1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "SIDefines.h" 22 #include "SIInstrInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "SIRegisterInfo.h" 25 #include "Utils/AMDGPUBaseInfo.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/DebugCounter.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstdint> 49 #include <cstring> 50 #include <memory> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "si-insert-waitcnts" 57 58 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 59 "Force emit s_waitcnt expcnt(0) instrs"); 60 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 61 "Force emit s_waitcnt lgkmcnt(0) instrs"); 62 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 63 "Force emit s_waitcnt vmcnt(0) instrs"); 64 65 static cl::opt<unsigned> ForceEmitZeroFlag( 66 "amdgpu-waitcnt-forcezero", 67 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 68 cl::init(0), cl::Hidden); 69 70 namespace { 71 72 // Class of object that encapsulates latest instruction counter score 73 // associated with the operand. Used for determining whether 74 // s_waitcnt instruction needs to be emited. 75 76 #define CNT_MASK(t) (1u << (t)) 77 78 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 79 80 using RegInterval = std::pair<signed, signed>; 81 82 struct { 83 int32_t VmcntMax; 84 int32_t ExpcntMax; 85 int32_t LgkmcntMax; 86 int32_t NumVGPRsMax; 87 int32_t NumSGPRsMax; 88 } HardwareLimits; 89 90 struct { 91 unsigned VGPR0; 92 unsigned VGPRL; 93 unsigned SGPR0; 94 unsigned SGPRL; 95 } RegisterEncoding; 96 97 enum WaitEventType { 98 VMEM_ACCESS, // vector-memory read & write 99 LDS_ACCESS, // lds read & write 100 GDS_ACCESS, // gds read & write 101 SQ_MESSAGE, // send message 102 SMEM_ACCESS, // scalar-memory read & write 103 EXP_GPR_LOCK, // export holding on its data src 104 GDS_GPR_LOCK, // GDS holding on its data and addr src 105 EXP_POS_ACCESS, // write to export position 106 EXP_PARAM_ACCESS, // write to export parameter 107 VMW_GPR_LOCK, // vector-memory write holding on its data src 108 NUM_WAIT_EVENTS, 109 }; 110 111 // The mapping is: 112 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 113 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 114 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 115 // We reserve a fixed number of VGPR slots in the scoring tables for 116 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 117 enum RegisterMapping { 118 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 119 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 120 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 121 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 122 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 123 }; 124 125 #define ForAllWaitEventType(w) \ 126 for (enum WaitEventType w = (enum WaitEventType)0; \ 127 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ 128 (w) = (enum WaitEventType)((w) + 1)) 129 130 // This is a per-basic-block object that maintains current score brackets 131 // of each wait counter, and a per-register scoreboard for each wait counter. 132 // We also maintain the latest score for every event type that can change the 133 // waitcnt in order to know if there are multiple types of events within 134 // the brackets. When multiple types of event happen in the bracket, 135 // wait count may get decreased out of order, therefore we need to put in 136 // "s_waitcnt 0" before use. 137 class BlockWaitcntBrackets { 138 public: 139 BlockWaitcntBrackets() { 140 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 141 T = (enum InstCounterType)(T + 1)) { 142 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 143 } 144 } 145 146 ~BlockWaitcntBrackets() = default; 147 148 static int32_t getWaitCountMax(InstCounterType T) { 149 switch (T) { 150 case VM_CNT: 151 return HardwareLimits.VmcntMax; 152 case LGKM_CNT: 153 return HardwareLimits.LgkmcntMax; 154 case EXP_CNT: 155 return HardwareLimits.ExpcntMax; 156 default: 157 break; 158 } 159 return 0; 160 } 161 162 void setScoreLB(InstCounterType T, int32_t Val) { 163 assert(T < NUM_INST_CNTS); 164 if (T >= NUM_INST_CNTS) 165 return; 166 ScoreLBs[T] = Val; 167 } 168 169 void setScoreUB(InstCounterType T, int32_t Val) { 170 assert(T < NUM_INST_CNTS); 171 if (T >= NUM_INST_CNTS) 172 return; 173 ScoreUBs[T] = Val; 174 if (T == EXP_CNT) { 175 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); 176 if (ScoreLBs[T] < UB) 177 ScoreLBs[T] = UB; 178 } 179 } 180 181 int32_t getScoreLB(InstCounterType T) { 182 assert(T < NUM_INST_CNTS); 183 if (T >= NUM_INST_CNTS) 184 return 0; 185 return ScoreLBs[T]; 186 } 187 188 int32_t getScoreUB(InstCounterType T) { 189 assert(T < NUM_INST_CNTS); 190 if (T >= NUM_INST_CNTS) 191 return 0; 192 return ScoreUBs[T]; 193 } 194 195 // Mapping from event to counter. 196 InstCounterType eventCounter(WaitEventType E) { 197 switch (E) { 198 case VMEM_ACCESS: 199 return VM_CNT; 200 case LDS_ACCESS: 201 case GDS_ACCESS: 202 case SQ_MESSAGE: 203 case SMEM_ACCESS: 204 return LGKM_CNT; 205 case EXP_GPR_LOCK: 206 case GDS_GPR_LOCK: 207 case VMW_GPR_LOCK: 208 case EXP_POS_ACCESS: 209 case EXP_PARAM_ACCESS: 210 return EXP_CNT; 211 default: 212 llvm_unreachable("unhandled event type"); 213 } 214 return NUM_INST_CNTS; 215 } 216 217 void setRegScore(int GprNo, InstCounterType T, int32_t Val) { 218 if (GprNo < NUM_ALL_VGPRS) { 219 if (GprNo > VgprUB) { 220 VgprUB = GprNo; 221 } 222 VgprScores[T][GprNo] = Val; 223 } else { 224 assert(T == LGKM_CNT); 225 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 226 SgprUB = GprNo - NUM_ALL_VGPRS; 227 } 228 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 229 } 230 } 231 232 int32_t getRegScore(int GprNo, InstCounterType T) { 233 if (GprNo < NUM_ALL_VGPRS) { 234 return VgprScores[T][GprNo]; 235 } 236 return SgprScores[GprNo - NUM_ALL_VGPRS]; 237 } 238 239 void clear() { 240 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 241 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 242 memset(EventUBs, 0, sizeof(EventUBs)); 243 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 244 T = (enum InstCounterType)(T + 1)) { 245 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 246 } 247 memset(SgprScores, 0, sizeof(SgprScores)); 248 } 249 250 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 251 const MachineRegisterInfo *MRI, 252 const SIRegisterInfo *TRI, unsigned OpNo, 253 bool Def) const; 254 255 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 256 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 257 unsigned OpNo, int32_t Val); 258 259 void setWaitAtBeginning() { WaitAtBeginning = true; } 260 void clearWaitAtBeginning() { WaitAtBeginning = false; } 261 bool getWaitAtBeginning() const { return WaitAtBeginning; } 262 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } 263 int32_t getMaxVGPR() const { return VgprUB; } 264 int32_t getMaxSGPR() const { return SgprUB; } 265 266 int32_t getEventUB(enum WaitEventType W) const { 267 assert(W < NUM_WAIT_EVENTS); 268 return EventUBs[W]; 269 } 270 271 bool counterOutOfOrder(InstCounterType T); 272 unsigned int updateByWait(InstCounterType T, int ScoreToWait); 273 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 274 const MachineRegisterInfo *MRI, WaitEventType E, 275 MachineInstr &MI); 276 277 bool hasPendingSMEM() const { 278 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 279 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); 280 } 281 282 bool hasPendingFlat() const { 283 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 284 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 285 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 286 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 287 } 288 289 void setPendingFlat() { 290 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 291 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 292 } 293 294 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } 295 296 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } 297 298 bool getRevisitLoop() const { return RevisitLoop; } 299 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } 300 301 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } 302 int32_t getPostOrder() const { return PostOrder; } 303 304 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } 305 void clearWaitcnt() { Waitcnt = nullptr; } 306 MachineInstr *getWaitcnt() const { return Waitcnt; } 307 308 bool mixedExpTypes() const { return MixedExpTypes; } 309 void setMixedExpTypes(bool MixedExpTypesIn) { 310 MixedExpTypes = MixedExpTypesIn; 311 } 312 313 void print(raw_ostream &); 314 void dump() { print(dbgs()); } 315 316 private: 317 bool WaitAtBeginning = false; 318 bool RevisitLoop = false; 319 bool MixedExpTypes = false; 320 int32_t PostOrder = 0; 321 MachineInstr *Waitcnt = nullptr; 322 int32_t ScoreLBs[NUM_INST_CNTS] = {0}; 323 int32_t ScoreUBs[NUM_INST_CNTS] = {0}; 324 int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; 325 // Remember the last flat memory operation. 326 int32_t LastFlat[NUM_INST_CNTS] = {0}; 327 // wait_cnt scores for every vgpr. 328 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 329 int32_t VgprUB = 0; 330 int32_t SgprUB = 0; 331 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 332 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 333 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 334 }; 335 336 // This is a per-loop-region object that records waitcnt status at the end of 337 // loop footer from the previous iteration. We also maintain an iteration 338 // count to track the number of times the loop has been visited. When it 339 // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 340 // at the end of the loop footer. 341 class LoopWaitcntData { 342 public: 343 LoopWaitcntData() = default; 344 ~LoopWaitcntData() = default; 345 346 void incIterCnt() { IterCnt++; } 347 void resetIterCnt() { IterCnt = 0; } 348 int32_t getIterCnt() { return IterCnt; } 349 350 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } 351 MachineInstr *getWaitcnt() const { return LfWaitcnt; } 352 353 void print() { 354 DEBUG(dbgs() << " iteration " << IterCnt << '\n';); 355 } 356 357 private: 358 // s_waitcnt added at the end of loop footer to stablize wait scores 359 // at the end of the loop footer. 360 MachineInstr *LfWaitcnt = nullptr; 361 // Number of iterations the loop has been visited, not including the initial 362 // walk over. 363 int32_t IterCnt = 0; 364 }; 365 366 class SIInsertWaitcnts : public MachineFunctionPass { 367 private: 368 const SISubtarget *ST = nullptr; 369 const SIInstrInfo *TII = nullptr; 370 const SIRegisterInfo *TRI = nullptr; 371 const MachineRegisterInfo *MRI = nullptr; 372 const MachineLoopInfo *MLI = nullptr; 373 AMDGPU::IsaInfo::IsaVersion IV; 374 AMDGPUAS AMDGPUASI; 375 376 DenseSet<MachineBasicBlock *> BlockVisitedSet; 377 DenseSet<MachineInstr *> TrackedWaitcntSet; 378 DenseSet<MachineInstr *> VCCZBugHandledSet; 379 380 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> 381 BlockWaitcntBracketsMap; 382 383 std::vector<MachineBasicBlock *> BlockWaitcntProcessedSet; 384 385 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; 386 387 std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; 388 389 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 390 // because of amdgpu-waitcnt-forcezero flag 391 bool ForceEmitZeroWaitcnts; 392 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 393 394 public: 395 static char ID; 396 397 SIInsertWaitcnts() : MachineFunctionPass(ID) {} 398 399 bool runOnMachineFunction(MachineFunction &MF) override; 400 401 StringRef getPassName() const override { 402 return "SI insert wait instructions"; 403 } 404 405 void getAnalysisUsage(AnalysisUsage &AU) const override { 406 AU.setPreservesCFG(); 407 AU.addRequired<MachineLoopInfo>(); 408 MachineFunctionPass::getAnalysisUsage(AU); 409 } 410 411 void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { 412 // The waitcnt information is copied because it changes as the block is 413 // traversed. 414 KillWaitBrackets.push_back( 415 llvm::make_unique<BlockWaitcntBrackets>(*Bracket)); 416 } 417 418 bool isForceEmitWaitcnt() const { 419 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 420 T = (enum InstCounterType)(T + 1)) 421 if (ForceEmitWaitcnt[T]) 422 return true; 423 return false; 424 } 425 426 void setForceEmitWaitcnt() { 427 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 428 // For debug builds, get the debug counter info and adjust if need be 429 #ifndef NDEBUG 430 if (DebugCounter::isCounterSet(ForceExpCounter) && 431 DebugCounter::shouldExecute(ForceExpCounter)) { 432 ForceEmitWaitcnt[EXP_CNT] = true; 433 } else { 434 ForceEmitWaitcnt[EXP_CNT] = false; 435 } 436 437 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 438 DebugCounter::shouldExecute(ForceLgkmCounter)) { 439 ForceEmitWaitcnt[LGKM_CNT] = true; 440 } else { 441 ForceEmitWaitcnt[LGKM_CNT] = false; 442 } 443 444 if (DebugCounter::isCounterSet(ForceVMCounter) && 445 DebugCounter::shouldExecute(ForceVMCounter)) { 446 ForceEmitWaitcnt[VM_CNT] = true; 447 } else { 448 ForceEmitWaitcnt[VM_CNT] = false; 449 } 450 #endif // NDEBUG 451 } 452 453 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 454 void generateWaitcntInstBefore(MachineInstr &MI, 455 BlockWaitcntBrackets *ScoreBrackets); 456 void updateEventWaitcntAfter(MachineInstr &Inst, 457 BlockWaitcntBrackets *ScoreBrackets); 458 void mergeInputScoreBrackets(MachineBasicBlock &Block); 459 bool isLoopBottom(const MachineLoop *Loop, const MachineBasicBlock *Block); 460 unsigned countNumBottomBlocks(const MachineLoop *Loop); 461 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); 462 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); 463 bool isWaitcntStronger(unsigned LHS, unsigned RHS); 464 unsigned combineWaitcnt(unsigned LHS, unsigned RHS); 465 }; 466 467 } // end anonymous namespace 468 469 RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, 470 const SIInstrInfo *TII, 471 const MachineRegisterInfo *MRI, 472 const SIRegisterInfo *TRI, 473 unsigned OpNo, 474 bool Def) const { 475 const MachineOperand &Op = MI->getOperand(OpNo); 476 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 477 (Def && !Op.isDef())) 478 return {-1, -1}; 479 480 // A use via a PW operand does not need a waitcnt. 481 // A partial write is not a WAW. 482 assert(!Op.getSubReg() || !Op.isUndef()); 483 484 RegInterval Result; 485 const MachineRegisterInfo &MRIA = *MRI; 486 487 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 488 489 if (TRI->isVGPR(MRIA, Op.getReg())) { 490 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 491 Result.first = Reg - RegisterEncoding.VGPR0; 492 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 493 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 494 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 495 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 496 assert(Result.first >= NUM_ALL_VGPRS && 497 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 498 } 499 // TODO: Handle TTMP 500 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 501 else 502 return {-1, -1}; 503 504 const MachineInstr &MIA = *MI; 505 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 506 unsigned Size = TRI->getRegSizeInBits(*RC); 507 Result.second = Result.first + (Size / 32); 508 509 return Result; 510 } 511 512 void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, 513 const SIInstrInfo *TII, 514 const SIRegisterInfo *TRI, 515 const MachineRegisterInfo *MRI, 516 unsigned OpNo, int32_t Val) { 517 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 518 DEBUG({ 519 const MachineOperand &Opnd = MI->getOperand(OpNo); 520 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 521 }); 522 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 523 setRegScore(RegNo, EXP_CNT, Val); 524 } 525 } 526 527 void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 528 const SIRegisterInfo *TRI, 529 const MachineRegisterInfo *MRI, 530 WaitEventType E, MachineInstr &Inst) { 531 const MachineRegisterInfo &MRIA = *MRI; 532 InstCounterType T = eventCounter(E); 533 int32_t CurrScore = getScoreUB(T) + 1; 534 // EventUB and ScoreUB need to be update regardless if this event changes 535 // the score of a register or not. 536 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 537 EventUBs[E] = CurrScore; 538 setScoreUB(T, CurrScore); 539 540 if (T == EXP_CNT) { 541 // Check for mixed export types. If they are mixed, then a waitcnt exp(0) 542 // is required. 543 if (!MixedExpTypes) { 544 MixedExpTypes = counterOutOfOrder(EXP_CNT); 545 } 546 547 // Put score on the source vgprs. If this is a store, just use those 548 // specific register(s). 549 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 550 // All GDS operations must protect their address register (same as 551 // export.) 552 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 553 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 554 setExpScore( 555 &Inst, TII, TRI, MRI, 556 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 557 CurrScore); 558 } 559 if (Inst.mayStore()) { 560 setExpScore( 561 &Inst, TII, TRI, MRI, 562 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 563 CurrScore); 564 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 565 AMDGPU::OpName::data1) != -1) { 566 setExpScore(&Inst, TII, TRI, MRI, 567 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 568 AMDGPU::OpName::data1), 569 CurrScore); 570 } 571 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 572 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 573 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 574 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 575 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 576 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 577 Inst.getOpcode() != AMDGPU::DS_APPEND && 578 Inst.getOpcode() != AMDGPU::DS_CONSUME && 579 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 580 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 581 const MachineOperand &Op = Inst.getOperand(I); 582 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 583 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 584 } 585 } 586 } 587 } else if (TII->isFLAT(Inst)) { 588 if (Inst.mayStore()) { 589 setExpScore( 590 &Inst, TII, TRI, MRI, 591 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 592 CurrScore); 593 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 594 setExpScore( 595 &Inst, TII, TRI, MRI, 596 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 597 CurrScore); 598 } 599 } else if (TII->isMIMG(Inst)) { 600 if (Inst.mayStore()) { 601 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 602 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 603 setExpScore( 604 &Inst, TII, TRI, MRI, 605 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 606 CurrScore); 607 } 608 } else if (TII->isMTBUF(Inst)) { 609 if (Inst.mayStore()) { 610 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 611 } 612 } else if (TII->isMUBUF(Inst)) { 613 if (Inst.mayStore()) { 614 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 615 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 616 setExpScore( 617 &Inst, TII, TRI, MRI, 618 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 619 CurrScore); 620 } 621 } else { 622 if (TII->isEXP(Inst)) { 623 // For export the destination registers are really temps that 624 // can be used as the actual source after export patching, so 625 // we need to treat them like sources and set the EXP_CNT 626 // score. 627 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 628 MachineOperand &DefMO = Inst.getOperand(I); 629 if (DefMO.isReg() && DefMO.isDef() && 630 TRI->isVGPR(MRIA, DefMO.getReg())) { 631 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 632 CurrScore); 633 } 634 } 635 } 636 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 637 MachineOperand &MO = Inst.getOperand(I); 638 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 639 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 640 } 641 } 642 } 643 #if 0 // TODO: check if this is handled by MUBUF code above. 644 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 645 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 646 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 647 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 648 unsigned OpNo;//TODO: find the OpNo for this operand; 649 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 650 for (signed RegNo = Interval.first; RegNo < Interval.second; 651 ++RegNo) { 652 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 653 } 654 #endif 655 } else { 656 // Match the score to the destination registers. 657 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 658 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 659 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 660 continue; 661 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 662 setRegScore(RegNo, T, CurrScore); 663 } 664 } 665 if (TII->isDS(Inst) && Inst.mayStore()) { 666 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 667 } 668 } 669 } 670 671 void BlockWaitcntBrackets::print(raw_ostream &OS) { 672 OS << '\n'; 673 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 674 T = (enum InstCounterType)(T + 1)) { 675 int LB = getScoreLB(T); 676 int UB = getScoreUB(T); 677 678 switch (T) { 679 case VM_CNT: 680 OS << " VM_CNT(" << UB - LB << "): "; 681 break; 682 case LGKM_CNT: 683 OS << " LGKM_CNT(" << UB - LB << "): "; 684 break; 685 case EXP_CNT: 686 OS << " EXP_CNT(" << UB - LB << "): "; 687 break; 688 default: 689 OS << " UNKNOWN(" << UB - LB << "): "; 690 break; 691 } 692 693 if (LB < UB) { 694 // Print vgpr scores. 695 for (int J = 0; J <= getMaxVGPR(); J++) { 696 int RegScore = getRegScore(J, T); 697 if (RegScore <= LB) 698 continue; 699 int RelScore = RegScore - LB - 1; 700 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 701 OS << RelScore << ":v" << J << " "; 702 } else { 703 OS << RelScore << ":ds "; 704 } 705 } 706 // Also need to print sgpr scores for lgkm_cnt. 707 if (T == LGKM_CNT) { 708 for (int J = 0; J <= getMaxSGPR(); J++) { 709 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 710 if (RegScore <= LB) 711 continue; 712 int RelScore = RegScore - LB - 1; 713 OS << RelScore << ":s" << J << " "; 714 } 715 } 716 } 717 OS << '\n'; 718 } 719 OS << '\n'; 720 } 721 722 unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, 723 int ScoreToWait) { 724 unsigned int NeedWait = 0; 725 if (ScoreToWait == -1) { 726 // The score to wait is unknown. This implies that it was not encountered 727 // during the path of the CFG walk done during the current traversal but 728 // may be seen on a different path. Emit an s_wait counter with a 729 // conservative value of 0 for the counter. 730 NeedWait = CNT_MASK(T); 731 setScoreLB(T, getScoreUB(T)); 732 return NeedWait; 733 } 734 735 // If the score of src_operand falls within the bracket, we need an 736 // s_waitcnt instruction. 737 const int32_t LB = getScoreLB(T); 738 const int32_t UB = getScoreUB(T); 739 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 740 if (T == VM_CNT && hasPendingFlat()) { 741 // If there is a pending FLAT operation, and this is a VM waitcnt, 742 // then we need to force a waitcnt 0 for VM. 743 NeedWait = CNT_MASK(T); 744 setScoreLB(T, getScoreUB(T)); 745 } else if (counterOutOfOrder(T)) { 746 // Counter can get decremented out-of-order when there 747 // are multiple types event in the bracket. Also emit an s_wait counter 748 // with a conservative value of 0 for the counter. 749 NeedWait = CNT_MASK(T); 750 setScoreLB(T, getScoreUB(T)); 751 } else { 752 NeedWait = CNT_MASK(T); 753 setScoreLB(T, ScoreToWait); 754 } 755 } 756 757 return NeedWait; 758 } 759 760 // Where there are multiple types of event in the bracket of a counter, 761 // the decrement may go out of order. 762 bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { 763 switch (T) { 764 case VM_CNT: 765 return false; 766 case LGKM_CNT: { 767 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 768 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { 769 // Scalar memory read always can go out of order. 770 return true; 771 } 772 int NumEventTypes = 0; 773 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && 774 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 775 NumEventTypes++; 776 } 777 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && 778 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 779 NumEventTypes++; 780 } 781 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && 782 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { 783 NumEventTypes++; 784 } 785 if (NumEventTypes <= 1) { 786 return false; 787 } 788 break; 789 } 790 case EXP_CNT: { 791 // If there has been a mixture of export types, then a waitcnt exp(0) is 792 // required. 793 if (MixedExpTypes) 794 return true; 795 int NumEventTypes = 0; 796 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && 797 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 798 NumEventTypes++; 799 } 800 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && 801 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 802 NumEventTypes++; 803 } 804 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && 805 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 806 NumEventTypes++; 807 } 808 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && 809 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { 810 NumEventTypes++; 811 } 812 813 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && 814 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { 815 NumEventTypes++; 816 } 817 818 if (NumEventTypes <= 1) { 819 return false; 820 } 821 break; 822 } 823 default: 824 break; 825 } 826 return true; 827 } 828 829 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 830 false) 831 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 832 false) 833 834 char SIInsertWaitcnts::ID = 0; 835 836 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 837 838 FunctionPass *llvm::createSIInsertWaitcntsPass() { 839 return new SIInsertWaitcnts(); 840 } 841 842 static bool readsVCCZ(const MachineInstr &MI) { 843 unsigned Opc = MI.getOpcode(); 844 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 845 !MI.getOperand(1).isUndef(); 846 } 847 848 /// Given wait count encodings checks if LHS is stronger than RHS. 849 bool SIInsertWaitcnts::isWaitcntStronger(unsigned LHS, unsigned RHS) { 850 if (AMDGPU::decodeVmcnt(IV, LHS) > AMDGPU::decodeVmcnt(IV, RHS)) 851 return false; 852 if (AMDGPU::decodeLgkmcnt(IV, LHS) > AMDGPU::decodeLgkmcnt(IV, RHS)) 853 return false; 854 if (AMDGPU::decodeExpcnt(IV, LHS) > AMDGPU::decodeExpcnt(IV, RHS)) 855 return false; 856 return true; 857 } 858 859 /// Given wait count encodings create a new encoding which is stronger 860 /// or equal to both. 861 unsigned SIInsertWaitcnts::combineWaitcnt(unsigned LHS, unsigned RHS) { 862 unsigned VmCnt = std::min(AMDGPU::decodeVmcnt(IV, LHS), 863 AMDGPU::decodeVmcnt(IV, RHS)); 864 unsigned LgkmCnt = std::min(AMDGPU::decodeLgkmcnt(IV, LHS), 865 AMDGPU::decodeLgkmcnt(IV, RHS)); 866 unsigned ExpCnt = std::min(AMDGPU::decodeExpcnt(IV, LHS), 867 AMDGPU::decodeExpcnt(IV, RHS)); 868 return AMDGPU::encodeWaitcnt(IV, VmCnt, ExpCnt, LgkmCnt); 869 } 870 871 /// Generate s_waitcnt instruction to be placed before cur_Inst. 872 /// Instructions of a given type are returned in order, 873 /// but instructions of different types can complete out of order. 874 /// We rely on this in-order completion 875 /// and simply assign a score to the memory access instructions. 876 /// We keep track of the active "score bracket" to determine 877 /// if an access of a memory read requires an s_waitcnt 878 /// and if so what the value of each counter is. 879 /// The "score bracket" is bound by the lower bound and upper bound 880 /// scores (*_score_LB and *_score_ub respectively). 881 void SIInsertWaitcnts::generateWaitcntInstBefore( 882 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { 883 // To emit, or not to emit - that's the question! 884 // Start with an assumption that there is no need to emit. 885 unsigned int EmitWaitcnt = 0; 886 887 // No need to wait before phi. If a phi-move exists, then the wait should 888 // has been inserted before the move. If a phi-move does not exist, then 889 // wait should be inserted before the real use. The same is true for 890 // sc-merge. It is not a coincident that all these cases correspond to the 891 // instructions that are skipped in the assembling loop. 892 bool NeedLineMapping = false; // TODO: Check on this. 893 894 // ForceEmitZeroWaitcnt: force a single s_waitcnt 0 due to hw bug 895 bool ForceEmitZeroWaitcnt = false; 896 897 setForceEmitWaitcnt(); 898 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 899 900 if (MI.isDebugInstr() && 901 // TODO: any other opcode? 902 !NeedLineMapping) { 903 return; 904 } 905 906 // See if an s_waitcnt is forced at block entry, or is needed at 907 // program end. 908 if (ScoreBrackets->getWaitAtBeginning()) { 909 // Note that we have already cleared the state, so we don't need to update 910 // it. 911 ScoreBrackets->clearWaitAtBeginning(); 912 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 913 T = (enum InstCounterType)(T + 1)) { 914 EmitWaitcnt |= CNT_MASK(T); 915 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 916 } 917 } 918 919 // See if this instruction has a forced S_WAITCNT VM. 920 // TODO: Handle other cases of NeedsWaitcntVmBefore() 921 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 922 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 923 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 924 EmitWaitcnt |= 925 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 926 } 927 928 // All waits must be resolved at call return. 929 // NOTE: this could be improved with knowledge of all call sites or 930 // with knowledge of the called routines. 931 if (MI.getOpcode() == AMDGPU::RETURN || 932 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 933 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 934 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 935 T = (enum InstCounterType)(T + 1)) { 936 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 937 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 938 EmitWaitcnt |= CNT_MASK(T); 939 } 940 } 941 } 942 // Resolve vm waits before gs-done. 943 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 944 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 945 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 946 AMDGPU::SendMsg::ID_GS_DONE)) { 947 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { 948 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 949 EmitWaitcnt |= CNT_MASK(VM_CNT); 950 } 951 } 952 #if 0 // TODO: the following blocks of logic when we have fence. 953 else if (MI.getOpcode() == SC_FENCE) { 954 const unsigned int group_size = 955 context->shader_info->GetMaxThreadGroupSize(); 956 // group_size == 0 means thread group size is unknown at compile time 957 const bool group_is_multi_wave = 958 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 959 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 960 961 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 962 SCRegType src_type = Inst->GetSrcType(i); 963 switch (src_type) { 964 case SCMEM_LDS: 965 if (group_is_multi_wave || 966 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 967 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 968 ScoreBrackets->getScoreUB(LGKM_CNT)); 969 // LDS may have to wait for VM_CNT after buffer load to LDS 970 if (target_info->HasBufferLoadToLDS()) { 971 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 972 ScoreBrackets->getScoreUB(VM_CNT)); 973 } 974 } 975 break; 976 977 case SCMEM_GDS: 978 if (group_is_multi_wave || fence_is_global) { 979 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 980 ScoreBrackets->getScoreUB(EXP_CNT)); 981 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 982 ScoreBrackets->getScoreUB(LGKM_CNT)); 983 } 984 break; 985 986 case SCMEM_UAV: 987 case SCMEM_TFBUF: 988 case SCMEM_RING: 989 case SCMEM_SCATTER: 990 if (group_is_multi_wave || fence_is_global) { 991 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 992 ScoreBrackets->getScoreUB(EXP_CNT)); 993 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 994 ScoreBrackets->getScoreUB(VM_CNT)); 995 } 996 break; 997 998 case SCMEM_SCRATCH: 999 default: 1000 break; 1001 } 1002 } 1003 } 1004 #endif 1005 1006 // Export & GDS instructions do not read the EXEC mask until after the export 1007 // is granted (which can occur well after the instruction is issued). 1008 // The shader program must flush all EXP operations on the export-count 1009 // before overwriting the EXEC mask. 1010 else { 1011 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1012 // Export and GDS are tracked individually, either may trigger a waitcnt 1013 // for EXEC. 1014 EmitWaitcnt |= ScoreBrackets->updateByWait( 1015 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); 1016 EmitWaitcnt |= ScoreBrackets->updateByWait( 1017 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); 1018 EmitWaitcnt |= ScoreBrackets->updateByWait( 1019 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); 1020 EmitWaitcnt |= ScoreBrackets->updateByWait( 1021 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); 1022 } 1023 1024 #if 0 // TODO: the following code to handle CALL. 1025 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 1026 // However, there is a problem with EXP_CNT, because the call cannot 1027 // easily tell if a register is used in the function, and if it did, then 1028 // the referring instruction would have to have an S_WAITCNT, which is 1029 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 1030 // before the call. 1031 if (MI.getOpcode() == SC_CALL) { 1032 if (ScoreBrackets->getScoreUB(EXP_CNT) > 1033 ScoreBrackets->getScoreLB(EXP_CNT)) { 1034 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1035 EmitWaitcnt |= CNT_MASK(EXP_CNT); 1036 } 1037 } 1038 #endif 1039 1040 // FIXME: Should not be relying on memoperands. 1041 // Look at the source operands of every instruction to see if 1042 // any of them results from a previous memory operation that affects 1043 // its current usage. If so, an s_waitcnt instruction needs to be 1044 // emitted. 1045 // If the source operand was defined by a load, add the s_waitcnt 1046 // instruction. 1047 for (const MachineMemOperand *Memop : MI.memoperands()) { 1048 unsigned AS = Memop->getAddrSpace(); 1049 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1050 continue; 1051 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1052 // VM_CNT is only relevant to vgpr or LDS. 1053 EmitWaitcnt |= ScoreBrackets->updateByWait( 1054 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1055 } 1056 1057 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1058 const MachineOperand &Op = MI.getOperand(I); 1059 const MachineRegisterInfo &MRIA = *MRI; 1060 RegInterval Interval = 1061 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); 1062 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1063 if (TRI->isVGPR(MRIA, Op.getReg())) { 1064 // VM_CNT is only relevant to vgpr or LDS. 1065 EmitWaitcnt |= ScoreBrackets->updateByWait( 1066 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1067 } 1068 EmitWaitcnt |= ScoreBrackets->updateByWait( 1069 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1070 } 1071 } 1072 // End of for loop that looks at all source operands to decide vm_wait_cnt 1073 // and lgk_wait_cnt. 1074 1075 // Two cases are handled for destination operands: 1076 // 1) If the destination operand was defined by a load, add the s_waitcnt 1077 // instruction to guarantee the right WAW order. 1078 // 2) If a destination operand that was used by a recent export/store ins, 1079 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1080 if (MI.mayStore()) { 1081 // FIXME: Should not be relying on memoperands. 1082 for (const MachineMemOperand *Memop : MI.memoperands()) { 1083 unsigned AS = Memop->getAddrSpace(); 1084 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1085 continue; 1086 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1087 EmitWaitcnt |= ScoreBrackets->updateByWait( 1088 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1089 EmitWaitcnt |= ScoreBrackets->updateByWait( 1090 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1091 } 1092 } 1093 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1094 MachineOperand &Def = MI.getOperand(I); 1095 const MachineRegisterInfo &MRIA = *MRI; 1096 RegInterval Interval = 1097 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); 1098 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1099 if (TRI->isVGPR(MRIA, Def.getReg())) { 1100 EmitWaitcnt |= ScoreBrackets->updateByWait( 1101 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1102 EmitWaitcnt |= ScoreBrackets->updateByWait( 1103 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1104 } 1105 EmitWaitcnt |= ScoreBrackets->updateByWait( 1106 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1107 } 1108 } // End of for loop that looks at all dest operands. 1109 } 1110 1111 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1112 // occurs before the instruction. Doing it here prevents any additional 1113 // S_WAITCNTs from being emitted if the instruction was marked as 1114 // requiring a WAITCNT beforehand. 1115 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1116 !ST->hasAutoWaitcntBeforeBarrier()) { 1117 EmitWaitcnt |= 1118 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1119 EmitWaitcnt |= ScoreBrackets->updateByWait( 1120 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1121 EmitWaitcnt |= ScoreBrackets->updateByWait( 1122 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); 1123 } 1124 1125 // TODO: Remove this work-around, enable the assert for Bug 457939 1126 // after fixing the scheduler. Also, the Shader Compiler code is 1127 // independent of target. 1128 if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { 1129 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1130 ScoreBrackets->getScoreUB(LGKM_CNT) && 1131 ScoreBrackets->hasPendingSMEM()) { 1132 // Wait on everything, not just LGKM. vccz reads usually come from 1133 // terminators, and we always wait on everything at the end of the 1134 // block, so if we only wait on LGKM here, we might end up with 1135 // another s_waitcnt inserted right after this if there are non-LGKM 1136 // instructions still outstanding. 1137 // FIXME: this is too conservative / the comment is wrong. 1138 // We don't wait on everything at the end of the block and we combine 1139 // waitcnts so we should never have back-to-back waitcnts. 1140 ForceEmitZeroWaitcnt = true; 1141 EmitWaitcnt = true; 1142 } 1143 } 1144 1145 // Does this operand processing indicate s_wait counter update? 1146 if (EmitWaitcnt || IsForceEmitWaitcnt) { 1147 int CntVal[NUM_INST_CNTS]; 1148 1149 bool UseDefaultWaitcntStrategy = true; 1150 if (ForceEmitZeroWaitcnt || ForceEmitZeroWaitcnts) { 1151 // Force all waitcnts to 0. 1152 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1153 T = (enum InstCounterType)(T + 1)) { 1154 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1155 } 1156 CntVal[VM_CNT] = 0; 1157 CntVal[EXP_CNT] = 0; 1158 CntVal[LGKM_CNT] = 0; 1159 UseDefaultWaitcntStrategy = false; 1160 } 1161 1162 if (UseDefaultWaitcntStrategy) { 1163 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1164 T = (enum InstCounterType)(T + 1)) { 1165 if (EmitWaitcnt & CNT_MASK(T)) { 1166 int Delta = 1167 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); 1168 int MaxDelta = ScoreBrackets->getWaitCountMax(T); 1169 if (Delta >= MaxDelta) { 1170 Delta = -1; 1171 if (T != EXP_CNT) { 1172 ScoreBrackets->setScoreLB( 1173 T, ScoreBrackets->getScoreUB(T) - MaxDelta); 1174 } 1175 EmitWaitcnt &= ~CNT_MASK(T); 1176 } 1177 CntVal[T] = Delta; 1178 } else { 1179 // If we are not waiting for a particular counter then encode 1180 // it as -1 which means "don't care." 1181 CntVal[T] = -1; 1182 } 1183 } 1184 } 1185 1186 // If we are not waiting on any counter we can skip the wait altogether. 1187 if (EmitWaitcnt != 0 || IsForceEmitWaitcnt) { 1188 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); 1189 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); 1190 if (!OldWaitcnt || 1191 (AMDGPU::decodeVmcnt(IV, Imm) != 1192 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || 1193 (AMDGPU::decodeExpcnt(IV, Imm) != 1194 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || 1195 (AMDGPU::decodeLgkmcnt(IV, Imm) != 1196 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { 1197 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); 1198 if (ContainingLoop) { 1199 MachineBasicBlock *TBB = ContainingLoop->getHeader(); 1200 BlockWaitcntBrackets *ScoreBracket = 1201 BlockWaitcntBracketsMap[TBB].get(); 1202 if (!ScoreBracket) { 1203 assert(!BlockVisitedSet.count(TBB)); 1204 BlockWaitcntBracketsMap[TBB] = 1205 llvm::make_unique<BlockWaitcntBrackets>(); 1206 ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); 1207 } 1208 ScoreBracket->setRevisitLoop(true); 1209 DEBUG(dbgs() << "set-revisit: Block" 1210 << ContainingLoop->getHeader()->getNumber() << '\n';); 1211 } 1212 } 1213 1214 // Update an existing waitcount, or make a new one. 1215 unsigned Enc = AMDGPU::encodeWaitcnt(IV, 1216 ForceEmitWaitcnt[VM_CNT] ? 0 : CntVal[VM_CNT], 1217 ForceEmitWaitcnt[EXP_CNT] ? 0 : CntVal[EXP_CNT], 1218 ForceEmitWaitcnt[LGKM_CNT] ? 0 : CntVal[LGKM_CNT]); 1219 // We don't remove waitcnts that existed prior to the waitcnt 1220 // pass. Check if the waitcnt to-be-inserted can be avoided 1221 // or if the prev waitcnt can be updated. 1222 bool insertSWaitInst = true; 1223 for (MachineBasicBlock::iterator I = MI.getIterator(), 1224 B = MI.getParent()->begin(); 1225 insertSWaitInst && I != B; --I) { 1226 if (I == MI.getIterator()) 1227 continue; 1228 1229 switch (I->getOpcode()) { 1230 case AMDGPU::S_WAITCNT: 1231 if (isWaitcntStronger(I->getOperand(0).getImm(), Enc)) 1232 insertSWaitInst = false; 1233 else if (!OldWaitcnt) { 1234 OldWaitcnt = &*I; 1235 Enc = combineWaitcnt(I->getOperand(0).getImm(), Enc); 1236 } 1237 break; 1238 // TODO: skip over instructions which never require wait. 1239 } 1240 break; 1241 } 1242 if (insertSWaitInst) { 1243 if (OldWaitcnt && OldWaitcnt->getOpcode() == AMDGPU::S_WAITCNT) { 1244 if (ForceEmitZeroWaitcnts) 1245 DEBUG(dbgs() << "Force emit s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)\n"); 1246 if (IsForceEmitWaitcnt) 1247 DEBUG(dbgs() << "Force emit a s_waitcnt due to debug counter\n"); 1248 1249 OldWaitcnt->getOperand(0).setImm(Enc); 1250 if (!OldWaitcnt->getParent()) 1251 MI.getParent()->insert(MI, OldWaitcnt); 1252 1253 DEBUG(dbgs() << "updateWaitcntInBlock\n" 1254 << "Old Instr: " << MI << '\n' 1255 << "New Instr: " << *OldWaitcnt << '\n'); 1256 } else { 1257 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1258 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1259 .addImm(Enc); 1260 TrackedWaitcntSet.insert(SWaitInst); 1261 1262 DEBUG(dbgs() << "insertWaitcntInBlock\n" 1263 << "Old Instr: " << MI << '\n' 1264 << "New Instr: " << *SWaitInst << '\n'); 1265 } 1266 } 1267 1268 if (CntVal[EXP_CNT] == 0) { 1269 ScoreBrackets->setMixedExpTypes(false); 1270 } 1271 } 1272 } 1273 } 1274 1275 void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, 1276 MachineInstr *Waitcnt) { 1277 if (MBB.empty()) { 1278 MBB.push_back(Waitcnt); 1279 return; 1280 } 1281 1282 MachineBasicBlock::iterator It = MBB.end(); 1283 MachineInstr *MI = &*(--It); 1284 if (MI->isBranch()) { 1285 MBB.insert(It, Waitcnt); 1286 } else { 1287 MBB.push_back(Waitcnt); 1288 } 1289 } 1290 1291 // This is a flat memory operation. Check to see if it has memory 1292 // tokens for both LDS and Memory, and if so mark it as a flat. 1293 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1294 if (MI.memoperands_empty()) 1295 return true; 1296 1297 for (const MachineMemOperand *Memop : MI.memoperands()) { 1298 unsigned AS = Memop->getAddrSpace(); 1299 if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) 1300 return true; 1301 } 1302 1303 return false; 1304 } 1305 1306 void SIInsertWaitcnts::updateEventWaitcntAfter( 1307 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { 1308 // Now look at the instruction opcode. If it is a memory access 1309 // instruction, update the upper-bound of the appropriate counter's 1310 // bracket and the destination operand scores. 1311 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1312 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1313 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1314 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1315 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1316 } else { 1317 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1318 } 1319 } else if (TII->isFLAT(Inst)) { 1320 assert(Inst.mayLoad() || Inst.mayStore()); 1321 1322 if (TII->usesVM_CNT(Inst)) 1323 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1324 1325 if (TII->usesLGKM_CNT(Inst)) { 1326 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1327 1328 // This is a flat memory operation, so note it - it will require 1329 // that both the VM and LGKM be flushed to zero if it is pending when 1330 // a VM or LGKM dependency occurs. 1331 if (mayAccessLDSThroughFlat(Inst)) 1332 ScoreBrackets->setPendingFlat(); 1333 } 1334 } else if (SIInstrInfo::isVMEM(Inst) && 1335 // TODO: get a better carve out. 1336 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1337 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1338 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1339 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1340 if (ST->vmemWriteNeedsExpWaitcnt() && 1341 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1342 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1343 } 1344 } else if (TII->isSMRD(Inst)) { 1345 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1346 } else { 1347 switch (Inst.getOpcode()) { 1348 case AMDGPU::S_SENDMSG: 1349 case AMDGPU::S_SENDMSGHALT: 1350 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1351 break; 1352 case AMDGPU::EXP: 1353 case AMDGPU::EXP_DONE: { 1354 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1355 if (Imm >= 32 && Imm <= 63) 1356 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1357 else if (Imm >= 12 && Imm <= 15) 1358 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1359 else 1360 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1361 break; 1362 } 1363 case AMDGPU::S_MEMTIME: 1364 case AMDGPU::S_MEMREALTIME: 1365 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1366 break; 1367 default: 1368 break; 1369 } 1370 } 1371 } 1372 1373 // Merge the score brackets of the Block's predecessors; 1374 // this merged score bracket is used when adding waitcnts to the Block 1375 void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { 1376 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1377 int32_t MaxPending[NUM_INST_CNTS] = {0}; 1378 int32_t MaxFlat[NUM_INST_CNTS] = {0}; 1379 bool MixedExpTypes = false; 1380 1381 // For single basic block loops, we need to retain the Block's 1382 // score bracket to have accurate Pred info. So, make a copy of Block's 1383 // score bracket, clear() it (which retains several important bits of info), 1384 // populate, and then replace en masse. For non-single basic block loops, 1385 // just clear Block's current score bracket and repopulate in-place. 1386 bool IsSelfPred; 1387 std::unique_ptr<BlockWaitcntBrackets> S; 1388 1389 IsSelfPred = (std::find(Block.pred_begin(), Block.pred_end(), &Block)) 1390 != Block.pred_end(); 1391 if (IsSelfPred) { 1392 S = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1393 ScoreBrackets = S.get(); 1394 } 1395 1396 ScoreBrackets->clear(); 1397 1398 // See if there are any uninitialized predecessors. If so, emit an 1399 // s_waitcnt 0 at the beginning of the block. 1400 for (MachineBasicBlock *Pred : Block.predecessors()) { 1401 BlockWaitcntBrackets *PredScoreBrackets = 1402 BlockWaitcntBracketsMap[Pred].get(); 1403 bool Visited = BlockVisitedSet.count(Pred); 1404 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1405 continue; 1406 } 1407 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1408 T = (enum InstCounterType)(T + 1)) { 1409 int span = 1410 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); 1411 MaxPending[T] = std::max(MaxPending[T], span); 1412 span = 1413 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); 1414 MaxFlat[T] = std::max(MaxFlat[T], span); 1415 } 1416 1417 MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); 1418 } 1419 1420 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1421 // Also handle kills for exit block. 1422 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1423 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1424 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1425 T = (enum InstCounterType)(T + 1)) { 1426 int Span = KillWaitBrackets[I]->getScoreUB(T) - 1427 KillWaitBrackets[I]->getScoreLB(T); 1428 MaxPending[T] = std::max(MaxPending[T], Span); 1429 Span = KillWaitBrackets[I]->pendingFlat(T) - 1430 KillWaitBrackets[I]->getScoreLB(T); 1431 MaxFlat[T] = std::max(MaxFlat[T], Span); 1432 } 1433 1434 MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); 1435 } 1436 } 1437 1438 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. 1439 for (MachineBasicBlock *Pred : Block.predecessors()) { 1440 BlockWaitcntBrackets *PredScoreBrackets = 1441 BlockWaitcntBracketsMap[Pred].get(); 1442 bool Visited = BlockVisitedSet.count(Pred); 1443 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1444 continue; 1445 } 1446 1447 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - 1448 PredScoreBrackets->getScoreLB(EXP_CNT); 1449 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1450 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - 1451 PredScoreBrackets->getScoreLB(EXP_CNT); 1452 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1453 } 1454 1455 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1456 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1457 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1458 int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - 1459 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1460 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1461 int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - 1462 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1463 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1464 } 1465 } 1466 1467 #if 0 1468 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. 1469 // TODO: how does LC distinguish between function entry and main entry? 1470 // If this is the entry to a function, force a wait. 1471 MachineBasicBlock &Entry = Block.getParent()->front(); 1472 if (Entry.getNumber() == Block.getNumber()) { 1473 ScoreBrackets->setWaitAtBeginning(); 1474 return; 1475 } 1476 #endif 1477 1478 // Now set the current Block's brackets to the largest ending bracket. 1479 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1480 T = (enum InstCounterType)(T + 1)) { 1481 ScoreBrackets->setScoreUB(T, MaxPending[T]); 1482 ScoreBrackets->setScoreLB(T, 0); 1483 ScoreBrackets->setLastFlat(T, MaxFlat[T]); 1484 } 1485 1486 ScoreBrackets->setMixedExpTypes(MixedExpTypes); 1487 1488 // Set the register scoreboard. 1489 for (MachineBasicBlock *Pred : Block.predecessors()) { 1490 if (!BlockVisitedSet.count(Pred)) { 1491 continue; 1492 } 1493 1494 BlockWaitcntBrackets *PredScoreBrackets = 1495 BlockWaitcntBracketsMap[Pred].get(); 1496 1497 // Now merge the gpr_reg_score information 1498 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1499 T = (enum InstCounterType)(T + 1)) { 1500 int PredLB = PredScoreBrackets->getScoreLB(T); 1501 int PredUB = PredScoreBrackets->getScoreUB(T); 1502 if (PredLB < PredUB) { 1503 int PredScale = MaxPending[T] - PredUB; 1504 // Merge vgpr scores. 1505 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { 1506 int PredRegScore = PredScoreBrackets->getRegScore(J, T); 1507 if (PredRegScore <= PredLB) 1508 continue; 1509 int NewRegScore = PredScale + PredRegScore; 1510 ScoreBrackets->setRegScore( 1511 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1512 } 1513 // Also need to merge sgpr scores for lgkm_cnt. 1514 if (T == LGKM_CNT) { 1515 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { 1516 int PredRegScore = 1517 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1518 if (PredRegScore <= PredLB) 1519 continue; 1520 int NewRegScore = PredScale + PredRegScore; 1521 ScoreBrackets->setRegScore( 1522 J + NUM_ALL_VGPRS, LGKM_CNT, 1523 std::max( 1524 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1525 NewRegScore)); 1526 } 1527 } 1528 } 1529 } 1530 1531 // Also merge the WaitEvent information. 1532 ForAllWaitEventType(W) { 1533 enum InstCounterType T = PredScoreBrackets->eventCounter(W); 1534 int PredEventUB = PredScoreBrackets->getEventUB(W); 1535 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { 1536 int NewEventUB = 1537 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); 1538 if (NewEventUB > 0) { 1539 ScoreBrackets->setEventUB( 1540 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1541 } 1542 } 1543 } 1544 } 1545 1546 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1547 // Set the register scoreboard. 1548 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1549 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1550 // Now merge the gpr_reg_score information. 1551 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1552 T = (enum InstCounterType)(T + 1)) { 1553 int PredLB = KillWaitBrackets[I]->getScoreLB(T); 1554 int PredUB = KillWaitBrackets[I]->getScoreUB(T); 1555 if (PredLB < PredUB) { 1556 int PredScale = MaxPending[T] - PredUB; 1557 // Merge vgpr scores. 1558 for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { 1559 int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); 1560 if (PredRegScore <= PredLB) 1561 continue; 1562 int NewRegScore = PredScale + PredRegScore; 1563 ScoreBrackets->setRegScore( 1564 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1565 } 1566 // Also need to merge sgpr scores for lgkm_cnt. 1567 if (T == LGKM_CNT) { 1568 for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { 1569 int PredRegScore = 1570 KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1571 if (PredRegScore <= PredLB) 1572 continue; 1573 int NewRegScore = PredScale + PredRegScore; 1574 ScoreBrackets->setRegScore( 1575 J + NUM_ALL_VGPRS, LGKM_CNT, 1576 std::max( 1577 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1578 NewRegScore)); 1579 } 1580 } 1581 } 1582 } 1583 1584 // Also merge the WaitEvent information. 1585 ForAllWaitEventType(W) { 1586 enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); 1587 int PredEventUB = KillWaitBrackets[I]->getEventUB(W); 1588 if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { 1589 int NewEventUB = 1590 MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); 1591 if (NewEventUB > 0) { 1592 ScoreBrackets->setEventUB( 1593 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1594 } 1595 } 1596 } 1597 } 1598 } 1599 1600 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the 1601 // sequencing predecessors, because changes to EXEC require waitcnts due to 1602 // the delayed nature of these operations. 1603 for (MachineBasicBlock *Pred : Block.predecessors()) { 1604 if (!BlockVisitedSet.count(Pred)) { 1605 continue; 1606 } 1607 1608 BlockWaitcntBrackets *PredScoreBrackets = 1609 BlockWaitcntBracketsMap[Pred].get(); 1610 1611 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); 1612 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1613 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - 1614 PredScoreBrackets->getScoreUB(EXP_CNT); 1615 if (new_gds_ub > 0) { 1616 ScoreBrackets->setEventUB( 1617 GDS_GPR_LOCK, 1618 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); 1619 } 1620 } 1621 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); 1622 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1623 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - 1624 PredScoreBrackets->getScoreUB(EXP_CNT); 1625 if (new_exp_ub > 0) { 1626 ScoreBrackets->setEventUB( 1627 EXP_GPR_LOCK, 1628 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); 1629 } 1630 } 1631 } 1632 1633 // if a single block loop, update the score brackets. Not needed for other 1634 // blocks, as we did this in-place 1635 if (IsSelfPred) { 1636 BlockWaitcntBracketsMap[&Block] = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1637 } 1638 } 1639 1640 /// Return true if the given basic block is a "bottom" block of a loop. This 1641 /// differs from MachineLoop::getBottomBlock in that it works even if the loop 1642 /// is discontiguous. This also handles multiple back-edges for the same 1643 /// "header" block of a loop. 1644 bool SIInsertWaitcnts::isLoopBottom(const MachineLoop *Loop, 1645 const MachineBasicBlock *Block) { 1646 for (MachineBasicBlock *MBB : Loop->blocks()) { 1647 if (MBB == Block && MBB->isSuccessor(Loop->getHeader())) { 1648 return true; 1649 } 1650 } 1651 return false; 1652 } 1653 1654 /// Count the number of "bottom" basic blocks of a loop. 1655 unsigned SIInsertWaitcnts::countNumBottomBlocks(const MachineLoop *Loop) { 1656 unsigned Count = 0; 1657 for (MachineBasicBlock *MBB : Loop->blocks()) { 1658 if (MBB->isSuccessor(Loop->getHeader())) { 1659 Count++; 1660 } 1661 } 1662 return Count; 1663 } 1664 1665 // Generate s_waitcnt instructions where needed. 1666 void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1667 MachineBasicBlock &Block) { 1668 // Initialize the state information. 1669 mergeInputScoreBrackets(Block); 1670 1671 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1672 1673 DEBUG({ 1674 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1675 ScoreBrackets->dump(); 1676 }); 1677 1678 // Walk over the instructions. 1679 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1680 Iter != E;) { 1681 MachineInstr &Inst = *Iter; 1682 // Remove any previously existing waitcnts. 1683 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1684 // Leave pre-existing waitcnts, but note their existence via setWaitcnt. 1685 // Remove the waitcnt-pass-generated waitcnts; the pass will add them back 1686 // as needed. 1687 if (!TrackedWaitcntSet.count(&Inst)) 1688 ++Iter; 1689 else { 1690 ++Iter; 1691 Inst.removeFromParent(); 1692 } 1693 ScoreBrackets->setWaitcnt(&Inst); 1694 continue; 1695 } 1696 1697 // Kill instructions generate a conditional branch to the endmain block. 1698 // Merge the current waitcnt state into the endmain block information. 1699 // TODO: Are there other flavors of KILL instruction? 1700 if (Inst.getOpcode() == AMDGPU::KILL) { 1701 addKillWaitBracket(ScoreBrackets); 1702 } 1703 1704 bool VCCZBugWorkAround = false; 1705 if (readsVCCZ(Inst) && 1706 (!VCCZBugHandledSet.count(&Inst))) { 1707 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1708 ScoreBrackets->getScoreUB(LGKM_CNT) && 1709 ScoreBrackets->hasPendingSMEM()) { 1710 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) 1711 VCCZBugWorkAround = true; 1712 } 1713 } 1714 1715 // Generate an s_waitcnt instruction to be placed before 1716 // cur_Inst, if needed. 1717 generateWaitcntInstBefore(Inst, ScoreBrackets); 1718 1719 updateEventWaitcntAfter(Inst, ScoreBrackets); 1720 1721 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1722 // If this instruction generates a S_SETVSKIP because it is an 1723 // indexed resource, and we are on Tahiti, then it will also force 1724 // an S_WAITCNT vmcnt(0) 1725 if (RequireCheckResourceType(Inst, context)) { 1726 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1727 ScoreBrackets->setScoreLB(VM_CNT, 1728 ScoreBrackets->getScoreUB(VM_CNT)); 1729 } 1730 #endif 1731 1732 ScoreBrackets->clearWaitcnt(); 1733 1734 DEBUG({ 1735 Inst.print(dbgs()); 1736 ScoreBrackets->dump(); 1737 }); 1738 1739 // Check to see if this is a GWS instruction. If so, and if this is CI or 1740 // VI, then the generated code sequence will include an S_WAITCNT 0. 1741 // TODO: Are these the only GWS instructions? 1742 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1743 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1744 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1745 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1746 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1747 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1748 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1749 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1750 ScoreBrackets->updateByWait(LGKM_CNT, 1751 ScoreBrackets->getScoreUB(LGKM_CNT)); 1752 } 1753 1754 // TODO: Remove this work-around after fixing the scheduler and enable the 1755 // assert above. 1756 if (VCCZBugWorkAround) { 1757 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1758 // bit is updated, so we can restore the bit by reading the value of 1759 // vcc and then writing it back to the register. 1760 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1761 AMDGPU::VCC) 1762 .addReg(AMDGPU::VCC); 1763 VCCZBugHandledSet.insert(&Inst); 1764 } 1765 1766 ++Iter; 1767 } 1768 1769 // Check if we need to force convergence at loop footer. 1770 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); 1771 if (ContainingLoop && isLoopBottom(ContainingLoop, &Block)) { 1772 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1773 WaitcntData->print(); 1774 DEBUG(dbgs() << '\n';); 1775 1776 // The iterative waitcnt insertion algorithm aims for optimal waitcnt 1777 // placement and doesn't always guarantee convergence for a loop. Each 1778 // loop should take at most 2 iterations for it to converge naturally. 1779 // When this max is reached and result doesn't converge, we force 1780 // convergence by inserting a s_waitcnt at the end of loop footer. 1781 if (WaitcntData->getIterCnt() > 2) { 1782 // To ensure convergence, need to make wait events at loop footer be no 1783 // more than those from the previous iteration. 1784 // As a simplification, instead of tracking individual scores and 1785 // generating the precise wait count, just wait on 0. 1786 bool HasPending = false; 1787 MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); 1788 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1789 T = (enum InstCounterType)(T + 1)) { 1790 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 1791 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1792 HasPending = true; 1793 } 1794 } 1795 1796 if (HasPending) { 1797 if (!SWaitInst) { 1798 SWaitInst = Block.getParent()->CreateMachineInstr( 1799 TII->get(AMDGPU::S_WAITCNT), DebugLoc()); 1800 TrackedWaitcntSet.insert(SWaitInst); 1801 const MachineOperand &Op = MachineOperand::CreateImm(0); 1802 SWaitInst->addOperand(MF, Op); 1803 #if 0 // TODO: Format the debug output 1804 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); 1805 OutputTransformAdd(SWaitInst, context); 1806 #endif 1807 } 1808 #if 0 // TODO: ?? 1809 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) 1810 #endif 1811 } 1812 1813 if (SWaitInst) { 1814 DEBUG({ 1815 SWaitInst->print(dbgs()); 1816 dbgs() << "\nAdjusted score board:"; 1817 ScoreBrackets->dump(); 1818 }); 1819 1820 // Add this waitcnt to the block. It is either newly created or 1821 // created in previous iterations and added back since block traversal 1822 // always removes waitcnts. 1823 insertWaitcntBeforeCF(Block, SWaitInst); 1824 WaitcntData->setWaitcnt(SWaitInst); 1825 } 1826 } 1827 } 1828 } 1829 1830 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1831 ST = &MF.getSubtarget<SISubtarget>(); 1832 TII = ST->getInstrInfo(); 1833 TRI = &TII->getRegisterInfo(); 1834 MRI = &MF.getRegInfo(); 1835 MLI = &getAnalysis<MachineLoopInfo>(); 1836 IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); 1837 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1838 AMDGPUASI = ST->getAMDGPUAS(); 1839 1840 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1841 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1842 T = (enum InstCounterType)(T + 1)) 1843 ForceEmitWaitcnt[T] = false; 1844 1845 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1846 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1847 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1848 1849 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1850 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1851 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1852 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1853 1854 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1855 RegisterEncoding.VGPRL = 1856 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1857 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1858 RegisterEncoding.SGPRL = 1859 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1860 1861 TrackedWaitcntSet.clear(); 1862 BlockVisitedSet.clear(); 1863 VCCZBugHandledSet.clear(); 1864 LoopWaitcntDataMap.clear(); 1865 1866 // Walk over the blocks in reverse post-dominator order, inserting 1867 // s_waitcnt where needed. 1868 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1869 bool Modified = false; 1870 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1871 I = RPOT.begin(), 1872 E = RPOT.end(), J = RPOT.begin(); 1873 I != E;) { 1874 MachineBasicBlock &MBB = **I; 1875 1876 BlockVisitedSet.insert(&MBB); 1877 1878 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1879 if (!ScoreBrackets) { 1880 BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(); 1881 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1882 } 1883 ScoreBrackets->setPostOrder(MBB.getNumber()); 1884 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); 1885 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) 1886 LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>(); 1887 1888 // If we are walking into the block from before the loop, then guarantee 1889 // at least 1 re-walk over the loop to propagate the information, even if 1890 // no S_WAITCNT instructions were generated. 1891 if (ContainingLoop && ContainingLoop->getHeader() == &MBB) { 1892 unsigned Count = countNumBottomBlocks(ContainingLoop); 1893 1894 // If the loop has multiple back-edges, and so more than one "bottom" 1895 // basic block, we have to guarantee a re-walk over every blocks. 1896 if ((std::count(BlockWaitcntProcessedSet.begin(), 1897 BlockWaitcntProcessedSet.end(), &MBB) < Count)) { 1898 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); 1899 DEBUG(dbgs() << "set-revisit: Block" 1900 << ContainingLoop->getHeader()->getNumber() << '\n';); 1901 } 1902 } 1903 1904 // Walk over the instructions. 1905 insertWaitcntInBlock(MF, MBB); 1906 1907 // Flag that waitcnts have been processed at least once. 1908 BlockWaitcntProcessedSet.push_back(&MBB); 1909 1910 // See if we want to revisit the loop. If a loop has multiple back-edges, 1911 // we shouldn't revisit the same "bottom" basic block. 1912 if (ContainingLoop && isLoopBottom(ContainingLoop, &MBB) && 1913 std::count(BlockWaitcntProcessedSet.begin(), 1914 BlockWaitcntProcessedSet.end(), &MBB) == 1) { 1915 MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); 1916 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); 1917 if (EntrySB && EntrySB->getRevisitLoop()) { 1918 EntrySB->setRevisitLoop(false); 1919 J = I; 1920 int32_t PostOrder = EntrySB->getPostOrder(); 1921 // TODO: Avoid this loop. Find another way to set I. 1922 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1923 X = RPOT.begin(), 1924 Y = RPOT.end(); 1925 X != Y; ++X) { 1926 MachineBasicBlock &MBBX = **X; 1927 if (MBBX.getNumber() == PostOrder) { 1928 I = X; 1929 break; 1930 } 1931 } 1932 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1933 WaitcntData->incIterCnt(); 1934 DEBUG(dbgs() << "revisit: Block" << EntryBB->getNumber() << '\n';); 1935 continue; 1936 } else { 1937 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1938 // Loop converged, reset iteration count. If this loop gets revisited, 1939 // it must be from an outer loop, the counter will restart, this will 1940 // ensure we don't force convergence on such revisits. 1941 WaitcntData->resetIterCnt(); 1942 } 1943 } 1944 1945 J = I; 1946 ++I; 1947 } 1948 1949 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1950 1951 bool HaveScalarStores = false; 1952 1953 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1954 ++BI) { 1955 MachineBasicBlock &MBB = *BI; 1956 1957 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1958 ++I) { 1959 if (!HaveScalarStores && TII->isScalarStore(*I)) 1960 HaveScalarStores = true; 1961 1962 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1963 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1964 EndPgmBlocks.push_back(&MBB); 1965 } 1966 } 1967 1968 if (HaveScalarStores) { 1969 // If scalar writes are used, the cache must be flushed or else the next 1970 // wave to reuse the same scratch memory can be clobbered. 1971 // 1972 // Insert s_dcache_wb at wave termination points if there were any scalar 1973 // stores, and only if the cache hasn't already been flushed. This could be 1974 // improved by looking across blocks for flushes in postdominating blocks 1975 // from the stores but an explicitly requested flush is probably very rare. 1976 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1977 bool SeenDCacheWB = false; 1978 1979 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1980 ++I) { 1981 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1982 SeenDCacheWB = true; 1983 else if (TII->isScalarStore(*I)) 1984 SeenDCacheWB = false; 1985 1986 // FIXME: It would be better to insert this before a waitcnt if any. 1987 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1988 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1989 !SeenDCacheWB) { 1990 Modified = true; 1991 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1992 } 1993 } 1994 } 1995 } 1996 1997 if (!MFI->isEntryFunction()) { 1998 // Wait for any outstanding memory operations that the input registers may 1999 // depend on. We can't track them and it's better to the wait after the 2000 // costly call sequence. 2001 2002 // TODO: Could insert earlier and schedule more liberally with operations 2003 // that only use caller preserved registers. 2004 MachineBasicBlock &EntryBB = MF.front(); 2005 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 2006 .addImm(0); 2007 2008 Modified = true; 2009 } 2010 2011 return Modified; 2012 } 2013