 189 } 190 191 return false; 192 } 193 194 static bool isStride64(unsigned Opc) { 195 switch (Opc) { 196 case AMDGPU::DS_READ2ST64_B32: 197 case AMDGPU::DS_READ2ST64_B64: 198 case AMDGPU::DS_WRITE2ST64_B32: 199 case AMDGPU::DS_WRITE2ST64_B64: 200 return true; 201 default: 202 return false; 203 } 204 } 205 206 bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg, 207 int64_t &Offset, 208 const TargetRegisterInfo *TRI) const { 209 unsigned Opc = LdSt->getOpcode(); 210 211 if (isDS(*LdSt)) { 212 const MachineOperand *OffsetImm = getNamedOperand(*LdSt, 213 AMDGPU::OpName::offset); 214 if (OffsetImm) { 215 // Normal, single offset LDS instruction. 216 const MachineOperand *AddrReg = getNamedOperand(*LdSt, 217 AMDGPU::OpName::addr); 218 219 BaseReg = AddrReg->getReg(); 220 Offset = OffsetImm->getImm(); 221 return true; 222 } 223 224 // The 2 offset instructions use offset0 and offset1 instead. We can treat 225 // these as a load with a single offset if the 2 offsets are consecutive. We 226 // will use this for some partially aligned loads. 227 const MachineOperand *Offset0Imm = getNamedOperand(*LdSt, 228 AMDGPU::OpName::offset0); 229 const MachineOperand *Offset1Imm = getNamedOperand(*LdSt, 230 AMDGPU::OpName::offset1); 231 232 uint8_t Offset0 = Offset0Imm->getImm(); 233 uint8_t Offset1 = Offset1Imm->getImm(); 234 235 if (Offset1 > Offset0 && Offset1 - Offset0 == 1) { 236 // Each of these offsets is in element sized units, so we need to convert 237 // to bytes of the individual reads. 238 239 unsigned EltSize; 240 if (LdSt->mayLoad()) 241 EltSize = getOpRegClass(*LdSt, 0)->getSize() / 2; 242 else { 243 assert(LdSt->mayStore()); 244 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); 245 EltSize = getOpRegClass(*LdSt, Data0Idx)->getSize(); 246 } 247 248 if (isStride64(Opc)) 249 EltSize *= 64; 250 251 const MachineOperand *AddrReg = getNamedOperand(*LdSt, 252 AMDGPU::OpName::addr); 253 BaseReg = AddrReg->getReg(); 254 Offset = EltSize * Offset0; 255 return true; 256 } 257 258 return false; 259 } 260 261 if (isMUBUF(*LdSt) || isMTBUF(*LdSt)) { 262 if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1) 263 return false; 264 265 const MachineOperand *AddrReg = getNamedOperand(*LdSt, 266 AMDGPU::OpName::vaddr); 267 if (!AddrReg) 268 return false; 269 270 const MachineOperand *OffsetImm = getNamedOperand(*LdSt, 271 AMDGPU::OpName::offset); 272 BaseReg = AddrReg->getReg(); 273 Offset = OffsetImm->getImm(); 274 return true; 275 } 276 277 if (isSMRD(*LdSt)) { 278 const MachineOperand *OffsetImm = getNamedOperand(*LdSt, 279 AMDGPU::OpName::offset); 280 if (!OffsetImm) 281 return false; 282 283 const MachineOperand *SBaseReg = getNamedOperand(*LdSt, 284 AMDGPU::OpName::sbase); 285 BaseReg = SBaseReg->getReg(); 286 Offset = OffsetImm->getImm(); 287 return true; 288 } 289 290 if (isFLAT(*LdSt)) { 291 const MachineOperand *AddrReg = getNamedOperand(*LdSt, AMDGPU::OpName::addr); 292 BaseReg = AddrReg->getReg(); 293 Offset = 0; 294 return true; 295 } 296 297 return false; 298 } 299 300 bool SIInstrInfo::shouldClusterMemOps(MachineInstr *FirstLdSt, 301 MachineInstr *SecondLdSt, 302 unsigned NumLoads) const { 303 const MachineOperand *FirstDst = nullptr; 304 const MachineOperand *SecondDst = nullptr; 305 306 if (isDS(*FirstLdSt) && isDS(*SecondLdSt)) { 307 FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::vdst); 308 SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::vdst); 309 } 310 311 if (isSMRD(*FirstLdSt) && isSMRD(*SecondLdSt)) { 312 FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::sdst); 313 SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::sdst); 314 } 315 316 if ((isMUBUF(*FirstLdSt) && isMUBUF(*SecondLdSt)) || 317 (isMTBUF(*FirstLdSt) && isMTBUF(*SecondLdSt))) { 318 FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::vdata); 319 SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::vdata); 320 } 321 322 if (!FirstDst || !SecondDst) 323 return false; 324 325 // Try to limit clustering based on the total number of bytes loaded 326 // rather than the number of instructions. This is done to help reduce 327 // register pressure. The method used is somewhat inexact, though, 328 // because it assumes that all loads in the cluster will load the 329 // same number of bytes as FirstLdSt. 330 331 // The unit of this value is bytes. 332 // FIXME: This needs finer tuning. 333 unsigned LoadClusterThreshold = 16; 334 335 const MachineRegisterInfo &MRI = 336 FirstLdSt->getParent()->getParent()->getRegInfo(); 337 const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg()); 338 339 return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold; 340 } 341 342 void 343 SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 344 MachineBasicBlock::iterator MI, DebugLoc DL, 345 unsigned DestReg, unsigned SrcReg, 346 bool KillSrc) const { 347 348 // If we are trying to copy to or from SCC, there is a bug somewhere else in 349 // the backend. While it may be theoretically possible to do this, it should 350 // never be necessary. 351 assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC); 352 353 static const int16_t Sub0_15[] = { 354 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 355 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 356 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, 357 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, 358 }; 359 360 static const int16_t Sub0_15_64[] = { 361 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 362 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 363 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, 364 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, 365 }; 366 367 static const int16_t Sub0_7[] = { 368 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 369 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, 370 }; 371 372 static const int16_t Sub0_7_64[] = { 373 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 374 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, 375 }; 376 377 static const int16_t Sub0_3[] = { 378 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, 379 }; 380 381 static const int16_t Sub0_3_64[] = { 382 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, 383 }; 384 385 static const int16_t Sub0_2[] = { 386 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, 387 }; 388 389 static const int16_t Sub0_1[] = { 390 AMDGPU::sub0, AMDGPU::sub1, 391 }; 392 393 unsigned Opcode; 394 ArrayRef<int16_t> SubIndices; 395 bool Forward; 396 397 if (AMDGPU::SReg_32RegClass.contains(DestReg)) { 398 assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); 399 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) 400 .addReg(SrcReg, getKillRegState(KillSrc)); 401 return; 402 403 } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) { 404 if (DestReg == AMDGPU::VCC) { 405 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { 406 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) 407 .addReg(SrcReg, getKillRegState(KillSrc)); 408 } else { 409 // FIXME: Hack until VReg_1 removed. 410 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); 411 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32)) 412 .addImm(0) 413 .addReg(SrcReg, getKillRegState(KillSrc)); 414 } 415 416 return; 417 } 418 419 assert(AMDGPU::SReg_64RegClass.contains(SrcReg)); 420 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) 421 .addReg(SrcReg, getKillRegState(KillSrc)); 422 return; 423 424 } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) { 425 assert(AMDGPU::SReg_128RegClass.contains(SrcReg)); 426 Opcode = AMDGPU::S_MOV_B64; 427 SubIndices = Sub0_3_64; 428 429 } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) { 430 assert(AMDGPU::SReg_256RegClass.contains(SrcReg)); 431 Opcode = AMDGPU::S_MOV_B64; 432 SubIndices = Sub0_7_64; 433 434 } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) { 435 assert(AMDGPU::SReg_512RegClass.contains(SrcReg)); 436 Opcode = AMDGPU::S_MOV_B64; 437 SubIndices = Sub0_15_64; 438 439 } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) { 440 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || 441 AMDGPU::SReg_32RegClass.contains(SrcReg)); 442 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) 443 .addReg(SrcReg, getKillRegState(KillSrc)); 444 return; 445 446 } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) { 447 assert(AMDGPU::VReg_64RegClass.contains(SrcReg) || 448 AMDGPU::SReg_64RegClass.contains(SrcReg)); 449 Opcode = AMDGPU::V_MOV_B32_e32; 450 SubIndices = Sub0_1; 451 452 } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) { 453 assert(AMDGPU::VReg_96RegClass.contains(SrcReg)); 454 Opcode = AMDGPU::V_MOV_B32_e32; 455 SubIndices = Sub0_2; 456 457 } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) { 458 assert(AMDGPU::VReg_128RegClass.contains(SrcReg) || 459 AMDGPU::SReg_128RegClass.contains(SrcReg)); 460 Opcode = AMDGPU::V_MOV_B32_e32; 461 SubIndices = Sub0_3; 462 463 } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) { 464 assert(AMDGPU::VReg_256RegClass.contains(SrcReg) || 465 AMDGPU::SReg_256RegClass.contains(SrcReg)); 466 Opcode = AMDGPU::V_MOV_B32_e32; 467 SubIndices = Sub0_7; 468 469 } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) { 470 assert(AMDGPU::VReg_512RegClass.contains(SrcReg) || 471 AMDGPU::SReg_512RegClass.contains(SrcReg)); 472 Opcode = AMDGPU::V_MOV_B32_e32; 473 SubIndices = Sub0_15; 474 475 } else { 476 llvm_unreachable("Can't copy register!"); 477 } 478 479 if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg)) 480 Forward = true; 481 else 482 Forward = false; 483 484 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { 485 unsigned SubIdx; 486 if (Forward) 487 SubIdx = SubIndices[Idx]; 488 else 489 SubIdx = SubIndices[SubIndices.size() - Idx - 1]; 490 491 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, 492 get(Opcode), RI.getSubReg(DestReg, SubIdx)); 493 494 Builder.addReg(RI.getSubReg(SrcReg, SubIdx)); 495 496 if (Idx == SubIndices.size() - 1) 497 Builder.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit); 498 499 if (Idx == 0) 500 Builder.addReg(DestReg, RegState::Define | RegState::Implicit); 501 } 502 } 503 504 int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const { 505 const unsigned Opcode = MI.getOpcode(); 506 507 int NewOpc; 508 509 // Try to map original to commuted opcode 510 NewOpc = AMDGPU::getCommuteRev(Opcode); 511 if (NewOpc != -1) 512 // Check if the commuted (REV) opcode exists on the target. 513 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 514 515 // Try to map commuted to original opcode 516 NewOpc = AMDGPU::getCommuteOrig(Opcode); 517 if (NewOpc != -1) 518 // Check if the original (non-REV) opcode exists on the target. 519 return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; 520 521 return Opcode; 522 } 523 524 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { 525 526 if (DstRC->getSize() == 4) { 527 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 528 } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) { 529 return AMDGPU::S_MOV_B64; 530 } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) { 531 return AMDGPU::V_MOV_B64_PSEUDO; 532 } 533 return AMDGPU::COPY; 534 } 535 536 static unsigned getSGPRSpillSaveOpcode(unsigned Size) { 537 switch (Size) { 538 case 4: 539 return AMDGPU::SI_SPILL_S32_SAVE; 540 case 8: 541 return AMDGPU::SI_SPILL_S64_SAVE; 542 case 16: 543 return AMDGPU::SI_SPILL_S128_SAVE; 544 case 32: 545 return AMDGPU::SI_SPILL_S256_SAVE; 546 case 64: 547 return AMDGPU::SI_SPILL_S512_SAVE; 548 default: 549 llvm_unreachable("unknown register size"); 550 } 551 } 552 553 static unsigned getVGPRSpillSaveOpcode(unsigned Size) { 554 switch (Size) { 555 case 4: 556 return AMDGPU::SI_SPILL_V32_SAVE; 557 case 8: 558 return AMDGPU::SI_SPILL_V64_SAVE; 559 case 12: 560 return AMDGPU::SI_SPILL_V96_SAVE; 561 case 16: 562 return AMDGPU::SI_SPILL_V128_SAVE; 563 case 32: 564 return AMDGPU::SI_SPILL_V256_SAVE; 565 case 64: 566 return AMDGPU::SI_SPILL_V512_SAVE; 567 default: 568 llvm_unreachable("unknown register size"); 569 } 570 } 571 572 void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 573 MachineBasicBlock::iterator MI, 574 unsigned SrcReg, bool isKill, 575 int FrameIndex, 576 const TargetRegisterClass *RC, 577 const TargetRegisterInfo *TRI) const { 578 MachineFunction *MF = MBB.getParent(); 579 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 580 MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 581 DebugLoc DL = MBB.findDebugLoc(MI); 582 583 unsigned Size = FrameInfo->getObjectSize(FrameIndex); 584 unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); 585 MachinePointerInfo PtrInfo 586 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 587 MachineMemOperand *MMO 588 = MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 589 Size, Align); 590 591 if (RI.isSGPRClass(RC)) { 592 MFI->setHasSpilledSGPRs(); 593 594 if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RC->getSize() == 4) { 595 // m0 may not be allowed for readlane. 596 MachineRegisterInfo &MRI = MF->getRegInfo(); 597 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0RegClass); 598 } 599 600 // We are only allowed to create one new instruction when spilling 601 // registers, so we need to use pseudo instruction for spilling 602 // SGPRs. 603 unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize()); 604 BuildMI(MBB, MI, DL, get(Opcode)) 605 .addReg(SrcReg) // src 606 .addFrameIndex(FrameIndex) // frame_idx 607 .addMemOperand(MMO); 608 609 return; 610 } 611 612 if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { 613 LLVMContext &Ctx = MF->getFunction()->getContext(); 614 Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to" 615 " spill register"); 616 BuildMI(MBB, MI, DL, get(AMDGPU::KILL)) 617 .addReg(SrcReg); 618 619 return; 620 } 621 622 assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); 623 624 unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize()); 625 MFI->setHasSpilledVGPRs(); 626 BuildMI(MBB, MI, DL, get(Opcode)) 627 .addReg(SrcReg) // src 628 .addFrameIndex(FrameIndex) // frame_idx 629 .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc 630 .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset 631 .addImm(0) // offset 632 .addMemOperand(MMO); 633 } 634 635 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { 636 switch (Size) { 637 case 4: 638 return AMDGPU::SI_SPILL_S32_RESTORE; 639 case 8: 640 return AMDGPU::SI_SPILL_S64_RESTORE; 641 case 16: 642 return AMDGPU::SI_SPILL_S128_RESTORE; 643 case 32: 644 return AMDGPU::SI_SPILL_S256_RESTORE; 645 case 64: 646 return AMDGPU::SI_SPILL_S512_RESTORE; 647 default: 648 llvm_unreachable("unknown register size"); 649 } 650 } 651 652 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { 653 switch (Size) { 654 case 4: 655 return AMDGPU::SI_SPILL_V32_RESTORE; 656 case 8: 657 return AMDGPU::SI_SPILL_V64_RESTORE; 658 case 12: 659 return AMDGPU::SI_SPILL_V96_RESTORE; 660 case 16: 661 return AMDGPU::SI_SPILL_V128_RESTORE; 662 case 32: 663 return AMDGPU::SI_SPILL_V256_RESTORE; 664 case 64: 665 return AMDGPU::SI_SPILL_V512_RESTORE; 666 default: 667 llvm_unreachable("unknown register size"); 668 } 669 } 670 671 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 672 MachineBasicBlock::iterator MI, 673 unsigned DestReg, int FrameIndex, 674 const TargetRegisterClass *RC, 675 const TargetRegisterInfo *TRI) const { 676 MachineFunction *MF = MBB.getParent(); 677 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 678 MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 679 DebugLoc DL = MBB.findDebugLoc(MI); 680 unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); 681 unsigned Size = FrameInfo->getObjectSize(FrameIndex); 682 683 MachinePointerInfo PtrInfo 684 = MachinePointerInfo::getFixedStack(*MF, FrameIndex); 685 686 MachineMemOperand *MMO = MF->getMachineMemOperand( 687 PtrInfo, MachineMemOperand::MOLoad, Size, Align); 688 689 if (RI.isSGPRClass(RC)) { 690 // FIXME: Maybe this should not include a memoperand because it will be 691 // lowered to non-memory instructions. 692 unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize()); 693 694 if (TargetRegisterInfo::isVirtualRegister(DestReg) && RC->getSize() == 4) { 695 // m0 may not be allowed for readlane. 696 MachineRegisterInfo &MRI = MF->getRegInfo(); 697 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0RegClass); 698 } 699 700 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 701 .addFrameIndex(FrameIndex) // frame_idx 702 .addMemOperand(MMO); 703 704 return; 705 } 706 707 if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { 708 LLVMContext &Ctx = MF->getFunction()->getContext(); 709 Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to" 710 " restore register"); 711 BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg); 712 713 return; 714 } 715 716 assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); 717 718 unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize()); 719 BuildMI(MBB, MI, DL, get(Opcode), DestReg) 720 .addFrameIndex(FrameIndex) // frame_idx 721 .addReg(MFI->getScratchRSrcReg()) // scratch_rsrc 722 .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset 723 .addImm(0) // offset 724 .addMemOperand(MMO); 725 } 726 727 /// \param @Offset Offset in bytes of the FrameIndex being spilled 728 unsigned SIInstrInfo::calculateLDSSpillAddress(MachineBasicBlock &MBB, 729 MachineBasicBlock::iterator MI, 730 RegScavenger *RS, unsigned TmpReg, 731 unsigned FrameOffset, 732 unsigned Size) const { 733 MachineFunction *MF = MBB.getParent(); 734 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); 735 const AMDGPUSubtarget &ST = MF->getSubtarget<AMDGPUSubtarget>(); 736 const SIRegisterInfo *TRI = 737 static_cast<const SIRegisterInfo*>(ST.getRegisterInfo()); 738 DebugLoc DL = MBB.findDebugLoc(MI); 739 unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF); 740 unsigned WavefrontSize = ST.getWavefrontSize(); 741 742 unsigned TIDReg = MFI->getTIDReg(); 743 if (!MFI->hasCalculatedTID()) { 744 MachineBasicBlock &Entry = MBB.getParent()->front(); 745 MachineBasicBlock::iterator Insert = Entry.front(); 746 DebugLoc DL = Insert->getDebugLoc(); 747 748 TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass); 749 if (TIDReg == AMDGPU::NoRegister) 750 return TIDReg; 751 752 753 if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) && 754 WorkGroupSize > WavefrontSize) { 755 756 unsigned TIDIGXReg 757 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X); 758 unsigned TIDIGYReg 759 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y); 760 unsigned TIDIGZReg 761 = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z); 762 unsigned InputPtrReg = 763 TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR); 764 for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) { 765 if (!Entry.isLiveIn(Reg)) 766 Entry.addLiveIn(Reg); 767 } 768 769 RS->enterBasicBlock(Entry); 770 // FIXME: Can we scavenge an SReg_64 and access the subregs? 771 unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); 772 unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); 773 BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0) 774 .addReg(InputPtrReg) 775 .addImm(SI::KernelInputOffsets::NGROUPS_Z); 776 BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1) 777 .addReg(InputPtrReg) 778 .addImm(SI::KernelInputOffsets::NGROUPS_Y); 779 780 // NGROUPS.X * NGROUPS.Y 781 BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1) 782 .addReg(STmp1) 783 .addReg(STmp0); 784 // (NGROUPS.X * NGROUPS.Y) * TIDIG.X 785 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg) 786 .addReg(STmp1) 787 .addReg(TIDIGXReg); 788 // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X) 789 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg) 790 .addReg(STmp0) 791 .addReg(TIDIGYReg) 792 .addReg(TIDReg); 793 // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z 794 BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg) 795 .addReg(TIDReg) 796 .addReg(TIDIGZReg); 797 } else { 798 // Get the wave id 799 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64), 800 TIDReg) 801 .addImm(-1) 802 .addImm(0); 803 804 BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64), 805 TIDReg) 806 .addImm(-1) 807 .addReg(TIDReg); 808 } 809 810 BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32), 811 TIDReg) 812 .addImm(2) 813 .addReg(TIDReg); 814 MFI->setTIDReg(TIDReg); 815 } 816 817 // Add FrameIndex to LDS offset 818 unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize); 819 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg) 820 .addImm(LDSOffset) 821 .addReg(TIDReg); 822 823 return TmpReg; 824 } 825 826 void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB, 827 MachineBasicBlock::iterator MI, 828 int Count) const { 829 DebugLoc DL = MBB.findDebugLoc(MI); 830 while (Count > 0) { 831 int Arg; 832 if (Count >= 8) 833 Arg = 7; 834 else 835 Arg = Count - 1; 836 Count -= 8; 837 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)) 838 .addImm(Arg); 839 } 840 } 841 842 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, 843 MachineBasicBlock::iterator MI) const { 844 insertWaitStates(MBB, MI, 1); 845 } 846 847 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const { 848 switch (MI.getOpcode()) { 849 default: return 1; // FIXME: Do wait states equal cycles? 850 851 case AMDGPU::S_NOP: 852 return MI.getOperand(0).getImm() + 1; 853 } 854 } 855 856 bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 857 MachineBasicBlock &MBB = *MI->getParent(); 858 DebugLoc DL = MBB.findDebugLoc(MI); 859 switch (MI->getOpcode()) { 860 default: return AMDGPUInstrInfo::expandPostRAPseudo(MI); 861 862 case AMDGPU::SGPR_USE: 863 // This is just a placeholder for register allocation. 864 MI->eraseFromParent(); 865 break; 866 867 case AMDGPU::V_MOV_B64_PSEUDO: { 868 unsigned Dst = MI->getOperand(0).getReg(); 869 unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 870 unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 871 872 const MachineOperand &SrcOp = MI->getOperand(1); 873 // FIXME: Will this work for 64-bit floating point immediates? 874 assert(!SrcOp.isFPImm()); 875 if (SrcOp.isImm()) { 876 APInt Imm(64, SrcOp.getImm()); 877 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 878 .addImm(Imm.getLoBits(32).getZExtValue()) 879 .addReg(Dst, RegState::Implicit); 880 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 881 .addImm(Imm.getHiBits(32).getZExtValue()) 882 .addReg(Dst, RegState::Implicit); 883 } else { 884 assert(SrcOp.isReg()); 885 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) 886 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) 887 .addReg(Dst, RegState::Implicit); 888 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) 889 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) 890 .addReg(Dst, RegState::Implicit); 891 } 892 MI->eraseFromParent(); 893 break; 894 } 895 896 case AMDGPU::V_CNDMASK_B64_PSEUDO: { 897 unsigned Dst = MI->getOperand(0).getReg(); 898 unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); 899 unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); 900 unsigned Src0 = MI->getOperand(1).getReg(); 901 unsigned Src1 = MI->getOperand(2).getReg(); 902 const MachineOperand &SrcCond = MI->getOperand(3); 903 904 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo) 905 .addReg(RI.getSubReg(Src0, AMDGPU::sub0)) 906 .addReg(RI.getSubReg(Src1, AMDGPU::sub0)) 907 .addOperand(SrcCond); 908 BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi) 909 .addReg(RI.getSubReg(Src0, AMDGPU::sub1)) 910 .addReg(RI.getSubReg(Src1, AMDGPU::sub1)) 911 .addOperand(SrcCond); 912 MI->eraseFromParent(); 913 break; 914 } 915 916 case AMDGPU::SI_CONSTDATA_PTR: { 917 const SIRegisterInfo *TRI = 918 static_cast<const SIRegisterInfo *>(ST.getRegisterInfo()); 919 MachineFunction &MF = *MBB.getParent(); 920 unsigned Reg = MI->getOperand(0).getReg(); 921 unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0); 922 unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1); 923 924 // Create a bundle so these instructions won't be re-ordered by the 925 // post-RA scheduler. 926 MIBundleBuilder Bundler(MBB, MI); 927 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); 928 929 // Add 32-bit offset from this instruction to the start of the 930 // constant data. 931 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo) 932 .addReg(RegLo) 933 .addOperand(MI->getOperand(1))); 934 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) 935 .addReg(RegHi) 936 .addImm(0)); 937 938 llvm::finalizeBundle(MBB, Bundler.begin()); 939 940 MI->eraseFromParent(); 941 break; 942 } 943 } 944 return true; 945 } 946 947 /// Commutes the operands in the given instruction. 948 /// The commutable operands are specified by their indices OpIdx0 and OpIdx1. 949 /// 950 /// Do not call this method for a non-commutable instruction or for 951 /// non-commutable pair of operand indices OpIdx0 and OpIdx1. 952 /// Even though the instruction is commutable, the method may still 953 /// fail to commute the operands, null pointer is returned in such cases. 954 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr *MI, 955 bool NewMI, 956 unsigned OpIdx0, 957 unsigned OpIdx1) const { 958 int CommutedOpcode = commuteOpcode(*MI); 959 if (CommutedOpcode == -1) 960 return nullptr; 961 962 int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 963 AMDGPU::OpName::src0); 964 MachineOperand &Src0 = MI->getOperand(Src0Idx); 965 if (!Src0.isReg()) 966 return nullptr; 967 968 int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), 969 AMDGPU::OpName::src1); 970 971 if ((OpIdx0 != static_cast<unsigned>(Src0Idx) || 972 OpIdx1 != static_cast<unsigned>(Src1Idx)) && 973 (OpIdx0 != static_cast<unsigned>(Src1Idx) || 974 OpIdx1 != static_cast<unsigned>(Src0Idx))) 975 return nullptr; 976 977 MachineOperand &Src1 = MI->getOperand(Src1Idx); 978 979 980 if (isVOP2(*MI) || isVOPC(*MI)) { 981 const MCInstrDesc &InstrDesc = MI->getDesc(); 982 // For VOP2 and VOPC instructions, any operand type is valid to use for 983 // src0. Make sure we can use the src0 as src1. 984 // 985 // We could be stricter here and only allow commuting if there is a reason 986 // to do so. i.e. if both operands are VGPRs there is no real benefit, 987 // although MachineCSE attempts to find matches by commuting. 988 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 989 if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) 990 return nullptr; 991 } 992 993 if (!Src1.isReg()) { 994 // Allow commuting instructions with Imm operands. 995 if (NewMI || !Src1.isImm() || 996 (!isVOP2(*MI) && !isVOP3(*MI))) { 997 return nullptr; 998 } 999 // Be sure to copy the source modifiers to the right place. 1000 if (MachineOperand *Src0Mods 1001 = getNamedOperand(*MI, AMDGPU::OpName::src0_modifiers)) { 1002 MachineOperand *Src1Mods 1003 = getNamedOperand(*MI, AMDGPU::OpName::src1_modifiers); 1004 1005 int Src0ModsVal = Src0Mods->getImm(); 1006 if (!Src1Mods && Src0ModsVal != 0) 1007 return nullptr; 1008 1009 // XXX - This assert might be a lie. It might be useful to have a neg 1010 // modifier with 0.0. 1011 int Src1ModsVal = Src1Mods->getImm(); 1012 assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates"); 1013 1014 Src1Mods->setImm(Src0ModsVal); 1015 Src0Mods->setImm(Src1ModsVal); 1016 } 1017 1018 unsigned Reg = Src0.getReg(); 1019 unsigned SubReg = Src0.getSubReg(); 1020 if (Src1.isImm()) 1021 Src0.ChangeToImmediate(Src1.getImm()); 1022 else 1023 llvm_unreachable("Should only have immediates"); 1024 1025 Src1.ChangeToRegister(Reg, false); 1026 Src1.setSubReg(SubReg); 1027 } else { 1028 MI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1); 1029 } 1030 1031 if (MI) 1032 MI->setDesc(get(CommutedOpcode)); 1033 1034 return MI; 1035 } 1036 1037 // This needs to be implemented because the source modifiers may be inserted 1038 // between the true commutable operands, and the base 1039 // TargetInstrInfo::commuteInstruction uses it. 1040 bool SIInstrInfo::findCommutedOpIndices(MachineInstr *MI, 1041 unsigned &SrcOpIdx0, 1042 unsigned &SrcOpIdx1) const { 1043 const MCInstrDesc &MCID = MI->getDesc(); 1044 if (!MCID.isCommutable()) 1045 return false; 1046 1047 unsigned Opc = MI->getOpcode(); 1048 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1049 if (Src0Idx == -1) 1050 return false; 1051 1052 // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on 1053 // immediate. Also, immediate src0 operand is not handled in 1054 // SIInstrInfo::commuteInstruction(); 1055 if (!MI->getOperand(Src0Idx).isReg()) 1056 return false; 1057 1058 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1059 if (Src1Idx == -1) 1060 return false; 1061 1062 MachineOperand &Src1 = MI->getOperand(Src1Idx); 1063 if (Src1.isImm()) { 1064 // SIInstrInfo::commuteInstruction() does support commuting the immediate 1065 // operand src1 in 2 and 3 operand instructions. 1066 if (!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode())) 1067 return false; 1068 } else if (Src1.isReg()) { 1069 // If any source modifiers are set, the generic instruction commuting won't 1070 // understand how to copy the source modifiers. 1071 if (hasModifiersSet(*MI, AMDGPU::OpName::src0_modifiers) || 1072 hasModifiersSet(*MI, AMDGPU::OpName::src1_modifiers)) 1073 return false; 1074 } else 1075 return false; 1076 1077 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); 1078 } 1079 1080 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) { 1081 switch (Cond) { 1082 case SIInstrInfo::SCC_TRUE: 1083 return AMDGPU::S_CBRANCH_SCC1; 1084 case SIInstrInfo::SCC_FALSE: 1085 return AMDGPU::S_CBRANCH_SCC0; 1086 case SIInstrInfo::VCCNZ: 1087 return AMDGPU::S_CBRANCH_VCCNZ; 1088 case SIInstrInfo::VCCZ: 1089 return AMDGPU::S_CBRANCH_VCCZ; 1090 case SIInstrInfo::EXECNZ: 1091 return AMDGPU::S_CBRANCH_EXECNZ; 1092 case SIInstrInfo::EXECZ: 1093 return AMDGPU::S_CBRANCH_EXECZ; 1094 default: 1095 llvm_unreachable("invalid branch predicate"); 1096 } 1097 } 1098 1099 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) { 1100 switch (Opcode) { 1101 case AMDGPU::S_CBRANCH_SCC0: 1102 return SCC_FALSE; 1103 case AMDGPU::S_CBRANCH_SCC1: 1104 return SCC_TRUE; 1105 case AMDGPU::S_CBRANCH_VCCNZ: 1106 return VCCNZ; 1107 case AMDGPU::S_CBRANCH_VCCZ: 1108 return VCCZ; 1109 case AMDGPU::S_CBRANCH_EXECNZ: 1110 return EXECNZ; 1111 case AMDGPU::S_CBRANCH_EXECZ: 1112 return EXECZ; 1113 default: 1114 return INVALID_BR; 1115 } 1116 } 1117 1118 bool SIInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 1119 MachineBasicBlock *&TBB, 1120 MachineBasicBlock *&FBB, 1121 SmallVectorImpl<MachineOperand> &Cond, 1122 bool AllowModify) const { 1123 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 1124 1125 if (I == MBB.end()) 1126 return false; 1127 1128 if (I->getOpcode() == AMDGPU::S_BRANCH) { 1129 // Unconditional Branch 1130 TBB = I->getOperand(0).getMBB(); 1131 return false; 1132 } 1133 1134 BranchPredicate Pred = getBranchPredicate(I->getOpcode()); 1135 if (Pred == INVALID_BR) 1136 return true; 1137 1138 MachineBasicBlock *CondBB = I->getOperand(0).getMBB(); 1139 Cond.push_back(MachineOperand::CreateImm(Pred)); 1140 1141 ++I; 1142 1143 if (I == MBB.end()) { 1144 // Conditional branch followed by fall-through. 1145 TBB = CondBB; 1146 return false; 1147 } 1148 1149 if (I->getOpcode() == AMDGPU::S_BRANCH) { 1150 TBB = CondBB; 1151 FBB = I->getOperand(0).getMBB(); 1152 return false; 1153 } 1154 1155 return true; 1156 } 1157 1158 unsigned SIInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 1159 MachineBasicBlock::iterator I = MBB.getFirstTerminator(); 1160 1161 unsigned Count = 0; 1162 while (I != MBB.end()) { 1163 MachineBasicBlock::iterator Next = std::next(I); 1164 I->eraseFromParent(); 1165 ++Count; 1166 I = Next; 1167 } 1168 1169 return Count; 1170 } 1171 1172 unsigned SIInstrInfo::InsertBranch(MachineBasicBlock &MBB, 1173 MachineBasicBlock *TBB, 1174 MachineBasicBlock *FBB, 1175 ArrayRef<MachineOperand> Cond, 1176 DebugLoc DL) const { 1177 1178 if (!FBB && Cond.empty()) { 1179 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 1180 .addMBB(TBB); 1181 return 1; 1182 } 1183 1184 assert(TBB && Cond[0].isImm()); 1185 1186 unsigned Opcode 1187 = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm())); 1188 1189 if (!FBB) { 1190 BuildMI(&MBB, DL, get(Opcode)) 1191 .addMBB(TBB); 1192 return 1; 1193 } 1194 1195 assert(TBB && FBB); 1196 1197 BuildMI(&MBB, DL, get(Opcode)) 1198 .addMBB(TBB); 1199 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH)) 1200 .addMBB(FBB); 1201 1202 return 2; 1203 } 1204 1205 bool SIInstrInfo::ReverseBranchCondition( 1206 SmallVectorImpl<MachineOperand> &Cond) const { 1207 assert(Cond.size() == 1); 1208 Cond[0].setImm(-Cond[0].getImm()); 1209 return false; 1210 } 1211 1212 static void removeModOperands(MachineInstr &MI) { 1213 unsigned Opc = MI.getOpcode(); 1214 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1215 AMDGPU::OpName::src0_modifiers); 1216 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1217 AMDGPU::OpName::src1_modifiers); 1218 int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc, 1219 AMDGPU::OpName::src2_modifiers); 1220 1221 MI.RemoveOperand(Src2ModIdx); 1222 MI.RemoveOperand(Src1ModIdx); 1223 MI.RemoveOperand(Src0ModIdx); 1224 } 1225 1226 // TODO: Maybe this should be removed this and custom fold everything in 1227 // SIFoldOperands? 1228 bool SIInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 1229 unsigned Reg, MachineRegisterInfo *MRI) const { 1230 if (!MRI->hasOneNonDBGUse(Reg)) 1231 return false; 1232 1233 unsigned Opc = UseMI->getOpcode(); 1234 if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) { 1235 // Don't fold if we are using source modifiers. The new VOP2 instructions 1236 // don't have them. 1237 if (hasModifiersSet(*UseMI, AMDGPU::OpName::src0_modifiers) || 1238 hasModifiersSet(*UseMI, AMDGPU::OpName::src1_modifiers) || 1239 hasModifiersSet(*UseMI, AMDGPU::OpName::src2_modifiers)) { 1240 return false; 1241 } 1242 1243 const MachineOperand &ImmOp = DefMI->getOperand(1); 1244 1245 // If this is a free constant, there's no reason to do this. 1246 // TODO: We could fold this here instead of letting SIFoldOperands do it 1247 // later. 1248 if (isInlineConstant(ImmOp, 4)) 1249 return false; 1250 1251 MachineOperand *Src0 = getNamedOperand(*UseMI, AMDGPU::OpName::src0); 1252 MachineOperand *Src1 = getNamedOperand(*UseMI, AMDGPU::OpName::src1); 1253 MachineOperand *Src2 = getNamedOperand(*UseMI, AMDGPU::OpName::src2); 1254 1255 // Multiplied part is the constant: Use v_madmk_f32 1256 // We should only expect these to be on src0 due to canonicalizations. 1257 if (Src0->isReg() && Src0->getReg() == Reg) { 1258 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) 1259 return false; 1260 1261 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) 1262 return false; 1263 1264 // We need to swap operands 0 and 1 since madmk constant is at operand 1. 1265 1266 const int64_t Imm = DefMI->getOperand(1).getImm(); 1267 1268 // FIXME: This would be a lot easier if we could return a new instruction 1269 // instead of having to modify in place. 1270 1271 // Remove these first since they are at the end. 1272 UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, 1273 AMDGPU::OpName::omod)); 1274 UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, 1275 AMDGPU::OpName::clamp)); 1276 1277 unsigned Src1Reg = Src1->getReg(); 1278 unsigned Src1SubReg = Src1->getSubReg(); 1279 Src0->setReg(Src1Reg); 1280 Src0->setSubReg(Src1SubReg); 1281 Src0->setIsKill(Src1->isKill()); 1282 1283 if (Opc == AMDGPU::V_MAC_F32_e64) { 1284 UseMI->untieRegOperand( 1285 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 1286 } 1287 1288 Src1->ChangeToImmediate(Imm); 1289 1290 removeModOperands(*UseMI); 1291 UseMI->setDesc(get(AMDGPU::V_MADMK_F32)); 1292 1293 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1294 if (DeleteDef) 1295 DefMI->eraseFromParent(); 1296 1297 return true; 1298 } 1299 1300 // Added part is the constant: Use v_madak_f32 1301 if (Src2->isReg() && Src2->getReg() == Reg) { 1302 // Not allowed to use constant bus for another operand. 1303 // We can however allow an inline immediate as src0. 1304 if (!Src0->isImm() && 1305 (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg())))) 1306 return false; 1307 1308 if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) 1309 return false; 1310 1311 const int64_t Imm = DefMI->getOperand(1).getImm(); 1312 1313 // FIXME: This would be a lot easier if we could return a new instruction 1314 // instead of having to modify in place. 1315 1316 // Remove these first since they are at the end. 1317 UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, 1318 AMDGPU::OpName::omod)); 1319 UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, 1320 AMDGPU::OpName::clamp)); 1321 1322 if (Opc == AMDGPU::V_MAC_F32_e64) { 1323 UseMI->untieRegOperand( 1324 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); 1325 } 1326 1327 // ChangingToImmediate adds Src2 back to the instruction. 1328 Src2->ChangeToImmediate(Imm); 1329 1330 // These come before src2. 1331 removeModOperands(*UseMI); 1332 UseMI->setDesc(get(AMDGPU::V_MADAK_F32)); 1333 1334 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 1335 if (DeleteDef) 1336 DefMI->eraseFromParent(); 1337 1338 return true; 1339 } 1340 } 1341 1342 return false; 1343 } 1344 1345 static bool offsetsDoNotOverlap(int WidthA, int OffsetA, 1346 int WidthB, int OffsetB) { 1347 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1348 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1349 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1350 return LowOffset + LowWidth <= HighOffset; 1351 } 1352 1353 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr *MIa, 1354 MachineInstr *MIb) const { 1355 unsigned BaseReg0, BaseReg1; 1356 int64_t Offset0, Offset1; 1357 1358 if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) && 1359 getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) { 1360 1361 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) { 1362 // FIXME: Handle ds_read2 / ds_write2. 1363 return false; 1364 } 1365 unsigned Width0 = (*MIa->memoperands_begin())->getSize(); 1366 unsigned Width1 = (*MIb->memoperands_begin())->getSize(); 1367 if (BaseReg0 == BaseReg1 && 1368 offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) { 1369 return true; 1370 } 1371 } 1372 1373 return false; 1374 } 1375 1376 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa, 1377 MachineInstr *MIb, 1378 AliasAnalysis *AA) const { 1379 assert(MIa && (MIa->mayLoad() || MIa->mayStore()) && 1380 "MIa must load from or modify a memory location"); 1381 assert(MIb && (MIb->mayLoad() || MIb->mayStore()) && 1382 "MIb must load from or modify a memory location"); 1383 1384 if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects()) 1385 return false; 1386 1387 // XXX - Can we relax this between address spaces? 1388 if (MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef()) 1389 return false; 1390 1391 // TODO: Should we check the address space from the MachineMemOperand? That 1392 // would allow us to distinguish objects we know don't alias based on the 1393 // underlying address space, even if it was lowered to a different one, 1394 // e.g. private accesses lowered to use MUBUF instructions on a scratch 1395 // buffer. 1396 if (isDS(*MIa)) { 1397 if (isDS(*MIb)) 1398 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1399 1400 return !isFLAT(*MIb); 1401 } 1402 1403 if (isMUBUF(*MIa) || isMTBUF(*MIa)) { 1404 if (isMUBUF(*MIb) || isMTBUF(*MIb)) 1405 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1406 1407 return !isFLAT(*MIb) && !isSMRD(*MIb); 1408 } 1409 1410 if (isSMRD(*MIa)) { 1411 if (isSMRD(*MIb)) 1412 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1413 1414 return !isFLAT(*MIb) && !isMUBUF(*MIa) && !isMTBUF(*MIa); 1415 } 1416 1417 if (isFLAT(*MIa)) { 1418 if (isFLAT(*MIb)) 1419 return checkInstOffsetsDoNotOverlap(MIa, MIb); 1420 1421 return false; 1422 } 1423 1424 return false; 1425 } 1426 1427 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB, 1428 MachineBasicBlock::iterator &MI, 1429 LiveVariables *LV) const { 1430 1431 switch (MI->getOpcode()) { 1432 default: return nullptr; 1433 case AMDGPU::V_MAC_F32_e64: break; 1434 case AMDGPU::V_MAC_F32_e32: { 1435 const MachineOperand *Src0 = getNamedOperand(*MI, AMDGPU::OpName::src0); 1436 if (Src0->isImm() && !isInlineConstant(*Src0, 4)) 1437 return nullptr; 1438 break; 1439 } 1440 } 1441 1442 const MachineOperand *Dst = getNamedOperand(*MI, AMDGPU::OpName::vdst); 1443 const MachineOperand *Src0 = getNamedOperand(*MI, AMDGPU::OpName::src0); 1444 const MachineOperand *Src1 = getNamedOperand(*MI, AMDGPU::OpName::src1); 1445 const MachineOperand *Src2 = getNamedOperand(*MI, AMDGPU::OpName::src2); 1446 1447 return BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_MAD_F32)) 1448 .addOperand(*Dst) 1449 .addImm(0) // Src0 mods 1450 .addOperand(*Src0) 1451 .addImm(0) // Src1 mods 1452 .addOperand(*Src1) 1453 .addImm(0) // Src mods 1454 .addOperand(*Src2) 1455 .addImm(0) // clamp 1456 .addImm(0); // omod 1457 } 1458 1459 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 1460 const MachineBasicBlock *MBB, 1461 const MachineFunction &MF) const { 1462 // Target-independent instructions do not have an implicit-use of EXEC, even 1463 // when they operate on VGPRs. Treating EXEC modifications as scheduling 1464 // boundaries prevents incorrect movements of such instructions. 1465 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1466 if (MI->modifiesRegister(AMDGPU::EXEC, TRI)) 1467 return true; 1468 1469 return AMDGPUInstrInfo::isSchedulingBoundary(MI, MBB, MF); 1470 } 1471 1472 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { 1473 int64_t SVal = Imm.getSExtValue(); 1474 if (SVal >= -16 && SVal <= 64) 1475 return true; 1476 1477 if (Imm.getBitWidth() == 64) { 1478 uint64_t Val = Imm.getZExtValue(); 1479 return (DoubleToBits(0.0) == Val) || 1480 (DoubleToBits(1.0) == Val) || 1481 (DoubleToBits(-1.0) == Val) || 1482 (DoubleToBits(0.5) == Val) || 1483 (DoubleToBits(-0.5) == Val) || 1484 (DoubleToBits(2.0) == Val) || 1485 (DoubleToBits(-2.0) == Val) || 1486 (DoubleToBits(4.0) == Val) || 1487 (DoubleToBits(-4.0) == Val); 1488 } 1489 1490 // The actual type of the operand does not seem to matter as long 1491 // as the bits match one of the inline immediate values. For example: 1492 // 1493 // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, 1494 // so it is a legal inline immediate. 1495 // 1496 // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in 1497 // floating-point, so it is a legal inline immediate. 1498 uint32_t Val = Imm.getZExtValue(); 1499 1500 return (FloatToBits(0.0f) == Val) || 1501 (FloatToBits(1.0f) == Val) || 1502 (FloatToBits(-1.0f) == Val) || 1503 (FloatToBits(0.5f) == Val) || 1504 (FloatToBits(-0.5f) == Val) || 1505 (FloatToBits(2.0f) == Val) || 1506 (FloatToBits(-2.0f) == Val) || 1507 (FloatToBits(4.0f) == Val) || 1508 (FloatToBits(-4.0f) == Val); 1509 } 1510 1511 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, 1512 unsigned OpSize) const { 1513 if (MO.isImm()) { 1514 // MachineOperand provides no way to tell the true operand size, since it 1515 // only records a 64-bit value. We need to know the size to determine if a 1516 // 32-bit floating point immediate bit pattern is legal for an integer 1517 // immediate. It would be for any 32-bit integer operand, but would not be 1518 // for a 64-bit one. 1519 1520 unsigned BitSize = 8 * OpSize; 1521 return isInlineConstant(APInt(BitSize, MO.getImm(), true)); 1522 } 1523 1524 return false; 1525 } 1526 1527 bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO, 1528 unsigned OpSize) const { 1529 return MO.isImm() && !isInlineConstant(MO, OpSize); 1530 } 1531 1532 static bool compareMachineOp(const MachineOperand &Op0, 1533 const MachineOperand &Op1) { 1534 if (Op0.getType() != Op1.getType()) 1535 return false; 1536 1537 switch (Op0.getType()) { 1538 case MachineOperand::MO_Register: 1539 return Op0.getReg() == Op1.getReg(); 1540 case MachineOperand::MO_Immediate: 1541 return Op0.getImm() == Op1.getImm(); 1542 default: 1543 llvm_unreachable("Didn't expect to be comparing these operand types"); 1544 } 1545 } 1546 1547 bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo, 1548 const MachineOperand &MO) const { 1549 const MCOperandInfo &OpInfo = get(MI->getOpcode()).OpInfo[OpNo]; 1550 1551 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); 1552 1553 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) 1554 return true; 1555 1556 if (OpInfo.RegClass < 0) 1557 return false; 1558 1559 unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize(); 1560 if (isLiteralConstant(MO, OpSize)) 1561 return RI.opCanUseLiteralConstant(OpInfo.OperandType); 1562 1563 return RI.opCanUseInlineConstant(OpInfo.OperandType); 1564 } 1565 1566 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { 1567 int Op32 = AMDGPU::getVOPe32(Opcode); 1568 if (Op32 == -1) 1569 return false; 1570 1571 return pseudoToMCOpcode(Op32) != -1; 1572 } 1573 1574 bool SIInstrInfo::hasModifiers(unsigned Opcode) const { 1575 // The src0_modifier operand is present on all instructions 1576 // that have modifiers. 1577 1578 return AMDGPU::getNamedOperandIdx(Opcode, 1579 AMDGPU::OpName::src0_modifiers) != -1; 1580 } 1581 1582 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, 1583 unsigned OpName) const { 1584 const MachineOperand *Mods = getNamedOperand(MI, OpName); 1585 return Mods && Mods->getImm(); 1586 } 1587 1588 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, 1589 const MachineOperand &MO, 1590 unsigned OpSize) const { 1591 // Literal constants use the constant bus. 1592 if (isLiteralConstant(MO, OpSize)) 1593 return true; 1594 1595 if (!MO.isReg() || !MO.isUse()) 1596 return false; 1597 1598 if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) 1599 return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); 1600 1601 // FLAT_SCR is just an SGPR pair. 1602 if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR)) 1603 return true; 1604 1605 // EXEC register uses the constant bus. 1606 if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC) 1607 return true; 1608 1609 // SGPRs use the constant bus 1610 return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 || 1611 (!MO.isImplicit() && 1612 (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) || 1613 AMDGPU::SGPR_64RegClass.contains(MO.getReg())))); 1614 } 1615 1616 static unsigned findImplicitSGPRRead(const MachineInstr &MI) { 1617 for (const MachineOperand &MO : MI.implicit_operands()) { 1618 // We only care about reads. 1619 if (MO.isDef()) 1620 continue; 1621 1622 switch (MO.getReg()) { 1623 case AMDGPU::VCC: 1624 case AMDGPU::M0: 1625 case AMDGPU::FLAT_SCR: 1626 return MO.getReg(); 1627 1628 default: 1629 break; 1630 } 1631 } 1632 1633 return AMDGPU::NoRegister; 1634 } 1635 1636 bool SIInstrInfo::verifyInstruction(const MachineInstr *MI, 1637 StringRef &ErrInfo) const { 1638 uint16_t Opcode = MI->getOpcode(); 1639 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 1640 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); 1641 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); 1642 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); 1643 1644 // Make sure the number of operands is correct. 1645 const MCInstrDesc &Desc = get(Opcode); 1646 if (!Desc.isVariadic() && 1647 Desc.getNumOperands() != MI->getNumExplicitOperands()) { 1648 ErrInfo = "Instruction has wrong number of operands."; 1649 return false; 1650 } 1651 1652 // Make sure the register classes are correct. 1653 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { 1654 if (MI->getOperand(i).isFPImm()) { 1655 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " 1656 "all fp values to integers."; 1657 return false; 1658 } 1659 1660 int RegClass = Desc.OpInfo[i].RegClass; 1661 1662 switch (Desc.OpInfo[i].OperandType) { 1663 case MCOI::OPERAND_REGISTER: 1664 if (MI->getOperand(i).isImm()) { 1665 ErrInfo = "Illegal immediate value for operand."; 1666 return false; 1667 } 1668 break; 1669 case AMDGPU::OPERAND_REG_IMM32: 1670 break; 1671 case AMDGPU::OPERAND_REG_INLINE_C: 1672 if (isLiteralConstant(MI->getOperand(i), 1673 RI.getRegClass(RegClass)->getSize())) { 1674 ErrInfo = "Illegal immediate value for operand."; 1675 return false; 1676 } 1677 break; 1678 case MCOI::OPERAND_IMMEDIATE: 1679 // Check if this operand is an immediate. 1680 // FrameIndex operands will be replaced by immediates, so they are 1681 // allowed. 1682 if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFI()) { 1683 ErrInfo = "Expected immediate, but got non-immediate"; 1684 return false; 1685 } 1686 // Fall-through 1687 default: 1688 continue; 1689 } 1690 1691 if (!MI->getOperand(i).isReg()) 1692 continue; 1693 1694 if (RegClass != -1) { 1695 unsigned Reg = MI->getOperand(i).getReg(); 1696 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1697 continue; 1698 1699 const TargetRegisterClass *RC = RI.getRegClass(RegClass); 1700 if (!RC->contains(Reg)) { 1701 ErrInfo = "Operand has incorrect register class."; 1702 return false; 1703 } 1704 } 1705 } 1706 1707 1708 // Verify VOP* 1709 if (isVOP1(*MI) || isVOP2(*MI) || isVOP3(*MI) || isVOPC(*MI)) { 1710 // Only look at the true operands. Only a real operand can use the constant 1711 // bus, and we don't want to check pseudo-operands like the source modifier 1712 // flags. 1713 const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx }; 1714 1715 unsigned ConstantBusCount = 0; 1716 unsigned SGPRUsed = findImplicitSGPRRead(*MI); 1717 if (SGPRUsed != AMDGPU::NoRegister) 1718 ++ConstantBusCount; 1719 1720 for (int OpIdx : OpIndices) { 1721 if (OpIdx == -1) 1722 break; 1723 const MachineOperand &MO = MI->getOperand(OpIdx); 1724 if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) { 1725 if (MO.isReg()) { 1726 if (MO.getReg() != SGPRUsed) 1727 ++ConstantBusCount; 1728 SGPRUsed = MO.getReg(); 1729 } else { 1730 ++ConstantBusCount; 1731 } 1732 } 1733 } 1734 if (ConstantBusCount > 1) { 1735 ErrInfo = "VOP* instruction uses the constant bus more than once"; 1736 return false; 1737 } 1738 } 1739 1740 // Verify misc. restrictions on specific instructions. 1741 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 || 1742 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) { 1743 const MachineOperand &Src0 = MI->getOperand(Src0Idx); 1744 const MachineOperand &Src1 = MI->getOperand(Src1Idx); 1745 const MachineOperand &Src2 = MI->getOperand(Src2Idx); 1746 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { 1747 if (!compareMachineOp(Src0, Src1) && 1748 !compareMachineOp(Src0, Src2)) { 1749 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; 1750 return false; 1751 } 1752 } 1753 } 1754 1755 // Make sure we aren't losing exec uses in the td files. This mostly requires 1756 // being careful when using let Uses to try to add other use registers. 1757 if (!isGenericOpcode(Opcode) && !isSALU(Opcode) && !isSMRD(Opcode)) { 1758 if (!MI->hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { 1759 ErrInfo = "VALU instruction does not implicitly read exec mask"; 1760 return false; 1761 } 1762 } 1763 1764 return true; 1765 } 1766 1767 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) { 1768 switch (MI.getOpcode()) { 1769 default: return AMDGPU::INSTRUCTION_LIST_END; 1770 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; 1771 case AMDGPU::COPY: return AMDGPU::COPY; 1772 case AMDGPU::PHI: return AMDGPU::PHI; 1773 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; 1774 case AMDGPU::S_MOV_B32: 1775 return MI.getOperand(1).isReg() ? 1776 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; 1777 case AMDGPU::S_ADD_I32: 1778 case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32; 1779 case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32; 1780 case AMDGPU::S_SUB_I32: 1781 case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32; 1782 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; 1783 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32; 1784 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32; 1785 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32; 1786 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32; 1787 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32; 1788 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32; 1789 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32; 1790 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32; 1791 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; 1792 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64; 1793 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; 1794 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64; 1795 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; 1796 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64; 1797 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32; 1798 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32; 1799 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32; 1800 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32; 1801 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; 1802 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; 1803 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; 1804 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; 1805 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32; 1806 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32; 1807 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32; 1808 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32; 1809 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32; 1810 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32; 1811 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32; 1812 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32; 1813 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32; 1814 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32; 1815 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32; 1816 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32; 1817 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; 1818 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; 1819 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; 1820 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; 1821 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; 1822 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; 1823 } 1824 } 1825 1826 bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const { 1827 return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END; 1828 } 1829 1830 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, 1831 unsigned OpNo) const { 1832 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 1833 const MCInstrDesc &Desc = get(MI.getOpcode()); 1834 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || 1835 Desc.OpInfo[OpNo].RegClass == -1) { 1836 unsigned Reg = MI.getOperand(OpNo).getReg(); 1837 1838 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1839 return MRI.getRegClass(Reg); 1840 return RI.getPhysRegClass(Reg); 1841 } 1842 1843 unsigned RCID = Desc.OpInfo[OpNo].RegClass; 1844 return RI.getRegClass(RCID); 1845 } 1846 1847 bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const { 1848 switch (MI.getOpcode()) { 1849 case AMDGPU::COPY: 1850 case AMDGPU::REG_SEQUENCE: 1851 case AMDGPU::PHI: 1852 case AMDGPU::INSERT_SUBREG: 1853 return RI.hasVGPRs(getOpRegClass(MI, 0)); 1854 default: 1855 return RI.hasVGPRs(getOpRegClass(MI, OpNo)); 1856 } 1857 } 1858 1859 void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const { 1860 MachineBasicBlock::iterator I = MI; 1861 MachineBasicBlock *MBB = MI->getParent(); 1862 MachineOperand &MO = MI->getOperand(OpIdx); 1863 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 1864 unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass; 1865 const TargetRegisterClass *RC = RI.getRegClass(RCID); 1866 unsigned Opcode = AMDGPU::V_MOV_B32_e32; 1867 if (MO.isReg()) 1868 Opcode = AMDGPU::COPY; 1869 else if (RI.isSGPRClass(RC)) 1870 Opcode = AMDGPU::S_MOV_B32; 1871 1872 1873 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); 1874 if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC)) 1875 VRC = &AMDGPU::VReg_64RegClass; 1876 else 1877 VRC = &AMDGPU::VGPR_32RegClass; 1878 1879 unsigned Reg = MRI.createVirtualRegister(VRC); 1880 DebugLoc DL = MBB->findDebugLoc(I); 1881 BuildMI(*MI->getParent(), I, DL, get(Opcode), Reg) 1882 .addOperand(MO); 1883 MO.ChangeToRegister(Reg, false); 1884 } 1885 1886 unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI, 1887 MachineRegisterInfo &MRI, 1888 MachineOperand &SuperReg, 1889 const TargetRegisterClass *SuperRC, 1890 unsigned SubIdx, 1891 const TargetRegisterClass *SubRC) 1892 const { 1893 MachineBasicBlock *MBB = MI->getParent(); 1894 DebugLoc DL = MI->getDebugLoc(); 1895 unsigned SubReg = MRI.createVirtualRegister(SubRC); 1896 1897 if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) { 1898 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 1899 .addReg(SuperReg.getReg(), 0, SubIdx); 1900 return SubReg; 1901 } 1902 1903 // Just in case the super register is itself a sub-register, copy it to a new 1904 // value so we don't need to worry about merging its subreg index with the 1905 // SubIdx passed to this function. The register coalescer should be able to 1906 // eliminate this extra copy. 1907 unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC); 1908 1909 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg) 1910 .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg()); 1911 1912 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) 1913 .addReg(NewSuperReg, 0, SubIdx); 1914 1915 return SubReg; 1916 } 1917 1918 MachineOperand SIInstrInfo::buildExtractSubRegOrImm( 1919 MachineBasicBlock::iterator MII, 1920 MachineRegisterInfo &MRI, 1921 MachineOperand &Op, 1922 const TargetRegisterClass *SuperRC, 1923 unsigned SubIdx, 1924 const TargetRegisterClass *SubRC) const { 1925 if (Op.isImm()) { 1926 // XXX - Is there a better way to do this? 1927 if (SubIdx == AMDGPU::sub0) 1928 return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF); 1929 if (SubIdx == AMDGPU::sub1) 1930 return MachineOperand::CreateImm(Op.getImm() >> 32); 1931 1932 llvm_unreachable("Unhandled register index for immediate"); 1933 } 1934 1935 unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, 1936 SubIdx, SubRC); 1937 return MachineOperand::CreateReg(SubReg, false); 1938 } 1939 1940 // Change the order of operands from (0, 1, 2) to (0, 2, 1) 1941 void SIInstrInfo::swapOperands(MachineBasicBlock::iterator Inst) const { 1942 assert(Inst->getNumExplicitOperands() == 3); 1943 MachineOperand Op1 = Inst->getOperand(1); 1944 Inst->RemoveOperand(1); 1945 Inst->addOperand(Op1); 1946 } 1947 1948 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, 1949 const MCOperandInfo &OpInfo, 1950 const MachineOperand &MO) const { 1951 if (!MO.isReg()) 1952 return false; 1953 1954 unsigned Reg = MO.getReg(); 1955 const TargetRegisterClass *RC = 1956 TargetRegisterInfo::isVirtualRegister(Reg) ? 1957 MRI.getRegClass(Reg) : 1958 RI.getPhysRegClass(Reg); 1959 1960 const SIRegisterInfo *TRI = 1961 static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo()); 1962 RC = TRI->getSubRegClass(RC, MO.getSubReg()); 1963 1964 // In order to be legal, the common sub-class must be equal to the 1965 // class of the current operand. For example: 1966 // 1967 // v_mov_b32 s0 ; Operand defined as vsrc_32 1968 // ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL 1969 // 1970 // s_sendmsg 0, s0 ; Operand defined as m0reg 1971 // ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL 1972 1973 return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC; 1974 } 1975 1976 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, 1977 const MCOperandInfo &OpInfo, 1978 const MachineOperand &MO) const { 1979 if (MO.isReg()) 1980 return isLegalRegOperand(MRI, OpInfo, MO); 1981 1982 // Handle non-register types that are treated like immediates. 1983 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); 1984 return true; 1985 } 1986 1987 bool SIInstrInfo::isOperandLegal(const MachineInstr *MI, unsigned OpIdx, 1988 const MachineOperand *MO) const { 1989 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 1990 const MCInstrDesc &InstDesc = MI->getDesc(); 1991 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx]; 1992 const TargetRegisterClass *DefinedRC = 1993 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; 1994 if (!MO) 1995 MO = &MI->getOperand(OpIdx); 1996 1997 if (isVALU(*MI) && 1998 usesConstantBus(MRI, *MO, DefinedRC->getSize())) { 1999 2000 RegSubRegPair SGPRUsed; 2001 if (MO->isReg()) 2002 SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg()); 2003 2004 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2005 if (i == OpIdx) 2006 continue; 2007 const MachineOperand &Op = MI->getOperand(i); 2008 if (Op.isReg() && 2009 (Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) && 2010 usesConstantBus(MRI, Op, getOpSize(*MI, i))) { 2011 return false; 2012 } 2013 } 2014 } 2015 2016 if (MO->isReg()) { 2017 assert(DefinedRC); 2018 return isLegalRegOperand(MRI, OpInfo, *MO); 2019 } 2020 2021 2022 // Handle non-register types that are treated like immediates. 2023 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI()); 2024 2025 if (!DefinedRC) { 2026 // This operand expects an immediate. 2027 return true; 2028 } 2029 2030 return isImmOperandLegal(MI, OpIdx, *MO); 2031 } 2032 2033 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, 2034 MachineInstr *MI) const { 2035 unsigned Opc = MI->getOpcode(); 2036 const MCInstrDesc &InstrDesc = get(Opc); 2037 2038 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 2039 MachineOperand &Src1 = MI->getOperand(Src1Idx); 2040 2041 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 2042 // we need to only have one constant bus use. 2043 // 2044 // Note we do not need to worry about literal constants here. They are 2045 // disabled for the operand type for instructions because they will always 2046 // violate the one constant bus use rule. 2047 bool HasImplicitSGPR = findImplicitSGPRRead(*MI) != AMDGPU::NoRegister; 2048 if (HasImplicitSGPR) { 2049 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2050 MachineOperand &Src0 = MI->getOperand(Src0Idx); 2051 2052 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) 2053 legalizeOpWithMove(MI, Src0Idx); 2054 } 2055 2056 // VOP2 src0 instructions support all operand types, so we don't need to check 2057 // their legality. If src1 is already legal, we don't need to do anything. 2058 if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1)) 2059 return; 2060 2061 // We do not use commuteInstruction here because it is too aggressive and will 2062 // commute if it is possible. We only want to commute here if it improves 2063 // legality. This can be called a fairly large number of times so don't waste 2064 // compile time pointlessly swapping and checking legality again. 2065 if (HasImplicitSGPR || !MI->isCommutable()) { 2066 legalizeOpWithMove(MI, Src1Idx); 2067 return; 2068 } 2069 2070 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 2071 MachineOperand &Src0 = MI->getOperand(Src0Idx); 2072 2073 // If src0 can be used as src1, commuting will make the operands legal. 2074 // Otherwise we have to give up and insert a move. 2075 // 2076 // TODO: Other immediate-like operand kinds could be commuted if there was a 2077 // MachineOperand::ChangeTo* for them. 2078 if ((!Src1.isImm() && !Src1.isReg()) || 2079 !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) { 2080 legalizeOpWithMove(MI, Src1Idx); 2081 return; 2082 } 2083 2084 int CommutedOpc = commuteOpcode(*MI); 2085 if (CommutedOpc == -1) { 2086 legalizeOpWithMove(MI, Src1Idx); 2087 return; 2088 } 2089 2090 MI->setDesc(get(CommutedOpc)); 2091 2092 unsigned Src0Reg = Src0.getReg(); 2093 unsigned Src0SubReg = Src0.getSubReg(); 2094 bool Src0Kill = Src0.isKill(); 2095 2096 if (Src1.isImm()) 2097 Src0.ChangeToImmediate(Src1.getImm()); 2098 else if (Src1.isReg()) { 2099 Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); 2100 Src0.setSubReg(Src1.getSubReg()); 2101 } else 2102 llvm_unreachable("Should only have register or immediate operands"); 2103 2104 Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); 2105 Src1.setSubReg(Src0SubReg); 2106 } 2107 2108 // Legalize VOP3 operands. Because all operand types are supported for any 2109 // operand, and since literal constants are not allowed and should never be 2110 // seen, we only need to worry about inserting copies if we use multiple SGPR 2111 // operands. 2112 void SIInstrInfo::legalizeOperandsVOP3( 2113 MachineRegisterInfo &MRI, 2114 MachineInstr *MI) const { 2115 unsigned Opc = MI->getOpcode(); 2116 2117 int VOP3Idx[3] = { 2118 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), 2119 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), 2120 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) 2121 }; 2122 2123 // Find the one SGPR operand we are allowed to use. 2124 unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx); 2125 2126 for (unsigned i = 0; i < 3; ++i) { 2127 int Idx = VOP3Idx[i]; 2128 if (Idx == -1) 2129 break; 2130 MachineOperand &MO = MI->getOperand(Idx); 2131 2132 // We should never see a VOP3 instruction with an illegal immediate operand. 2133 if (!MO.isReg()) 2134 continue; 2135 2136 if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg()))) 2137 continue; // VGPRs are legal 2138 2139 if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) { 2140 SGPRReg = MO.getReg(); 2141 // We can use one SGPR in each VOP3 instruction. 2142 continue; 2143 } 2144 2145 // If we make it this far, then the operand is not legal and we must 2146 // legalize it. 2147 legalizeOpWithMove(MI, Idx); 2148 } 2149 } 2150 2151 unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr *UseMI, 2152 MachineRegisterInfo &MRI) const { 2153 const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); 2154 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); 2155 unsigned DstReg = MRI.createVirtualRegister(SRC); 2156 unsigned SubRegs = VRC->getSize() / 4; 2157 2158 SmallVector<unsigned, 8> SRegs; 2159 for (unsigned i = 0; i < SubRegs; ++i) { 2160 unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2161 BuildMI(*UseMI->getParent(), UseMI, UseMI->getDebugLoc(), 2162 get(AMDGPU::V_READFIRSTLANE_B32), SGPR) 2163 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); 2164 SRegs.push_back(SGPR); 2165 } 2166 2167 MachineInstrBuilder MIB = BuildMI(*UseMI->getParent(), UseMI, 2168 UseMI->getDebugLoc(), 2169 get(AMDGPU::REG_SEQUENCE), DstReg); 2170 for (unsigned i = 0; i < SubRegs; ++i) { 2171 MIB.addReg(SRegs[i]); 2172 MIB.addImm(RI.getSubRegFromChannel(i)); 2173 } 2174 return DstReg; 2175 } 2176 2177 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, 2178 MachineInstr *MI) const { 2179 2180 // If the pointer is store in VGPRs, then we need to move them to 2181 // SGPRs using v_readfirstlane. This is safe because we only select 2182 // loads with uniform pointers to SMRD instruction so we know the 2183 // pointer value is uniform. 2184 MachineOperand *SBase = getNamedOperand(*MI, AMDGPU::OpName::sbase); 2185 if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { 2186 unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); 2187 SBase->setReg(SGPR); 2188 } 2189 } 2190 2191 void SIInstrInfo::legalizeOperands(MachineInstr *MI) const { 2192 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 2193 2194 // Legalize VOP2 2195 if (isVOP2(*MI) || isVOPC(*MI)) { 2196 legalizeOperandsVOP2(MRI, MI); 2197 return; 2198 } 2199 2200 // Legalize VOP3 2201 if (isVOP3(*MI)) { 2202 legalizeOperandsVOP3(MRI, MI); 2203 return; 2204 } 2205 2206 // Legalize SMRD 2207 if (isSMRD(*MI)) { 2208 legalizeOperandsSMRD(MRI, MI); 2209 return; 2210 } 2211 2212 // Legalize REG_SEQUENCE and PHI 2213 // The register class of the operands much be the same type as the register 2214 // class of the output. 2215 if (MI->getOpcode() == AMDGPU::PHI) { 2216 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; 2217 for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { 2218 if (!MI->getOperand(i).isReg() || 2219 !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg())) 2220 continue; 2221 const TargetRegisterClass *OpRC = 2222 MRI.getRegClass(MI->getOperand(i).getReg()); 2223 if (RI.hasVGPRs(OpRC)) { 2224 VRC = OpRC; 2225 } else { 2226 SRC = OpRC; 2227 } 2228 } 2229 2230 // If any of the operands are VGPR registers, then they all most be 2231 // otherwise we will create illegal VGPR->SGPR copies when legalizing 2232 // them. 2233 if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) { 2234 if (!VRC) { 2235 assert(SRC); 2236 VRC = RI.getEquivalentVGPRClass(SRC); 2237 } 2238 RC = VRC; 2239 } else { 2240 RC = SRC; 2241 } 2242 2243 // Update all the operands so they have the same type. 2244 for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) { 2245 MachineOperand &Op = MI->getOperand(I); 2246 if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 2247 continue; 2248 unsigned DstReg = MRI.createVirtualRegister(RC); 2249 2250 // MI is a PHI instruction. 2251 MachineBasicBlock *InsertBB = MI->getOperand(I + 1).getMBB(); 2252 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); 2253 2254 BuildMI(*InsertBB, Insert, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg) 2255 .addOperand(Op); 2256 Op.setReg(DstReg); 2257 } 2258 } 2259 2260 // REG_SEQUENCE doesn't really require operand legalization, but if one has a 2261 // VGPR dest type and SGPR sources, insert copies so all operands are 2262 // VGPRs. This seems to help operand folding / the register coalescer. 2263 if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) { 2264 MachineBasicBlock *MBB = MI->getParent(); 2265 const TargetRegisterClass *DstRC = getOpRegClass(*MI, 0); 2266 if (RI.hasVGPRs(DstRC)) { 2267 // Update all the operands so they are VGPR register classes. These may 2268 // not be the same register class because REG_SEQUENCE supports mixing 2269 // subregister index types e.g. sub0_sub1 + sub2 + sub3 2270 for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) { 2271 MachineOperand &Op = MI->getOperand(I); 2272 if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 2273 continue; 2274 2275 const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); 2276 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); 2277 if (VRC == OpRC) 2278 continue; 2279 2280 unsigned DstReg = MRI.createVirtualRegister(VRC); 2281 2282 BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg) 2283 .addOperand(Op); 2284 2285 Op.setReg(DstReg); 2286 Op.setIsKill(); 2287 } 2288 } 2289 2290 return; 2291 } 2292 2293 // Legalize INSERT_SUBREG 2294 // src0 must have the same register class as dst 2295 if (MI->getOpcode() == AMDGPU::INSERT_SUBREG) { 2296 unsigned Dst = MI->getOperand(0).getReg(); 2297 unsigned Src0 = MI->getOperand(1).getReg(); 2298 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 2299 const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); 2300 if (DstRC != Src0RC) { 2301 MachineBasicBlock &MBB = *MI->getParent(); 2302 unsigned NewSrc0 = MRI.createVirtualRegister(DstRC); 2303 BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), NewSrc0) 2304 .addReg(Src0); 2305 MI->getOperand(1).setReg(NewSrc0); 2306 } 2307 return; 2308 } 2309 2310 // Legalize MIMG 2311 if (isMIMG(*MI)) { 2312 MachineOperand *SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc); 2313 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) { 2314 unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI); 2315 SRsrc->setReg(SGPR); 2316 } 2317 2318 MachineOperand *SSamp = getNamedOperand(*MI, AMDGPU::OpName::ssamp); 2319 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) { 2320 unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI); 2321 SSamp->setReg(SGPR); 2322 } 2323 return; 2324 } 2325 2326 // Legalize MUBUF* instructions 2327 // FIXME: If we start using the non-addr64 instructions for compute, we 2328 // may need to legalize them here. 2329 int SRsrcIdx = 2330 AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc); 2331 if (SRsrcIdx != -1) { 2332 // We have an MUBUF instruction 2333 MachineOperand *SRsrc = &MI->getOperand(SRsrcIdx); 2334 unsigned SRsrcRC = get(MI->getOpcode()).OpInfo[SRsrcIdx].RegClass; 2335 if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()), 2336 RI.getRegClass(SRsrcRC))) { 2337 // The operands are legal. 2338 // FIXME: We may need to legalize operands besided srsrc. 2339 return; 2340 } 2341 2342 MachineBasicBlock &MBB = *MI->getParent(); 2343 2344 // Extract the ptr from the resource descriptor. 2345 unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc, 2346 &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); 2347 2348 // Create an empty resource descriptor 2349 unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); 2350 unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2351 unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); 2352 unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass); 2353 uint64_t RsrcDataFormat = getDefaultRsrcDataFormat(); 2354 2355 // Zero64 = 0 2356 BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64), 2357 Zero64) 2358 .addImm(0); 2359 2360 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} 2361 BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), 2362 SRsrcFormatLo) 2363 .addImm(RsrcDataFormat & 0xFFFFFFFF); 2364 2365 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} 2366 BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), 2367 SRsrcFormatHi) 2368 .addImm(RsrcDataFormat >> 32); 2369 2370 // NewSRsrc = {Zero64, SRsrcFormat} 2371 BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc) 2372 .addReg(Zero64) 2373 .addImm(AMDGPU::sub0_sub1) 2374 .addReg(SRsrcFormatLo) 2375 .addImm(AMDGPU::sub2) 2376 .addReg(SRsrcFormatHi) 2377 .addImm(AMDGPU::sub3); 2378 2379 MachineOperand *VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr); 2380 unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2381 if (VAddr) { 2382 // This is already an ADDR64 instruction so we need to add the pointer 2383 // extracted from the resource descriptor to the current value of VAddr. 2384 unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2385 unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2386 2387 // NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0 2388 DebugLoc DL = MI->getDebugLoc(); 2389 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo) 2390 .addReg(SRsrcPtr, 0, AMDGPU::sub0) 2391 .addReg(VAddr->getReg(), 0, AMDGPU::sub0); 2392 2393 // NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1 2394 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi) 2395 .addReg(SRsrcPtr, 0, AMDGPU::sub1) 2396 .addReg(VAddr->getReg(), 0, AMDGPU::sub1); 2397 2398 // NewVaddr = {NewVaddrHi, NewVaddrLo} 2399 BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) 2400 .addReg(NewVAddrLo) 2401 .addImm(AMDGPU::sub0) 2402 .addReg(NewVAddrHi) 2403 .addImm(AMDGPU::sub1); 2404 } else { 2405 // This instructions is the _OFFSET variant, so we need to convert it to 2406 // ADDR64. 2407 assert(MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() 2408 < AMDGPUSubtarget::VOLCANIC_ISLANDS && 2409 "FIXME: Need to emit flat atomics here"); 2410 2411 MachineOperand *VData = getNamedOperand(*MI, AMDGPU::OpName::vdata); 2412 MachineOperand *Offset = getNamedOperand(*MI, AMDGPU::OpName::offset); 2413 MachineOperand *SOffset = getNamedOperand(*MI, AMDGPU::OpName::soffset); 2414 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI->getOpcode()); 2415 2416 // Atomics rith return have have an additional tied operand and are 2417 // missing some of the special bits. 2418 MachineOperand *VDataIn = getNamedOperand(*MI, AMDGPU::OpName::vdata_in); 2419 MachineInstr *Addr64; 2420 2421 if (!VDataIn) { 2422 // Regular buffer load / store. 2423 MachineInstrBuilder MIB 2424 = BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode)) 2425 .addOperand(*VData) 2426 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. 2427 // This will be replaced later 2428 // with the new value of vaddr. 2429 .addOperand(*SRsrc) 2430 .addOperand(*SOffset) 2431 .addOperand(*Offset); 2432 2433 // Atomics do not have this operand. 2434 if (const MachineOperand *GLC 2435 = getNamedOperand(*MI, AMDGPU::OpName::glc)) { 2436 MIB.addImm(GLC->getImm()); 2437 } 2438 2439 MIB.addImm(getNamedImmOperand(*MI, AMDGPU::OpName::slc)); 2440 2441 if (const MachineOperand *TFE 2442 = getNamedOperand(*MI, AMDGPU::OpName::tfe)) { 2443 MIB.addImm(TFE->getImm()); 2444 } 2445 2446 MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 2447 Addr64 = MIB; 2448 } else { 2449 // Atomics with return. 2450 Addr64 = BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode)) 2451 .addOperand(*VData) 2452 .addOperand(*VDataIn) 2453 .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. 2454 // This will be replaced later 2455 // with the new value of vaddr. 2456 .addOperand(*SRsrc) 2457 .addOperand(*SOffset) 2458 .addOperand(*Offset) 2459 .addImm(getNamedImmOperand(*MI, AMDGPU::OpName::slc)) 2460 .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 2461 } 2462 2463 MI->removeFromParent(); 2464 MI = Addr64; 2465 2466 // NewVaddr = {NewVaddrHi, NewVaddrLo} 2467 BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) 2468 .addReg(SRsrcPtr, 0, AMDGPU::sub0) 2469 .addImm(AMDGPU::sub0) 2470 .addReg(SRsrcPtr, 0, AMDGPU::sub1) 2471 .addImm(AMDGPU::sub1); 2472 2473 VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr); 2474 SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc); 2475 } 2476 2477 // Update the instruction to use NewVaddr 2478 VAddr->setReg(NewVAddr); 2479 // Update the instruction to use NewSRsrc 2480 SRsrc->setReg(NewSRsrc); 2481 } 2482 } 2483 2484 void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const { 2485 SmallVector<MachineInstr *, 128> Worklist; 2486 Worklist.push_back(&TopInst); 2487 2488 while (!Worklist.empty()) { 2489 MachineInstr *Inst = Worklist.pop_back_val(); 2490 MachineBasicBlock *MBB = Inst->getParent(); 2491 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 2492 2493 unsigned Opcode = Inst->getOpcode(); 2494 unsigned NewOpcode = getVALUOp(*Inst); 2495 2496 // Handle some special cases 2497 switch (Opcode) { 2498 default: 2499 break; 2500 case AMDGPU::S_AND_B64: 2501 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64); 2502 Inst->eraseFromParent(); 2503 continue; 2504 2505 case AMDGPU::S_OR_B64: 2506 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64); 2507 Inst->eraseFromParent(); 2508 continue; 2509 2510 case AMDGPU::S_XOR_B64: 2511 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64); 2512 Inst->eraseFromParent(); 2513 continue; 2514 2515 case AMDGPU::S_NOT_B64: 2516 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32); 2517 Inst->eraseFromParent(); 2518 continue; 2519 2520 case AMDGPU::S_BCNT1_I32_B64: 2521 splitScalar64BitBCNT(Worklist, Inst); 2522 Inst->eraseFromParent(); 2523 continue; 2524 2525 case AMDGPU::S_BFE_I64: { 2526 splitScalar64BitBFE(Worklist, Inst); 2527 Inst->eraseFromParent(); 2528 continue; 2529 } 2530 2531 case AMDGPU::S_LSHL_B32: 2532 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 2533 NewOpcode = AMDGPU::V_LSHLREV_B32_e64; 2534 swapOperands(Inst); 2535 } 2536 break; 2537 case AMDGPU::S_ASHR_I32: 2538 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 2539 NewOpcode = AMDGPU::V_ASHRREV_I32_e64; 2540 swapOperands(Inst); 2541 } 2542 break; 2543 case AMDGPU::S_LSHR_B32: 2544 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 2545 NewOpcode = AMDGPU::V_LSHRREV_B32_e64; 2546 swapOperands(Inst); 2547 } 2548 break; 2549 case AMDGPU::S_LSHL_B64: 2550 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 2551 NewOpcode = AMDGPU::V_LSHLREV_B64; 2552 swapOperands(Inst); 2553 } 2554 break; 2555 case AMDGPU::S_ASHR_I64: 2556 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 2557 NewOpcode = AMDGPU::V_ASHRREV_I64; 2558 swapOperands(Inst); 2559 } 2560 break; 2561 case AMDGPU::S_LSHR_B64: 2562 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 2563 NewOpcode = AMDGPU::V_LSHRREV_B64; 2564 swapOperands(Inst); 2565 } 2566 break; 2567 2568 case AMDGPU::S_ABS_I32: 2569 lowerScalarAbs(Worklist, Inst); 2570 Inst->eraseFromParent(); 2571 continue; 2572 2573 case AMDGPU::S_CBRANCH_SCC0: 2574 case AMDGPU::S_CBRANCH_SCC1: 2575 // Clear unused bits of vcc 2576 BuildMI(*MBB, Inst, Inst->getDebugLoc(), get(AMDGPU::S_AND_B64), AMDGPU::VCC) 2577 .addReg(AMDGPU::EXEC) 2578 .addReg(AMDGPU::VCC); 2579 break; 2580 2581 case AMDGPU::S_BFE_U64: 2582 case AMDGPU::S_BFM_B64: 2583 llvm_unreachable("Moving this op to VALU not implemented"); 2584 } 2585 2586 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { 2587 // We cannot move this instruction to the VALU, so we should try to 2588 // legalize its operands instead. 2589 legalizeOperands(Inst); 2590 continue; 2591 } 2592 2593 // Use the new VALU Opcode. 2594 const MCInstrDesc &NewDesc = get(NewOpcode); 2595 Inst->setDesc(NewDesc); 2596 2597 // Remove any references to SCC. Vector instructions can't read from it, and 2598 // We're just about to add the implicit use / defs of VCC, and we don't want 2599 // both. 2600 for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) { 2601 MachineOperand &Op = Inst->getOperand(i); 2602 if (Op.isReg() && Op.getReg() == AMDGPU::SCC) { 2603 Inst->RemoveOperand(i); 2604 addSCCDefUsersToVALUWorklist(Inst, Worklist); 2605 } 2606 } 2607 2608 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { 2609 // We are converting these to a BFE, so we need to add the missing 2610 // operands for the size and offset. 2611 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; 2612 Inst->addOperand(MachineOperand::CreateImm(0)); 2613 Inst->addOperand(MachineOperand::CreateImm(Size)); 2614 2615 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { 2616 // The VALU version adds the second operand to the result, so insert an 2617 // extra 0 operand. 2618 Inst->addOperand(MachineOperand::CreateImm(0)); 2619 } 2620 2621 Inst->addImplicitDefUseOperands(*Inst->getParent()->getParent()); 2622 2623 if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { 2624 const MachineOperand &OffsetWidthOp = Inst->getOperand(2); 2625 // If we need to move this to VGPRs, we need to unpack the second operand 2626 // back into the 2 separate ones for bit offset and width. 2627 assert(OffsetWidthOp.isImm() && 2628 "Scalar BFE is only implemented for constant width and offset"); 2629 uint32_t Imm = OffsetWidthOp.getImm(); 2630 2631 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 2632 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 2633 Inst->RemoveOperand(2); // Remove old immediate. 2634 Inst->addOperand(MachineOperand::CreateImm(Offset)); 2635 Inst->addOperand(MachineOperand::CreateImm(BitWidth)); 2636 } 2637 2638 bool HasDst = Inst->getOperand(0).isReg() && Inst->getOperand(0).isDef(); 2639 unsigned NewDstReg = AMDGPU::NoRegister; 2640 if (HasDst) { 2641 // Update the destination register class. 2642 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(*Inst); 2643 if (!NewDstRC) 2644 continue; 2645 2646 unsigned DstReg = Inst->getOperand(0).getReg(); 2647 NewDstReg = MRI.createVirtualRegister(NewDstRC); 2648 MRI.replaceRegWith(DstReg, NewDstReg); 2649 } 2650 2651 // Legalize the operands 2652 legalizeOperands(Inst); 2653 2654 if (HasDst) 2655 addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); 2656 } 2657 } 2658 2659 //===----------------------------------------------------------------------===// 2660 // Indirect addressing callbacks 2661 //===----------------------------------------------------------------------===// 2662 2663 const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const { 2664 return &AMDGPU::VGPR_32RegClass; 2665 } 2666 2667 void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist, 2668 MachineInstr *Inst) const { 2669 MachineBasicBlock &MBB = *Inst->getParent(); 2670 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2671 MachineBasicBlock::iterator MII = Inst; 2672 DebugLoc DL = Inst->getDebugLoc(); 2673 2674 MachineOperand &Dest = Inst->getOperand(0); 2675 MachineOperand &Src = Inst->getOperand(1); 2676 unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2677 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2678 2679 BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg) 2680 .addImm(0) 2681 .addReg(Src.getReg()); 2682 2683 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) 2684 .addReg(Src.getReg()) 2685 .addReg(TmpReg); 2686 2687 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2688 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2689 } 2690 2691 void SIInstrInfo::splitScalar64BitUnaryOp( 2692 SmallVectorImpl<MachineInstr *> &Worklist, 2693 MachineInstr *Inst, 2694 unsigned Opcode) const { 2695 MachineBasicBlock &MBB = *Inst->getParent(); 2696 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2697 2698 MachineOperand &Dest = Inst->getOperand(0); 2699 MachineOperand &Src0 = Inst->getOperand(1); 2700 DebugLoc DL = Inst->getDebugLoc(); 2701 2702 MachineBasicBlock::iterator MII = Inst; 2703 2704 const MCInstrDesc &InstDesc = get(Opcode); 2705 const TargetRegisterClass *Src0RC = Src0.isReg() ? 2706 MRI.getRegClass(Src0.getReg()) : 2707 &AMDGPU::SGPR_32RegClass; 2708 2709 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 2710 2711 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2712 AMDGPU::sub0, Src0SubRC); 2713 2714 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 2715 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 2716 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 2717 2718 unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 2719 BuildMI(MBB, MII, DL, InstDesc, DestSub0) 2720 .addOperand(SrcReg0Sub0); 2721 2722 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2723 AMDGPU::sub1, Src0SubRC); 2724 2725 unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 2726 BuildMI(MBB, MII, DL, InstDesc, DestSub1) 2727 .addOperand(SrcReg0Sub1); 2728 2729 unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); 2730 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 2731 .addReg(DestSub0) 2732 .addImm(AMDGPU::sub0) 2733 .addReg(DestSub1) 2734 .addImm(AMDGPU::sub1); 2735 2736 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 2737 2738 // We don't need to legalizeOperands here because for a single operand, src0 2739 // will support any kind of input. 2740 2741 // Move all users of this moved value. 2742 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 2743 } 2744 2745 void SIInstrInfo::splitScalar64BitBinaryOp( 2746 SmallVectorImpl<MachineInstr *> &Worklist, 2747 MachineInstr *Inst, 2748 unsigned Opcode) const { 2749 MachineBasicBlock &MBB = *Inst->getParent(); 2750 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2751 2752 MachineOperand &Dest = Inst->getOperand(0); 2753 MachineOperand &Src0 = Inst->getOperand(1); 2754 MachineOperand &Src1 = Inst->getOperand(2); 2755 DebugLoc DL = Inst->getDebugLoc(); 2756 2757 MachineBasicBlock::iterator MII = Inst; 2758 2759 const MCInstrDesc &InstDesc = get(Opcode); 2760 const TargetRegisterClass *Src0RC = Src0.isReg() ? 2761 MRI.getRegClass(Src0.getReg()) : 2762 &AMDGPU::SGPR_32RegClass; 2763 2764 const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); 2765 const TargetRegisterClass *Src1RC = Src1.isReg() ? 2766 MRI.getRegClass(Src1.getReg()) : 2767 &AMDGPU::SGPR_32RegClass; 2768 2769 const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); 2770 2771 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2772 AMDGPU::sub0, Src0SubRC); 2773 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 2774 AMDGPU::sub0, Src1SubRC); 2775 2776 const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); 2777 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); 2778 const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); 2779 2780 unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); 2781 MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0) 2782 .addOperand(SrcReg0Sub0) 2783 .addOperand(SrcReg1Sub0); 2784 2785 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, 2786 AMDGPU::sub1, Src0SubRC); 2787 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, 2788 AMDGPU::sub1, Src1SubRC); 2789 2790 unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); 2791 MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1) 2792 .addOperand(SrcReg0Sub1) 2793 .addOperand(SrcReg1Sub1); 2794 2795 unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); 2796 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) 2797 .addReg(DestSub0) 2798 .addImm(AMDGPU::sub0) 2799 .addReg(DestSub1) 2800 .addImm(AMDGPU::sub1); 2801 2802 MRI.replaceRegWith(Dest.getReg(), FullDestReg); 2803 2804 // Try to legalize the operands in case we need to swap the order to keep it 2805 // valid. 2806 legalizeOperands(LoHalf); 2807 legalizeOperands(HiHalf); 2808 2809 // Move all users of this moved vlaue. 2810 addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); 2811 } 2812 2813 void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist, 2814 MachineInstr *Inst) const { 2815 MachineBasicBlock &MBB = *Inst->getParent(); 2816 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2817 2818 MachineBasicBlock::iterator MII = Inst; 2819 DebugLoc DL = Inst->getDebugLoc(); 2820 2821 MachineOperand &Dest = Inst->getOperand(0); 2822 MachineOperand &Src = Inst->getOperand(1); 2823 2824 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); 2825 const TargetRegisterClass *SrcRC = Src.isReg() ? 2826 MRI.getRegClass(Src.getReg()) : 2827 &AMDGPU::SGPR_32RegClass; 2828 2829 unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2830 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2831 2832 const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0); 2833 2834 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 2835 AMDGPU::sub0, SrcSubRC); 2836 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, 2837 AMDGPU::sub1, SrcSubRC); 2838 2839 BuildMI(MBB, MII, DL, InstDesc, MidReg) 2840 .addOperand(SrcRegSub0) 2841 .addImm(0); 2842 2843 BuildMI(MBB, MII, DL, InstDesc, ResultReg) 2844 .addOperand(SrcRegSub1) 2845 .addReg(MidReg); 2846 2847 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2848 2849 // We don't need to legalize operands here. src0 for etiher instruction can be 2850 // an SGPR, and the second input is unused or determined here. 2851 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2852 } 2853 2854 void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist, 2855 MachineInstr *Inst) const { 2856 MachineBasicBlock &MBB = *Inst->getParent(); 2857 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 2858 MachineBasicBlock::iterator MII = Inst; 2859 DebugLoc DL = Inst->getDebugLoc(); 2860 2861 MachineOperand &Dest = Inst->getOperand(0); 2862 uint32_t Imm = Inst->getOperand(2).getImm(); 2863 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. 2864 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. 2865 2866 (void) Offset; 2867 2868 // Only sext_inreg cases handled. 2869 assert(Inst->getOpcode() == AMDGPU::S_BFE_I64 && 2870 BitWidth <= 32 && 2871 Offset == 0 && 2872 "Not implemented"); 2873 2874 if (BitWidth < 32) { 2875 unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2876 unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2877 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2878 2879 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo) 2880 .addReg(Inst->getOperand(1).getReg(), 0, AMDGPU::sub0) 2881 .addImm(0) 2882 .addImm(BitWidth); 2883 2884 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) 2885 .addImm(31) 2886 .addReg(MidRegLo); 2887 2888 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 2889 .addReg(MidRegLo) 2890 .addImm(AMDGPU::sub0) 2891 .addReg(MidRegHi) 2892 .addImm(AMDGPU::sub1); 2893 2894 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2895 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2896 return; 2897 } 2898 2899 MachineOperand &Src = Inst->getOperand(1); 2900 unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); 2901 unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); 2902 2903 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) 2904 .addImm(31) 2905 .addReg(Src.getReg(), 0, AMDGPU::sub0); 2906 2907 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) 2908 .addReg(Src.getReg(), 0, AMDGPU::sub0) 2909 .addImm(AMDGPU::sub0) 2910 .addReg(TmpReg) 2911 .addImm(AMDGPU::sub1); 2912 2913 MRI.replaceRegWith(Dest.getReg(), ResultReg); 2914 addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); 2915 } 2916 2917 void SIInstrInfo::addUsersToMoveToVALUWorklist( 2918 unsigned DstReg, 2919 MachineRegisterInfo &MRI, 2920 SmallVectorImpl<MachineInstr *> &Worklist) const { 2921 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), 2922 E = MRI.use_end(); I != E; ++I) { 2923 MachineInstr &UseMI = *I->getParent(); 2924 if (!canReadVGPR(UseMI, I.getOperandNo())) { 2925 Worklist.push_back(&UseMI); 2926 } 2927 } 2928 } 2929 2930 void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineInstr *SCCDefInst, 2931 SmallVectorImpl<MachineInstr *> &Worklist) const { 2932 // This assumes that all the users of SCC are in the same block 2933 // as the SCC def. 2934 for (MachineBasicBlock::iterator I = SCCDefInst, 2935 E = SCCDefInst->getParent()->end(); I != E; ++I) { 2936 2937 // Exit if we find another SCC def. 2938 if (I->findRegisterDefOperandIdx(AMDGPU::SCC) != -1) 2939 return; 2940 2941 if (I->findRegisterUseOperandIdx(AMDGPU::SCC) != -1) 2942 Worklist.push_back(I); 2943 } 2944 } 2945 2946 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( 2947 const MachineInstr &Inst) const { 2948 const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); 2949 2950 switch (Inst.getOpcode()) { 2951 // For target instructions, getOpRegClass just returns the virtual register 2952 // class associated with the operand, so we need to find an equivalent VGPR 2953 // register class in order to move the instruction to the VALU. 2954 case AMDGPU::COPY: 2955 case AMDGPU::PHI: 2956 case AMDGPU::REG_SEQUENCE: 2957 case AMDGPU::INSERT_SUBREG: 2958 if (RI.hasVGPRs(NewDstRC)) 2959 return nullptr; 2960 2961 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); 2962 if (!NewDstRC) 2963 return nullptr; 2964 return NewDstRC; 2965 default: 2966 return NewDstRC; 2967 } 2968 } 2969 2970 // Find the one SGPR operand we are allowed to use. 2971 unsigned SIInstrInfo::findUsedSGPR(const MachineInstr *MI, 2972 int OpIndices[3]) const { 2973 const MCInstrDesc &Desc = MI->getDesc(); 2974 2975 // Find the one SGPR operand we are allowed to use. 2976 // 2977 // First we need to consider the instruction's operand requirements before 2978 // legalizing. Some operands are required to be SGPRs, such as implicit uses 2979 // of VCC, but we are still bound by the constant bus requirement to only use 2980 // one. 2981 // 2982 // If the operand's class is an SGPR, we can never move it. 2983 2984 unsigned SGPRReg = findImplicitSGPRRead(*MI); 2985 if (SGPRReg != AMDGPU::NoRegister) 2986 return SGPRReg; 2987 2988 unsigned UsedSGPRs[3] = { AMDGPU::NoRegister }; 2989 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 2990 2991 for (unsigned i = 0; i < 3; ++i) { 2992 int Idx = OpIndices[i]; 2993 if (Idx == -1) 2994 break; 2995 2996 const MachineOperand &MO = MI->getOperand(Idx); 2997 if (!MO.isReg()) 2998 continue; 2999 3000 // Is this operand statically required to be an SGPR based on the operand 3001 // constraints? 3002 const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass); 3003 bool IsRequiredSGPR = RI.isSGPRClass(OpRC); 3004 if (IsRequiredSGPR) 3005 return MO.getReg(); 3006 3007 // If this could be a VGPR or an SGPR, Check the dynamic register class. 3008 unsigned Reg = MO.getReg(); 3009 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); 3010 if (RI.isSGPRClass(RegRC)) 3011 UsedSGPRs[i] = Reg; 3012 } 3013 3014 // We don't have a required SGPR operand, so we have a bit more freedom in 3015 // selecting operands to move. 3016 3017 // Try to select the most used SGPR. If an SGPR is equal to one of the 3018 // others, we choose that. 3019 // 3020 // e.g. 3021 // V_FMA_F32 v0, s0, s0, s0 -> No moves 3022 // V_FMA_F32 v0, s0, s1, s0 -> Move s1 3023 3024 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should 3025 // prefer those. 3026 3027 if (UsedSGPRs[0] != AMDGPU::NoRegister) { 3028 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) 3029 SGPRReg = UsedSGPRs[0]; 3030 } 3031 3032 if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) { 3033 if (UsedSGPRs[1] == UsedSGPRs[2]) 3034 SGPRReg = UsedSGPRs[1]; 3035 } 3036 3037 return SGPRReg; 3038 } 3039 3040 void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved, 3041 const MachineFunction &MF) const { 3042 int End = getIndirectIndexEnd(MF); 3043 int Begin = getIndirectIndexBegin(MF); 3044 3045 if (End == -1) 3046 return; 3047 3048 3049 for (int Index = Begin; Index <= End; ++Index) 3050 Reserved.set(AMDGPU::VGPR_32RegClass.getRegister(Index)); 3051 3052 for (int Index = std::max(0, Begin - 1); Index <= End; ++Index) 3053 Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index)); 3054 3055 for (int Index = std::max(0, Begin - 2); Index <= End; ++Index) 3056 Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index)); 3057 3058 for (int Index = std::max(0, Begin - 3); Index <= End; ++Index) 3059 Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index)); 3060 3061 for (int Index = std::max(0, Begin - 7); Index <= End; ++Index) 3062 Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index)); 3063 3064 for (int Index = std::max(0, Begin - 15); Index <= End; ++Index) 3065 Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index)); 3066 } 3067 3068 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, 3069 unsigned OperandName) const { 3070 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); 3071 if (Idx == -1) 3072 return nullptr; 3073 3074 return &MI.getOperand(Idx); 3075 } 3076 3077 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { 3078 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; 3079 if (ST.isAmdHsaOS()) { 3080 RsrcDataFormat |= (1ULL << 56); 3081 3082 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 3083 // Set MTYPE = 2 3084 RsrcDataFormat |= (2ULL << 59); 3085 } 3086 3087 return RsrcDataFormat; 3088 } 3089 3090 uint64_t SIInstrInfo::getScratchRsrcWords23() const { 3091 uint64_t Rsrc23 = getDefaultRsrcDataFormat() | 3092 AMDGPU::RSRC_TID_ENABLE | 3093 0xffffffff; // Size; 3094 3095 uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1; 3096 3097 Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT); 3098 3099 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. 3100 // Clear them unless we want a huge stride. 3101 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 3102 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; 3103 3104 return Rsrc23; 3105 } 3106 3107 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr *MI) const { 3108 unsigned Opc = MI->getOpcode(); 3109 3110 return isSMRD(Opc); 3111 } 3112 3113 bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr *MI) const { 3114 unsigned Opc = MI->getOpcode(); 3115 3116 return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc); 3117 } 3118 3119 ArrayRef<std::pair<int, const char *>> 3120 SIInstrInfo::getSerializableTargetIndices() const { 3121 static const std::pair<int, const char *> TargetIndices[] = { 3122 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, 3123 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, 3124 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, 3125 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, 3126 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; 3127 return makeArrayRef(TargetIndices); 3128 } 3129 3130 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The 3131 /// post-RA version of misched uses CreateTargetMIHazardRecognizer. 3132 ScheduleHazardRecognizer * 3133 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 3134 const ScheduleDAG *DAG) const { 3135 return new GCNHazardRecognizer(DAG->MF); 3136 } 3137 3138 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer 3139 /// pass. 3140 ScheduleHazardRecognizer * 3141 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 3142 return new GCNHazardRecognizer(MF); 3143 } 3144