1 //===-- SIInstrInfo.cpp - SI Instruction Information  ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief SI Implementation of TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "SIInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "GCNHazardRecognizer.h"
19 #include "SIDefines.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/ScheduleDAG.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/CodeGen/RegisterScavenging.h"
27 #include "llvm/MC/MCInstrDesc.h"
28 #include "llvm/Support/Debug.h"
29 
30 using namespace llvm;
31 
32 SIInstrInfo::SIInstrInfo(const AMDGPUSubtarget &st)
33     : AMDGPUInstrInfo(st), RI() {}
34 
35 //===----------------------------------------------------------------------===//
36 // TargetInstrInfo callbacks
37 //===----------------------------------------------------------------------===//
38 
39 static unsigned getNumOperandsNoGlue(SDNode *Node) {
40   unsigned N = Node->getNumOperands();
41   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
42     --N;
43   return N;
44 }
45 
46 static SDValue findChainOperand(SDNode *Load) {
47   SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1);
48   assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node");
49   return LastOp;
50 }
51 
52 /// \brief Returns true if both nodes have the same value for the given
53 ///        operand \p Op, or if both nodes do not have this operand.
54 static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
55   unsigned Opc0 = N0->getMachineOpcode();
56   unsigned Opc1 = N1->getMachineOpcode();
57 
58   int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
59   int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
60 
61   if (Op0Idx == -1 && Op1Idx == -1)
62     return true;
63 
64 
65   if ((Op0Idx == -1 && Op1Idx != -1) ||
66       (Op1Idx == -1 && Op0Idx != -1))
67     return false;
68 
69   // getNamedOperandIdx returns the index for the MachineInstr's operands,
70   // which includes the result as the first operand. We are indexing into the
71   // MachineSDNode's operands, so we need to skip the result operand to get
72   // the real index.
73   --Op0Idx;
74   --Op1Idx;
75 
76   return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
77 }
78 
79 bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
80                                                     AliasAnalysis *AA) const {
81   // TODO: The generic check fails for VALU instructions that should be
82   // rematerializable due to implicit reads of exec. We really want all of the
83   // generic logic for this except for this.
84   switch (MI->getOpcode()) {
85   case AMDGPU::V_MOV_B32_e32:
86   case AMDGPU::V_MOV_B32_e64:
87   case AMDGPU::V_MOV_B64_PSEUDO:
88     return true;
89   default:
90     return false;
91   }
92 }
93 
94 bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
95                                           int64_t &Offset0,
96                                           int64_t &Offset1) const {
97   if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
98     return false;
99 
100   unsigned Opc0 = Load0->getMachineOpcode();
101   unsigned Opc1 = Load1->getMachineOpcode();
102 
103   // Make sure both are actually loads.
104   if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
105     return false;
106 
107   if (isDS(Opc0) && isDS(Opc1)) {
108 
109     // FIXME: Handle this case:
110     if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
111       return false;
112 
113     // Check base reg.
114     if (Load0->getOperand(1) != Load1->getOperand(1))
115       return false;
116 
117     // Check chain.
118     if (findChainOperand(Load0) != findChainOperand(Load1))
119       return false;
120 
121     // Skip read2 / write2 variants for simplicity.
122     // TODO: We should report true if the used offsets are adjacent (excluded
123     // st64 versions).
124     if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 ||
125         AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1)
126       return false;
127 
128     Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue();
129     Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue();
130     return true;
131   }
132 
133   if (isSMRD(Opc0) && isSMRD(Opc1)) {
134     assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
135 
136     // Check base reg.
137     if (Load0->getOperand(0) != Load1->getOperand(0))
138       return false;
139 
140     const ConstantSDNode *Load0Offset =
141         dyn_cast<ConstantSDNode>(Load0->getOperand(1));
142     const ConstantSDNode *Load1Offset =
143         dyn_cast<ConstantSDNode>(Load1->getOperand(1));
144 
145     if (!Load0Offset || !Load1Offset)
146       return false;
147 
148     // Check chain.
149     if (findChainOperand(Load0) != findChainOperand(Load1))
150       return false;
151 
152     Offset0 = Load0Offset->getZExtValue();
153     Offset1 = Load1Offset->getZExtValue();
154     return true;
155   }
156 
157   // MUBUF and MTBUF can access the same addresses.
158   if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
159 
160     // MUBUF and MTBUF have vaddr at different indices.
161     if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
162         findChainOperand(Load0) != findChainOperand(Load1) ||
163         !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
164         !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
165       return false;
166 
167     int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
168     int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
169 
170     if (OffIdx0 == -1 || OffIdx1 == -1)
171       return false;
172 
173     // getNamedOperandIdx returns the index for MachineInstrs.  Since they
174     // inlcude the output in the operand list, but SDNodes don't, we need to
175     // subtract the index by one.
176     --OffIdx0;
177     --OffIdx1;
178 
179     SDValue Off0 = Load0->getOperand(OffIdx0);
180     SDValue Off1 = Load1->getOperand(OffIdx1);
181 
182     // The offset might be a FrameIndexSDNode.
183     if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
184       return false;
185 
186     Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
187     Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
188     return true;
189   }
190 
191   return false;
192 }
193 
194 static bool isStride64(unsigned Opc) {
195   switch (Opc) {
196   case AMDGPU::DS_READ2ST64_B32:
197   case AMDGPU::DS_READ2ST64_B64:
198   case AMDGPU::DS_WRITE2ST64_B32:
199   case AMDGPU::DS_WRITE2ST64_B64:
200     return true;
201   default:
202     return false;
203   }
204 }
205 
206 bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
207                                         int64_t &Offset,
208                                         const TargetRegisterInfo *TRI) const {
209   unsigned Opc = LdSt->getOpcode();
210 
211   if (isDS(*LdSt)) {
212     const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
213                                                       AMDGPU::OpName::offset);
214     if (OffsetImm) {
215       // Normal, single offset LDS instruction.
216       const MachineOperand *AddrReg = getNamedOperand(*LdSt,
217                                                       AMDGPU::OpName::addr);
218 
219       BaseReg = AddrReg->getReg();
220       Offset = OffsetImm->getImm();
221       return true;
222     }
223 
224     // The 2 offset instructions use offset0 and offset1 instead. We can treat
225     // these as a load with a single offset if the 2 offsets are consecutive. We
226     // will use this for some partially aligned loads.
227     const MachineOperand *Offset0Imm = getNamedOperand(*LdSt,
228                                                        AMDGPU::OpName::offset0);
229     const MachineOperand *Offset1Imm = getNamedOperand(*LdSt,
230                                                        AMDGPU::OpName::offset1);
231 
232     uint8_t Offset0 = Offset0Imm->getImm();
233     uint8_t Offset1 = Offset1Imm->getImm();
234 
235     if (Offset1 > Offset0 && Offset1 - Offset0 == 1) {
236       // Each of these offsets is in element sized units, so we need to convert
237       // to bytes of the individual reads.
238 
239       unsigned EltSize;
240       if (LdSt->mayLoad())
241         EltSize = getOpRegClass(*LdSt, 0)->getSize() / 2;
242       else {
243         assert(LdSt->mayStore());
244         int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
245         EltSize = getOpRegClass(*LdSt, Data0Idx)->getSize();
246       }
247 
248       if (isStride64(Opc))
249         EltSize *= 64;
250 
251       const MachineOperand *AddrReg = getNamedOperand(*LdSt,
252                                                       AMDGPU::OpName::addr);
253       BaseReg = AddrReg->getReg();
254       Offset = EltSize * Offset0;
255       return true;
256     }
257 
258     return false;
259   }
260 
261   if (isMUBUF(*LdSt) || isMTBUF(*LdSt)) {
262     if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1)
263       return false;
264 
265     const MachineOperand *AddrReg = getNamedOperand(*LdSt,
266                                                     AMDGPU::OpName::vaddr);
267     if (!AddrReg)
268       return false;
269 
270     const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
271                                                       AMDGPU::OpName::offset);
272     BaseReg = AddrReg->getReg();
273     Offset = OffsetImm->getImm();
274     return true;
275   }
276 
277   if (isSMRD(*LdSt)) {
278     const MachineOperand *OffsetImm = getNamedOperand(*LdSt,
279                                                       AMDGPU::OpName::offset);
280     if (!OffsetImm)
281       return false;
282 
283     const MachineOperand *SBaseReg = getNamedOperand(*LdSt,
284                                                      AMDGPU::OpName::sbase);
285     BaseReg = SBaseReg->getReg();
286     Offset = OffsetImm->getImm();
287     return true;
288   }
289 
290   if (isFLAT(*LdSt)) {
291     const MachineOperand *AddrReg = getNamedOperand(*LdSt, AMDGPU::OpName::addr);
292     BaseReg = AddrReg->getReg();
293     Offset = 0;
294     return true;
295   }
296 
297   return false;
298 }
299 
300 bool SIInstrInfo::shouldClusterMemOps(MachineInstr *FirstLdSt,
301                                       MachineInstr *SecondLdSt,
302                                       unsigned NumLoads) const {
303 	const MachineOperand *FirstDst = nullptr;
304 	const MachineOperand *SecondDst = nullptr;
305 
306   if (isDS(*FirstLdSt) && isDS(*SecondLdSt)) {
307     FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::vdst);
308     SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::vdst);
309   }
310 
311   if (isSMRD(*FirstLdSt) && isSMRD(*SecondLdSt)) {
312     FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::sdst);
313     SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::sdst);
314   }
315 
316   if ((isMUBUF(*FirstLdSt) && isMUBUF(*SecondLdSt)) ||
317       (isMTBUF(*FirstLdSt) && isMTBUF(*SecondLdSt))) {
318     FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::vdata);
319     SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::vdata);
320   }
321 
322   if (!FirstDst || !SecondDst)
323     return false;
324 
325   // Try to limit clustering based on the total number of bytes loaded
326   // rather than the number of instructions.  This is done to help reduce
327   // register pressure.  The method used is somewhat inexact, though,
328   // because it assumes that all loads in the cluster will load the
329   // same number of bytes as FirstLdSt.
330 
331   // The unit of this value is bytes.
332   // FIXME: This needs finer tuning.
333   unsigned LoadClusterThreshold = 16;
334 
335   const MachineRegisterInfo &MRI =
336       FirstLdSt->getParent()->getParent()->getRegInfo();
337   const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg());
338 
339   return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold;
340 }
341 
342 void
343 SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
344                          MachineBasicBlock::iterator MI, DebugLoc DL,
345                          unsigned DestReg, unsigned SrcReg,
346                          bool KillSrc) const {
347 
348   // If we are trying to copy to or from SCC, there is a bug somewhere else in
349   // the backend.  While it may be theoretically possible to do this, it should
350   // never be necessary.
351   assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);
352 
353   static const int16_t Sub0_15[] = {
354     AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
355     AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
356     AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
357     AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
358   };
359 
360   static const int16_t Sub0_15_64[] = {
361     AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
362     AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
363     AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
364     AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
365   };
366 
367   static const int16_t Sub0_7[] = {
368     AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
369     AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
370   };
371 
372   static const int16_t Sub0_7_64[] = {
373     AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
374     AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
375   };
376 
377   static const int16_t Sub0_3[] = {
378     AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
379   };
380 
381   static const int16_t Sub0_3_64[] = {
382     AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
383   };
384 
385   static const int16_t Sub0_2[] = {
386     AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2,
387   };
388 
389   static const int16_t Sub0_1[] = {
390     AMDGPU::sub0, AMDGPU::sub1,
391   };
392 
393   unsigned Opcode;
394   ArrayRef<int16_t> SubIndices;
395   bool Forward;
396 
397   if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
398     assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
399     BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
400             .addReg(SrcReg, getKillRegState(KillSrc));
401     return;
402 
403   } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
404     if (DestReg == AMDGPU::VCC) {
405       if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
406         BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
407           .addReg(SrcReg, getKillRegState(KillSrc));
408       } else {
409         // FIXME: Hack until VReg_1 removed.
410         assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
411         BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32))
412           .addImm(0)
413           .addReg(SrcReg, getKillRegState(KillSrc));
414       }
415 
416       return;
417     }
418 
419     assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
420     BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
421             .addReg(SrcReg, getKillRegState(KillSrc));
422     return;
423 
424   } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
425     assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
426     Opcode = AMDGPU::S_MOV_B64;
427     SubIndices = Sub0_3_64;
428 
429   } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
430     assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
431     Opcode = AMDGPU::S_MOV_B64;
432     SubIndices = Sub0_7_64;
433 
434   } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
435     assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
436     Opcode = AMDGPU::S_MOV_B64;
437     SubIndices = Sub0_15_64;
438 
439   } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) {
440     assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
441            AMDGPU::SReg_32RegClass.contains(SrcReg));
442     BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
443             .addReg(SrcReg, getKillRegState(KillSrc));
444     return;
445 
446   } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
447     assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
448            AMDGPU::SReg_64RegClass.contains(SrcReg));
449     Opcode = AMDGPU::V_MOV_B32_e32;
450     SubIndices = Sub0_1;
451 
452   } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
453     assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
454     Opcode = AMDGPU::V_MOV_B32_e32;
455     SubIndices = Sub0_2;
456 
457   } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
458     assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
459            AMDGPU::SReg_128RegClass.contains(SrcReg));
460     Opcode = AMDGPU::V_MOV_B32_e32;
461     SubIndices = Sub0_3;
462 
463   } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
464     assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
465            AMDGPU::SReg_256RegClass.contains(SrcReg));
466     Opcode = AMDGPU::V_MOV_B32_e32;
467     SubIndices = Sub0_7;
468 
469   } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
470     assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
471            AMDGPU::SReg_512RegClass.contains(SrcReg));
472     Opcode = AMDGPU::V_MOV_B32_e32;
473     SubIndices = Sub0_15;
474 
475   } else {
476     llvm_unreachable("Can't copy register!");
477   }
478 
479   if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg))
480     Forward = true;
481   else
482     Forward = false;
483 
484   for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
485     unsigned SubIdx;
486     if (Forward)
487       SubIdx = SubIndices[Idx];
488     else
489       SubIdx = SubIndices[SubIndices.size() - Idx - 1];
490 
491     MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
492       get(Opcode), RI.getSubReg(DestReg, SubIdx));
493 
494     Builder.addReg(RI.getSubReg(SrcReg, SubIdx));
495 
496     if (Idx == SubIndices.size() - 1)
497       Builder.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit);
498 
499     if (Idx == 0)
500       Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
501   }
502 }
503 
504 int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const {
505   const unsigned Opcode = MI.getOpcode();
506 
507   int NewOpc;
508 
509   // Try to map original to commuted opcode
510   NewOpc = AMDGPU::getCommuteRev(Opcode);
511   if (NewOpc != -1)
512     // Check if the commuted (REV) opcode exists on the target.
513     return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
514 
515   // Try to map commuted to original opcode
516   NewOpc = AMDGPU::getCommuteOrig(Opcode);
517   if (NewOpc != -1)
518     // Check if the original (non-REV) opcode exists on the target.
519     return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
520 
521   return Opcode;
522 }
523 
524 unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
525 
526   if (DstRC->getSize() == 4) {
527     return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
528   } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) {
529     return AMDGPU::S_MOV_B64;
530   } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) {
531     return  AMDGPU::V_MOV_B64_PSEUDO;
532   }
533   return AMDGPU::COPY;
534 }
535 
536 static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
537   switch (Size) {
538   case 4:
539     return AMDGPU::SI_SPILL_S32_SAVE;
540   case 8:
541     return AMDGPU::SI_SPILL_S64_SAVE;
542   case 16:
543     return AMDGPU::SI_SPILL_S128_SAVE;
544   case 32:
545     return AMDGPU::SI_SPILL_S256_SAVE;
546   case 64:
547     return AMDGPU::SI_SPILL_S512_SAVE;
548   default:
549     llvm_unreachable("unknown register size");
550   }
551 }
552 
553 static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
554   switch (Size) {
555   case 4:
556     return AMDGPU::SI_SPILL_V32_SAVE;
557   case 8:
558     return AMDGPU::SI_SPILL_V64_SAVE;
559   case 12:
560     return AMDGPU::SI_SPILL_V96_SAVE;
561   case 16:
562     return AMDGPU::SI_SPILL_V128_SAVE;
563   case 32:
564     return AMDGPU::SI_SPILL_V256_SAVE;
565   case 64:
566     return AMDGPU::SI_SPILL_V512_SAVE;
567   default:
568     llvm_unreachable("unknown register size");
569   }
570 }
571 
572 void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
573                                       MachineBasicBlock::iterator MI,
574                                       unsigned SrcReg, bool isKill,
575                                       int FrameIndex,
576                                       const TargetRegisterClass *RC,
577                                       const TargetRegisterInfo *TRI) const {
578   MachineFunction *MF = MBB.getParent();
579   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
580   MachineFrameInfo *FrameInfo = MF->getFrameInfo();
581   DebugLoc DL = MBB.findDebugLoc(MI);
582 
583   unsigned Size = FrameInfo->getObjectSize(FrameIndex);
584   unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
585   MachinePointerInfo PtrInfo
586     = MachinePointerInfo::getFixedStack(*MF, FrameIndex);
587   MachineMemOperand *MMO
588     = MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
589                                Size, Align);
590 
591   if (RI.isSGPRClass(RC)) {
592     MFI->setHasSpilledSGPRs();
593 
594     if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RC->getSize() == 4) {
595       // m0 may not be allowed for readlane.
596       MachineRegisterInfo &MRI = MF->getRegInfo();
597       MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0RegClass);
598     }
599 
600     // We are only allowed to create one new instruction when spilling
601     // registers, so we need to use pseudo instruction for spilling
602     // SGPRs.
603     unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize());
604     BuildMI(MBB, MI, DL, get(Opcode))
605       .addReg(SrcReg)            // src
606       .addFrameIndex(FrameIndex) // frame_idx
607       .addMemOperand(MMO);
608 
609     return;
610   }
611 
612   if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
613     LLVMContext &Ctx = MF->getFunction()->getContext();
614     Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to"
615                   " spill register");
616     BuildMI(MBB, MI, DL, get(AMDGPU::KILL))
617       .addReg(SrcReg);
618 
619     return;
620   }
621 
622   assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
623 
624   unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize());
625   MFI->setHasSpilledVGPRs();
626   BuildMI(MBB, MI, DL, get(Opcode))
627     .addReg(SrcReg)                   // src
628     .addFrameIndex(FrameIndex)        // frame_idx
629     .addReg(MFI->getScratchRSrcReg())       // scratch_rsrc
630     .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
631     .addImm(0)                              // offset
632     .addMemOperand(MMO);
633 }
634 
635 static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
636   switch (Size) {
637   case 4:
638     return AMDGPU::SI_SPILL_S32_RESTORE;
639   case 8:
640     return AMDGPU::SI_SPILL_S64_RESTORE;
641   case 16:
642     return AMDGPU::SI_SPILL_S128_RESTORE;
643   case 32:
644     return AMDGPU::SI_SPILL_S256_RESTORE;
645   case 64:
646     return AMDGPU::SI_SPILL_S512_RESTORE;
647   default:
648     llvm_unreachable("unknown register size");
649   }
650 }
651 
652 static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
653   switch (Size) {
654   case 4:
655     return AMDGPU::SI_SPILL_V32_RESTORE;
656   case 8:
657     return AMDGPU::SI_SPILL_V64_RESTORE;
658   case 12:
659     return AMDGPU::SI_SPILL_V96_RESTORE;
660   case 16:
661     return AMDGPU::SI_SPILL_V128_RESTORE;
662   case 32:
663     return AMDGPU::SI_SPILL_V256_RESTORE;
664   case 64:
665     return AMDGPU::SI_SPILL_V512_RESTORE;
666   default:
667     llvm_unreachable("unknown register size");
668   }
669 }
670 
671 void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
672                                        MachineBasicBlock::iterator MI,
673                                        unsigned DestReg, int FrameIndex,
674                                        const TargetRegisterClass *RC,
675                                        const TargetRegisterInfo *TRI) const {
676   MachineFunction *MF = MBB.getParent();
677   const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
678   MachineFrameInfo *FrameInfo = MF->getFrameInfo();
679   DebugLoc DL = MBB.findDebugLoc(MI);
680   unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
681   unsigned Size = FrameInfo->getObjectSize(FrameIndex);
682 
683   MachinePointerInfo PtrInfo
684     = MachinePointerInfo::getFixedStack(*MF, FrameIndex);
685 
686   MachineMemOperand *MMO = MF->getMachineMemOperand(
687     PtrInfo, MachineMemOperand::MOLoad, Size, Align);
688 
689   if (RI.isSGPRClass(RC)) {
690     // FIXME: Maybe this should not include a memoperand because it will be
691     // lowered to non-memory instructions.
692     unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize());
693 
694     if (TargetRegisterInfo::isVirtualRegister(DestReg) && RC->getSize() == 4) {
695       // m0 may not be allowed for readlane.
696       MachineRegisterInfo &MRI = MF->getRegInfo();
697       MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0RegClass);
698     }
699 
700     BuildMI(MBB, MI, DL, get(Opcode), DestReg)
701       .addFrameIndex(FrameIndex) // frame_idx
702       .addMemOperand(MMO);
703 
704     return;
705   }
706 
707   if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
708     LLVMContext &Ctx = MF->getFunction()->getContext();
709     Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to"
710                   " restore register");
711     BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg);
712 
713     return;
714   }
715 
716   assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
717 
718   unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize());
719   BuildMI(MBB, MI, DL, get(Opcode), DestReg)
720     .addFrameIndex(FrameIndex)        // frame_idx
721     .addReg(MFI->getScratchRSrcReg())       // scratch_rsrc
722     .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
723     .addImm(0)                              // offset
724     .addMemOperand(MMO);
725 }
726 
727 /// \param @Offset Offset in bytes of the FrameIndex being spilled
728 unsigned SIInstrInfo::calculateLDSSpillAddress(MachineBasicBlock &MBB,
729                                                MachineBasicBlock::iterator MI,
730                                                RegScavenger *RS, unsigned TmpReg,
731                                                unsigned FrameOffset,
732                                                unsigned Size) const {
733   MachineFunction *MF = MBB.getParent();
734   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
735   const AMDGPUSubtarget &ST = MF->getSubtarget<AMDGPUSubtarget>();
736   const SIRegisterInfo *TRI =
737       static_cast<const SIRegisterInfo*>(ST.getRegisterInfo());
738   DebugLoc DL = MBB.findDebugLoc(MI);
739   unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF);
740   unsigned WavefrontSize = ST.getWavefrontSize();
741 
742   unsigned TIDReg = MFI->getTIDReg();
743   if (!MFI->hasCalculatedTID()) {
744     MachineBasicBlock &Entry = MBB.getParent()->front();
745     MachineBasicBlock::iterator Insert = Entry.front();
746     DebugLoc DL = Insert->getDebugLoc();
747 
748     TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass);
749     if (TIDReg == AMDGPU::NoRegister)
750       return TIDReg;
751 
752 
753     if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) &&
754         WorkGroupSize > WavefrontSize) {
755 
756       unsigned TIDIGXReg
757         = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X);
758       unsigned TIDIGYReg
759         = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y);
760       unsigned TIDIGZReg
761         = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z);
762       unsigned InputPtrReg =
763           TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
764       for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) {
765         if (!Entry.isLiveIn(Reg))
766           Entry.addLiveIn(Reg);
767       }
768 
769       RS->enterBasicBlock(Entry);
770       // FIXME: Can we scavenge an SReg_64 and access the subregs?
771       unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
772       unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
773       BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0)
774               .addReg(InputPtrReg)
775               .addImm(SI::KernelInputOffsets::NGROUPS_Z);
776       BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1)
777               .addReg(InputPtrReg)
778               .addImm(SI::KernelInputOffsets::NGROUPS_Y);
779 
780       // NGROUPS.X * NGROUPS.Y
781       BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1)
782               .addReg(STmp1)
783               .addReg(STmp0);
784       // (NGROUPS.X * NGROUPS.Y) * TIDIG.X
785       BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg)
786               .addReg(STmp1)
787               .addReg(TIDIGXReg);
788       // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)
789       BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg)
790               .addReg(STmp0)
791               .addReg(TIDIGYReg)
792               .addReg(TIDReg);
793       // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z
794       BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg)
795               .addReg(TIDReg)
796               .addReg(TIDIGZReg);
797     } else {
798       // Get the wave id
799       BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64),
800               TIDReg)
801               .addImm(-1)
802               .addImm(0);
803 
804       BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64),
805               TIDReg)
806               .addImm(-1)
807               .addReg(TIDReg);
808     }
809 
810     BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32),
811             TIDReg)
812             .addImm(2)
813             .addReg(TIDReg);
814     MFI->setTIDReg(TIDReg);
815   }
816 
817   // Add FrameIndex to LDS offset
818   unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize);
819   BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg)
820           .addImm(LDSOffset)
821           .addReg(TIDReg);
822 
823   return TmpReg;
824 }
825 
826 void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB,
827                                    MachineBasicBlock::iterator MI,
828                                    int Count) const {
829   DebugLoc DL = MBB.findDebugLoc(MI);
830   while (Count > 0) {
831     int Arg;
832     if (Count >= 8)
833       Arg = 7;
834     else
835       Arg = Count - 1;
836     Count -= 8;
837     BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP))
838             .addImm(Arg);
839   }
840 }
841 
842 void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
843                              MachineBasicBlock::iterator MI) const {
844   insertWaitStates(MBB, MI, 1);
845 }
846 
847 unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const {
848   switch (MI.getOpcode()) {
849   default: return 1; // FIXME: Do wait states equal cycles?
850 
851   case AMDGPU::S_NOP:
852     return MI.getOperand(0).getImm() + 1;
853   }
854 }
855 
856 bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
857   MachineBasicBlock &MBB = *MI->getParent();
858   DebugLoc DL = MBB.findDebugLoc(MI);
859   switch (MI->getOpcode()) {
860   default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
861 
862   case AMDGPU::SGPR_USE:
863     // This is just a placeholder for register allocation.
864     MI->eraseFromParent();
865     break;
866 
867   case AMDGPU::V_MOV_B64_PSEUDO: {
868     unsigned Dst = MI->getOperand(0).getReg();
869     unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
870     unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
871 
872     const MachineOperand &SrcOp = MI->getOperand(1);
873     // FIXME: Will this work for 64-bit floating point immediates?
874     assert(!SrcOp.isFPImm());
875     if (SrcOp.isImm()) {
876       APInt Imm(64, SrcOp.getImm());
877       BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
878               .addImm(Imm.getLoBits(32).getZExtValue())
879               .addReg(Dst, RegState::Implicit);
880       BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
881               .addImm(Imm.getHiBits(32).getZExtValue())
882               .addReg(Dst, RegState::Implicit);
883     } else {
884       assert(SrcOp.isReg());
885       BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
886               .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
887               .addReg(Dst, RegState::Implicit);
888       BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
889               .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
890               .addReg(Dst, RegState::Implicit);
891     }
892     MI->eraseFromParent();
893     break;
894   }
895 
896   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
897     unsigned Dst = MI->getOperand(0).getReg();
898     unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
899     unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
900     unsigned Src0 = MI->getOperand(1).getReg();
901     unsigned Src1 = MI->getOperand(2).getReg();
902     const MachineOperand &SrcCond = MI->getOperand(3);
903 
904     BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
905         .addReg(RI.getSubReg(Src0, AMDGPU::sub0))
906         .addReg(RI.getSubReg(Src1, AMDGPU::sub0))
907         .addOperand(SrcCond);
908     BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
909         .addReg(RI.getSubReg(Src0, AMDGPU::sub1))
910         .addReg(RI.getSubReg(Src1, AMDGPU::sub1))
911         .addOperand(SrcCond);
912     MI->eraseFromParent();
913     break;
914   }
915 
916   case AMDGPU::SI_CONSTDATA_PTR: {
917     const SIRegisterInfo *TRI =
918         static_cast<const SIRegisterInfo *>(ST.getRegisterInfo());
919     MachineFunction &MF = *MBB.getParent();
920     unsigned Reg = MI->getOperand(0).getReg();
921     unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0);
922     unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1);
923 
924     // Create a bundle so these instructions won't be re-ordered by the
925     // post-RA scheduler.
926     MIBundleBuilder Bundler(MBB, MI);
927     Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
928 
929     // Add 32-bit offset from this instruction to the start of the
930     // constant data.
931     Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo)
932                            .addReg(RegLo)
933                            .addOperand(MI->getOperand(1)));
934     Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
935                            .addReg(RegHi)
936                            .addImm(0));
937 
938     llvm::finalizeBundle(MBB, Bundler.begin());
939 
940     MI->eraseFromParent();
941     break;
942   }
943   }
944   return true;
945 }
946 
947 /// Commutes the operands in the given instruction.
948 /// The commutable operands are specified by their indices OpIdx0 and OpIdx1.
949 ///
950 /// Do not call this method for a non-commutable instruction or for
951 /// non-commutable pair of operand indices OpIdx0 and OpIdx1.
952 /// Even though the instruction is commutable, the method may still
953 /// fail to commute the operands, null pointer is returned in such cases.
954 MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr *MI,
955                                                   bool NewMI,
956                                                   unsigned OpIdx0,
957                                                   unsigned OpIdx1) const {
958   int CommutedOpcode = commuteOpcode(*MI);
959   if (CommutedOpcode == -1)
960     return nullptr;
961 
962   int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
963                                            AMDGPU::OpName::src0);
964   MachineOperand &Src0 = MI->getOperand(Src0Idx);
965   if (!Src0.isReg())
966     return nullptr;
967 
968   int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
969                                            AMDGPU::OpName::src1);
970 
971   if ((OpIdx0 != static_cast<unsigned>(Src0Idx) ||
972        OpIdx1 != static_cast<unsigned>(Src1Idx)) &&
973       (OpIdx0 != static_cast<unsigned>(Src1Idx) ||
974        OpIdx1 != static_cast<unsigned>(Src0Idx)))
975     return nullptr;
976 
977   MachineOperand &Src1 = MI->getOperand(Src1Idx);
978 
979 
980   if (isVOP2(*MI) || isVOPC(*MI)) {
981     const MCInstrDesc &InstrDesc = MI->getDesc();
982     // For VOP2 and VOPC instructions, any operand type is valid to use for
983     // src0.  Make sure we can use the src0 as src1.
984     //
985     // We could be stricter here and only allow commuting if there is a reason
986     // to do so. i.e. if both operands are VGPRs there is no real benefit,
987     // although MachineCSE attempts to find matches by commuting.
988     const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
989     if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0))
990       return nullptr;
991   }
992 
993   if (!Src1.isReg()) {
994     // Allow commuting instructions with Imm operands.
995     if (NewMI || !Src1.isImm() ||
996         (!isVOP2(*MI) && !isVOP3(*MI))) {
997       return nullptr;
998     }
999     // Be sure to copy the source modifiers to the right place.
1000     if (MachineOperand *Src0Mods
1001           = getNamedOperand(*MI, AMDGPU::OpName::src0_modifiers)) {
1002       MachineOperand *Src1Mods
1003         = getNamedOperand(*MI, AMDGPU::OpName::src1_modifiers);
1004 
1005       int Src0ModsVal = Src0Mods->getImm();
1006       if (!Src1Mods && Src0ModsVal != 0)
1007         return nullptr;
1008 
1009       // XXX - This assert might be a lie. It might be useful to have a neg
1010       // modifier with 0.0.
1011       int Src1ModsVal = Src1Mods->getImm();
1012       assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates");
1013 
1014       Src1Mods->setImm(Src0ModsVal);
1015       Src0Mods->setImm(Src1ModsVal);
1016     }
1017 
1018     unsigned Reg = Src0.getReg();
1019     unsigned SubReg = Src0.getSubReg();
1020     if (Src1.isImm())
1021       Src0.ChangeToImmediate(Src1.getImm());
1022     else
1023       llvm_unreachable("Should only have immediates");
1024 
1025     Src1.ChangeToRegister(Reg, false);
1026     Src1.setSubReg(SubReg);
1027   } else {
1028     MI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1);
1029   }
1030 
1031   if (MI)
1032     MI->setDesc(get(CommutedOpcode));
1033 
1034   return MI;
1035 }
1036 
1037 // This needs to be implemented because the source modifiers may be inserted
1038 // between the true commutable operands, and the base
1039 // TargetInstrInfo::commuteInstruction uses it.
1040 bool SIInstrInfo::findCommutedOpIndices(MachineInstr *MI,
1041                                         unsigned &SrcOpIdx0,
1042                                         unsigned &SrcOpIdx1) const {
1043   const MCInstrDesc &MCID = MI->getDesc();
1044   if (!MCID.isCommutable())
1045     return false;
1046 
1047   unsigned Opc = MI->getOpcode();
1048   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
1049   if (Src0Idx == -1)
1050     return false;
1051 
1052   // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on
1053   // immediate. Also, immediate src0 operand is not handled in
1054   // SIInstrInfo::commuteInstruction();
1055   if (!MI->getOperand(Src0Idx).isReg())
1056     return false;
1057 
1058   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
1059   if (Src1Idx == -1)
1060     return false;
1061 
1062   MachineOperand &Src1 = MI->getOperand(Src1Idx);
1063   if (Src1.isImm()) {
1064     // SIInstrInfo::commuteInstruction() does support commuting the immediate
1065     // operand src1 in 2 and 3 operand instructions.
1066     if (!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode()))
1067       return false;
1068   } else if (Src1.isReg()) {
1069     // If any source modifiers are set, the generic instruction commuting won't
1070     // understand how to copy the source modifiers.
1071     if (hasModifiersSet(*MI, AMDGPU::OpName::src0_modifiers) ||
1072         hasModifiersSet(*MI, AMDGPU::OpName::src1_modifiers))
1073       return false;
1074   } else
1075     return false;
1076 
1077   return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
1078 }
1079 
1080 unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) {
1081   switch (Cond) {
1082   case SIInstrInfo::SCC_TRUE:
1083     return AMDGPU::S_CBRANCH_SCC1;
1084   case SIInstrInfo::SCC_FALSE:
1085     return AMDGPU::S_CBRANCH_SCC0;
1086   case SIInstrInfo::VCCNZ:
1087     return AMDGPU::S_CBRANCH_VCCNZ;
1088   case SIInstrInfo::VCCZ:
1089     return AMDGPU::S_CBRANCH_VCCZ;
1090   case SIInstrInfo::EXECNZ:
1091     return AMDGPU::S_CBRANCH_EXECNZ;
1092   case SIInstrInfo::EXECZ:
1093     return AMDGPU::S_CBRANCH_EXECZ;
1094   default:
1095     llvm_unreachable("invalid branch predicate");
1096   }
1097 }
1098 
1099 SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) {
1100   switch (Opcode) {
1101   case AMDGPU::S_CBRANCH_SCC0:
1102     return SCC_FALSE;
1103   case AMDGPU::S_CBRANCH_SCC1:
1104     return SCC_TRUE;
1105   case AMDGPU::S_CBRANCH_VCCNZ:
1106     return VCCNZ;
1107   case AMDGPU::S_CBRANCH_VCCZ:
1108     return VCCZ;
1109   case AMDGPU::S_CBRANCH_EXECNZ:
1110     return EXECNZ;
1111   case AMDGPU::S_CBRANCH_EXECZ:
1112     return EXECZ;
1113   default:
1114     return INVALID_BR;
1115   }
1116 }
1117 
1118 bool SIInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1119                                 MachineBasicBlock *&TBB,
1120                                 MachineBasicBlock *&FBB,
1121                                 SmallVectorImpl<MachineOperand> &Cond,
1122                                 bool AllowModify) const {
1123   MachineBasicBlock::iterator I = MBB.getFirstTerminator();
1124 
1125   if (I == MBB.end())
1126     return false;
1127 
1128   if (I->getOpcode() == AMDGPU::S_BRANCH) {
1129     // Unconditional Branch
1130     TBB = I->getOperand(0).getMBB();
1131     return false;
1132   }
1133 
1134   BranchPredicate Pred = getBranchPredicate(I->getOpcode());
1135   if (Pred == INVALID_BR)
1136     return true;
1137 
1138   MachineBasicBlock *CondBB = I->getOperand(0).getMBB();
1139   Cond.push_back(MachineOperand::CreateImm(Pred));
1140 
1141   ++I;
1142 
1143   if (I == MBB.end()) {
1144     // Conditional branch followed by fall-through.
1145     TBB = CondBB;
1146     return false;
1147   }
1148 
1149   if (I->getOpcode() == AMDGPU::S_BRANCH) {
1150     TBB = CondBB;
1151     FBB = I->getOperand(0).getMBB();
1152     return false;
1153   }
1154 
1155   return true;
1156 }
1157 
1158 unsigned SIInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1159   MachineBasicBlock::iterator I = MBB.getFirstTerminator();
1160 
1161   unsigned Count = 0;
1162   while (I != MBB.end()) {
1163     MachineBasicBlock::iterator Next = std::next(I);
1164     I->eraseFromParent();
1165     ++Count;
1166     I = Next;
1167   }
1168 
1169   return Count;
1170 }
1171 
1172 unsigned SIInstrInfo::InsertBranch(MachineBasicBlock &MBB,
1173                                    MachineBasicBlock *TBB,
1174                                    MachineBasicBlock *FBB,
1175                                    ArrayRef<MachineOperand> Cond,
1176                                    DebugLoc DL) const {
1177 
1178   if (!FBB && Cond.empty()) {
1179     BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
1180       .addMBB(TBB);
1181     return 1;
1182   }
1183 
1184   assert(TBB && Cond[0].isImm());
1185 
1186   unsigned Opcode
1187     = getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm()));
1188 
1189   if (!FBB) {
1190     BuildMI(&MBB, DL, get(Opcode))
1191       .addMBB(TBB);
1192     return 1;
1193   }
1194 
1195   assert(TBB && FBB);
1196 
1197   BuildMI(&MBB, DL, get(Opcode))
1198     .addMBB(TBB);
1199   BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
1200     .addMBB(FBB);
1201 
1202   return 2;
1203 }
1204 
1205 bool SIInstrInfo::ReverseBranchCondition(
1206   SmallVectorImpl<MachineOperand> &Cond) const {
1207   assert(Cond.size() == 1);
1208   Cond[0].setImm(-Cond[0].getImm());
1209   return false;
1210 }
1211 
1212 static void removeModOperands(MachineInstr &MI) {
1213   unsigned Opc = MI.getOpcode();
1214   int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1215                                               AMDGPU::OpName::src0_modifiers);
1216   int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1217                                               AMDGPU::OpName::src1_modifiers);
1218   int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc,
1219                                               AMDGPU::OpName::src2_modifiers);
1220 
1221   MI.RemoveOperand(Src2ModIdx);
1222   MI.RemoveOperand(Src1ModIdx);
1223   MI.RemoveOperand(Src0ModIdx);
1224 }
1225 
1226 // TODO: Maybe this should be removed this and custom fold everything in
1227 // SIFoldOperands?
1228 bool SIInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
1229                                 unsigned Reg, MachineRegisterInfo *MRI) const {
1230   if (!MRI->hasOneNonDBGUse(Reg))
1231     return false;
1232 
1233   unsigned Opc = UseMI->getOpcode();
1234   if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) {
1235     // Don't fold if we are using source modifiers. The new VOP2 instructions
1236     // don't have them.
1237     if (hasModifiersSet(*UseMI, AMDGPU::OpName::src0_modifiers) ||
1238         hasModifiersSet(*UseMI, AMDGPU::OpName::src1_modifiers) ||
1239         hasModifiersSet(*UseMI, AMDGPU::OpName::src2_modifiers)) {
1240       return false;
1241     }
1242 
1243     const MachineOperand &ImmOp = DefMI->getOperand(1);
1244 
1245     // If this is a free constant, there's no reason to do this.
1246     // TODO: We could fold this here instead of letting SIFoldOperands do it
1247     // later.
1248     if (isInlineConstant(ImmOp, 4))
1249       return false;
1250 
1251     MachineOperand *Src0 = getNamedOperand(*UseMI, AMDGPU::OpName::src0);
1252     MachineOperand *Src1 = getNamedOperand(*UseMI, AMDGPU::OpName::src1);
1253     MachineOperand *Src2 = getNamedOperand(*UseMI, AMDGPU::OpName::src2);
1254 
1255     // Multiplied part is the constant: Use v_madmk_f32
1256     // We should only expect these to be on src0 due to canonicalizations.
1257     if (Src0->isReg() && Src0->getReg() == Reg) {
1258       if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
1259         return false;
1260 
1261       if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg())))
1262         return false;
1263 
1264       // We need to swap operands 0 and 1 since madmk constant is at operand 1.
1265 
1266       const int64_t Imm = DefMI->getOperand(1).getImm();
1267 
1268       // FIXME: This would be a lot easier if we could return a new instruction
1269       // instead of having to modify in place.
1270 
1271       // Remove these first since they are at the end.
1272       UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc,
1273                                                       AMDGPU::OpName::omod));
1274       UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc,
1275                                                       AMDGPU::OpName::clamp));
1276 
1277       unsigned Src1Reg = Src1->getReg();
1278       unsigned Src1SubReg = Src1->getSubReg();
1279       Src0->setReg(Src1Reg);
1280       Src0->setSubReg(Src1SubReg);
1281       Src0->setIsKill(Src1->isKill());
1282 
1283       if (Opc == AMDGPU::V_MAC_F32_e64) {
1284         UseMI->untieRegOperand(
1285           AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
1286       }
1287 
1288       Src1->ChangeToImmediate(Imm);
1289 
1290       removeModOperands(*UseMI);
1291       UseMI->setDesc(get(AMDGPU::V_MADMK_F32));
1292 
1293       bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1294       if (DeleteDef)
1295         DefMI->eraseFromParent();
1296 
1297       return true;
1298     }
1299 
1300     // Added part is the constant: Use v_madak_f32
1301     if (Src2->isReg() && Src2->getReg() == Reg) {
1302       // Not allowed to use constant bus for another operand.
1303       // We can however allow an inline immediate as src0.
1304       if (!Src0->isImm() &&
1305           (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg()))))
1306         return false;
1307 
1308       if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
1309         return false;
1310 
1311       const int64_t Imm = DefMI->getOperand(1).getImm();
1312 
1313       // FIXME: This would be a lot easier if we could return a new instruction
1314       // instead of having to modify in place.
1315 
1316       // Remove these first since they are at the end.
1317       UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc,
1318                                                       AMDGPU::OpName::omod));
1319       UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc,
1320                                                       AMDGPU::OpName::clamp));
1321 
1322       if (Opc == AMDGPU::V_MAC_F32_e64) {
1323         UseMI->untieRegOperand(
1324           AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
1325       }
1326 
1327       // ChangingToImmediate adds Src2 back to the instruction.
1328       Src2->ChangeToImmediate(Imm);
1329 
1330       // These come before src2.
1331       removeModOperands(*UseMI);
1332       UseMI->setDesc(get(AMDGPU::V_MADAK_F32));
1333 
1334       bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1335       if (DeleteDef)
1336         DefMI->eraseFromParent();
1337 
1338       return true;
1339     }
1340   }
1341 
1342   return false;
1343 }
1344 
1345 static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
1346                                 int WidthB, int OffsetB) {
1347   int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1348   int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1349   int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1350   return LowOffset + LowWidth <= HighOffset;
1351 }
1352 
1353 bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr *MIa,
1354                                                MachineInstr *MIb) const {
1355   unsigned BaseReg0, BaseReg1;
1356   int64_t Offset0, Offset1;
1357 
1358   if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) &&
1359       getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) {
1360 
1361     if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) {
1362       // FIXME: Handle ds_read2 / ds_write2.
1363       return false;
1364     }
1365     unsigned Width0 = (*MIa->memoperands_begin())->getSize();
1366     unsigned Width1 = (*MIb->memoperands_begin())->getSize();
1367     if (BaseReg0 == BaseReg1 &&
1368         offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) {
1369       return true;
1370     }
1371   }
1372 
1373   return false;
1374 }
1375 
1376 bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
1377                                                   MachineInstr *MIb,
1378                                                   AliasAnalysis *AA) const {
1379   assert(MIa && (MIa->mayLoad() || MIa->mayStore()) &&
1380          "MIa must load from or modify a memory location");
1381   assert(MIb && (MIb->mayLoad() || MIb->mayStore()) &&
1382          "MIb must load from or modify a memory location");
1383 
1384   if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects())
1385     return false;
1386 
1387   // XXX - Can we relax this between address spaces?
1388   if (MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef())
1389     return false;
1390 
1391   // TODO: Should we check the address space from the MachineMemOperand? That
1392   // would allow us to distinguish objects we know don't alias based on the
1393   // underlying address space, even if it was lowered to a different one,
1394   // e.g. private accesses lowered to use MUBUF instructions on a scratch
1395   // buffer.
1396   if (isDS(*MIa)) {
1397     if (isDS(*MIb))
1398       return checkInstOffsetsDoNotOverlap(MIa, MIb);
1399 
1400     return !isFLAT(*MIb);
1401   }
1402 
1403   if (isMUBUF(*MIa) || isMTBUF(*MIa)) {
1404     if (isMUBUF(*MIb) || isMTBUF(*MIb))
1405       return checkInstOffsetsDoNotOverlap(MIa, MIb);
1406 
1407     return !isFLAT(*MIb) && !isSMRD(*MIb);
1408   }
1409 
1410   if (isSMRD(*MIa)) {
1411     if (isSMRD(*MIb))
1412       return checkInstOffsetsDoNotOverlap(MIa, MIb);
1413 
1414     return !isFLAT(*MIb) && !isMUBUF(*MIa) && !isMTBUF(*MIa);
1415   }
1416 
1417   if (isFLAT(*MIa)) {
1418     if (isFLAT(*MIb))
1419       return checkInstOffsetsDoNotOverlap(MIa, MIb);
1420 
1421     return false;
1422   }
1423 
1424   return false;
1425 }
1426 
1427 MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB,
1428                                                 MachineBasicBlock::iterator &MI,
1429                                                 LiveVariables *LV) const {
1430 
1431   switch (MI->getOpcode()) {
1432     default: return nullptr;
1433     case AMDGPU::V_MAC_F32_e64: break;
1434     case AMDGPU::V_MAC_F32_e32: {
1435       const MachineOperand *Src0 = getNamedOperand(*MI, AMDGPU::OpName::src0);
1436       if (Src0->isImm() && !isInlineConstant(*Src0, 4))
1437         return nullptr;
1438       break;
1439     }
1440   }
1441 
1442   const MachineOperand *Dst = getNamedOperand(*MI, AMDGPU::OpName::vdst);
1443   const MachineOperand *Src0 = getNamedOperand(*MI, AMDGPU::OpName::src0);
1444   const MachineOperand *Src1 = getNamedOperand(*MI, AMDGPU::OpName::src1);
1445   const MachineOperand *Src2 = getNamedOperand(*MI, AMDGPU::OpName::src2);
1446 
1447   return BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_MAD_F32))
1448                  .addOperand(*Dst)
1449                  .addImm(0) // Src0 mods
1450                  .addOperand(*Src0)
1451                  .addImm(0) // Src1 mods
1452                  .addOperand(*Src1)
1453                  .addImm(0) // Src mods
1454                  .addOperand(*Src2)
1455                  .addImm(0)  // clamp
1456                  .addImm(0); // omod
1457 }
1458 
1459 bool SIInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1460                                        const MachineBasicBlock *MBB,
1461                                        const MachineFunction &MF) const {
1462   // Target-independent instructions do not have an implicit-use of EXEC, even
1463   // when they operate on VGPRs. Treating EXEC modifications as scheduling
1464   // boundaries prevents incorrect movements of such instructions.
1465   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1466   if (MI->modifiesRegister(AMDGPU::EXEC, TRI))
1467     return true;
1468 
1469   return AMDGPUInstrInfo::isSchedulingBoundary(MI, MBB, MF);
1470 }
1471 
1472 bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
1473   int64_t SVal = Imm.getSExtValue();
1474   if (SVal >= -16 && SVal <= 64)
1475     return true;
1476 
1477   if (Imm.getBitWidth() == 64) {
1478     uint64_t Val = Imm.getZExtValue();
1479     return (DoubleToBits(0.0) == Val) ||
1480            (DoubleToBits(1.0) == Val) ||
1481            (DoubleToBits(-1.0) == Val) ||
1482            (DoubleToBits(0.5) == Val) ||
1483            (DoubleToBits(-0.5) == Val) ||
1484            (DoubleToBits(2.0) == Val) ||
1485            (DoubleToBits(-2.0) == Val) ||
1486            (DoubleToBits(4.0) == Val) ||
1487            (DoubleToBits(-4.0) == Val);
1488   }
1489 
1490   // The actual type of the operand does not seem to matter as long
1491   // as the bits match one of the inline immediate values.  For example:
1492   //
1493   // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
1494   // so it is a legal inline immediate.
1495   //
1496   // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
1497   // floating-point, so it is a legal inline immediate.
1498   uint32_t Val = Imm.getZExtValue();
1499 
1500   return (FloatToBits(0.0f) == Val) ||
1501          (FloatToBits(1.0f) == Val) ||
1502          (FloatToBits(-1.0f) == Val) ||
1503          (FloatToBits(0.5f) == Val) ||
1504          (FloatToBits(-0.5f) == Val) ||
1505          (FloatToBits(2.0f) == Val) ||
1506          (FloatToBits(-2.0f) == Val) ||
1507          (FloatToBits(4.0f) == Val) ||
1508          (FloatToBits(-4.0f) == Val);
1509 }
1510 
1511 bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
1512                                    unsigned OpSize) const {
1513   if (MO.isImm()) {
1514     // MachineOperand provides no way to tell the true operand size, since it
1515     // only records a 64-bit value. We need to know the size to determine if a
1516     // 32-bit floating point immediate bit pattern is legal for an integer
1517     // immediate. It would be for any 32-bit integer operand, but would not be
1518     // for a 64-bit one.
1519 
1520     unsigned BitSize = 8 * OpSize;
1521     return isInlineConstant(APInt(BitSize, MO.getImm(), true));
1522   }
1523 
1524   return false;
1525 }
1526 
1527 bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO,
1528                                     unsigned OpSize) const {
1529   return MO.isImm() && !isInlineConstant(MO, OpSize);
1530 }
1531 
1532 static bool compareMachineOp(const MachineOperand &Op0,
1533                              const MachineOperand &Op1) {
1534   if (Op0.getType() != Op1.getType())
1535     return false;
1536 
1537   switch (Op0.getType()) {
1538   case MachineOperand::MO_Register:
1539     return Op0.getReg() == Op1.getReg();
1540   case MachineOperand::MO_Immediate:
1541     return Op0.getImm() == Op1.getImm();
1542   default:
1543     llvm_unreachable("Didn't expect to be comparing these operand types");
1544   }
1545 }
1546 
1547 bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo,
1548                                  const MachineOperand &MO) const {
1549   const MCOperandInfo &OpInfo = get(MI->getOpcode()).OpInfo[OpNo];
1550 
1551   assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
1552 
1553   if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
1554     return true;
1555 
1556   if (OpInfo.RegClass < 0)
1557     return false;
1558 
1559   unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize();
1560   if (isLiteralConstant(MO, OpSize))
1561     return RI.opCanUseLiteralConstant(OpInfo.OperandType);
1562 
1563   return RI.opCanUseInlineConstant(OpInfo.OperandType);
1564 }
1565 
1566 bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
1567   int Op32 = AMDGPU::getVOPe32(Opcode);
1568   if (Op32 == -1)
1569     return false;
1570 
1571   return pseudoToMCOpcode(Op32) != -1;
1572 }
1573 
1574 bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
1575   // The src0_modifier operand is present on all instructions
1576   // that have modifiers.
1577 
1578   return AMDGPU::getNamedOperandIdx(Opcode,
1579                                     AMDGPU::OpName::src0_modifiers) != -1;
1580 }
1581 
1582 bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
1583                                   unsigned OpName) const {
1584   const MachineOperand *Mods = getNamedOperand(MI, OpName);
1585   return Mods && Mods->getImm();
1586 }
1587 
1588 bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
1589                                   const MachineOperand &MO,
1590                                   unsigned OpSize) const {
1591   // Literal constants use the constant bus.
1592   if (isLiteralConstant(MO, OpSize))
1593     return true;
1594 
1595   if (!MO.isReg() || !MO.isUse())
1596     return false;
1597 
1598   if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1599     return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));
1600 
1601   // FLAT_SCR is just an SGPR pair.
1602   if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR))
1603     return true;
1604 
1605   // EXEC register uses the constant bus.
1606   if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
1607     return true;
1608 
1609   // SGPRs use the constant bus
1610   return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 ||
1611           (!MO.isImplicit() &&
1612            (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
1613             AMDGPU::SGPR_64RegClass.contains(MO.getReg()))));
1614 }
1615 
1616 static unsigned findImplicitSGPRRead(const MachineInstr &MI) {
1617   for (const MachineOperand &MO : MI.implicit_operands()) {
1618     // We only care about reads.
1619     if (MO.isDef())
1620       continue;
1621 
1622     switch (MO.getReg()) {
1623     case AMDGPU::VCC:
1624     case AMDGPU::M0:
1625     case AMDGPU::FLAT_SCR:
1626       return MO.getReg();
1627 
1628     default:
1629       break;
1630     }
1631   }
1632 
1633   return AMDGPU::NoRegister;
1634 }
1635 
1636 bool SIInstrInfo::verifyInstruction(const MachineInstr *MI,
1637                                     StringRef &ErrInfo) const {
1638   uint16_t Opcode = MI->getOpcode();
1639   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1640   int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
1641   int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
1642   int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
1643 
1644   // Make sure the number of operands is correct.
1645   const MCInstrDesc &Desc = get(Opcode);
1646   if (!Desc.isVariadic() &&
1647       Desc.getNumOperands() != MI->getNumExplicitOperands()) {
1648      ErrInfo = "Instruction has wrong number of operands.";
1649      return false;
1650   }
1651 
1652   // Make sure the register classes are correct.
1653   for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
1654     if (MI->getOperand(i).isFPImm()) {
1655       ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
1656                 "all fp values to integers.";
1657       return false;
1658     }
1659 
1660     int RegClass = Desc.OpInfo[i].RegClass;
1661 
1662     switch (Desc.OpInfo[i].OperandType) {
1663     case MCOI::OPERAND_REGISTER:
1664       if (MI->getOperand(i).isImm()) {
1665         ErrInfo = "Illegal immediate value for operand.";
1666         return false;
1667       }
1668       break;
1669     case AMDGPU::OPERAND_REG_IMM32:
1670       break;
1671     case AMDGPU::OPERAND_REG_INLINE_C:
1672       if (isLiteralConstant(MI->getOperand(i),
1673                             RI.getRegClass(RegClass)->getSize())) {
1674         ErrInfo = "Illegal immediate value for operand.";
1675         return false;
1676       }
1677       break;
1678     case MCOI::OPERAND_IMMEDIATE:
1679       // Check if this operand is an immediate.
1680       // FrameIndex operands will be replaced by immediates, so they are
1681       // allowed.
1682       if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFI()) {
1683         ErrInfo = "Expected immediate, but got non-immediate";
1684         return false;
1685       }
1686       // Fall-through
1687     default:
1688       continue;
1689     }
1690 
1691     if (!MI->getOperand(i).isReg())
1692       continue;
1693 
1694     if (RegClass != -1) {
1695       unsigned Reg = MI->getOperand(i).getReg();
1696       if (TargetRegisterInfo::isVirtualRegister(Reg))
1697         continue;
1698 
1699       const TargetRegisterClass *RC = RI.getRegClass(RegClass);
1700       if (!RC->contains(Reg)) {
1701         ErrInfo = "Operand has incorrect register class.";
1702         return false;
1703       }
1704     }
1705   }
1706 
1707 
1708   // Verify VOP*
1709   if (isVOP1(*MI) || isVOP2(*MI) || isVOP3(*MI) || isVOPC(*MI)) {
1710     // Only look at the true operands. Only a real operand can use the constant
1711     // bus, and we don't want to check pseudo-operands like the source modifier
1712     // flags.
1713     const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
1714 
1715     unsigned ConstantBusCount = 0;
1716     unsigned SGPRUsed = findImplicitSGPRRead(*MI);
1717     if (SGPRUsed != AMDGPU::NoRegister)
1718       ++ConstantBusCount;
1719 
1720     for (int OpIdx : OpIndices) {
1721       if (OpIdx == -1)
1722         break;
1723       const MachineOperand &MO = MI->getOperand(OpIdx);
1724       if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) {
1725         if (MO.isReg()) {
1726           if (MO.getReg() != SGPRUsed)
1727             ++ConstantBusCount;
1728           SGPRUsed = MO.getReg();
1729         } else {
1730           ++ConstantBusCount;
1731         }
1732       }
1733     }
1734     if (ConstantBusCount > 1) {
1735       ErrInfo = "VOP* instruction uses the constant bus more than once";
1736       return false;
1737     }
1738   }
1739 
1740   // Verify misc. restrictions on specific instructions.
1741   if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
1742       Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
1743     const MachineOperand &Src0 = MI->getOperand(Src0Idx);
1744     const MachineOperand &Src1 = MI->getOperand(Src1Idx);
1745     const MachineOperand &Src2 = MI->getOperand(Src2Idx);
1746     if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
1747       if (!compareMachineOp(Src0, Src1) &&
1748           !compareMachineOp(Src0, Src2)) {
1749         ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
1750         return false;
1751       }
1752     }
1753   }
1754 
1755   // Make sure we aren't losing exec uses in the td files. This mostly requires
1756   // being careful when using let Uses to try to add other use registers.
1757   if (!isGenericOpcode(Opcode) && !isSALU(Opcode) && !isSMRD(Opcode)) {
1758     if (!MI->hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
1759       ErrInfo = "VALU instruction does not implicitly read exec mask";
1760       return false;
1761     }
1762   }
1763 
1764   return true;
1765 }
1766 
1767 unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
1768   switch (MI.getOpcode()) {
1769   default: return AMDGPU::INSTRUCTION_LIST_END;
1770   case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
1771   case AMDGPU::COPY: return AMDGPU::COPY;
1772   case AMDGPU::PHI: return AMDGPU::PHI;
1773   case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
1774   case AMDGPU::S_MOV_B32:
1775     return MI.getOperand(1).isReg() ?
1776            AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
1777   case AMDGPU::S_ADD_I32:
1778   case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32;
1779   case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
1780   case AMDGPU::S_SUB_I32:
1781   case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32;
1782   case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
1783   case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32;
1784   case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
1785   case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
1786   case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
1787   case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
1788   case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
1789   case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
1790   case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
1791   case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
1792   case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
1793   case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
1794   case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
1795   case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
1796   case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
1797   case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32;
1798   case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32;
1799   case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32;
1800   case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32;
1801   case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
1802   case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
1803   case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
1804   case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
1805   case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
1806   case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
1807   case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
1808   case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
1809   case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
1810   case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
1811   case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32;
1812   case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32;
1813   case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32;
1814   case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32;
1815   case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32;
1816   case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32;
1817   case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
1818   case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
1819   case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
1820   case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
1821   case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
1822   case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
1823   }
1824 }
1825 
1826 bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
1827   return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
1828 }
1829 
1830 const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
1831                                                       unsigned OpNo) const {
1832   const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1833   const MCInstrDesc &Desc = get(MI.getOpcode());
1834   if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
1835       Desc.OpInfo[OpNo].RegClass == -1) {
1836     unsigned Reg = MI.getOperand(OpNo).getReg();
1837 
1838     if (TargetRegisterInfo::isVirtualRegister(Reg))
1839       return MRI.getRegClass(Reg);
1840     return RI.getPhysRegClass(Reg);
1841   }
1842 
1843   unsigned RCID = Desc.OpInfo[OpNo].RegClass;
1844   return RI.getRegClass(RCID);
1845 }
1846 
1847 bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
1848   switch (MI.getOpcode()) {
1849   case AMDGPU::COPY:
1850   case AMDGPU::REG_SEQUENCE:
1851   case AMDGPU::PHI:
1852   case AMDGPU::INSERT_SUBREG:
1853     return RI.hasVGPRs(getOpRegClass(MI, 0));
1854   default:
1855     return RI.hasVGPRs(getOpRegClass(MI, OpNo));
1856   }
1857 }
1858 
1859 void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const {
1860   MachineBasicBlock::iterator I = MI;
1861   MachineBasicBlock *MBB = MI->getParent();
1862   MachineOperand &MO = MI->getOperand(OpIdx);
1863   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1864   unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass;
1865   const TargetRegisterClass *RC = RI.getRegClass(RCID);
1866   unsigned Opcode = AMDGPU::V_MOV_B32_e32;
1867   if (MO.isReg())
1868     Opcode = AMDGPU::COPY;
1869   else if (RI.isSGPRClass(RC))
1870     Opcode = AMDGPU::S_MOV_B32;
1871 
1872 
1873   const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
1874   if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC))
1875     VRC = &AMDGPU::VReg_64RegClass;
1876   else
1877     VRC = &AMDGPU::VGPR_32RegClass;
1878 
1879   unsigned Reg = MRI.createVirtualRegister(VRC);
1880   DebugLoc DL = MBB->findDebugLoc(I);
1881   BuildMI(*MI->getParent(), I, DL, get(Opcode), Reg)
1882     .addOperand(MO);
1883   MO.ChangeToRegister(Reg, false);
1884 }
1885 
1886 unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
1887                                          MachineRegisterInfo &MRI,
1888                                          MachineOperand &SuperReg,
1889                                          const TargetRegisterClass *SuperRC,
1890                                          unsigned SubIdx,
1891                                          const TargetRegisterClass *SubRC)
1892                                          const {
1893   MachineBasicBlock *MBB = MI->getParent();
1894   DebugLoc DL = MI->getDebugLoc();
1895   unsigned SubReg = MRI.createVirtualRegister(SubRC);
1896 
1897   if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
1898     BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
1899       .addReg(SuperReg.getReg(), 0, SubIdx);
1900     return SubReg;
1901   }
1902 
1903   // Just in case the super register is itself a sub-register, copy it to a new
1904   // value so we don't need to worry about merging its subreg index with the
1905   // SubIdx passed to this function. The register coalescer should be able to
1906   // eliminate this extra copy.
1907   unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
1908 
1909   BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
1910     .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
1911 
1912   BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
1913     .addReg(NewSuperReg, 0, SubIdx);
1914 
1915   return SubReg;
1916 }
1917 
1918 MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
1919   MachineBasicBlock::iterator MII,
1920   MachineRegisterInfo &MRI,
1921   MachineOperand &Op,
1922   const TargetRegisterClass *SuperRC,
1923   unsigned SubIdx,
1924   const TargetRegisterClass *SubRC) const {
1925   if (Op.isImm()) {
1926     // XXX - Is there a better way to do this?
1927     if (SubIdx == AMDGPU::sub0)
1928       return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF);
1929     if (SubIdx == AMDGPU::sub1)
1930       return MachineOperand::CreateImm(Op.getImm() >> 32);
1931 
1932     llvm_unreachable("Unhandled register index for immediate");
1933   }
1934 
1935   unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
1936                                        SubIdx, SubRC);
1937   return MachineOperand::CreateReg(SubReg, false);
1938 }
1939 
1940 // Change the order of operands from (0, 1, 2) to (0, 2, 1)
1941 void SIInstrInfo::swapOperands(MachineBasicBlock::iterator Inst) const {
1942   assert(Inst->getNumExplicitOperands() == 3);
1943   MachineOperand Op1 = Inst->getOperand(1);
1944   Inst->RemoveOperand(1);
1945   Inst->addOperand(Op1);
1946 }
1947 
1948 bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
1949                                     const MCOperandInfo &OpInfo,
1950                                     const MachineOperand &MO) const {
1951   if (!MO.isReg())
1952     return false;
1953 
1954   unsigned Reg = MO.getReg();
1955   const TargetRegisterClass *RC =
1956     TargetRegisterInfo::isVirtualRegister(Reg) ?
1957     MRI.getRegClass(Reg) :
1958     RI.getPhysRegClass(Reg);
1959 
1960   const SIRegisterInfo *TRI =
1961       static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
1962   RC = TRI->getSubRegClass(RC, MO.getSubReg());
1963 
1964   // In order to be legal, the common sub-class must be equal to the
1965   // class of the current operand.  For example:
1966   //
1967   // v_mov_b32 s0 ; Operand defined as vsrc_32
1968   //              ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL
1969   //
1970   // s_sendmsg 0, s0 ; Operand defined as m0reg
1971   //                 ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL
1972 
1973   return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC;
1974 }
1975 
1976 bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
1977                                      const MCOperandInfo &OpInfo,
1978                                      const MachineOperand &MO) const {
1979   if (MO.isReg())
1980     return isLegalRegOperand(MRI, OpInfo, MO);
1981 
1982   // Handle non-register types that are treated like immediates.
1983   assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
1984   return true;
1985 }
1986 
1987 bool SIInstrInfo::isOperandLegal(const MachineInstr *MI, unsigned OpIdx,
1988                                  const MachineOperand *MO) const {
1989   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1990   const MCInstrDesc &InstDesc = MI->getDesc();
1991   const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
1992   const TargetRegisterClass *DefinedRC =
1993       OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
1994   if (!MO)
1995     MO = &MI->getOperand(OpIdx);
1996 
1997   if (isVALU(*MI) &&
1998       usesConstantBus(MRI, *MO, DefinedRC->getSize())) {
1999 
2000     RegSubRegPair SGPRUsed;
2001     if (MO->isReg())
2002       SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg());
2003 
2004     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2005       if (i == OpIdx)
2006         continue;
2007       const MachineOperand &Op = MI->getOperand(i);
2008       if (Op.isReg() &&
2009           (Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) &&
2010           usesConstantBus(MRI, Op, getOpSize(*MI, i))) {
2011         return false;
2012       }
2013     }
2014   }
2015 
2016   if (MO->isReg()) {
2017     assert(DefinedRC);
2018     return isLegalRegOperand(MRI, OpInfo, *MO);
2019   }
2020 
2021 
2022   // Handle non-register types that are treated like immediates.
2023   assert(MO->isImm() || MO->isTargetIndex() || MO->isFI());
2024 
2025   if (!DefinedRC) {
2026     // This operand expects an immediate.
2027     return true;
2028   }
2029 
2030   return isImmOperandLegal(MI, OpIdx, *MO);
2031 }
2032 
2033 void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
2034                                        MachineInstr *MI) const {
2035   unsigned Opc = MI->getOpcode();
2036   const MCInstrDesc &InstrDesc = get(Opc);
2037 
2038   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
2039   MachineOperand &Src1 = MI->getOperand(Src1Idx);
2040 
2041   // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
2042   // we need to only have one constant bus use.
2043   //
2044   // Note we do not need to worry about literal constants here. They are
2045   // disabled for the operand type for instructions because they will always
2046   // violate the one constant bus use rule.
2047   bool HasImplicitSGPR = findImplicitSGPRRead(*MI) != AMDGPU::NoRegister;
2048   if (HasImplicitSGPR) {
2049     int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
2050     MachineOperand &Src0 = MI->getOperand(Src0Idx);
2051 
2052     if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg()))
2053       legalizeOpWithMove(MI, Src0Idx);
2054   }
2055 
2056   // VOP2 src0 instructions support all operand types, so we don't need to check
2057   // their legality. If src1 is already legal, we don't need to do anything.
2058   if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1))
2059     return;
2060 
2061   // We do not use commuteInstruction here because it is too aggressive and will
2062   // commute if it is possible. We only want to commute here if it improves
2063   // legality. This can be called a fairly large number of times so don't waste
2064   // compile time pointlessly swapping and checking legality again.
2065   if (HasImplicitSGPR || !MI->isCommutable()) {
2066     legalizeOpWithMove(MI, Src1Idx);
2067     return;
2068   }
2069 
2070   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
2071   MachineOperand &Src0 = MI->getOperand(Src0Idx);
2072 
2073   // If src0 can be used as src1, commuting will make the operands legal.
2074   // Otherwise we have to give up and insert a move.
2075   //
2076   // TODO: Other immediate-like operand kinds could be commuted if there was a
2077   // MachineOperand::ChangeTo* for them.
2078   if ((!Src1.isImm() && !Src1.isReg()) ||
2079       !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) {
2080     legalizeOpWithMove(MI, Src1Idx);
2081     return;
2082   }
2083 
2084   int CommutedOpc = commuteOpcode(*MI);
2085   if (CommutedOpc == -1) {
2086     legalizeOpWithMove(MI, Src1Idx);
2087     return;
2088   }
2089 
2090   MI->setDesc(get(CommutedOpc));
2091 
2092   unsigned Src0Reg = Src0.getReg();
2093   unsigned Src0SubReg = Src0.getSubReg();
2094   bool Src0Kill = Src0.isKill();
2095 
2096   if (Src1.isImm())
2097     Src0.ChangeToImmediate(Src1.getImm());
2098   else if (Src1.isReg()) {
2099     Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill());
2100     Src0.setSubReg(Src1.getSubReg());
2101   } else
2102     llvm_unreachable("Should only have register or immediate operands");
2103 
2104   Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill);
2105   Src1.setSubReg(Src0SubReg);
2106 }
2107 
2108 // Legalize VOP3 operands. Because all operand types are supported for any
2109 // operand, and since literal constants are not allowed and should never be
2110 // seen, we only need to worry about inserting copies if we use multiple SGPR
2111 // operands.
2112 void SIInstrInfo::legalizeOperandsVOP3(
2113   MachineRegisterInfo &MRI,
2114   MachineInstr *MI) const {
2115   unsigned Opc = MI->getOpcode();
2116 
2117   int VOP3Idx[3] = {
2118     AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
2119     AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
2120     AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
2121   };
2122 
2123   // Find the one SGPR operand we are allowed to use.
2124   unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx);
2125 
2126   for (unsigned i = 0; i < 3; ++i) {
2127     int Idx = VOP3Idx[i];
2128     if (Idx == -1)
2129       break;
2130     MachineOperand &MO = MI->getOperand(Idx);
2131 
2132     // We should never see a VOP3 instruction with an illegal immediate operand.
2133     if (!MO.isReg())
2134       continue;
2135 
2136     if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
2137       continue; // VGPRs are legal
2138 
2139     if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
2140       SGPRReg = MO.getReg();
2141       // We can use one SGPR in each VOP3 instruction.
2142       continue;
2143     }
2144 
2145     // If we make it this far, then the operand is not legal and we must
2146     // legalize it.
2147     legalizeOpWithMove(MI, Idx);
2148   }
2149 }
2150 
2151 unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr *UseMI,
2152                                  MachineRegisterInfo &MRI) const {
2153   const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg);
2154   const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
2155   unsigned DstReg = MRI.createVirtualRegister(SRC);
2156   unsigned SubRegs = VRC->getSize() / 4;
2157 
2158   SmallVector<unsigned, 8> SRegs;
2159   for (unsigned i = 0; i < SubRegs; ++i) {
2160     unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2161     BuildMI(*UseMI->getParent(), UseMI, UseMI->getDebugLoc(),
2162             get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
2163             .addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
2164     SRegs.push_back(SGPR);
2165   }
2166 
2167   MachineInstrBuilder MIB = BuildMI(*UseMI->getParent(), UseMI,
2168                                     UseMI->getDebugLoc(),
2169                                     get(AMDGPU::REG_SEQUENCE), DstReg);
2170   for (unsigned i = 0; i < SubRegs; ++i) {
2171     MIB.addReg(SRegs[i]);
2172     MIB.addImm(RI.getSubRegFromChannel(i));
2173   }
2174   return DstReg;
2175 }
2176 
2177 void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
2178                                        MachineInstr *MI) const {
2179 
2180   // If the pointer is store in VGPRs, then we need to move them to
2181   // SGPRs using v_readfirstlane.  This is safe because we only select
2182   // loads with uniform pointers to SMRD instruction so we know the
2183   // pointer value is uniform.
2184   MachineOperand *SBase = getNamedOperand(*MI, AMDGPU::OpName::sbase);
2185   if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) {
2186       unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI);
2187       SBase->setReg(SGPR);
2188   }
2189 }
2190 
2191 void SIInstrInfo::legalizeOperands(MachineInstr *MI) const {
2192   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
2193 
2194   // Legalize VOP2
2195   if (isVOP2(*MI) || isVOPC(*MI)) {
2196     legalizeOperandsVOP2(MRI, MI);
2197     return;
2198   }
2199 
2200   // Legalize VOP3
2201   if (isVOP3(*MI)) {
2202     legalizeOperandsVOP3(MRI, MI);
2203     return;
2204   }
2205 
2206   // Legalize SMRD
2207   if (isSMRD(*MI)) {
2208     legalizeOperandsSMRD(MRI, MI);
2209     return;
2210   }
2211 
2212   // Legalize REG_SEQUENCE and PHI
2213   // The register class of the operands much be the same type as the register
2214   // class of the output.
2215   if (MI->getOpcode() == AMDGPU::PHI) {
2216     const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
2217     for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) {
2218       if (!MI->getOperand(i).isReg() ||
2219           !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg()))
2220         continue;
2221       const TargetRegisterClass *OpRC =
2222               MRI.getRegClass(MI->getOperand(i).getReg());
2223       if (RI.hasVGPRs(OpRC)) {
2224         VRC = OpRC;
2225       } else {
2226         SRC = OpRC;
2227       }
2228     }
2229 
2230     // If any of the operands are VGPR registers, then they all most be
2231     // otherwise we will create illegal VGPR->SGPR copies when legalizing
2232     // them.
2233     if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) {
2234       if (!VRC) {
2235         assert(SRC);
2236         VRC = RI.getEquivalentVGPRClass(SRC);
2237       }
2238       RC = VRC;
2239     } else {
2240       RC = SRC;
2241     }
2242 
2243     // Update all the operands so they have the same type.
2244     for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) {
2245       MachineOperand &Op = MI->getOperand(I);
2246       if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
2247         continue;
2248       unsigned DstReg = MRI.createVirtualRegister(RC);
2249 
2250       // MI is a PHI instruction.
2251       MachineBasicBlock *InsertBB = MI->getOperand(I + 1).getMBB();
2252       MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
2253 
2254       BuildMI(*InsertBB, Insert, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg)
2255         .addOperand(Op);
2256       Op.setReg(DstReg);
2257     }
2258   }
2259 
2260   // REG_SEQUENCE doesn't really require operand legalization, but if one has a
2261   // VGPR dest type and SGPR sources, insert copies so all operands are
2262   // VGPRs. This seems to help operand folding / the register coalescer.
2263   if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) {
2264     MachineBasicBlock *MBB = MI->getParent();
2265     const TargetRegisterClass *DstRC = getOpRegClass(*MI, 0);
2266     if (RI.hasVGPRs(DstRC)) {
2267       // Update all the operands so they are VGPR register classes. These may
2268       // not be the same register class because REG_SEQUENCE supports mixing
2269       // subregister index types e.g. sub0_sub1 + sub2 + sub3
2270       for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) {
2271         MachineOperand &Op = MI->getOperand(I);
2272         if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
2273           continue;
2274 
2275         const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg());
2276         const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
2277         if (VRC == OpRC)
2278           continue;
2279 
2280         unsigned DstReg = MRI.createVirtualRegister(VRC);
2281 
2282         BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg)
2283           .addOperand(Op);
2284 
2285         Op.setReg(DstReg);
2286         Op.setIsKill();
2287       }
2288     }
2289 
2290     return;
2291   }
2292 
2293   // Legalize INSERT_SUBREG
2294   // src0 must have the same register class as dst
2295   if (MI->getOpcode() == AMDGPU::INSERT_SUBREG) {
2296     unsigned Dst = MI->getOperand(0).getReg();
2297     unsigned Src0 = MI->getOperand(1).getReg();
2298     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
2299     const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
2300     if (DstRC != Src0RC) {
2301       MachineBasicBlock &MBB = *MI->getParent();
2302       unsigned NewSrc0 = MRI.createVirtualRegister(DstRC);
2303       BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), NewSrc0)
2304               .addReg(Src0);
2305       MI->getOperand(1).setReg(NewSrc0);
2306     }
2307     return;
2308   }
2309 
2310   // Legalize MIMG
2311   if (isMIMG(*MI)) {
2312     MachineOperand *SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc);
2313     if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) {
2314       unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI);
2315       SRsrc->setReg(SGPR);
2316     }
2317 
2318     MachineOperand *SSamp = getNamedOperand(*MI, AMDGPU::OpName::ssamp);
2319     if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) {
2320       unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI);
2321       SSamp->setReg(SGPR);
2322     }
2323     return;
2324   }
2325 
2326   // Legalize MUBUF* instructions
2327   // FIXME: If we start using the non-addr64 instructions for compute, we
2328   // may need to legalize them here.
2329   int SRsrcIdx =
2330       AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc);
2331   if (SRsrcIdx != -1) {
2332     // We have an MUBUF instruction
2333     MachineOperand *SRsrc = &MI->getOperand(SRsrcIdx);
2334     unsigned SRsrcRC = get(MI->getOpcode()).OpInfo[SRsrcIdx].RegClass;
2335     if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()),
2336                                              RI.getRegClass(SRsrcRC))) {
2337       // The operands are legal.
2338       // FIXME: We may need to legalize operands besided srsrc.
2339       return;
2340     }
2341 
2342     MachineBasicBlock &MBB = *MI->getParent();
2343 
2344     // Extract the ptr from the resource descriptor.
2345     unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc,
2346       &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
2347 
2348     // Create an empty resource descriptor
2349     unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2350     unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2351     unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
2352     unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
2353     uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();
2354 
2355     // Zero64 = 0
2356     BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64),
2357             Zero64)
2358             .addImm(0);
2359 
2360     // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
2361     BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
2362             SRsrcFormatLo)
2363             .addImm(RsrcDataFormat & 0xFFFFFFFF);
2364 
2365     // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
2366     BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32),
2367             SRsrcFormatHi)
2368             .addImm(RsrcDataFormat >> 32);
2369 
2370     // NewSRsrc = {Zero64, SRsrcFormat}
2371     BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc)
2372       .addReg(Zero64)
2373       .addImm(AMDGPU::sub0_sub1)
2374       .addReg(SRsrcFormatLo)
2375       .addImm(AMDGPU::sub2)
2376       .addReg(SRsrcFormatHi)
2377       .addImm(AMDGPU::sub3);
2378 
2379     MachineOperand *VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
2380     unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2381     if (VAddr) {
2382       // This is already an ADDR64 instruction so we need to add the pointer
2383       // extracted from the resource descriptor to the current value of VAddr.
2384       unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2385       unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2386 
2387       // NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0
2388       DebugLoc DL = MI->getDebugLoc();
2389       BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo)
2390         .addReg(SRsrcPtr, 0, AMDGPU::sub0)
2391         .addReg(VAddr->getReg(), 0, AMDGPU::sub0);
2392 
2393       // NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1
2394       BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi)
2395         .addReg(SRsrcPtr, 0, AMDGPU::sub1)
2396         .addReg(VAddr->getReg(), 0, AMDGPU::sub1);
2397 
2398       // NewVaddr = {NewVaddrHi, NewVaddrLo}
2399       BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
2400         .addReg(NewVAddrLo)
2401         .addImm(AMDGPU::sub0)
2402         .addReg(NewVAddrHi)
2403         .addImm(AMDGPU::sub1);
2404     } else {
2405       // This instructions is the _OFFSET variant, so we need to convert it to
2406       // ADDR64.
2407       assert(MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration()
2408              < AMDGPUSubtarget::VOLCANIC_ISLANDS &&
2409              "FIXME: Need to emit flat atomics here");
2410 
2411       MachineOperand *VData = getNamedOperand(*MI, AMDGPU::OpName::vdata);
2412       MachineOperand *Offset = getNamedOperand(*MI, AMDGPU::OpName::offset);
2413       MachineOperand *SOffset = getNamedOperand(*MI, AMDGPU::OpName::soffset);
2414       unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI->getOpcode());
2415 
2416       // Atomics rith return have have an additional tied operand and are
2417       // missing some of the special bits.
2418       MachineOperand *VDataIn = getNamedOperand(*MI, AMDGPU::OpName::vdata_in);
2419       MachineInstr *Addr64;
2420 
2421       if (!VDataIn) {
2422         // Regular buffer load / store.
2423         MachineInstrBuilder MIB
2424           = BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode))
2425           .addOperand(*VData)
2426           .addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
2427           // This will be replaced later
2428           // with the new value of vaddr.
2429           .addOperand(*SRsrc)
2430           .addOperand(*SOffset)
2431           .addOperand(*Offset);
2432 
2433         // Atomics do not have this operand.
2434         if (const MachineOperand *GLC
2435             = getNamedOperand(*MI, AMDGPU::OpName::glc)) {
2436           MIB.addImm(GLC->getImm());
2437         }
2438 
2439         MIB.addImm(getNamedImmOperand(*MI, AMDGPU::OpName::slc));
2440 
2441         if (const MachineOperand *TFE
2442             = getNamedOperand(*MI, AMDGPU::OpName::tfe)) {
2443           MIB.addImm(TFE->getImm());
2444         }
2445 
2446         MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
2447         Addr64 = MIB;
2448       } else {
2449         // Atomics with return.
2450         Addr64 = BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode))
2451           .addOperand(*VData)
2452           .addOperand(*VDataIn)
2453           .addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
2454           // This will be replaced later
2455           // with the new value of vaddr.
2456           .addOperand(*SRsrc)
2457           .addOperand(*SOffset)
2458           .addOperand(*Offset)
2459           .addImm(getNamedImmOperand(*MI, AMDGPU::OpName::slc))
2460           .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
2461       }
2462 
2463       MI->removeFromParent();
2464       MI = Addr64;
2465 
2466       // NewVaddr = {NewVaddrHi, NewVaddrLo}
2467       BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
2468         .addReg(SRsrcPtr, 0, AMDGPU::sub0)
2469         .addImm(AMDGPU::sub0)
2470         .addReg(SRsrcPtr, 0, AMDGPU::sub1)
2471         .addImm(AMDGPU::sub1);
2472 
2473       VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr);
2474       SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc);
2475     }
2476 
2477     // Update the instruction to use NewVaddr
2478     VAddr->setReg(NewVAddr);
2479     // Update the instruction to use NewSRsrc
2480     SRsrc->setReg(NewSRsrc);
2481   }
2482 }
2483 
2484 void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
2485   SmallVector<MachineInstr *, 128> Worklist;
2486   Worklist.push_back(&TopInst);
2487 
2488   while (!Worklist.empty()) {
2489     MachineInstr *Inst = Worklist.pop_back_val();
2490     MachineBasicBlock *MBB = Inst->getParent();
2491     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
2492 
2493     unsigned Opcode = Inst->getOpcode();
2494     unsigned NewOpcode = getVALUOp(*Inst);
2495 
2496     // Handle some special cases
2497     switch (Opcode) {
2498     default:
2499       break;
2500     case AMDGPU::S_AND_B64:
2501       splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64);
2502       Inst->eraseFromParent();
2503       continue;
2504 
2505     case AMDGPU::S_OR_B64:
2506       splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64);
2507       Inst->eraseFromParent();
2508       continue;
2509 
2510     case AMDGPU::S_XOR_B64:
2511       splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64);
2512       Inst->eraseFromParent();
2513       continue;
2514 
2515     case AMDGPU::S_NOT_B64:
2516       splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32);
2517       Inst->eraseFromParent();
2518       continue;
2519 
2520     case AMDGPU::S_BCNT1_I32_B64:
2521       splitScalar64BitBCNT(Worklist, Inst);
2522       Inst->eraseFromParent();
2523       continue;
2524 
2525     case AMDGPU::S_BFE_I64: {
2526       splitScalar64BitBFE(Worklist, Inst);
2527       Inst->eraseFromParent();
2528       continue;
2529     }
2530 
2531     case AMDGPU::S_LSHL_B32:
2532       if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
2533         NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
2534         swapOperands(Inst);
2535       }
2536       break;
2537     case AMDGPU::S_ASHR_I32:
2538       if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
2539         NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
2540         swapOperands(Inst);
2541       }
2542       break;
2543     case AMDGPU::S_LSHR_B32:
2544       if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
2545         NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
2546         swapOperands(Inst);
2547       }
2548       break;
2549     case AMDGPU::S_LSHL_B64:
2550       if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
2551         NewOpcode = AMDGPU::V_LSHLREV_B64;
2552         swapOperands(Inst);
2553       }
2554       break;
2555     case AMDGPU::S_ASHR_I64:
2556       if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
2557         NewOpcode = AMDGPU::V_ASHRREV_I64;
2558         swapOperands(Inst);
2559       }
2560       break;
2561     case AMDGPU::S_LSHR_B64:
2562       if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
2563         NewOpcode = AMDGPU::V_LSHRREV_B64;
2564         swapOperands(Inst);
2565       }
2566       break;
2567 
2568     case AMDGPU::S_ABS_I32:
2569       lowerScalarAbs(Worklist, Inst);
2570       Inst->eraseFromParent();
2571       continue;
2572 
2573     case AMDGPU::S_CBRANCH_SCC0:
2574     case AMDGPU::S_CBRANCH_SCC1:
2575       // Clear unused bits of vcc
2576       BuildMI(*MBB, Inst, Inst->getDebugLoc(), get(AMDGPU::S_AND_B64), AMDGPU::VCC)
2577               .addReg(AMDGPU::EXEC)
2578               .addReg(AMDGPU::VCC);
2579       break;
2580 
2581     case AMDGPU::S_BFE_U64:
2582     case AMDGPU::S_BFM_B64:
2583       llvm_unreachable("Moving this op to VALU not implemented");
2584     }
2585 
2586     if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
2587       // We cannot move this instruction to the VALU, so we should try to
2588       // legalize its operands instead.
2589       legalizeOperands(Inst);
2590       continue;
2591     }
2592 
2593     // Use the new VALU Opcode.
2594     const MCInstrDesc &NewDesc = get(NewOpcode);
2595     Inst->setDesc(NewDesc);
2596 
2597     // Remove any references to SCC. Vector instructions can't read from it, and
2598     // We're just about to add the implicit use / defs of VCC, and we don't want
2599     // both.
2600     for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) {
2601       MachineOperand &Op = Inst->getOperand(i);
2602       if (Op.isReg() && Op.getReg() == AMDGPU::SCC) {
2603         Inst->RemoveOperand(i);
2604         addSCCDefUsersToVALUWorklist(Inst, Worklist);
2605       }
2606     }
2607 
2608     if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
2609       // We are converting these to a BFE, so we need to add the missing
2610       // operands for the size and offset.
2611       unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
2612       Inst->addOperand(MachineOperand::CreateImm(0));
2613       Inst->addOperand(MachineOperand::CreateImm(Size));
2614 
2615     } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
2616       // The VALU version adds the second operand to the result, so insert an
2617       // extra 0 operand.
2618       Inst->addOperand(MachineOperand::CreateImm(0));
2619     }
2620 
2621     Inst->addImplicitDefUseOperands(*Inst->getParent()->getParent());
2622 
2623     if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
2624       const MachineOperand &OffsetWidthOp = Inst->getOperand(2);
2625       // If we need to move this to VGPRs, we need to unpack the second operand
2626       // back into the 2 separate ones for bit offset and width.
2627       assert(OffsetWidthOp.isImm() &&
2628              "Scalar BFE is only implemented for constant width and offset");
2629       uint32_t Imm = OffsetWidthOp.getImm();
2630 
2631       uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
2632       uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
2633       Inst->RemoveOperand(2); // Remove old immediate.
2634       Inst->addOperand(MachineOperand::CreateImm(Offset));
2635       Inst->addOperand(MachineOperand::CreateImm(BitWidth));
2636     }
2637 
2638     bool HasDst = Inst->getOperand(0).isReg() && Inst->getOperand(0).isDef();
2639     unsigned NewDstReg = AMDGPU::NoRegister;
2640     if (HasDst) {
2641       // Update the destination register class.
2642       const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(*Inst);
2643       if (!NewDstRC)
2644         continue;
2645 
2646       unsigned DstReg = Inst->getOperand(0).getReg();
2647       NewDstReg = MRI.createVirtualRegister(NewDstRC);
2648       MRI.replaceRegWith(DstReg, NewDstReg);
2649     }
2650 
2651     // Legalize the operands
2652     legalizeOperands(Inst);
2653 
2654     if (HasDst)
2655      addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist);
2656   }
2657 }
2658 
2659 //===----------------------------------------------------------------------===//
2660 // Indirect addressing callbacks
2661 //===----------------------------------------------------------------------===//
2662 
2663 const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const {
2664   return &AMDGPU::VGPR_32RegClass;
2665 }
2666 
2667 void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist,
2668                                  MachineInstr *Inst) const {
2669   MachineBasicBlock &MBB = *Inst->getParent();
2670   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2671   MachineBasicBlock::iterator MII = Inst;
2672   DebugLoc DL = Inst->getDebugLoc();
2673 
2674   MachineOperand &Dest = Inst->getOperand(0);
2675   MachineOperand &Src = Inst->getOperand(1);
2676   unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2677   unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2678 
2679   BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg)
2680     .addImm(0)
2681     .addReg(Src.getReg());
2682 
2683   BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
2684     .addReg(Src.getReg())
2685     .addReg(TmpReg);
2686 
2687   MRI.replaceRegWith(Dest.getReg(), ResultReg);
2688   addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2689 }
2690 
2691 void SIInstrInfo::splitScalar64BitUnaryOp(
2692   SmallVectorImpl<MachineInstr *> &Worklist,
2693   MachineInstr *Inst,
2694   unsigned Opcode) const {
2695   MachineBasicBlock &MBB = *Inst->getParent();
2696   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2697 
2698   MachineOperand &Dest = Inst->getOperand(0);
2699   MachineOperand &Src0 = Inst->getOperand(1);
2700   DebugLoc DL = Inst->getDebugLoc();
2701 
2702   MachineBasicBlock::iterator MII = Inst;
2703 
2704   const MCInstrDesc &InstDesc = get(Opcode);
2705   const TargetRegisterClass *Src0RC = Src0.isReg() ?
2706     MRI.getRegClass(Src0.getReg()) :
2707     &AMDGPU::SGPR_32RegClass;
2708 
2709   const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
2710 
2711   MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2712                                                        AMDGPU::sub0, Src0SubRC);
2713 
2714   const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
2715   const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
2716   const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
2717 
2718   unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
2719   BuildMI(MBB, MII, DL, InstDesc, DestSub0)
2720     .addOperand(SrcReg0Sub0);
2721 
2722   MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2723                                                        AMDGPU::sub1, Src0SubRC);
2724 
2725   unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
2726   BuildMI(MBB, MII, DL, InstDesc, DestSub1)
2727     .addOperand(SrcReg0Sub1);
2728 
2729   unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
2730   BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
2731     .addReg(DestSub0)
2732     .addImm(AMDGPU::sub0)
2733     .addReg(DestSub1)
2734     .addImm(AMDGPU::sub1);
2735 
2736   MRI.replaceRegWith(Dest.getReg(), FullDestReg);
2737 
2738   // We don't need to legalizeOperands here because for a single operand, src0
2739   // will support any kind of input.
2740 
2741   // Move all users of this moved value.
2742   addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
2743 }
2744 
2745 void SIInstrInfo::splitScalar64BitBinaryOp(
2746   SmallVectorImpl<MachineInstr *> &Worklist,
2747   MachineInstr *Inst,
2748   unsigned Opcode) const {
2749   MachineBasicBlock &MBB = *Inst->getParent();
2750   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2751 
2752   MachineOperand &Dest = Inst->getOperand(0);
2753   MachineOperand &Src0 = Inst->getOperand(1);
2754   MachineOperand &Src1 = Inst->getOperand(2);
2755   DebugLoc DL = Inst->getDebugLoc();
2756 
2757   MachineBasicBlock::iterator MII = Inst;
2758 
2759   const MCInstrDesc &InstDesc = get(Opcode);
2760   const TargetRegisterClass *Src0RC = Src0.isReg() ?
2761     MRI.getRegClass(Src0.getReg()) :
2762     &AMDGPU::SGPR_32RegClass;
2763 
2764   const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
2765   const TargetRegisterClass *Src1RC = Src1.isReg() ?
2766     MRI.getRegClass(Src1.getReg()) :
2767     &AMDGPU::SGPR_32RegClass;
2768 
2769   const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
2770 
2771   MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2772                                                        AMDGPU::sub0, Src0SubRC);
2773   MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
2774                                                        AMDGPU::sub0, Src1SubRC);
2775 
2776   const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
2777   const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
2778   const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
2779 
2780   unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
2781   MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0)
2782     .addOperand(SrcReg0Sub0)
2783     .addOperand(SrcReg1Sub0);
2784 
2785   MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
2786                                                        AMDGPU::sub1, Src0SubRC);
2787   MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
2788                                                        AMDGPU::sub1, Src1SubRC);
2789 
2790   unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
2791   MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1)
2792     .addOperand(SrcReg0Sub1)
2793     .addOperand(SrcReg1Sub1);
2794 
2795   unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
2796   BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
2797     .addReg(DestSub0)
2798     .addImm(AMDGPU::sub0)
2799     .addReg(DestSub1)
2800     .addImm(AMDGPU::sub1);
2801 
2802   MRI.replaceRegWith(Dest.getReg(), FullDestReg);
2803 
2804   // Try to legalize the operands in case we need to swap the order to keep it
2805   // valid.
2806   legalizeOperands(LoHalf);
2807   legalizeOperands(HiHalf);
2808 
2809   // Move all users of this moved vlaue.
2810   addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
2811 }
2812 
2813 void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist,
2814                                        MachineInstr *Inst) const {
2815   MachineBasicBlock &MBB = *Inst->getParent();
2816   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2817 
2818   MachineBasicBlock::iterator MII = Inst;
2819   DebugLoc DL = Inst->getDebugLoc();
2820 
2821   MachineOperand &Dest = Inst->getOperand(0);
2822   MachineOperand &Src = Inst->getOperand(1);
2823 
2824   const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
2825   const TargetRegisterClass *SrcRC = Src.isReg() ?
2826     MRI.getRegClass(Src.getReg()) :
2827     &AMDGPU::SGPR_32RegClass;
2828 
2829   unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2830   unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2831 
2832   const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
2833 
2834   MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
2835                                                       AMDGPU::sub0, SrcSubRC);
2836   MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
2837                                                       AMDGPU::sub1, SrcSubRC);
2838 
2839   BuildMI(MBB, MII, DL, InstDesc, MidReg)
2840     .addOperand(SrcRegSub0)
2841     .addImm(0);
2842 
2843   BuildMI(MBB, MII, DL, InstDesc, ResultReg)
2844     .addOperand(SrcRegSub1)
2845     .addReg(MidReg);
2846 
2847   MRI.replaceRegWith(Dest.getReg(), ResultReg);
2848 
2849   // We don't need to legalize operands here. src0 for etiher instruction can be
2850   // an SGPR, and the second input is unused or determined here.
2851   addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2852 }
2853 
2854 void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist,
2855                                       MachineInstr *Inst) const {
2856   MachineBasicBlock &MBB = *Inst->getParent();
2857   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
2858   MachineBasicBlock::iterator MII = Inst;
2859   DebugLoc DL = Inst->getDebugLoc();
2860 
2861   MachineOperand &Dest = Inst->getOperand(0);
2862   uint32_t Imm = Inst->getOperand(2).getImm();
2863   uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
2864   uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
2865 
2866   (void) Offset;
2867 
2868   // Only sext_inreg cases handled.
2869   assert(Inst->getOpcode() == AMDGPU::S_BFE_I64 &&
2870          BitWidth <= 32 &&
2871          Offset == 0 &&
2872          "Not implemented");
2873 
2874   if (BitWidth < 32) {
2875     unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2876     unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2877     unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2878 
2879     BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo)
2880       .addReg(Inst->getOperand(1).getReg(), 0, AMDGPU::sub0)
2881       .addImm(0)
2882       .addImm(BitWidth);
2883 
2884     BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
2885       .addImm(31)
2886       .addReg(MidRegLo);
2887 
2888     BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
2889       .addReg(MidRegLo)
2890       .addImm(AMDGPU::sub0)
2891       .addReg(MidRegHi)
2892       .addImm(AMDGPU::sub1);
2893 
2894     MRI.replaceRegWith(Dest.getReg(), ResultReg);
2895     addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2896     return;
2897   }
2898 
2899   MachineOperand &Src = Inst->getOperand(1);
2900   unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2901   unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
2902 
2903   BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
2904     .addImm(31)
2905     .addReg(Src.getReg(), 0, AMDGPU::sub0);
2906 
2907   BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
2908     .addReg(Src.getReg(), 0, AMDGPU::sub0)
2909     .addImm(AMDGPU::sub0)
2910     .addReg(TmpReg)
2911     .addImm(AMDGPU::sub1);
2912 
2913   MRI.replaceRegWith(Dest.getReg(), ResultReg);
2914   addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
2915 }
2916 
2917 void SIInstrInfo::addUsersToMoveToVALUWorklist(
2918   unsigned DstReg,
2919   MachineRegisterInfo &MRI,
2920   SmallVectorImpl<MachineInstr *> &Worklist) const {
2921   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg),
2922          E = MRI.use_end(); I != E; ++I) {
2923     MachineInstr &UseMI = *I->getParent();
2924     if (!canReadVGPR(UseMI, I.getOperandNo())) {
2925       Worklist.push_back(&UseMI);
2926     }
2927   }
2928 }
2929 
2930 void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineInstr *SCCDefInst,
2931                               SmallVectorImpl<MachineInstr *> &Worklist) const {
2932   // This assumes that all the users of SCC are in the same block
2933   // as the SCC def.
2934   for (MachineBasicBlock::iterator I = SCCDefInst,
2935        E = SCCDefInst->getParent()->end(); I != E; ++I) {
2936 
2937     // Exit if we find another SCC def.
2938     if (I->findRegisterDefOperandIdx(AMDGPU::SCC) != -1)
2939       return;
2940 
2941     if (I->findRegisterUseOperandIdx(AMDGPU::SCC) != -1)
2942       Worklist.push_back(I);
2943   }
2944 }
2945 
2946 const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
2947   const MachineInstr &Inst) const {
2948   const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0);
2949 
2950   switch (Inst.getOpcode()) {
2951   // For target instructions, getOpRegClass just returns the virtual register
2952   // class associated with the operand, so we need to find an equivalent VGPR
2953   // register class in order to move the instruction to the VALU.
2954   case AMDGPU::COPY:
2955   case AMDGPU::PHI:
2956   case AMDGPU::REG_SEQUENCE:
2957   case AMDGPU::INSERT_SUBREG:
2958     if (RI.hasVGPRs(NewDstRC))
2959       return nullptr;
2960 
2961     NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
2962     if (!NewDstRC)
2963       return nullptr;
2964     return NewDstRC;
2965   default:
2966     return NewDstRC;
2967   }
2968 }
2969 
2970 // Find the one SGPR operand we are allowed to use.
2971 unsigned SIInstrInfo::findUsedSGPR(const MachineInstr *MI,
2972                                    int OpIndices[3]) const {
2973   const MCInstrDesc &Desc = MI->getDesc();
2974 
2975   // Find the one SGPR operand we are allowed to use.
2976   //
2977   // First we need to consider the instruction's operand requirements before
2978   // legalizing. Some operands are required to be SGPRs, such as implicit uses
2979   // of VCC, but we are still bound by the constant bus requirement to only use
2980   // one.
2981   //
2982   // If the operand's class is an SGPR, we can never move it.
2983 
2984   unsigned SGPRReg = findImplicitSGPRRead(*MI);
2985   if (SGPRReg != AMDGPU::NoRegister)
2986     return SGPRReg;
2987 
2988   unsigned UsedSGPRs[3] = { AMDGPU::NoRegister };
2989   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
2990 
2991   for (unsigned i = 0; i < 3; ++i) {
2992     int Idx = OpIndices[i];
2993     if (Idx == -1)
2994       break;
2995 
2996     const MachineOperand &MO = MI->getOperand(Idx);
2997     if (!MO.isReg())
2998       continue;
2999 
3000     // Is this operand statically required to be an SGPR based on the operand
3001     // constraints?
3002     const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass);
3003     bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
3004     if (IsRequiredSGPR)
3005       return MO.getReg();
3006 
3007     // If this could be a VGPR or an SGPR, Check the dynamic register class.
3008     unsigned Reg = MO.getReg();
3009     const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
3010     if (RI.isSGPRClass(RegRC))
3011       UsedSGPRs[i] = Reg;
3012   }
3013 
3014   // We don't have a required SGPR operand, so we have a bit more freedom in
3015   // selecting operands to move.
3016 
3017   // Try to select the most used SGPR. If an SGPR is equal to one of the
3018   // others, we choose that.
3019   //
3020   // e.g.
3021   // V_FMA_F32 v0, s0, s0, s0 -> No moves
3022   // V_FMA_F32 v0, s0, s1, s0 -> Move s1
3023 
3024   // TODO: If some of the operands are 64-bit SGPRs and some 32, we should
3025   // prefer those.
3026 
3027   if (UsedSGPRs[0] != AMDGPU::NoRegister) {
3028     if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
3029       SGPRReg = UsedSGPRs[0];
3030   }
3031 
3032   if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
3033     if (UsedSGPRs[1] == UsedSGPRs[2])
3034       SGPRReg = UsedSGPRs[1];
3035   }
3036 
3037   return SGPRReg;
3038 }
3039 
3040 void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved,
3041                                             const MachineFunction &MF) const {
3042   int End = getIndirectIndexEnd(MF);
3043   int Begin = getIndirectIndexBegin(MF);
3044 
3045   if (End == -1)
3046     return;
3047 
3048 
3049   for (int Index = Begin; Index <= End; ++Index)
3050     Reserved.set(AMDGPU::VGPR_32RegClass.getRegister(Index));
3051 
3052   for (int Index = std::max(0, Begin - 1); Index <= End; ++Index)
3053     Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index));
3054 
3055   for (int Index = std::max(0, Begin - 2); Index <= End; ++Index)
3056     Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index));
3057 
3058   for (int Index = std::max(0, Begin - 3); Index <= End; ++Index)
3059     Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index));
3060 
3061   for (int Index = std::max(0, Begin - 7); Index <= End; ++Index)
3062     Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index));
3063 
3064   for (int Index = std::max(0, Begin - 15); Index <= End; ++Index)
3065     Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index));
3066 }
3067 
3068 MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
3069                                              unsigned OperandName) const {
3070   int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
3071   if (Idx == -1)
3072     return nullptr;
3073 
3074   return &MI.getOperand(Idx);
3075 }
3076 
3077 uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
3078   uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
3079   if (ST.isAmdHsaOS()) {
3080     RsrcDataFormat |= (1ULL << 56);
3081 
3082     if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
3083       // Set MTYPE = 2
3084       RsrcDataFormat |= (2ULL << 59);
3085   }
3086 
3087   return RsrcDataFormat;
3088 }
3089 
3090 uint64_t SIInstrInfo::getScratchRsrcWords23() const {
3091   uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
3092                     AMDGPU::RSRC_TID_ENABLE |
3093                     0xffffffff; // Size;
3094 
3095   uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1;
3096 
3097   Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT);
3098 
3099   // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
3100   // Clear them unless we want a huge stride.
3101   if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
3102     Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
3103 
3104   return Rsrc23;
3105 }
3106 
3107 bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr *MI) const {
3108   unsigned Opc = MI->getOpcode();
3109 
3110   return isSMRD(Opc);
3111 }
3112 
3113 bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr *MI) const {
3114   unsigned Opc = MI->getOpcode();
3115 
3116   return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc);
3117 }
3118 
3119 ArrayRef<std::pair<int, const char *>>
3120 SIInstrInfo::getSerializableTargetIndices() const {
3121   static const std::pair<int, const char *> TargetIndices[] = {
3122       {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
3123       {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
3124       {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
3125       {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
3126       {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
3127   return makeArrayRef(TargetIndices);
3128 }
3129 
3130 /// This is used by the post-RA scheduler (SchedulePostRAList.cpp).  The
3131 /// post-RA version of misched uses CreateTargetMIHazardRecognizer.
3132 ScheduleHazardRecognizer *
3133 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
3134                                             const ScheduleDAG *DAG) const {
3135   return new GCNHazardRecognizer(DAG->MF);
3136 }
3137 
3138 /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
3139 /// pass.
3140 ScheduleHazardRecognizer *
3141 SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
3142   return new GCNHazardRecognizer(MF);
3143 }
3144