1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// Insert wait instructions for memory reads and writes.
12 ///
13 /// Memory reads and writes are issued asynchronously, so we need to insert
14 /// S_WAITCNT instructions when we want to access any of their results or
15 /// overwrite any register that's used asynchronously.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "AMDGPU.h"
20 #include "AMDGPUSubtarget.h"
21 #include "SIDefines.h"
22 #include "SIInstrInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "SIRegisterInfo.h"
25 #include "Utils/AMDGPUBaseInfo.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/DebugCounter.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <cstring>
50 #include <memory>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "si-insert-waitcnts"
57 
58 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
59               "Force emit s_waitcnt expcnt(0) instrs");
60 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
61               "Force emit s_waitcnt lgkmcnt(0) instrs");
62 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
63               "Force emit s_waitcnt vmcnt(0) instrs");
64 
65 static cl::opt<unsigned> ForceEmitZeroFlag(
66   "amdgpu-waitcnt-forcezero",
67   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
68   cl::init(0), cl::Hidden);
69 
70 namespace {
71 
72 // Class of object that encapsulates latest instruction counter score
73 // associated with the operand.  Used for determining whether
74 // s_waitcnt instruction needs to be emited.
75 
76 #define CNT_MASK(t) (1u << (t))
77 
78 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS };
79 
80 using RegInterval = std::pair<signed, signed>;
81 
82 struct {
83   int32_t VmcntMax;
84   int32_t ExpcntMax;
85   int32_t LgkmcntMax;
86   int32_t NumVGPRsMax;
87   int32_t NumSGPRsMax;
88 } HardwareLimits;
89 
90 struct {
91   unsigned VGPR0;
92   unsigned VGPRL;
93   unsigned SGPR0;
94   unsigned SGPRL;
95 } RegisterEncoding;
96 
97 enum WaitEventType {
98   VMEM_ACCESS,      // vector-memory read & write
99   LDS_ACCESS,       // lds read & write
100   GDS_ACCESS,       // gds read & write
101   SQ_MESSAGE,       // send message
102   SMEM_ACCESS,      // scalar-memory read & write
103   EXP_GPR_LOCK,     // export holding on its data src
104   GDS_GPR_LOCK,     // GDS holding on its data and addr src
105   EXP_POS_ACCESS,   // write to export position
106   EXP_PARAM_ACCESS, // write to export parameter
107   VMW_GPR_LOCK,     // vector-memory write holding on its data src
108   NUM_WAIT_EVENTS,
109 };
110 
111 // The mapping is:
112 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
113 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
114 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
115 // We reserve a fixed number of VGPR slots in the scoring tables for
116 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
117 enum RegisterMapping {
118   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
119   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
120   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
121   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
122   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
123 };
124 
125 #define ForAllWaitEventType(w)                                                 \
126   for (enum WaitEventType w = (enum WaitEventType)0;                           \
127        (w) < (enum WaitEventType)NUM_WAIT_EVENTS;                              \
128        (w) = (enum WaitEventType)((w) + 1))
129 
130 // This is a per-basic-block object that maintains current score brackets
131 // of each wait counter, and a per-register scoreboard for each wait counter.
132 // We also maintain the latest score for every event type that can change the
133 // waitcnt in order to know if there are multiple types of events within
134 // the brackets. When multiple types of event happen in the bracket,
135 // wait count may get decreased out of order, therefore we need to put in
136 // "s_waitcnt 0" before use.
137 class BlockWaitcntBrackets {
138 public:
139   BlockWaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {
140     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
141          T = (enum InstCounterType)(T + 1)) {
142       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
143     }
144   }
145 
146   ~BlockWaitcntBrackets() = default;
147 
148   static int32_t getWaitCountMax(InstCounterType T) {
149     switch (T) {
150     case VM_CNT:
151       return HardwareLimits.VmcntMax;
152     case LGKM_CNT:
153       return HardwareLimits.LgkmcntMax;
154     case EXP_CNT:
155       return HardwareLimits.ExpcntMax;
156     default:
157       break;
158     }
159     return 0;
160   }
161 
162   void setScoreLB(InstCounterType T, int32_t Val) {
163     assert(T < NUM_INST_CNTS);
164     if (T >= NUM_INST_CNTS)
165       return;
166     ScoreLBs[T] = Val;
167   }
168 
169   void setScoreUB(InstCounterType T, int32_t Val) {
170     assert(T < NUM_INST_CNTS);
171     if (T >= NUM_INST_CNTS)
172       return;
173     ScoreUBs[T] = Val;
174     if (T == EXP_CNT) {
175       int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT));
176       if (ScoreLBs[T] < UB)
177         ScoreLBs[T] = UB;
178     }
179   }
180 
181   int32_t getScoreLB(InstCounterType T) {
182     assert(T < NUM_INST_CNTS);
183     if (T >= NUM_INST_CNTS)
184       return 0;
185     return ScoreLBs[T];
186   }
187 
188   int32_t getScoreUB(InstCounterType T) {
189     assert(T < NUM_INST_CNTS);
190     if (T >= NUM_INST_CNTS)
191       return 0;
192     return ScoreUBs[T];
193   }
194 
195   // Mapping from event to counter.
196   InstCounterType eventCounter(WaitEventType E) {
197     switch (E) {
198     case VMEM_ACCESS:
199       return VM_CNT;
200     case LDS_ACCESS:
201     case GDS_ACCESS:
202     case SQ_MESSAGE:
203     case SMEM_ACCESS:
204       return LGKM_CNT;
205     case EXP_GPR_LOCK:
206     case GDS_GPR_LOCK:
207     case VMW_GPR_LOCK:
208     case EXP_POS_ACCESS:
209     case EXP_PARAM_ACCESS:
210       return EXP_CNT;
211     default:
212       llvm_unreachable("unhandled event type");
213     }
214     return NUM_INST_CNTS;
215   }
216 
217   void setRegScore(int GprNo, InstCounterType T, int32_t Val) {
218     if (GprNo < NUM_ALL_VGPRS) {
219       if (GprNo > VgprUB) {
220         VgprUB = GprNo;
221       }
222       VgprScores[T][GprNo] = Val;
223     } else {
224       assert(T == LGKM_CNT);
225       if (GprNo - NUM_ALL_VGPRS > SgprUB) {
226         SgprUB = GprNo - NUM_ALL_VGPRS;
227       }
228       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
229     }
230   }
231 
232   int32_t getRegScore(int GprNo, InstCounterType T) {
233     if (GprNo < NUM_ALL_VGPRS) {
234       return VgprScores[T][GprNo];
235     }
236     return SgprScores[GprNo - NUM_ALL_VGPRS];
237   }
238 
239   void clear() {
240     memset(ScoreLBs, 0, sizeof(ScoreLBs));
241     memset(ScoreUBs, 0, sizeof(ScoreUBs));
242     memset(EventUBs, 0, sizeof(EventUBs));
243     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
244          T = (enum InstCounterType)(T + 1)) {
245       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
246     }
247     memset(SgprScores, 0, sizeof(SgprScores));
248   }
249 
250   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
251                              const MachineRegisterInfo *MRI,
252                              const SIRegisterInfo *TRI, unsigned OpNo,
253                              bool Def) const;
254 
255   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
256                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
257                    unsigned OpNo, int32_t Val);
258 
259   void setWaitAtBeginning() { WaitAtBeginning = true; }
260   void clearWaitAtBeginning() { WaitAtBeginning = false; }
261   bool getWaitAtBeginning() const { return WaitAtBeginning; }
262   void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; }
263   int32_t getMaxVGPR() const { return VgprUB; }
264   int32_t getMaxSGPR() const { return SgprUB; }
265 
266   int32_t getEventUB(enum WaitEventType W) const {
267     assert(W < NUM_WAIT_EVENTS);
268     return EventUBs[W];
269   }
270 
271   bool counterOutOfOrder(InstCounterType T);
272   unsigned int updateByWait(InstCounterType T, int ScoreToWait);
273   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
274                      const MachineRegisterInfo *MRI, WaitEventType E,
275                      MachineInstr &MI);
276 
277   bool hasPendingSMEM() const {
278     return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
279             EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]);
280   }
281 
282   bool hasPendingFlat() const {
283     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
284              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
285             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
286              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
287   }
288 
289   void setPendingFlat() {
290     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
291     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
292   }
293 
294   int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; }
295 
296   void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; }
297 
298   bool getRevisitLoop() const { return RevisitLoop; }
299   void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; }
300 
301   void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; }
302   int32_t getPostOrder() const { return PostOrder; }
303 
304   void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; }
305   void clearWaitcnt() { Waitcnt = nullptr; }
306   MachineInstr *getWaitcnt() const { return Waitcnt; }
307 
308   bool mixedExpTypes() const { return MixedExpTypes; }
309   void setMixedExpTypes(bool MixedExpTypesIn) {
310     MixedExpTypes = MixedExpTypesIn;
311   }
312 
313   void print(raw_ostream &);
314   void dump() { print(dbgs()); }
315 
316 private:
317   const GCNSubtarget *ST = nullptr;
318   bool WaitAtBeginning = false;
319   bool RevisitLoop = false;
320   bool MixedExpTypes = false;
321   int32_t PostOrder = 0;
322   MachineInstr *Waitcnt = nullptr;
323   int32_t ScoreLBs[NUM_INST_CNTS] = {0};
324   int32_t ScoreUBs[NUM_INST_CNTS] = {0};
325   int32_t EventUBs[NUM_WAIT_EVENTS] = {0};
326   // Remember the last flat memory operation.
327   int32_t LastFlat[NUM_INST_CNTS] = {0};
328   // wait_cnt scores for every vgpr.
329   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
330   int32_t VgprUB = 0;
331   int32_t SgprUB = 0;
332   int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
333   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
334   int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
335 };
336 
337 // This is a per-loop-region object that records waitcnt status at the end of
338 // loop footer from the previous iteration. We also maintain an iteration
339 // count to track the number of times the loop has been visited. When it
340 // doesn't converge naturally, we force convergence by inserting s_waitcnt 0
341 // at the end of the loop footer.
342 class LoopWaitcntData {
343 public:
344   LoopWaitcntData() = default;
345   ~LoopWaitcntData() = default;
346 
347   void incIterCnt() { IterCnt++; }
348   void resetIterCnt() { IterCnt = 0; }
349   unsigned getIterCnt() { return IterCnt; }
350 
351   void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; }
352   MachineInstr *getWaitcnt() const { return LfWaitcnt; }
353 
354   void print() { LLVM_DEBUG(dbgs() << "  iteration " << IterCnt << '\n';); }
355 
356 private:
357   // s_waitcnt added at the end of loop footer to stablize wait scores
358   // at the end of the loop footer.
359   MachineInstr *LfWaitcnt = nullptr;
360   // Number of iterations the loop has been visited, not including the initial
361   // walk over.
362   int32_t IterCnt = 0;
363 };
364 
365 class SIInsertWaitcnts : public MachineFunctionPass {
366 private:
367   const GCNSubtarget *ST = nullptr;
368   const SIInstrInfo *TII = nullptr;
369   const SIRegisterInfo *TRI = nullptr;
370   const MachineRegisterInfo *MRI = nullptr;
371   const MachineLoopInfo *MLI = nullptr;
372   AMDGPU::IsaVersion IV;
373 
374   DenseSet<MachineBasicBlock *> BlockVisitedSet;
375   DenseSet<MachineInstr *> TrackedWaitcntSet;
376   DenseSet<MachineInstr *> VCCZBugHandledSet;
377 
378   DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>>
379       BlockWaitcntBracketsMap;
380 
381   std::vector<MachineBasicBlock *> BlockWaitcntProcessedSet;
382 
383   DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap;
384 
385   std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets;
386 
387   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
388   // because of amdgpu-waitcnt-forcezero flag
389   bool ForceEmitZeroWaitcnts;
390   bool ForceEmitWaitcnt[NUM_INST_CNTS];
391 
392 public:
393   static char ID;
394 
395   SIInsertWaitcnts() : MachineFunctionPass(ID) {
396     (void)ForceExpCounter;
397     (void)ForceLgkmCounter;
398     (void)ForceVMCounter;
399   }
400 
401   bool runOnMachineFunction(MachineFunction &MF) override;
402 
403   StringRef getPassName() const override {
404     return "SI insert wait instructions";
405   }
406 
407   void getAnalysisUsage(AnalysisUsage &AU) const override {
408     AU.setPreservesCFG();
409     AU.addRequired<MachineLoopInfo>();
410     MachineFunctionPass::getAnalysisUsage(AU);
411   }
412 
413   void addKillWaitBracket(BlockWaitcntBrackets *Bracket) {
414     // The waitcnt information is copied because it changes as the block is
415     // traversed.
416     KillWaitBrackets.push_back(
417         llvm::make_unique<BlockWaitcntBrackets>(*Bracket));
418   }
419 
420   bool isForceEmitWaitcnt() const {
421     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
422          T = (enum InstCounterType)(T + 1))
423       if (ForceEmitWaitcnt[T])
424         return true;
425     return false;
426   }
427 
428   void setForceEmitWaitcnt() {
429 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
430 // For debug builds, get the debug counter info and adjust if need be
431 #ifndef NDEBUG
432     if (DebugCounter::isCounterSet(ForceExpCounter) &&
433         DebugCounter::shouldExecute(ForceExpCounter)) {
434       ForceEmitWaitcnt[EXP_CNT] = true;
435     } else {
436       ForceEmitWaitcnt[EXP_CNT] = false;
437     }
438 
439     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
440          DebugCounter::shouldExecute(ForceLgkmCounter)) {
441       ForceEmitWaitcnt[LGKM_CNT] = true;
442     } else {
443       ForceEmitWaitcnt[LGKM_CNT] = false;
444     }
445 
446     if (DebugCounter::isCounterSet(ForceVMCounter) &&
447         DebugCounter::shouldExecute(ForceVMCounter)) {
448       ForceEmitWaitcnt[VM_CNT] = true;
449     } else {
450       ForceEmitWaitcnt[VM_CNT] = false;
451     }
452 #endif // NDEBUG
453   }
454 
455   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
456   void generateWaitcntInstBefore(MachineInstr &MI,
457                                   BlockWaitcntBrackets *ScoreBrackets);
458   void updateEventWaitcntAfter(MachineInstr &Inst,
459                                BlockWaitcntBrackets *ScoreBrackets);
460   void mergeInputScoreBrackets(MachineBasicBlock &Block);
461   bool isLoopBottom(const MachineLoop *Loop, const MachineBasicBlock *Block);
462   unsigned countNumBottomBlocks(const MachineLoop *Loop);
463   void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block);
464   void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst);
465   bool isWaitcntStronger(unsigned LHS, unsigned RHS);
466   unsigned combineWaitcnt(unsigned LHS, unsigned RHS);
467 };
468 
469 } // end anonymous namespace
470 
471 RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI,
472                                                  const SIInstrInfo *TII,
473                                                  const MachineRegisterInfo *MRI,
474                                                  const SIRegisterInfo *TRI,
475                                                  unsigned OpNo,
476                                                  bool Def) const {
477   const MachineOperand &Op = MI->getOperand(OpNo);
478   if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
479       (Def && !Op.isDef()))
480     return {-1, -1};
481 
482   // A use via a PW operand does not need a waitcnt.
483   // A partial write is not a WAW.
484   assert(!Op.getSubReg() || !Op.isUndef());
485 
486   RegInterval Result;
487   const MachineRegisterInfo &MRIA = *MRI;
488 
489   unsigned Reg = TRI->getEncodingValue(Op.getReg());
490 
491   if (TRI->isVGPR(MRIA, Op.getReg())) {
492     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
493     Result.first = Reg - RegisterEncoding.VGPR0;
494     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
495   } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
496     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
497     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
498     assert(Result.first >= NUM_ALL_VGPRS &&
499            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
500   }
501   // TODO: Handle TTMP
502   // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
503   else
504     return {-1, -1};
505 
506   const MachineInstr &MIA = *MI;
507   const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
508   unsigned Size = TRI->getRegSizeInBits(*RC);
509   Result.second = Result.first + (Size / 32);
510 
511   return Result;
512 }
513 
514 void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI,
515                                        const SIInstrInfo *TII,
516                                        const SIRegisterInfo *TRI,
517                                        const MachineRegisterInfo *MRI,
518                                        unsigned OpNo, int32_t Val) {
519   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
520   LLVM_DEBUG({
521     const MachineOperand &Opnd = MI->getOperand(OpNo);
522     assert(TRI->isVGPR(*MRI, Opnd.getReg()));
523   });
524   for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
525     setRegScore(RegNo, EXP_CNT, Val);
526   }
527 }
528 
529 void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
530                                          const SIRegisterInfo *TRI,
531                                          const MachineRegisterInfo *MRI,
532                                          WaitEventType E, MachineInstr &Inst) {
533   const MachineRegisterInfo &MRIA = *MRI;
534   InstCounterType T = eventCounter(E);
535   int32_t CurrScore = getScoreUB(T) + 1;
536   // EventUB and ScoreUB need to be update regardless if this event changes
537   // the score of a register or not.
538   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
539   EventUBs[E] = CurrScore;
540   setScoreUB(T, CurrScore);
541 
542   if (T == EXP_CNT) {
543     // Check for mixed export types. If they are mixed, then a waitcnt exp(0)
544     // is required.
545     if (!MixedExpTypes) {
546       MixedExpTypes = counterOutOfOrder(EXP_CNT);
547     }
548 
549     // Put score on the source vgprs. If this is a store, just use those
550     // specific register(s).
551     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
552       // All GDS operations must protect their address register (same as
553       // export.)
554       if (Inst.getOpcode() != AMDGPU::DS_APPEND &&
555           Inst.getOpcode() != AMDGPU::DS_CONSUME) {
556         setExpScore(
557             &Inst, TII, TRI, MRI,
558             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr),
559             CurrScore);
560       }
561       if (Inst.mayStore()) {
562         setExpScore(
563             &Inst, TII, TRI, MRI,
564             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
565             CurrScore);
566         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
567                                        AMDGPU::OpName::data1) != -1) {
568           setExpScore(&Inst, TII, TRI, MRI,
569                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
570                                                  AMDGPU::OpName::data1),
571                       CurrScore);
572         }
573       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
574                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
575                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
576                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
577                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
578                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
579                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
580                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
581                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
582         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
583           const MachineOperand &Op = Inst.getOperand(I);
584           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
585             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
586           }
587         }
588       }
589     } else if (TII->isFLAT(Inst)) {
590       if (Inst.mayStore()) {
591         setExpScore(
592             &Inst, TII, TRI, MRI,
593             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
594             CurrScore);
595       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
596         setExpScore(
597             &Inst, TII, TRI, MRI,
598             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
599             CurrScore);
600       }
601     } else if (TII->isMIMG(Inst)) {
602       if (Inst.mayStore()) {
603         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
604       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
605         setExpScore(
606             &Inst, TII, TRI, MRI,
607             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
608             CurrScore);
609       }
610     } else if (TII->isMTBUF(Inst)) {
611       if (Inst.mayStore()) {
612         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
613       }
614     } else if (TII->isMUBUF(Inst)) {
615       if (Inst.mayStore()) {
616         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
617       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
618         setExpScore(
619             &Inst, TII, TRI, MRI,
620             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
621             CurrScore);
622       }
623     } else {
624       if (TII->isEXP(Inst)) {
625         // For export the destination registers are really temps that
626         // can be used as the actual source after export patching, so
627         // we need to treat them like sources and set the EXP_CNT
628         // score.
629         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
630           MachineOperand &DefMO = Inst.getOperand(I);
631           if (DefMO.isReg() && DefMO.isDef() &&
632               TRI->isVGPR(MRIA, DefMO.getReg())) {
633             setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
634                         CurrScore);
635           }
636         }
637       }
638       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
639         MachineOperand &MO = Inst.getOperand(I);
640         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
641           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
642         }
643       }
644     }
645 #if 0 // TODO: check if this is handled by MUBUF code above.
646   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
647        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
648        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
649     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
650     unsigned OpNo;//TODO: find the OpNo for this operand;
651     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
652     for (signed RegNo = Interval.first; RegNo < Interval.second;
653     ++RegNo) {
654       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
655     }
656 #endif
657   } else {
658     // Match the score to the destination registers.
659     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
660       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
661       if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
662         continue;
663       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
664         setRegScore(RegNo, T, CurrScore);
665       }
666     }
667     if (TII->isDS(Inst) && Inst.mayStore()) {
668       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
669     }
670   }
671 }
672 
673 void BlockWaitcntBrackets::print(raw_ostream &OS) {
674   OS << '\n';
675   for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
676        T = (enum InstCounterType)(T + 1)) {
677     int LB = getScoreLB(T);
678     int UB = getScoreUB(T);
679 
680     switch (T) {
681     case VM_CNT:
682       OS << "    VM_CNT(" << UB - LB << "): ";
683       break;
684     case LGKM_CNT:
685       OS << "    LGKM_CNT(" << UB - LB << "): ";
686       break;
687     case EXP_CNT:
688       OS << "    EXP_CNT(" << UB - LB << "): ";
689       break;
690     default:
691       OS << "    UNKNOWN(" << UB - LB << "): ";
692       break;
693     }
694 
695     if (LB < UB) {
696       // Print vgpr scores.
697       for (int J = 0; J <= getMaxVGPR(); J++) {
698         int RegScore = getRegScore(J, T);
699         if (RegScore <= LB)
700           continue;
701         int RelScore = RegScore - LB - 1;
702         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
703           OS << RelScore << ":v" << J << " ";
704         } else {
705           OS << RelScore << ":ds ";
706         }
707       }
708       // Also need to print sgpr scores for lgkm_cnt.
709       if (T == LGKM_CNT) {
710         for (int J = 0; J <= getMaxSGPR(); J++) {
711           int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
712           if (RegScore <= LB)
713             continue;
714           int RelScore = RegScore - LB - 1;
715           OS << RelScore << ":s" << J << " ";
716         }
717       }
718     }
719     OS << '\n';
720   }
721   OS << '\n';
722 }
723 
724 unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T,
725                                                 int ScoreToWait) {
726   unsigned int NeedWait = 0;
727   if (ScoreToWait == -1) {
728     // The score to wait is unknown. This implies that it was not encountered
729     // during the path of the CFG walk done during the current traversal but
730     // may be seen on a different path. Emit an s_wait counter with a
731     // conservative value of 0 for the counter.
732     NeedWait = CNT_MASK(T);
733     setScoreLB(T, getScoreUB(T));
734     return NeedWait;
735   }
736 
737   // If the score of src_operand falls within the bracket, we need an
738   // s_waitcnt instruction.
739   const int32_t LB = getScoreLB(T);
740   const int32_t UB = getScoreUB(T);
741   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
742     if ((T == VM_CNT || T == LGKM_CNT) &&
743         hasPendingFlat() &&
744         !ST->hasFlatLgkmVMemCountInOrder()) {
745       // If there is a pending FLAT operation, and this is a VMem or LGKM
746       // waitcnt and the target can report early completion, then we need
747       // to force a waitcnt 0.
748       NeedWait = CNT_MASK(T);
749       setScoreLB(T, getScoreUB(T));
750     } else if (counterOutOfOrder(T)) {
751       // Counter can get decremented out-of-order when there
752       // are multiple types event in the bracket. Also emit an s_wait counter
753       // with a conservative value of 0 for the counter.
754       NeedWait = CNT_MASK(T);
755       setScoreLB(T, getScoreUB(T));
756     } else {
757       NeedWait = CNT_MASK(T);
758       setScoreLB(T, ScoreToWait);
759     }
760   }
761 
762   return NeedWait;
763 }
764 
765 // Where there are multiple types of event in the bracket of a counter,
766 // the decrement may go out of order.
767 bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) {
768   switch (T) {
769   case VM_CNT:
770     return false;
771   case LGKM_CNT: {
772     if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
773         EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) {
774       // Scalar memory read always can go out of order.
775       return true;
776     }
777     int NumEventTypes = 0;
778     if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
779         EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
780       NumEventTypes++;
781     }
782     if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
783         EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
784       NumEventTypes++;
785     }
786     if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] &&
787         EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) {
788       NumEventTypes++;
789     }
790     if (NumEventTypes <= 1) {
791       return false;
792     }
793     break;
794   }
795   case EXP_CNT: {
796     // If there has been a mixture of export types, then a waitcnt exp(0) is
797     // required.
798     if (MixedExpTypes)
799       return true;
800     int NumEventTypes = 0;
801     if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
802         EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
803       NumEventTypes++;
804     }
805     if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
806         EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
807       NumEventTypes++;
808     }
809     if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
810         EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
811       NumEventTypes++;
812     }
813     if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] &&
814         EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) {
815       NumEventTypes++;
816     }
817 
818     if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] &&
819         EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) {
820       NumEventTypes++;
821     }
822 
823     if (NumEventTypes <= 1) {
824       return false;
825     }
826     break;
827   }
828   default:
829     break;
830   }
831   return true;
832 }
833 
834 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
835                       false)
836 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
837                     false)
838 
839 char SIInsertWaitcnts::ID = 0;
840 
841 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
842 
843 FunctionPass *llvm::createSIInsertWaitcntsPass() {
844   return new SIInsertWaitcnts();
845 }
846 
847 static bool readsVCCZ(const MachineInstr &MI) {
848   unsigned Opc = MI.getOpcode();
849   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
850          !MI.getOperand(1).isUndef();
851 }
852 
853 /// Given wait count encodings checks if LHS is stronger than RHS.
854 bool SIInsertWaitcnts::isWaitcntStronger(unsigned LHS, unsigned RHS) {
855   if (AMDGPU::decodeVmcnt(IV, LHS) > AMDGPU::decodeVmcnt(IV, RHS))
856     return false;
857   if (AMDGPU::decodeLgkmcnt(IV, LHS) > AMDGPU::decodeLgkmcnt(IV, RHS))
858     return false;
859   if (AMDGPU::decodeExpcnt(IV, LHS) > AMDGPU::decodeExpcnt(IV, RHS))
860     return false;
861   return true;
862 }
863 
864 /// Given wait count encodings create a new encoding which is stronger
865 /// or equal to both.
866 unsigned SIInsertWaitcnts::combineWaitcnt(unsigned LHS, unsigned RHS) {
867   unsigned VmCnt = std::min(AMDGPU::decodeVmcnt(IV, LHS),
868                             AMDGPU::decodeVmcnt(IV, RHS));
869   unsigned LgkmCnt = std::min(AMDGPU::decodeLgkmcnt(IV, LHS),
870                               AMDGPU::decodeLgkmcnt(IV, RHS));
871   unsigned ExpCnt = std::min(AMDGPU::decodeExpcnt(IV, LHS),
872                              AMDGPU::decodeExpcnt(IV, RHS));
873   return AMDGPU::encodeWaitcnt(IV, VmCnt, ExpCnt, LgkmCnt);
874 }
875 
876 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
877 ///  Instructions of a given type are returned in order,
878 ///  but instructions of different types can complete out of order.
879 ///  We rely on this in-order completion
880 ///  and simply assign a score to the memory access instructions.
881 ///  We keep track of the active "score bracket" to determine
882 ///  if an access of a memory read requires an s_waitcnt
883 ///  and if so what the value of each counter is.
884 ///  The "score bracket" is bound by the lower bound and upper bound
885 ///  scores (*_score_LB and *_score_ub respectively).
886 void SIInsertWaitcnts::generateWaitcntInstBefore(
887     MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) {
888   // To emit, or not to emit - that's the question!
889   // Start with an assumption that there is no need to emit.
890   unsigned int EmitWaitcnt = 0;
891 
892   // No need to wait before phi. If a phi-move exists, then the wait should
893   // has been inserted before the move. If a phi-move does not exist, then
894   // wait should be inserted before the real use. The same is true for
895   // sc-merge. It is not a coincident that all these cases correspond to the
896   // instructions that are skipped in the assembling loop.
897   bool NeedLineMapping = false; // TODO: Check on this.
898 
899   // ForceEmitZeroWaitcnt: force a single s_waitcnt 0 due to hw bug
900   bool ForceEmitZeroWaitcnt = false;
901 
902   setForceEmitWaitcnt();
903   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
904 
905   if (MI.isDebugInstr() &&
906       // TODO: any other opcode?
907       !NeedLineMapping) {
908     return;
909   }
910 
911   // See if an s_waitcnt is forced at block entry, or is needed at
912   // program end.
913   if (ScoreBrackets->getWaitAtBeginning()) {
914     // Note that we have already cleared the state, so we don't need to update
915     // it.
916     ScoreBrackets->clearWaitAtBeginning();
917     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
918          T = (enum InstCounterType)(T + 1)) {
919       EmitWaitcnt |= CNT_MASK(T);
920       ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
921     }
922   }
923 
924   // See if this instruction has a forced S_WAITCNT VM.
925   // TODO: Handle other cases of NeedsWaitcntVmBefore()
926   else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
927            MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
928            MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) {
929     EmitWaitcnt |=
930         ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
931   }
932 
933   // All waits must be resolved at call return.
934   // NOTE: this could be improved with knowledge of all call sites or
935   //   with knowledge of the called routines.
936   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
937       MI.getOpcode() == AMDGPU::S_SETPC_B64_return) {
938     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
939          T = (enum InstCounterType)(T + 1)) {
940       if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
941         ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
942         EmitWaitcnt |= CNT_MASK(T);
943       }
944     }
945   }
946   // Resolve vm waits before gs-done.
947   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
948             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
949            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
950             AMDGPU::SendMsg::ID_GS_DONE)) {
951     if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) {
952       ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
953       EmitWaitcnt |= CNT_MASK(VM_CNT);
954     }
955   }
956 #if 0 // TODO: the following blocks of logic when we have fence.
957   else if (MI.getOpcode() == SC_FENCE) {
958     const unsigned int group_size =
959       context->shader_info->GetMaxThreadGroupSize();
960     // group_size == 0 means thread group size is unknown at compile time
961     const bool group_is_multi_wave =
962       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
963     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
964 
965     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
966       SCRegType src_type = Inst->GetSrcType(i);
967       switch (src_type) {
968         case SCMEM_LDS:
969           if (group_is_multi_wave ||
970             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
971             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
972                                ScoreBrackets->getScoreUB(LGKM_CNT));
973             // LDS may have to wait for VM_CNT after buffer load to LDS
974             if (target_info->HasBufferLoadToLDS()) {
975               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
976                                  ScoreBrackets->getScoreUB(VM_CNT));
977             }
978           }
979           break;
980 
981         case SCMEM_GDS:
982           if (group_is_multi_wave || fence_is_global) {
983             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
984               ScoreBrackets->getScoreUB(EXP_CNT));
985             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
986               ScoreBrackets->getScoreUB(LGKM_CNT));
987           }
988           break;
989 
990         case SCMEM_UAV:
991         case SCMEM_TFBUF:
992         case SCMEM_RING:
993         case SCMEM_SCATTER:
994           if (group_is_multi_wave || fence_is_global) {
995             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
996               ScoreBrackets->getScoreUB(EXP_CNT));
997             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
998               ScoreBrackets->getScoreUB(VM_CNT));
999           }
1000           break;
1001 
1002         case SCMEM_SCRATCH:
1003         default:
1004           break;
1005       }
1006     }
1007   }
1008 #endif
1009 
1010   // Export & GDS instructions do not read the EXEC mask until after the export
1011   // is granted (which can occur well after the instruction is issued).
1012   // The shader program must flush all EXP operations on the export-count
1013   // before overwriting the EXEC mask.
1014   else {
1015     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
1016       // Export and GDS are tracked individually, either may trigger a waitcnt
1017       // for EXEC.
1018       EmitWaitcnt |= ScoreBrackets->updateByWait(
1019           EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK));
1020       EmitWaitcnt |= ScoreBrackets->updateByWait(
1021           EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS));
1022       EmitWaitcnt |= ScoreBrackets->updateByWait(
1023           EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS));
1024       EmitWaitcnt |= ScoreBrackets->updateByWait(
1025           EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK));
1026     }
1027 
1028 #if 0 // TODO: the following code to handle CALL.
1029     // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT.
1030     // However, there is a problem with EXP_CNT, because the call cannot
1031     // easily tell if a register is used in the function, and if it did, then
1032     // the referring instruction would have to have an S_WAITCNT, which is
1033     // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs
1034     // before the call.
1035     if (MI.getOpcode() == SC_CALL) {
1036       if (ScoreBrackets->getScoreUB(EXP_CNT) >
1037         ScoreBrackets->getScoreLB(EXP_CNT)) {
1038         ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
1039         EmitWaitcnt |= CNT_MASK(EXP_CNT);
1040       }
1041     }
1042 #endif
1043 
1044     // FIXME: Should not be relying on memoperands.
1045     // Look at the source operands of every instruction to see if
1046     // any of them results from a previous memory operation that affects
1047     // its current usage. If so, an s_waitcnt instruction needs to be
1048     // emitted.
1049     // If the source operand was defined by a load, add the s_waitcnt
1050     // instruction.
1051     for (const MachineMemOperand *Memop : MI.memoperands()) {
1052       unsigned AS = Memop->getAddrSpace();
1053       if (AS != AMDGPUAS::LOCAL_ADDRESS)
1054         continue;
1055       unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1056       // VM_CNT is only relevant to vgpr or LDS.
1057       EmitWaitcnt |= ScoreBrackets->updateByWait(
1058           VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
1059     }
1060 
1061     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1062       const MachineOperand &Op = MI.getOperand(I);
1063       const MachineRegisterInfo &MRIA = *MRI;
1064       RegInterval Interval =
1065           ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false);
1066       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1067         if (TRI->isVGPR(MRIA, Op.getReg())) {
1068           // VM_CNT is only relevant to vgpr or LDS.
1069           EmitWaitcnt |= ScoreBrackets->updateByWait(
1070               VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
1071         }
1072         EmitWaitcnt |= ScoreBrackets->updateByWait(
1073             LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
1074       }
1075     }
1076     // End of for loop that looks at all source operands to decide vm_wait_cnt
1077     // and lgk_wait_cnt.
1078 
1079     // Two cases are handled for destination operands:
1080     // 1) If the destination operand was defined by a load, add the s_waitcnt
1081     // instruction to guarantee the right WAW order.
1082     // 2) If a destination operand that was used by a recent export/store ins,
1083     // add s_waitcnt on exp_cnt to guarantee the WAR order.
1084     if (MI.mayStore()) {
1085       // FIXME: Should not be relying on memoperands.
1086       for (const MachineMemOperand *Memop : MI.memoperands()) {
1087         unsigned AS = Memop->getAddrSpace();
1088         if (AS != AMDGPUAS::LOCAL_ADDRESS)
1089           continue;
1090         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1091         EmitWaitcnt |= ScoreBrackets->updateByWait(
1092             VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
1093         EmitWaitcnt |= ScoreBrackets->updateByWait(
1094             EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
1095       }
1096     }
1097     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1098       MachineOperand &Def = MI.getOperand(I);
1099       const MachineRegisterInfo &MRIA = *MRI;
1100       RegInterval Interval =
1101           ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true);
1102       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1103         if (TRI->isVGPR(MRIA, Def.getReg())) {
1104           EmitWaitcnt |= ScoreBrackets->updateByWait(
1105               VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
1106           EmitWaitcnt |= ScoreBrackets->updateByWait(
1107               EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
1108         }
1109         EmitWaitcnt |= ScoreBrackets->updateByWait(
1110             LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
1111       }
1112     } // End of for loop that looks at all dest operands.
1113   }
1114 
1115   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1116   // occurs before the instruction. Doing it here prevents any additional
1117   // S_WAITCNTs from being emitted if the instruction was marked as
1118   // requiring a WAITCNT beforehand.
1119   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1120       !ST->hasAutoWaitcntBeforeBarrier()) {
1121     EmitWaitcnt |=
1122         ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
1123     EmitWaitcnt |= ScoreBrackets->updateByWait(
1124         EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
1125     EmitWaitcnt |= ScoreBrackets->updateByWait(
1126         LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT));
1127   }
1128 
1129   // TODO: Remove this work-around, enable the assert for Bug 457939
1130   //       after fixing the scheduler. Also, the Shader Compiler code is
1131   //       independent of target.
1132   if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) {
1133     if (ScoreBrackets->getScoreLB(LGKM_CNT) <
1134             ScoreBrackets->getScoreUB(LGKM_CNT) &&
1135         ScoreBrackets->hasPendingSMEM()) {
1136       // Wait on everything, not just LGKM.  vccz reads usually come from
1137       // terminators, and we always wait on everything at the end of the
1138       // block, so if we only wait on LGKM here, we might end up with
1139       // another s_waitcnt inserted right after this if there are non-LGKM
1140       // instructions still outstanding.
1141       // FIXME: this is too conservative / the comment is wrong.
1142       // We don't wait on everything at the end of the block and we combine
1143       // waitcnts so we should never have back-to-back waitcnts.
1144       ForceEmitZeroWaitcnt = true;
1145       EmitWaitcnt = true;
1146     }
1147   }
1148 
1149   // Does this operand processing indicate s_wait counter update?
1150   if (EmitWaitcnt || IsForceEmitWaitcnt) {
1151     int CntVal[NUM_INST_CNTS];
1152 
1153     bool UseDefaultWaitcntStrategy = true;
1154     if (ForceEmitZeroWaitcnt || ForceEmitZeroWaitcnts) {
1155       // Force all waitcnts to 0.
1156       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1157            T = (enum InstCounterType)(T + 1)) {
1158         ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
1159       }
1160       CntVal[VM_CNT] = 0;
1161       CntVal[EXP_CNT] = 0;
1162       CntVal[LGKM_CNT] = 0;
1163       UseDefaultWaitcntStrategy = false;
1164     }
1165 
1166     if (UseDefaultWaitcntStrategy) {
1167       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1168            T = (enum InstCounterType)(T + 1)) {
1169         if (EmitWaitcnt & CNT_MASK(T)) {
1170           int Delta =
1171               ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T);
1172           int MaxDelta = ScoreBrackets->getWaitCountMax(T);
1173           if (Delta >= MaxDelta) {
1174             Delta = -1;
1175             if (T != EXP_CNT) {
1176               ScoreBrackets->setScoreLB(
1177                   T, ScoreBrackets->getScoreUB(T) - MaxDelta);
1178             }
1179             EmitWaitcnt &= ~CNT_MASK(T);
1180           }
1181           CntVal[T] = Delta;
1182         } else {
1183           // If we are not waiting for a particular counter then encode
1184           // it as -1 which means "don't care."
1185           CntVal[T] = -1;
1186         }
1187       }
1188     }
1189 
1190     // If we are not waiting on any counter we can skip the wait altogether.
1191     if (EmitWaitcnt != 0 || IsForceEmitWaitcnt) {
1192       MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt();
1193       int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm();
1194       if (!OldWaitcnt ||
1195           (AMDGPU::decodeVmcnt(IV, Imm) !=
1196                           (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) ||
1197           (AMDGPU::decodeExpcnt(IV, Imm) !=
1198            (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) ||
1199           (AMDGPU::decodeLgkmcnt(IV, Imm) !=
1200            (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) {
1201         MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent());
1202         if (ContainingLoop) {
1203           MachineBasicBlock *TBB = ContainingLoop->getHeader();
1204           BlockWaitcntBrackets *ScoreBracket =
1205               BlockWaitcntBracketsMap[TBB].get();
1206           if (!ScoreBracket) {
1207             assert(!BlockVisitedSet.count(TBB));
1208             BlockWaitcntBracketsMap[TBB] =
1209                 llvm::make_unique<BlockWaitcntBrackets>(ST);
1210             ScoreBracket = BlockWaitcntBracketsMap[TBB].get();
1211           }
1212           ScoreBracket->setRevisitLoop(true);
1213           LLVM_DEBUG(dbgs()
1214                          << "set-revisit2: Block"
1215                          << ContainingLoop->getHeader()->getNumber() << '\n';);
1216         }
1217       }
1218 
1219       // Update an existing waitcount, or make a new one.
1220       unsigned Enc = AMDGPU::encodeWaitcnt(IV,
1221                       ForceEmitWaitcnt[VM_CNT] ? 0 : CntVal[VM_CNT],
1222                       ForceEmitWaitcnt[EXP_CNT] ? 0 : CntVal[EXP_CNT],
1223                       ForceEmitWaitcnt[LGKM_CNT] ? 0 : CntVal[LGKM_CNT]);
1224       // We don't remove waitcnts that existed prior to the waitcnt
1225       // pass. Check if the waitcnt to-be-inserted can be avoided
1226       // or if the prev waitcnt can be updated.
1227       bool insertSWaitInst = true;
1228       for (MachineBasicBlock::iterator I = MI.getIterator(),
1229                                        B = MI.getParent()->begin();
1230            insertSWaitInst && I != B; --I) {
1231         if (I == MI.getIterator())
1232           continue;
1233 
1234         switch (I->getOpcode()) {
1235         case AMDGPU::S_WAITCNT:
1236           if (isWaitcntStronger(I->getOperand(0).getImm(), Enc))
1237             insertSWaitInst = false;
1238           else if (!OldWaitcnt) {
1239             OldWaitcnt = &*I;
1240             Enc = combineWaitcnt(I->getOperand(0).getImm(), Enc);
1241           }
1242           break;
1243         // TODO: skip over instructions which never require wait.
1244         }
1245         break;
1246       }
1247       if (insertSWaitInst) {
1248         if (OldWaitcnt && OldWaitcnt->getOpcode() == AMDGPU::S_WAITCNT) {
1249           if (ForceEmitZeroWaitcnts)
1250             LLVM_DEBUG(
1251                 dbgs()
1252                 << "Force emit s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)\n");
1253           if (IsForceEmitWaitcnt)
1254             LLVM_DEBUG(dbgs()
1255                        << "Force emit a s_waitcnt due to debug counter\n");
1256 
1257           OldWaitcnt->getOperand(0).setImm(Enc);
1258           if (!OldWaitcnt->getParent())
1259             MI.getParent()->insert(MI, OldWaitcnt);
1260 
1261           LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n"
1262                             << "Old Instr: " << MI << '\n'
1263                             << "New Instr: " << *OldWaitcnt << '\n');
1264         } else {
1265             auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1266                                MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1267                              .addImm(Enc);
1268             TrackedWaitcntSet.insert(SWaitInst);
1269 
1270             LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n"
1271                               << "Old Instr: " << MI << '\n'
1272                               << "New Instr: " << *SWaitInst << '\n');
1273         }
1274       }
1275 
1276       if (CntVal[EXP_CNT] == 0) {
1277         ScoreBrackets->setMixedExpTypes(false);
1278       }
1279     }
1280   }
1281 }
1282 
1283 void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB,
1284                                              MachineInstr *Waitcnt) {
1285   if (MBB.empty()) {
1286     MBB.push_back(Waitcnt);
1287     return;
1288   }
1289 
1290   MachineBasicBlock::iterator It = MBB.end();
1291   MachineInstr *MI = &*(--It);
1292   if (MI->isBranch()) {
1293     MBB.insert(It, Waitcnt);
1294   } else {
1295     MBB.push_back(Waitcnt);
1296   }
1297 }
1298 
1299 // This is a flat memory operation. Check to see if it has memory
1300 // tokens for both LDS and Memory, and if so mark it as a flat.
1301 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1302   if (MI.memoperands_empty())
1303     return true;
1304 
1305   for (const MachineMemOperand *Memop : MI.memoperands()) {
1306     unsigned AS = Memop->getAddrSpace();
1307     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1308       return true;
1309   }
1310 
1311   return false;
1312 }
1313 
1314 void SIInsertWaitcnts::updateEventWaitcntAfter(
1315     MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) {
1316   // Now look at the instruction opcode. If it is a memory access
1317   // instruction, update the upper-bound of the appropriate counter's
1318   // bracket and the destination operand scores.
1319   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1320   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1321     if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1322       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1323       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1324     } else {
1325       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1326     }
1327   } else if (TII->isFLAT(Inst)) {
1328     assert(Inst.mayLoad() || Inst.mayStore());
1329 
1330     if (TII->usesVM_CNT(Inst))
1331       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1332 
1333     if (TII->usesLGKM_CNT(Inst)) {
1334       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1335 
1336       // This is a flat memory operation, so note it - it will require
1337       // that both the VM and LGKM be flushed to zero if it is pending when
1338       // a VM or LGKM dependency occurs.
1339       if (mayAccessLDSThroughFlat(Inst))
1340         ScoreBrackets->setPendingFlat();
1341     }
1342   } else if (SIInstrInfo::isVMEM(Inst) &&
1343              // TODO: get a better carve out.
1344              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1345              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1346              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) {
1347     ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1348     if (ST->vmemWriteNeedsExpWaitcnt() &&
1349         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
1350       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1351     }
1352   } else if (TII->isSMRD(Inst)) {
1353     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1354   } else {
1355     switch (Inst.getOpcode()) {
1356     case AMDGPU::S_SENDMSG:
1357     case AMDGPU::S_SENDMSGHALT:
1358       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1359       break;
1360     case AMDGPU::EXP:
1361     case AMDGPU::EXP_DONE: {
1362       int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1363       if (Imm >= 32 && Imm <= 63)
1364         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1365       else if (Imm >= 12 && Imm <= 15)
1366         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1367       else
1368         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1369       break;
1370     }
1371     case AMDGPU::S_MEMTIME:
1372     case AMDGPU::S_MEMREALTIME:
1373       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1374       break;
1375     default:
1376       break;
1377     }
1378   }
1379 }
1380 
1381 // Merge the score brackets of the Block's predecessors;
1382 // this merged score bracket is used when adding waitcnts to the Block
1383 void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) {
1384   BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
1385   int32_t MaxPending[NUM_INST_CNTS] = {0};
1386   int32_t MaxFlat[NUM_INST_CNTS] = {0};
1387   bool MixedExpTypes = false;
1388 
1389   // For single basic block loops, we need to retain the Block's
1390   // score bracket to have accurate Pred info. So, make a copy of Block's
1391   // score bracket, clear() it (which retains several important bits of info),
1392   // populate, and then replace en masse. For non-single basic block loops,
1393   // just clear Block's current score bracket and repopulate in-place.
1394   bool IsSelfPred;
1395   std::unique_ptr<BlockWaitcntBrackets> S;
1396 
1397   IsSelfPred = (std::find(Block.pred_begin(), Block.pred_end(), &Block))
1398     != Block.pred_end();
1399   if (IsSelfPred) {
1400     S = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets);
1401     ScoreBrackets = S.get();
1402   }
1403 
1404   ScoreBrackets->clear();
1405 
1406   // See if there are any uninitialized predecessors. If so, emit an
1407   // s_waitcnt 0 at the beginning of the block.
1408   for (MachineBasicBlock *Pred : Block.predecessors()) {
1409     BlockWaitcntBrackets *PredScoreBrackets =
1410         BlockWaitcntBracketsMap[Pred].get();
1411     bool Visited = BlockVisitedSet.count(Pred);
1412     if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
1413       continue;
1414     }
1415     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1416          T = (enum InstCounterType)(T + 1)) {
1417       int span =
1418           PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T);
1419       MaxPending[T] = std::max(MaxPending[T], span);
1420       span =
1421           PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T);
1422       MaxFlat[T] = std::max(MaxFlat[T], span);
1423     }
1424 
1425     MixedExpTypes |= PredScoreBrackets->mixedExpTypes();
1426   }
1427 
1428   // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1429   // Also handle kills for exit block.
1430   if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1431     for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1432       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1433            T = (enum InstCounterType)(T + 1)) {
1434         int Span = KillWaitBrackets[I]->getScoreUB(T) -
1435                    KillWaitBrackets[I]->getScoreLB(T);
1436         MaxPending[T] = std::max(MaxPending[T], Span);
1437         Span = KillWaitBrackets[I]->pendingFlat(T) -
1438                KillWaitBrackets[I]->getScoreLB(T);
1439         MaxFlat[T] = std::max(MaxFlat[T], Span);
1440       }
1441 
1442       MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes();
1443     }
1444   }
1445 
1446   // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK.
1447   for (MachineBasicBlock *Pred : Block.predecessors()) {
1448     BlockWaitcntBrackets *PredScoreBrackets =
1449         BlockWaitcntBracketsMap[Pred].get();
1450     bool Visited = BlockVisitedSet.count(Pred);
1451     if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
1452       continue;
1453     }
1454 
1455     int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) -
1456                   PredScoreBrackets->getScoreLB(EXP_CNT);
1457     MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
1458     int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) -
1459                   PredScoreBrackets->getScoreLB(EXP_CNT);
1460     MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
1461   }
1462 
1463   // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1464   if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1465     for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1466       int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) -
1467                     KillWaitBrackets[I]->getScoreLB(EXP_CNT);
1468       MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
1469       int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) -
1470                     KillWaitBrackets[I]->getScoreLB(EXP_CNT);
1471       MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
1472     }
1473   }
1474 
1475 #if 0
1476   // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker.
1477   // TODO: how does LC distinguish between function entry and main entry?
1478   // If this is the entry to a function, force a wait.
1479   MachineBasicBlock &Entry = Block.getParent()->front();
1480   if (Entry.getNumber() == Block.getNumber()) {
1481     ScoreBrackets->setWaitAtBeginning();
1482     return;
1483   }
1484 #endif
1485 
1486   // Now set the current Block's brackets to the largest ending bracket.
1487   for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1488        T = (enum InstCounterType)(T + 1)) {
1489     ScoreBrackets->setScoreUB(T, MaxPending[T]);
1490     ScoreBrackets->setScoreLB(T, 0);
1491     ScoreBrackets->setLastFlat(T, MaxFlat[T]);
1492   }
1493 
1494   ScoreBrackets->setMixedExpTypes(MixedExpTypes);
1495 
1496   // Set the register scoreboard.
1497   for (MachineBasicBlock *Pred : Block.predecessors()) {
1498     if (!BlockVisitedSet.count(Pred)) {
1499       continue;
1500     }
1501 
1502     BlockWaitcntBrackets *PredScoreBrackets =
1503         BlockWaitcntBracketsMap[Pred].get();
1504 
1505     // Now merge the gpr_reg_score information
1506     for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1507          T = (enum InstCounterType)(T + 1)) {
1508       int PredLB = PredScoreBrackets->getScoreLB(T);
1509       int PredUB = PredScoreBrackets->getScoreUB(T);
1510       if (PredLB < PredUB) {
1511         int PredScale = MaxPending[T] - PredUB;
1512         // Merge vgpr scores.
1513         for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) {
1514           int PredRegScore = PredScoreBrackets->getRegScore(J, T);
1515           if (PredRegScore <= PredLB)
1516             continue;
1517           int NewRegScore = PredScale + PredRegScore;
1518           ScoreBrackets->setRegScore(
1519               J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
1520         }
1521         // Also need to merge sgpr scores for lgkm_cnt.
1522         if (T == LGKM_CNT) {
1523           for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) {
1524             int PredRegScore =
1525                 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
1526             if (PredRegScore <= PredLB)
1527               continue;
1528             int NewRegScore = PredScale + PredRegScore;
1529             ScoreBrackets->setRegScore(
1530                 J + NUM_ALL_VGPRS, LGKM_CNT,
1531                 std::max(
1532                     ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
1533                     NewRegScore));
1534           }
1535         }
1536       }
1537     }
1538 
1539     // Also merge the WaitEvent information.
1540     ForAllWaitEventType(W) {
1541       enum InstCounterType T = PredScoreBrackets->eventCounter(W);
1542       int PredEventUB = PredScoreBrackets->getEventUB(W);
1543       if (PredEventUB > PredScoreBrackets->getScoreLB(T)) {
1544         int NewEventUB =
1545             MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T);
1546         if (NewEventUB > 0) {
1547           ScoreBrackets->setEventUB(
1548               W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
1549         }
1550       }
1551     }
1552   }
1553 
1554   // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
1555   // Set the register scoreboard.
1556   if (Block.succ_empty() && !KillWaitBrackets.empty()) {
1557     for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
1558       // Now merge the gpr_reg_score information.
1559       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1560            T = (enum InstCounterType)(T + 1)) {
1561         int PredLB = KillWaitBrackets[I]->getScoreLB(T);
1562         int PredUB = KillWaitBrackets[I]->getScoreUB(T);
1563         if (PredLB < PredUB) {
1564           int PredScale = MaxPending[T] - PredUB;
1565           // Merge vgpr scores.
1566           for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) {
1567             int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T);
1568             if (PredRegScore <= PredLB)
1569               continue;
1570             int NewRegScore = PredScale + PredRegScore;
1571             ScoreBrackets->setRegScore(
1572                 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
1573           }
1574           // Also need to merge sgpr scores for lgkm_cnt.
1575           if (T == LGKM_CNT) {
1576             for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) {
1577               int PredRegScore =
1578                   KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
1579               if (PredRegScore <= PredLB)
1580                 continue;
1581               int NewRegScore = PredScale + PredRegScore;
1582               ScoreBrackets->setRegScore(
1583                   J + NUM_ALL_VGPRS, LGKM_CNT,
1584                   std::max(
1585                       ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
1586                       NewRegScore));
1587             }
1588           }
1589         }
1590       }
1591 
1592       // Also merge the WaitEvent information.
1593       ForAllWaitEventType(W) {
1594         enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W);
1595         int PredEventUB = KillWaitBrackets[I]->getEventUB(W);
1596         if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) {
1597           int NewEventUB =
1598               MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T);
1599           if (NewEventUB > 0) {
1600             ScoreBrackets->setEventUB(
1601                 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
1602           }
1603         }
1604       }
1605     }
1606   }
1607 
1608   // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the
1609   // sequencing predecessors, because changes to EXEC require waitcnts due to
1610   // the delayed nature of these operations.
1611   for (MachineBasicBlock *Pred : Block.predecessors()) {
1612     if (!BlockVisitedSet.count(Pred)) {
1613       continue;
1614     }
1615 
1616     BlockWaitcntBrackets *PredScoreBrackets =
1617         BlockWaitcntBracketsMap[Pred].get();
1618 
1619     int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK);
1620     if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
1621       int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub -
1622                        PredScoreBrackets->getScoreUB(EXP_CNT);
1623       if (new_gds_ub > 0) {
1624         ScoreBrackets->setEventUB(
1625             GDS_GPR_LOCK,
1626             std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub));
1627       }
1628     }
1629     int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK);
1630     if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
1631       int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub -
1632                        PredScoreBrackets->getScoreUB(EXP_CNT);
1633       if (new_exp_ub > 0) {
1634         ScoreBrackets->setEventUB(
1635             EXP_GPR_LOCK,
1636             std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub));
1637       }
1638     }
1639   }
1640 
1641   // if a single block loop, update the score brackets. Not needed for other
1642   // blocks, as we did this in-place
1643   if (IsSelfPred) {
1644     BlockWaitcntBracketsMap[&Block] = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets);
1645   }
1646 }
1647 
1648 /// Return true if the given basic block is a "bottom" block of a loop.
1649 /// This works even if the loop is discontiguous. This also handles
1650 /// multiple back-edges for the same "header" block of a loop.
1651 bool SIInsertWaitcnts::isLoopBottom(const MachineLoop *Loop,
1652                                     const MachineBasicBlock *Block) {
1653   for (MachineBasicBlock *MBB : Loop->blocks()) {
1654     if (MBB == Block && MBB->isSuccessor(Loop->getHeader())) {
1655       return true;
1656     }
1657   }
1658   return false;
1659 }
1660 
1661 /// Count the number of "bottom" basic blocks of a loop.
1662 unsigned SIInsertWaitcnts::countNumBottomBlocks(const MachineLoop *Loop) {
1663   unsigned Count = 0;
1664   for (MachineBasicBlock *MBB : Loop->blocks()) {
1665     if (MBB->isSuccessor(Loop->getHeader())) {
1666       Count++;
1667     }
1668   }
1669   return Count;
1670 }
1671 
1672 // Generate s_waitcnt instructions where needed.
1673 void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1674                                             MachineBasicBlock &Block) {
1675   // Initialize the state information.
1676   mergeInputScoreBrackets(Block);
1677 
1678   BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
1679 
1680   LLVM_DEBUG({
1681     dbgs() << "*** Block" << Block.getNumber() << " ***";
1682     ScoreBrackets->dump();
1683   });
1684 
1685   // Walk over the instructions.
1686   for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end();
1687        Iter != E;) {
1688     MachineInstr &Inst = *Iter;
1689     // Remove any previously existing waitcnts.
1690     if (Inst.getOpcode() == AMDGPU::S_WAITCNT) {
1691       // Leave pre-existing waitcnts, but note their existence via setWaitcnt.
1692       // Remove the waitcnt-pass-generated waitcnts; the pass will add them back
1693       // as needed.
1694       if (!TrackedWaitcntSet.count(&Inst))
1695         ++Iter;
1696       else {
1697         ++Iter;
1698         Inst.removeFromParent();
1699       }
1700       ScoreBrackets->setWaitcnt(&Inst);
1701       continue;
1702     }
1703 
1704     // Kill instructions generate a conditional branch to the endmain block.
1705     // Merge the current waitcnt state into the endmain block information.
1706     // TODO: Are there other flavors of KILL instruction?
1707     if (Inst.getOpcode() == AMDGPU::KILL) {
1708       addKillWaitBracket(ScoreBrackets);
1709     }
1710 
1711     bool VCCZBugWorkAround = false;
1712     if (readsVCCZ(Inst) &&
1713         (!VCCZBugHandledSet.count(&Inst))) {
1714       if (ScoreBrackets->getScoreLB(LGKM_CNT) <
1715               ScoreBrackets->getScoreUB(LGKM_CNT) &&
1716           ScoreBrackets->hasPendingSMEM()) {
1717         if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
1718           VCCZBugWorkAround = true;
1719       }
1720     }
1721 
1722     // Generate an s_waitcnt instruction to be placed before
1723     // cur_Inst, if needed.
1724     generateWaitcntInstBefore(Inst, ScoreBrackets);
1725 
1726     updateEventWaitcntAfter(Inst, ScoreBrackets);
1727 
1728 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1729     // If this instruction generates a S_SETVSKIP because it is an
1730     // indexed resource, and we are on Tahiti, then it will also force
1731     // an S_WAITCNT vmcnt(0)
1732     if (RequireCheckResourceType(Inst, context)) {
1733       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1734       ScoreBrackets->setScoreLB(VM_CNT,
1735       ScoreBrackets->getScoreUB(VM_CNT));
1736     }
1737 #endif
1738 
1739     ScoreBrackets->clearWaitcnt();
1740 
1741     LLVM_DEBUG({
1742       Inst.print(dbgs());
1743       ScoreBrackets->dump();
1744     });
1745 
1746     // Check to see if this is a GWS instruction. If so, and if this is CI or
1747     // VI, then the generated code sequence will include an S_WAITCNT 0.
1748     // TODO: Are these the only GWS instructions?
1749     if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT ||
1750         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V ||
1751         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
1752         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P ||
1753         Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
1754       // TODO: && context->target_info->GwsRequiresMemViolTest() ) {
1755       ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
1756       ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
1757       ScoreBrackets->updateByWait(LGKM_CNT,
1758                                   ScoreBrackets->getScoreUB(LGKM_CNT));
1759     }
1760 
1761     // TODO: Remove this work-around after fixing the scheduler and enable the
1762     // assert above.
1763     if (VCCZBugWorkAround) {
1764       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1765       // bit is updated, so we can restore the bit by reading the value of
1766       // vcc and then writing it back to the register.
1767       BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
1768               AMDGPU::VCC)
1769           .addReg(AMDGPU::VCC);
1770       VCCZBugHandledSet.insert(&Inst);
1771     }
1772 
1773     ++Iter;
1774   }
1775 
1776   // Check if we need to force convergence at loop footer.
1777   MachineLoop *ContainingLoop = MLI->getLoopFor(&Block);
1778   if (ContainingLoop && isLoopBottom(ContainingLoop, &Block)) {
1779     LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1780     WaitcntData->print();
1781     LLVM_DEBUG(dbgs() << '\n';);
1782 
1783     // The iterative waitcnt insertion algorithm aims for optimal waitcnt
1784     // placement, but doesn't guarantee convergence for a loop. Each
1785     // loop should take at most (n+1) iterations for it to converge naturally,
1786     // where n is the number of bottom blocks. If this threshold is reached and
1787     // the result hasn't converged, then we force convergence by inserting
1788     // a s_waitcnt at the end of loop footer.
1789     if (WaitcntData->getIterCnt() > (countNumBottomBlocks(ContainingLoop) + 1)) {
1790       // To ensure convergence, need to make wait events at loop footer be no
1791       // more than those from the previous iteration.
1792       // As a simplification, instead of tracking individual scores and
1793       // generating the precise wait count, just wait on 0.
1794       bool HasPending = false;
1795       MachineInstr *SWaitInst = WaitcntData->getWaitcnt();
1796       for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1797            T = (enum InstCounterType)(T + 1)) {
1798         if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
1799           ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
1800           HasPending = true;
1801           break;
1802         }
1803       }
1804 
1805       if (HasPending) {
1806         if (!SWaitInst) {
1807           SWaitInst = BuildMI(Block, Block.getFirstNonPHI(),
1808                               DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1809                               .addImm(0);
1810           TrackedWaitcntSet.insert(SWaitInst);
1811 #if 0 // TODO: Format the debug output
1812           OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context);
1813           OutputTransformAdd(SWaitInst, context);
1814 #endif
1815         }
1816 #if 0 // TODO: ??
1817         _DEV( REPORTED_STATS->force_waitcnt_converge = 1; )
1818 #endif
1819       }
1820 
1821       if (SWaitInst) {
1822         LLVM_DEBUG({
1823           SWaitInst->print(dbgs());
1824           dbgs() << "\nAdjusted score board:";
1825           ScoreBrackets->dump();
1826         });
1827 
1828         // Add this waitcnt to the block. It is either newly created or
1829         // created in previous iterations and added back since block traversal
1830         // always removes waitcnts.
1831         insertWaitcntBeforeCF(Block, SWaitInst);
1832         WaitcntData->setWaitcnt(SWaitInst);
1833       }
1834     }
1835   }
1836 }
1837 
1838 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1839   ST = &MF.getSubtarget<GCNSubtarget>();
1840   TII = ST->getInstrInfo();
1841   TRI = &TII->getRegisterInfo();
1842   MRI = &MF.getRegInfo();
1843   MLI = &getAnalysis<MachineLoopInfo>();
1844   IV = AMDGPU::getIsaVersion(ST->getCPU());
1845   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1846 
1847   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1848   for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
1849        T = (enum InstCounterType)(T + 1))
1850     ForceEmitWaitcnt[T] = false;
1851 
1852   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1853   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1854   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1855 
1856   HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
1857   HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
1858   assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1859   assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1860 
1861   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1862   RegisterEncoding.VGPRL =
1863       RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
1864   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1865   RegisterEncoding.SGPRL =
1866       RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
1867 
1868   TrackedWaitcntSet.clear();
1869   BlockVisitedSet.clear();
1870   VCCZBugHandledSet.clear();
1871   LoopWaitcntDataMap.clear();
1872   BlockWaitcntProcessedSet.clear();
1873 
1874   // Walk over the blocks in reverse post-dominator order, inserting
1875   // s_waitcnt where needed.
1876   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
1877   bool Modified = false;
1878   for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
1879            I = RPOT.begin(),
1880            E = RPOT.end(), J = RPOT.begin();
1881        I != E;) {
1882     MachineBasicBlock &MBB = **I;
1883 
1884     BlockVisitedSet.insert(&MBB);
1885 
1886     BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
1887     if (!ScoreBrackets) {
1888       BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(ST);
1889       ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
1890     }
1891     ScoreBrackets->setPostOrder(MBB.getNumber());
1892     MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB);
1893     if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr)
1894       LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>();
1895 
1896     // If we are walking into the block from before the loop, then guarantee
1897     // at least 1 re-walk over the loop to propagate the information, even if
1898     // no S_WAITCNT instructions were generated.
1899     if (ContainingLoop && ContainingLoop->getHeader() == &MBB) {
1900       unsigned Count = countNumBottomBlocks(ContainingLoop);
1901 
1902       // If the loop has multiple back-edges, and so more than one "bottom"
1903       // basic block, we have to guarantee a re-walk over every blocks.
1904       if ((std::count(BlockWaitcntProcessedSet.begin(),
1905                       BlockWaitcntProcessedSet.end(), &MBB) < (int)Count)) {
1906         BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true);
1907         LLVM_DEBUG(dbgs() << "set-revisit1: Block"
1908                           << ContainingLoop->getHeader()->getNumber() << '\n';);
1909       }
1910     }
1911 
1912     // Walk over the instructions.
1913     insertWaitcntInBlock(MF, MBB);
1914 
1915     // Record that waitcnts have been processed at least once for this block.
1916     BlockWaitcntProcessedSet.push_back(&MBB);
1917 
1918     // See if we want to revisit the loop. If a loop has multiple back-edges,
1919     // we shouldn't revisit the same "bottom" basic block.
1920     if (ContainingLoop && isLoopBottom(ContainingLoop, &MBB) &&
1921         std::count(BlockWaitcntProcessedSet.begin(),
1922                    BlockWaitcntProcessedSet.end(), &MBB) == 1) {
1923       MachineBasicBlock *EntryBB = ContainingLoop->getHeader();
1924       BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get();
1925       if (EntrySB && EntrySB->getRevisitLoop()) {
1926         EntrySB->setRevisitLoop(false);
1927         J = I;
1928         int32_t PostOrder = EntrySB->getPostOrder();
1929         // TODO: Avoid this loop. Find another way to set I.
1930         for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
1931                  X = RPOT.begin(),
1932                  Y = RPOT.end();
1933              X != Y; ++X) {
1934           MachineBasicBlock &MBBX = **X;
1935           if (MBBX.getNumber() == PostOrder) {
1936             I = X;
1937             break;
1938           }
1939         }
1940         LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1941         WaitcntData->incIterCnt();
1942         LLVM_DEBUG(dbgs() << "revisit: Block" << EntryBB->getNumber() << '\n';);
1943         continue;
1944       } else {
1945         LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
1946         // Loop converged, reset iteration count. If this loop gets revisited,
1947         // it must be from an outer loop, the counter will restart, this will
1948         // ensure we don't force convergence on such revisits.
1949         WaitcntData->resetIterCnt();
1950       }
1951     }
1952 
1953     J = I;
1954     ++I;
1955   }
1956 
1957   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1958 
1959   bool HaveScalarStores = false;
1960 
1961   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1962        ++BI) {
1963     MachineBasicBlock &MBB = *BI;
1964 
1965     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1966          ++I) {
1967       if (!HaveScalarStores && TII->isScalarStore(*I))
1968         HaveScalarStores = true;
1969 
1970       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1971           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1972         EndPgmBlocks.push_back(&MBB);
1973     }
1974   }
1975 
1976   if (HaveScalarStores) {
1977     // If scalar writes are used, the cache must be flushed or else the next
1978     // wave to reuse the same scratch memory can be clobbered.
1979     //
1980     // Insert s_dcache_wb at wave termination points if there were any scalar
1981     // stores, and only if the cache hasn't already been flushed. This could be
1982     // improved by looking across blocks for flushes in postdominating blocks
1983     // from the stores but an explicitly requested flush is probably very rare.
1984     for (MachineBasicBlock *MBB : EndPgmBlocks) {
1985       bool SeenDCacheWB = false;
1986 
1987       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1988            ++I) {
1989         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1990           SeenDCacheWB = true;
1991         else if (TII->isScalarStore(*I))
1992           SeenDCacheWB = false;
1993 
1994         // FIXME: It would be better to insert this before a waitcnt if any.
1995         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1996              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1997             !SeenDCacheWB) {
1998           Modified = true;
1999           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
2000         }
2001       }
2002     }
2003   }
2004 
2005   if (!MFI->isEntryFunction()) {
2006     // Wait for any outstanding memory operations that the input registers may
2007     // depend on. We can't track them and it's better to the wait after the
2008     // costly call sequence.
2009 
2010     // TODO: Could insert earlier and schedule more liberally with operations
2011     // that only use caller preserved registers.
2012     MachineBasicBlock &EntryBB = MF.front();
2013     BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
2014       .addImm(0);
2015 
2016     Modified = true;
2017   }
2018 
2019   return Modified;
2020 }
2021