1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "AMDGPUSubtarget.h" 28 #include "SIDefines.h" 29 #include "SIInstrInfo.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIRegisterInfo.h" 32 #include "Utils/AMDGPUBaseInfo.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/PostOrderIterator.h" 37 #include "llvm/ADT/STLExtras.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineMemOperand.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachinePostDominators.h" 47 #include "llvm/CodeGen/MachineRegisterInfo.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/DebugCounter.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <cstring> 59 #include <memory> 60 #include <utility> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "si-insert-waitcnts" 65 66 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 67 "Force emit s_waitcnt expcnt(0) instrs"); 68 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 69 "Force emit s_waitcnt lgkmcnt(0) instrs"); 70 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 71 "Force emit s_waitcnt vmcnt(0) instrs"); 72 73 static cl::opt<bool> ForceEmitZeroFlag( 74 "amdgpu-waitcnt-forcezero", 75 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 76 cl::init(false), cl::Hidden); 77 78 namespace { 79 80 template <typename EnumT> 81 class enum_iterator 82 : public iterator_facade_base<enum_iterator<EnumT>, 83 std::forward_iterator_tag, const EnumT> { 84 EnumT Value; 85 public: 86 enum_iterator() = default; 87 enum_iterator(EnumT Value) : Value(Value) {} 88 89 enum_iterator &operator++() { 90 Value = static_cast<EnumT>(Value + 1); 91 return *this; 92 } 93 94 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 95 96 EnumT operator*() const { return Value; } 97 }; 98 99 // Class of object that encapsulates latest instruction counter score 100 // associated with the operand. Used for determining whether 101 // s_waitcnt instruction needs to be emited. 102 103 #define CNT_MASK(t) (1u << (t)) 104 105 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 106 107 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 108 return make_range(enum_iterator<InstCounterType>(VM_CNT), 109 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 110 } 111 112 using RegInterval = std::pair<signed, signed>; 113 114 struct { 115 uint32_t VmcntMax; 116 uint32_t ExpcntMax; 117 uint32_t LgkmcntMax; 118 uint32_t VscntMax; 119 } HardwareLimits; 120 121 struct { 122 unsigned VGPR0; 123 unsigned VGPRL; 124 unsigned SGPR0; 125 unsigned SGPRL; 126 } RegisterEncoding; 127 128 enum WaitEventType { 129 VMEM_ACCESS, // vector-memory read & write 130 VMEM_READ_ACCESS, // vector-memory read 131 VMEM_WRITE_ACCESS,// vector-memory write 132 LDS_ACCESS, // lds read & write 133 GDS_ACCESS, // gds read & write 134 SQ_MESSAGE, // send message 135 SMEM_ACCESS, // scalar-memory read & write 136 EXP_GPR_LOCK, // export holding on its data src 137 GDS_GPR_LOCK, // GDS holding on its data and addr src 138 EXP_POS_ACCESS, // write to export position 139 EXP_PARAM_ACCESS, // write to export parameter 140 VMW_GPR_LOCK, // vector-memory write holding on its data src 141 NUM_WAIT_EVENTS, 142 }; 143 144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { 145 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 146 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 147 (1 << SQ_MESSAGE), 148 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 149 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 150 (1 << VMEM_WRITE_ACCESS) 151 }; 152 153 // The mapping is: 154 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 155 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 156 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 157 // We reserve a fixed number of VGPR slots in the scoring tables for 158 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 159 enum RegisterMapping { 160 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 161 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 162 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 163 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 164 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 165 }; 166 167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 168 switch (T) { 169 case VM_CNT: 170 Wait.VmCnt = std::min(Wait.VmCnt, Count); 171 break; 172 case EXP_CNT: 173 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 174 break; 175 case LGKM_CNT: 176 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 177 break; 178 case VS_CNT: 179 Wait.VsCnt = std::min(Wait.VsCnt, Count); 180 break; 181 default: 182 llvm_unreachable("bad InstCounterType"); 183 } 184 } 185 186 // This objects maintains the current score brackets of each wait counter, and 187 // a per-register scoreboard for each wait counter. 188 // 189 // We also maintain the latest score for every event type that can change the 190 // waitcnt in order to know if there are multiple types of events within 191 // the brackets. When multiple types of event happen in the bracket, 192 // wait count may get decreased out of order, therefore we need to put in 193 // "s_waitcnt 0" before use. 194 class WaitcntBrackets { 195 public: 196 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {} 197 198 static uint32_t getWaitCountMax(InstCounterType T) { 199 switch (T) { 200 case VM_CNT: 201 return HardwareLimits.VmcntMax; 202 case LGKM_CNT: 203 return HardwareLimits.LgkmcntMax; 204 case EXP_CNT: 205 return HardwareLimits.ExpcntMax; 206 case VS_CNT: 207 return HardwareLimits.VscntMax; 208 default: 209 break; 210 } 211 return 0; 212 } 213 214 uint32_t getScoreLB(InstCounterType T) const { 215 assert(T < NUM_INST_CNTS); 216 return ScoreLBs[T]; 217 } 218 219 uint32_t getScoreUB(InstCounterType T) const { 220 assert(T < NUM_INST_CNTS); 221 return ScoreUBs[T]; 222 } 223 224 // Mapping from event to counter. 225 InstCounterType eventCounter(WaitEventType E) { 226 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 227 return VM_CNT; 228 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 229 return LGKM_CNT; 230 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 231 return VS_CNT; 232 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 233 return EXP_CNT; 234 } 235 236 uint32_t getRegScore(int GprNo, InstCounterType T) { 237 if (GprNo < NUM_ALL_VGPRS) { 238 return VgprScores[T][GprNo]; 239 } 240 assert(T == LGKM_CNT); 241 return SgprScores[GprNo - NUM_ALL_VGPRS]; 242 } 243 244 bool merge(const WaitcntBrackets &Other); 245 246 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 247 const MachineRegisterInfo *MRI, 248 const SIRegisterInfo *TRI, unsigned OpNo, 249 bool Def) const; 250 251 bool counterOutOfOrder(InstCounterType T) const; 252 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 253 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 254 void determineWait(InstCounterType T, uint32_t ScoreToWait, 255 AMDGPU::Waitcnt &Wait) const; 256 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 257 void applyWaitcnt(InstCounterType T, unsigned Count); 258 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 259 const MachineRegisterInfo *MRI, WaitEventType E, 260 MachineInstr &MI); 261 262 bool hasPending() const { return PendingEvents != 0; } 263 bool hasPendingEvent(WaitEventType E) const { 264 return PendingEvents & (1 << E); 265 } 266 267 bool hasPendingFlat() const { 268 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 269 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 270 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 271 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 272 } 273 274 void setPendingFlat() { 275 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 276 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 277 } 278 279 void print(raw_ostream &); 280 void dump() { print(dbgs()); } 281 282 private: 283 struct MergeInfo { 284 uint32_t OldLB; 285 uint32_t OtherLB; 286 uint32_t MyShift; 287 uint32_t OtherShift; 288 }; 289 static bool mergeScore(const MergeInfo &M, uint32_t &Score, 290 uint32_t OtherScore); 291 292 void setScoreLB(InstCounterType T, uint32_t Val) { 293 assert(T < NUM_INST_CNTS); 294 ScoreLBs[T] = Val; 295 } 296 297 void setScoreUB(InstCounterType T, uint32_t Val) { 298 assert(T < NUM_INST_CNTS); 299 ScoreUBs[T] = Val; 300 if (T == EXP_CNT) { 301 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 302 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 303 ScoreLBs[T] = UB; 304 } 305 } 306 307 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { 308 if (GprNo < NUM_ALL_VGPRS) { 309 VgprUB = std::max(VgprUB, GprNo); 310 VgprScores[T][GprNo] = Val; 311 } else { 312 assert(T == LGKM_CNT); 313 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 314 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 315 } 316 } 317 318 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 319 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 320 unsigned OpNo, uint32_t Val); 321 322 const GCNSubtarget *ST = nullptr; 323 uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; 324 uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; 325 uint32_t PendingEvents = 0; 326 bool MixedPendingEvents[NUM_INST_CNTS] = {false}; 327 // Remember the last flat memory operation. 328 uint32_t LastFlat[NUM_INST_CNTS] = {0}; 329 // wait_cnt scores for every vgpr. 330 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 331 int32_t VgprUB = 0; 332 int32_t SgprUB = 0; 333 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 334 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 335 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 336 }; 337 338 class SIInsertWaitcnts : public MachineFunctionPass { 339 private: 340 const GCNSubtarget *ST = nullptr; 341 const SIInstrInfo *TII = nullptr; 342 const SIRegisterInfo *TRI = nullptr; 343 const MachineRegisterInfo *MRI = nullptr; 344 AMDGPU::IsaVersion IV; 345 346 DenseSet<MachineInstr *> TrackedWaitcntSet; 347 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 348 MachinePostDominatorTree *PDT; 349 350 struct BlockInfo { 351 MachineBasicBlock *MBB; 352 std::unique_ptr<WaitcntBrackets> Incoming; 353 bool Dirty = true; 354 355 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 356 }; 357 358 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 359 360 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 361 // because of amdgpu-waitcnt-forcezero flag 362 bool ForceEmitZeroWaitcnts; 363 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 364 365 public: 366 static char ID; 367 368 SIInsertWaitcnts() : MachineFunctionPass(ID) { 369 (void)ForceExpCounter; 370 (void)ForceLgkmCounter; 371 (void)ForceVMCounter; 372 } 373 374 bool runOnMachineFunction(MachineFunction &MF) override; 375 376 StringRef getPassName() const override { 377 return "SI insert wait instructions"; 378 } 379 380 void getAnalysisUsage(AnalysisUsage &AU) const override { 381 AU.setPreservesCFG(); 382 AU.addRequired<MachinePostDominatorTree>(); 383 MachineFunctionPass::getAnalysisUsage(AU); 384 } 385 386 bool isForceEmitWaitcnt() const { 387 for (auto T : inst_counter_types()) 388 if (ForceEmitWaitcnt[T]) 389 return true; 390 return false; 391 } 392 393 void setForceEmitWaitcnt() { 394 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 395 // For debug builds, get the debug counter info and adjust if need be 396 #ifndef NDEBUG 397 if (DebugCounter::isCounterSet(ForceExpCounter) && 398 DebugCounter::shouldExecute(ForceExpCounter)) { 399 ForceEmitWaitcnt[EXP_CNT] = true; 400 } else { 401 ForceEmitWaitcnt[EXP_CNT] = false; 402 } 403 404 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 405 DebugCounter::shouldExecute(ForceLgkmCounter)) { 406 ForceEmitWaitcnt[LGKM_CNT] = true; 407 } else { 408 ForceEmitWaitcnt[LGKM_CNT] = false; 409 } 410 411 if (DebugCounter::isCounterSet(ForceVMCounter) && 412 DebugCounter::shouldExecute(ForceVMCounter)) { 413 ForceEmitWaitcnt[VM_CNT] = true; 414 } else { 415 ForceEmitWaitcnt[VM_CNT] = false; 416 } 417 #endif // NDEBUG 418 } 419 420 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 421 bool generateWaitcntInstBefore(MachineInstr &MI, 422 WaitcntBrackets &ScoreBrackets, 423 MachineInstr *OldWaitcntInstr); 424 void updateEventWaitcntAfter(MachineInstr &Inst, 425 WaitcntBrackets *ScoreBrackets); 426 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 427 WaitcntBrackets &ScoreBrackets); 428 }; 429 430 } // end anonymous namespace 431 432 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 433 const SIInstrInfo *TII, 434 const MachineRegisterInfo *MRI, 435 const SIRegisterInfo *TRI, 436 unsigned OpNo, bool Def) const { 437 const MachineOperand &Op = MI->getOperand(OpNo); 438 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 439 (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg())) 440 return {-1, -1}; 441 442 // A use via a PW operand does not need a waitcnt. 443 // A partial write is not a WAW. 444 assert(!Op.getSubReg() || !Op.isUndef()); 445 446 RegInterval Result; 447 448 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 449 450 if (TRI->isVGPR(*MRI, Op.getReg())) { 451 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 452 Result.first = Reg - RegisterEncoding.VGPR0; 453 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 454 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 455 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 456 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 457 assert(Result.first >= NUM_ALL_VGPRS && 458 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 459 } 460 // TODO: Handle TTMP 461 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 462 else 463 return {-1, -1}; 464 465 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo); 466 unsigned Size = TRI->getRegSizeInBits(*RC); 467 Result.second = Result.first + (Size / 32); 468 469 return Result; 470 } 471 472 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 473 const SIInstrInfo *TII, 474 const SIRegisterInfo *TRI, 475 const MachineRegisterInfo *MRI, unsigned OpNo, 476 uint32_t Val) { 477 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 478 assert(TRI->isVGPR(*MRI, MI->getOperand(OpNo).getReg())); 479 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 480 setRegScore(RegNo, EXP_CNT, Val); 481 } 482 } 483 484 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 485 const SIRegisterInfo *TRI, 486 const MachineRegisterInfo *MRI, 487 WaitEventType E, MachineInstr &Inst) { 488 InstCounterType T = eventCounter(E); 489 uint32_t CurrScore = getScoreUB(T) + 1; 490 if (CurrScore == 0) 491 report_fatal_error("InsertWaitcnt score wraparound"); 492 // PendingEvents and ScoreUB need to be update regardless if this event 493 // changes the score of a register or not. 494 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 495 if (!hasPendingEvent(E)) { 496 if (PendingEvents & WaitEventMaskForInst[T]) 497 MixedPendingEvents[T] = true; 498 PendingEvents |= 1 << E; 499 } 500 setScoreUB(T, CurrScore); 501 502 if (T == EXP_CNT) { 503 // Put score on the source vgprs. If this is a store, just use those 504 // specific register(s). 505 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 506 int AddrOpIdx = 507 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 508 // All GDS operations must protect their address register (same as 509 // export.) 510 if (AddrOpIdx != -1) { 511 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 512 } 513 514 if (Inst.mayStore()) { 515 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 516 AMDGPU::OpName::data0) != -1) { 517 setExpScore( 518 &Inst, TII, TRI, MRI, 519 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 520 CurrScore); 521 } 522 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 523 AMDGPU::OpName::data1) != -1) { 524 setExpScore(&Inst, TII, TRI, MRI, 525 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 526 AMDGPU::OpName::data1), 527 CurrScore); 528 } 529 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 530 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 531 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 532 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 533 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 534 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 535 Inst.getOpcode() != AMDGPU::DS_APPEND && 536 Inst.getOpcode() != AMDGPU::DS_CONSUME && 537 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 538 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 539 const MachineOperand &Op = Inst.getOperand(I); 540 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(*MRI, Op.getReg())) { 541 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 542 } 543 } 544 } 545 } else if (TII->isFLAT(Inst)) { 546 if (Inst.mayStore()) { 547 setExpScore( 548 &Inst, TII, TRI, MRI, 549 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 550 CurrScore); 551 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 552 setExpScore( 553 &Inst, TII, TRI, MRI, 554 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 555 CurrScore); 556 } 557 } else if (TII->isMIMG(Inst)) { 558 if (Inst.mayStore()) { 559 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 560 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 561 setExpScore( 562 &Inst, TII, TRI, MRI, 563 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 564 CurrScore); 565 } 566 } else if (TII->isMTBUF(Inst)) { 567 if (Inst.mayStore()) { 568 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 569 } 570 } else if (TII->isMUBUF(Inst)) { 571 if (Inst.mayStore()) { 572 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 573 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 574 setExpScore( 575 &Inst, TII, TRI, MRI, 576 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 577 CurrScore); 578 } 579 } else { 580 if (TII->isEXP(Inst)) { 581 // For export the destination registers are really temps that 582 // can be used as the actual source after export patching, so 583 // we need to treat them like sources and set the EXP_CNT 584 // score. 585 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 586 MachineOperand &DefMO = Inst.getOperand(I); 587 if (DefMO.isReg() && DefMO.isDef() && 588 TRI->isVGPR(*MRI, DefMO.getReg())) { 589 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 590 CurrScore); 591 } 592 } 593 } 594 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 595 MachineOperand &MO = Inst.getOperand(I); 596 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(*MRI, MO.getReg())) { 597 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 598 } 599 } 600 } 601 #if 0 // TODO: check if this is handled by MUBUF code above. 602 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 603 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 604 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 605 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 606 unsigned OpNo;//TODO: find the OpNo for this operand; 607 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 608 for (signed RegNo = Interval.first; RegNo < Interval.second; 609 ++RegNo) { 610 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 611 } 612 #endif 613 } else { 614 // Match the score to the destination registers. 615 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 616 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 617 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 618 continue; 619 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 620 setRegScore(RegNo, T, CurrScore); 621 } 622 } 623 if (TII->isDS(Inst) && Inst.mayStore()) { 624 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 625 } 626 } 627 } 628 629 void WaitcntBrackets::print(raw_ostream &OS) { 630 OS << '\n'; 631 for (auto T : inst_counter_types()) { 632 uint32_t LB = getScoreLB(T); 633 uint32_t UB = getScoreUB(T); 634 635 switch (T) { 636 case VM_CNT: 637 OS << " VM_CNT(" << UB - LB << "): "; 638 break; 639 case LGKM_CNT: 640 OS << " LGKM_CNT(" << UB - LB << "): "; 641 break; 642 case EXP_CNT: 643 OS << " EXP_CNT(" << UB - LB << "): "; 644 break; 645 case VS_CNT: 646 OS << " VS_CNT(" << UB - LB << "): "; 647 break; 648 default: 649 OS << " UNKNOWN(" << UB - LB << "): "; 650 break; 651 } 652 653 if (LB < UB) { 654 // Print vgpr scores. 655 for (int J = 0; J <= VgprUB; J++) { 656 uint32_t RegScore = getRegScore(J, T); 657 if (RegScore <= LB) 658 continue; 659 uint32_t RelScore = RegScore - LB - 1; 660 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 661 OS << RelScore << ":v" << J << " "; 662 } else { 663 OS << RelScore << ":ds "; 664 } 665 } 666 // Also need to print sgpr scores for lgkm_cnt. 667 if (T == LGKM_CNT) { 668 for (int J = 0; J <= SgprUB; J++) { 669 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 670 if (RegScore <= LB) 671 continue; 672 uint32_t RelScore = RegScore - LB - 1; 673 OS << RelScore << ":s" << J << " "; 674 } 675 } 676 } 677 OS << '\n'; 678 } 679 OS << '\n'; 680 } 681 682 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 683 /// whether a waitcnt instruction is needed at all. 684 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 685 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 686 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 687 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) | 688 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 689 } 690 691 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 692 unsigned &Count) const { 693 const uint32_t LB = getScoreLB(T); 694 const uint32_t UB = getScoreUB(T); 695 if (Count < UB && UB - Count > LB) 696 return true; 697 698 Count = ~0u; 699 return false; 700 } 701 702 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, 703 AMDGPU::Waitcnt &Wait) const { 704 // If the score of src_operand falls within the bracket, we need an 705 // s_waitcnt instruction. 706 const uint32_t LB = getScoreLB(T); 707 const uint32_t UB = getScoreUB(T); 708 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 709 if ((T == VM_CNT || T == LGKM_CNT) && 710 hasPendingFlat() && 711 !ST->hasFlatLgkmVMemCountInOrder()) { 712 // If there is a pending FLAT operation, and this is a VMem or LGKM 713 // waitcnt and the target can report early completion, then we need 714 // to force a waitcnt 0. 715 addWait(Wait, T, 0); 716 } else if (counterOutOfOrder(T)) { 717 // Counter can get decremented out-of-order when there 718 // are multiple types event in the bracket. Also emit an s_wait counter 719 // with a conservative value of 0 for the counter. 720 addWait(Wait, T, 0); 721 } else { 722 // If a counter has been maxed out avoid overflow by waiting for 723 // MAX(CounterType) - 1 instead. 724 uint32_t NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 725 addWait(Wait, T, NeededWait); 726 } 727 } 728 } 729 730 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 731 applyWaitcnt(VM_CNT, Wait.VmCnt); 732 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 733 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 734 applyWaitcnt(VS_CNT, Wait.VsCnt); 735 } 736 737 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 738 const uint32_t UB = getScoreUB(T); 739 if (Count >= UB) 740 return; 741 if (Count != 0) { 742 if (counterOutOfOrder(T)) 743 return; 744 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 745 } else { 746 setScoreLB(T, UB); 747 MixedPendingEvents[T] = false; 748 PendingEvents &= ~WaitEventMaskForInst[T]; 749 } 750 } 751 752 // Where there are multiple types of event in the bracket of a counter, 753 // the decrement may go out of order. 754 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 755 // Scalar memory read always can go out of order. 756 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 757 return true; 758 return MixedPendingEvents[T]; 759 } 760 761 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 762 false) 763 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 764 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 765 false) 766 767 char SIInsertWaitcnts::ID = 0; 768 769 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 770 771 FunctionPass *llvm::createSIInsertWaitcntsPass() { 772 return new SIInsertWaitcnts(); 773 } 774 775 static bool readsVCCZ(const MachineInstr &MI) { 776 unsigned Opc = MI.getOpcode(); 777 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 778 !MI.getOperand(1).isUndef(); 779 } 780 781 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 782 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 783 // Currently all conventions wait, but this may not always be the case. 784 // 785 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 786 // senses to omit the wait and do it in the caller. 787 return true; 788 } 789 790 /// \returns true if the callee is expected to wait for any outstanding waits 791 /// before returning. 792 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 793 return true; 794 } 795 796 /// Generate s_waitcnt instruction to be placed before cur_Inst. 797 /// Instructions of a given type are returned in order, 798 /// but instructions of different types can complete out of order. 799 /// We rely on this in-order completion 800 /// and simply assign a score to the memory access instructions. 801 /// We keep track of the active "score bracket" to determine 802 /// if an access of a memory read requires an s_waitcnt 803 /// and if so what the value of each counter is. 804 /// The "score bracket" is bound by the lower bound and upper bound 805 /// scores (*_score_LB and *_score_ub respectively). 806 bool SIInsertWaitcnts::generateWaitcntInstBefore( 807 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 808 MachineInstr *OldWaitcntInstr) { 809 setForceEmitWaitcnt(); 810 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 811 812 if (MI.isDebugInstr()) 813 return false; 814 815 AMDGPU::Waitcnt Wait; 816 817 // See if this instruction has a forced S_WAITCNT VM. 818 // TODO: Handle other cases of NeedsWaitcntVmBefore() 819 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 820 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 821 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 822 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 823 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 824 Wait.VmCnt = 0; 825 } 826 827 // All waits must be resolved at call return. 828 // NOTE: this could be improved with knowledge of all call sites or 829 // with knowledge of the called routines. 830 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 831 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 832 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 833 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 834 } 835 // Resolve vm waits before gs-done. 836 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 837 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 838 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 839 AMDGPU::SendMsg::ID_GS_DONE)) { 840 Wait.VmCnt = 0; 841 } 842 #if 0 // TODO: the following blocks of logic when we have fence. 843 else if (MI.getOpcode() == SC_FENCE) { 844 const unsigned int group_size = 845 context->shader_info->GetMaxThreadGroupSize(); 846 // group_size == 0 means thread group size is unknown at compile time 847 const bool group_is_multi_wave = 848 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 849 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 850 851 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 852 SCRegType src_type = Inst->GetSrcType(i); 853 switch (src_type) { 854 case SCMEM_LDS: 855 if (group_is_multi_wave || 856 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 857 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 858 ScoreBrackets->getScoreUB(LGKM_CNT)); 859 // LDS may have to wait for VM_CNT after buffer load to LDS 860 if (target_info->HasBufferLoadToLDS()) { 861 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 862 ScoreBrackets->getScoreUB(VM_CNT)); 863 } 864 } 865 break; 866 867 case SCMEM_GDS: 868 if (group_is_multi_wave || fence_is_global) { 869 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 870 ScoreBrackets->getScoreUB(EXP_CNT)); 871 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 872 ScoreBrackets->getScoreUB(LGKM_CNT)); 873 } 874 break; 875 876 case SCMEM_UAV: 877 case SCMEM_TFBUF: 878 case SCMEM_RING: 879 case SCMEM_SCATTER: 880 if (group_is_multi_wave || fence_is_global) { 881 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 882 ScoreBrackets->getScoreUB(EXP_CNT)); 883 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 884 ScoreBrackets->getScoreUB(VM_CNT)); 885 } 886 break; 887 888 case SCMEM_SCRATCH: 889 default: 890 break; 891 } 892 } 893 } 894 #endif 895 896 // Export & GDS instructions do not read the EXEC mask until after the export 897 // is granted (which can occur well after the instruction is issued). 898 // The shader program must flush all EXP operations on the export-count 899 // before overwriting the EXEC mask. 900 else { 901 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 902 // Export and GDS are tracked individually, either may trigger a waitcnt 903 // for EXEC. 904 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 905 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 906 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 907 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 908 Wait.ExpCnt = 0; 909 } 910 } 911 912 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 913 // The function is going to insert a wait on everything in its prolog. 914 // This still needs to be careful if the call target is a load (e.g. a GOT 915 // load). We also need to check WAW depenancy with saved PC. 916 Wait = AMDGPU::Waitcnt(); 917 918 int CallAddrOpIdx = 919 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 920 RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval( 921 &MI, TII, MRI, TRI, CallAddrOpIdx, false); 922 923 for (signed RegNo = CallAddrOpInterval.first; 924 RegNo < CallAddrOpInterval.second; ++RegNo) 925 ScoreBrackets.determineWait( 926 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 927 928 int RtnAddrOpIdx = 929 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 930 if (RtnAddrOpIdx != -1) { 931 RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval( 932 &MI, TII, MRI, TRI, RtnAddrOpIdx, false); 933 934 for (signed RegNo = RtnAddrOpInterval.first; 935 RegNo < RtnAddrOpInterval.second; ++RegNo) 936 ScoreBrackets.determineWait( 937 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 938 } 939 940 } else { 941 // FIXME: Should not be relying on memoperands. 942 // Look at the source operands of every instruction to see if 943 // any of them results from a previous memory operation that affects 944 // its current usage. If so, an s_waitcnt instruction needs to be 945 // emitted. 946 // If the source operand was defined by a load, add the s_waitcnt 947 // instruction. 948 for (const MachineMemOperand *Memop : MI.memoperands()) { 949 unsigned AS = Memop->getAddrSpace(); 950 if (AS != AMDGPUAS::LOCAL_ADDRESS) 951 continue; 952 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 953 // VM_CNT is only relevant to vgpr or LDS. 954 ScoreBrackets.determineWait( 955 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 956 } 957 958 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 959 const MachineOperand &Op = MI.getOperand(I); 960 RegInterval Interval = 961 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); 962 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 963 if (TRI->isVGPR(*MRI, Op.getReg())) { 964 // VM_CNT is only relevant to vgpr or LDS. 965 ScoreBrackets.determineWait( 966 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 967 } 968 ScoreBrackets.determineWait( 969 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 970 } 971 } 972 // End of for loop that looks at all source operands to decide vm_wait_cnt 973 // and lgk_wait_cnt. 974 975 // Two cases are handled for destination operands: 976 // 1) If the destination operand was defined by a load, add the s_waitcnt 977 // instruction to guarantee the right WAW order. 978 // 2) If a destination operand that was used by a recent export/store ins, 979 // add s_waitcnt on exp_cnt to guarantee the WAR order. 980 if (MI.mayStore()) { 981 // FIXME: Should not be relying on memoperands. 982 for (const MachineMemOperand *Memop : MI.memoperands()) { 983 const Value *Ptr = Memop->getValue(); 984 if (SLoadAddresses.count(Ptr)) { 985 addWait(Wait, LGKM_CNT, 0); 986 if (PDT->dominates(MI.getParent(), 987 SLoadAddresses.find(Ptr)->second)) 988 SLoadAddresses.erase(Ptr); 989 } 990 unsigned AS = Memop->getAddrSpace(); 991 if (AS != AMDGPUAS::LOCAL_ADDRESS) 992 continue; 993 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 994 ScoreBrackets.determineWait( 995 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 996 ScoreBrackets.determineWait( 997 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 998 } 999 } 1000 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1001 MachineOperand &Def = MI.getOperand(I); 1002 RegInterval Interval = 1003 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); 1004 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1005 if (TRI->isVGPR(*MRI, Def.getReg())) { 1006 ScoreBrackets.determineWait( 1007 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1008 ScoreBrackets.determineWait( 1009 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1010 } 1011 ScoreBrackets.determineWait( 1012 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1013 } 1014 } // End of for loop that looks at all dest operands. 1015 } 1016 } 1017 1018 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1019 // occurs before the instruction. Doing it here prevents any additional 1020 // S_WAITCNTs from being emitted if the instruction was marked as 1021 // requiring a WAITCNT beforehand. 1022 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1023 !ST->hasAutoWaitcntBeforeBarrier()) { 1024 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 1025 } 1026 1027 // TODO: Remove this work-around, enable the assert for Bug 457939 1028 // after fixing the scheduler. Also, the Shader Compiler code is 1029 // independent of target. 1030 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1031 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1032 ScoreBrackets.getScoreUB(LGKM_CNT) && 1033 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1034 Wait.LgkmCnt = 0; 1035 } 1036 } 1037 1038 // Early-out if no wait is indicated. 1039 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1040 bool Modified = false; 1041 if (OldWaitcntInstr) { 1042 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1043 &*II != &MI; II = NextI, ++NextI) { 1044 if (II->isDebugInstr()) 1045 continue; 1046 1047 if (TrackedWaitcntSet.count(&*II)) { 1048 TrackedWaitcntSet.erase(&*II); 1049 II->eraseFromParent(); 1050 Modified = true; 1051 } else if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1052 int64_t Imm = II->getOperand(0).getImm(); 1053 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1054 } else { 1055 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1056 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1057 ScoreBrackets.applyWaitcnt( 1058 AMDGPU::Waitcnt(~0u, ~0u, ~0u, II->getOperand(1).getImm())); 1059 } 1060 } 1061 } 1062 return Modified; 1063 } 1064 1065 if (ForceEmitZeroWaitcnts) 1066 Wait = AMDGPU::Waitcnt::allZero(IV); 1067 1068 if (ForceEmitWaitcnt[VM_CNT]) 1069 Wait.VmCnt = 0; 1070 if (ForceEmitWaitcnt[EXP_CNT]) 1071 Wait.ExpCnt = 0; 1072 if (ForceEmitWaitcnt[LGKM_CNT]) 1073 Wait.LgkmCnt = 0; 1074 if (ForceEmitWaitcnt[VS_CNT]) 1075 Wait.VsCnt = 0; 1076 1077 ScoreBrackets.applyWaitcnt(Wait); 1078 1079 AMDGPU::Waitcnt OldWait; 1080 bool Modified = false; 1081 1082 if (OldWaitcntInstr) { 1083 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1084 &*II != &MI; II = NextI, NextI++) { 1085 if (II->isDebugInstr()) 1086 continue; 1087 1088 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1089 unsigned IEnc = II->getOperand(0).getImm(); 1090 AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc); 1091 OldWait = OldWait.combined(IWait); 1092 if (!TrackedWaitcntSet.count(&*II)) 1093 Wait = Wait.combined(IWait); 1094 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 1095 if (IEnc != NewEnc) { 1096 II->getOperand(0).setImm(NewEnc); 1097 Modified = true; 1098 } 1099 Wait.VmCnt = ~0u; 1100 Wait.LgkmCnt = ~0u; 1101 Wait.ExpCnt = ~0u; 1102 } else { 1103 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1104 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1105 1106 unsigned ICnt = II->getOperand(1).getImm(); 1107 OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt); 1108 if (!TrackedWaitcntSet.count(&*II)) 1109 Wait.VsCnt = std::min(Wait.VsCnt, ICnt); 1110 if (Wait.VsCnt != ICnt) { 1111 II->getOperand(1).setImm(Wait.VsCnt); 1112 Modified = true; 1113 } 1114 Wait.VsCnt = ~0u; 1115 } 1116 1117 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1118 << "Old Instr: " << MI 1119 << "New Instr: " << *II << '\n'); 1120 1121 if (!Wait.hasWait()) 1122 return Modified; 1123 } 1124 } 1125 1126 if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) { 1127 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1128 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1129 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1130 .addImm(Enc); 1131 TrackedWaitcntSet.insert(SWaitInst); 1132 Modified = true; 1133 1134 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1135 << "Old Instr: " << MI 1136 << "New Instr: " << *SWaitInst << '\n'); 1137 } 1138 1139 if (Wait.VsCnt != ~0u) { 1140 assert(ST->hasVscnt()); 1141 1142 auto SWaitInst = 1143 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1144 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1145 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1146 .addImm(Wait.VsCnt); 1147 TrackedWaitcntSet.insert(SWaitInst); 1148 Modified = true; 1149 1150 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1151 << "Old Instr: " << MI 1152 << "New Instr: " << *SWaitInst << '\n'); 1153 } 1154 1155 return Modified; 1156 } 1157 1158 // This is a flat memory operation. Check to see if it has memory 1159 // tokens for both LDS and Memory, and if so mark it as a flat. 1160 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1161 if (MI.memoperands_empty()) 1162 return true; 1163 1164 for (const MachineMemOperand *Memop : MI.memoperands()) { 1165 unsigned AS = Memop->getAddrSpace(); 1166 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1167 return true; 1168 } 1169 1170 return false; 1171 } 1172 1173 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1174 WaitcntBrackets *ScoreBrackets) { 1175 // Now look at the instruction opcode. If it is a memory access 1176 // instruction, update the upper-bound of the appropriate counter's 1177 // bracket and the destination operand scores. 1178 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1179 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1180 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1181 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1182 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1183 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1184 } else { 1185 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1186 } 1187 } else if (TII->isFLAT(Inst)) { 1188 assert(Inst.mayLoadOrStore()); 1189 1190 if (TII->usesVM_CNT(Inst)) { 1191 if (!ST->hasVscnt()) 1192 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1193 else if (Inst.mayLoad() && 1194 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) 1195 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1196 else 1197 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1198 } 1199 1200 if (TII->usesLGKM_CNT(Inst)) { 1201 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1202 1203 // This is a flat memory operation, so note it - it will require 1204 // that both the VM and LGKM be flushed to zero if it is pending when 1205 // a VM or LGKM dependency occurs. 1206 if (mayAccessLDSThroughFlat(Inst)) 1207 ScoreBrackets->setPendingFlat(); 1208 } 1209 } else if (SIInstrInfo::isVMEM(Inst) && 1210 // TODO: get a better carve out. 1211 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1212 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1213 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && 1214 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && 1215 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { 1216 if (!ST->hasVscnt()) 1217 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1218 else if ((Inst.mayLoad() && 1219 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) || 1220 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1221 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1222 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1223 else if (Inst.mayStore()) 1224 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1225 1226 if (ST->vmemWriteNeedsExpWaitcnt() && 1227 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1228 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1229 } 1230 } else if (TII->isSMRD(Inst)) { 1231 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1232 } else if (Inst.isCall()) { 1233 if (callWaitsOnFunctionReturn(Inst)) { 1234 // Act as a wait on everything 1235 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV)); 1236 } else { 1237 // May need to way wait for anything. 1238 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1239 } 1240 } else { 1241 switch (Inst.getOpcode()) { 1242 case AMDGPU::S_SENDMSG: 1243 case AMDGPU::S_SENDMSGHALT: 1244 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1245 break; 1246 case AMDGPU::EXP: 1247 case AMDGPU::EXP_DONE: { 1248 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1249 if (Imm >= 32 && Imm <= 63) 1250 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1251 else if (Imm >= 12 && Imm <= 15) 1252 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1253 else 1254 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1255 break; 1256 } 1257 case AMDGPU::S_MEMTIME: 1258 case AMDGPU::S_MEMREALTIME: 1259 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1260 break; 1261 default: 1262 break; 1263 } 1264 } 1265 } 1266 1267 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, 1268 uint32_t OtherScore) { 1269 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1270 uint32_t OtherShifted = 1271 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1272 Score = std::max(MyShifted, OtherShifted); 1273 return OtherShifted > MyShifted; 1274 } 1275 1276 /// Merge the pending events and associater score brackets of \p Other into 1277 /// this brackets status. 1278 /// 1279 /// Returns whether the merge resulted in a change that requires tighter waits 1280 /// (i.e. the merged brackets strictly dominate the original brackets). 1281 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1282 bool StrictDom = false; 1283 1284 VgprUB = std::max(VgprUB, Other.VgprUB); 1285 SgprUB = std::max(SgprUB, Other.SgprUB); 1286 1287 for (auto T : inst_counter_types()) { 1288 // Merge event flags for this counter 1289 const bool OldOutOfOrder = counterOutOfOrder(T); 1290 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1291 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1292 if (OtherEvents & ~OldEvents) 1293 StrictDom = true; 1294 if (Other.MixedPendingEvents[T] || 1295 (OldEvents && OtherEvents && OldEvents != OtherEvents)) 1296 MixedPendingEvents[T] = true; 1297 PendingEvents |= OtherEvents; 1298 1299 // Merge scores for this counter 1300 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; 1301 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1302 MergeInfo M; 1303 M.OldLB = ScoreLBs[T]; 1304 M.OtherLB = Other.ScoreLBs[T]; 1305 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; 1306 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; 1307 1308 const uint32_t NewUB = ScoreUBs[T] + M.MyShift; 1309 if (NewUB < ScoreUBs[T]) 1310 report_fatal_error("waitcnt score overflow"); 1311 ScoreUBs[T] = NewUB; 1312 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); 1313 1314 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1315 1316 bool RegStrictDom = false; 1317 for (int J = 0; J <= VgprUB; J++) { 1318 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1319 } 1320 1321 if (T == LGKM_CNT) { 1322 for (int J = 0; J <= SgprUB; J++) { 1323 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1324 } 1325 } 1326 1327 if (RegStrictDom && !OldOutOfOrder) 1328 StrictDom = true; 1329 } 1330 1331 return StrictDom; 1332 } 1333 1334 // Generate s_waitcnt instructions where needed. 1335 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1336 MachineBasicBlock &Block, 1337 WaitcntBrackets &ScoreBrackets) { 1338 bool Modified = false; 1339 1340 LLVM_DEBUG({ 1341 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1342 ScoreBrackets.dump(); 1343 }); 1344 1345 // Assume VCCZ is correct at basic block boundaries, unless and until we need 1346 // to handle cases where that is not true. 1347 bool VCCZCorrect = true; 1348 1349 // Walk over the instructions. 1350 MachineInstr *OldWaitcntInstr = nullptr; 1351 1352 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1353 E = Block.instr_end(); 1354 Iter != E;) { 1355 MachineInstr &Inst = *Iter; 1356 1357 // Track pre-existing waitcnts from earlier iterations. 1358 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1359 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1360 Inst.getOperand(0).isReg() && 1361 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1362 if (!OldWaitcntInstr) 1363 OldWaitcntInstr = &Inst; 1364 ++Iter; 1365 continue; 1366 } 1367 1368 // We might need to restore vccz to its correct value for either of two 1369 // different reasons; see ST->hasReadVCCZBug() and 1370 // ST->partialVCCWritesUpdateVCCZ(). 1371 bool RestoreVCCZ = false; 1372 if (readsVCCZ(Inst)) { 1373 if (!VCCZCorrect) 1374 RestoreVCCZ = true; 1375 else if (ST->hasReadVCCZBug()) { 1376 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 1377 // vccz bit, so when we detect that an instruction may read from a 1378 // corrupt vccz bit, we need to: 1379 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 1380 // operations to complete. 1381 // 2. Restore the correct value of vccz by writing the current value 1382 // of vcc back to vcc. 1383 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1384 ScoreBrackets.getScoreUB(LGKM_CNT) && 1385 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1386 RestoreVCCZ = true; 1387 } 1388 } 1389 } 1390 1391 if (TII->isSMRD(Inst)) { 1392 for (const MachineMemOperand *Memop : Inst.memoperands()) { 1393 const Value *Ptr = Memop->getValue(); 1394 SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent())); 1395 } 1396 } 1397 1398 if (!ST->partialVCCWritesUpdateVCCZ()) { 1399 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 1400 // Writes to vcc will fix it. 1401 if (Inst.definesRegister(AMDGPU::VCC_LO) || 1402 Inst.definesRegister(AMDGPU::VCC_HI)) 1403 VCCZCorrect = false; 1404 else if (Inst.definesRegister(AMDGPU::VCC)) 1405 VCCZCorrect = true; 1406 } 1407 1408 // Generate an s_waitcnt instruction to be placed before 1409 // cur_Inst, if needed. 1410 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1411 OldWaitcntInstr = nullptr; 1412 1413 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1414 1415 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1416 // If this instruction generates a S_SETVSKIP because it is an 1417 // indexed resource, and we are on Tahiti, then it will also force 1418 // an S_WAITCNT vmcnt(0) 1419 if (RequireCheckResourceType(Inst, context)) { 1420 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1421 ScoreBrackets->setScoreLB(VM_CNT, 1422 ScoreBrackets->getScoreUB(VM_CNT)); 1423 } 1424 #endif 1425 1426 LLVM_DEBUG({ 1427 Inst.print(dbgs()); 1428 ScoreBrackets.dump(); 1429 }); 1430 1431 // TODO: Remove this work-around after fixing the scheduler and enable the 1432 // assert above. 1433 if (RestoreVCCZ) { 1434 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1435 // bit is updated, so we can restore the bit by reading the value of 1436 // vcc and then writing it back to the register. 1437 BuildMI(Block, Inst, Inst.getDebugLoc(), 1438 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1439 TRI->getVCC()) 1440 .addReg(TRI->getVCC()); 1441 VCCZCorrect = true; 1442 Modified = true; 1443 } 1444 1445 ++Iter; 1446 } 1447 1448 return Modified; 1449 } 1450 1451 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1452 ST = &MF.getSubtarget<GCNSubtarget>(); 1453 TII = ST->getInstrInfo(); 1454 TRI = &TII->getRegisterInfo(); 1455 MRI = &MF.getRegInfo(); 1456 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1457 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1458 PDT = &getAnalysis<MachinePostDominatorTree>(); 1459 1460 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1461 for (auto T : inst_counter_types()) 1462 ForceEmitWaitcnt[T] = false; 1463 1464 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1465 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1466 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1467 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1468 1469 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 1470 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 1471 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1472 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1473 1474 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1475 RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1; 1476 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1477 RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1; 1478 1479 TrackedWaitcntSet.clear(); 1480 BlockInfos.clear(); 1481 1482 // Keep iterating over the blocks in reverse post order, inserting and 1483 // updating s_waitcnt where needed, until a fix point is reached. 1484 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 1485 BlockInfos.insert({MBB, BlockInfo(MBB)}); 1486 1487 std::unique_ptr<WaitcntBrackets> Brackets; 1488 bool Modified = false; 1489 bool Repeat; 1490 do { 1491 Repeat = false; 1492 1493 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 1494 ++BII) { 1495 BlockInfo &BI = BII->second; 1496 if (!BI.Dirty) 1497 continue; 1498 1499 if (BI.Incoming) { 1500 if (!Brackets) 1501 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1502 else 1503 *Brackets = *BI.Incoming; 1504 } else { 1505 if (!Brackets) 1506 Brackets = std::make_unique<WaitcntBrackets>(ST); 1507 else 1508 *Brackets = WaitcntBrackets(ST); 1509 } 1510 1511 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1512 BI.Dirty = false; 1513 1514 if (Brackets->hasPending()) { 1515 BlockInfo *MoveBracketsToSucc = nullptr; 1516 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1517 auto SuccBII = BlockInfos.find(Succ); 1518 BlockInfo &SuccBI = SuccBII->second; 1519 if (!SuccBI.Incoming) { 1520 SuccBI.Dirty = true; 1521 if (SuccBII <= BII) 1522 Repeat = true; 1523 if (!MoveBracketsToSucc) { 1524 MoveBracketsToSucc = &SuccBI; 1525 } else { 1526 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1527 } 1528 } else if (SuccBI.Incoming->merge(*Brackets)) { 1529 SuccBI.Dirty = true; 1530 if (SuccBII <= BII) 1531 Repeat = true; 1532 } 1533 } 1534 if (MoveBracketsToSucc) 1535 MoveBracketsToSucc->Incoming = std::move(Brackets); 1536 } 1537 } 1538 } while (Repeat); 1539 1540 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1541 1542 bool HaveScalarStores = false; 1543 1544 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1545 ++BI) { 1546 MachineBasicBlock &MBB = *BI; 1547 1548 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1549 ++I) { 1550 if (!HaveScalarStores && TII->isScalarStore(*I)) 1551 HaveScalarStores = true; 1552 1553 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1554 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1555 EndPgmBlocks.push_back(&MBB); 1556 } 1557 } 1558 1559 if (HaveScalarStores) { 1560 // If scalar writes are used, the cache must be flushed or else the next 1561 // wave to reuse the same scratch memory can be clobbered. 1562 // 1563 // Insert s_dcache_wb at wave termination points if there were any scalar 1564 // stores, and only if the cache hasn't already been flushed. This could be 1565 // improved by looking across blocks for flushes in postdominating blocks 1566 // from the stores but an explicitly requested flush is probably very rare. 1567 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1568 bool SeenDCacheWB = false; 1569 1570 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1571 ++I) { 1572 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1573 SeenDCacheWB = true; 1574 else if (TII->isScalarStore(*I)) 1575 SeenDCacheWB = false; 1576 1577 // FIXME: It would be better to insert this before a waitcnt if any. 1578 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1579 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1580 !SeenDCacheWB) { 1581 Modified = true; 1582 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1583 } 1584 } 1585 } 1586 } 1587 1588 if (!MFI->isEntryFunction()) { 1589 // Wait for any outstanding memory operations that the input registers may 1590 // depend on. We can't track them and it's better to the wait after the 1591 // costly call sequence. 1592 1593 // TODO: Could insert earlier and schedule more liberally with operations 1594 // that only use caller preserved registers. 1595 MachineBasicBlock &EntryBB = MF.front(); 1596 if (ST->hasVscnt()) 1597 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), 1598 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1599 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1600 .addImm(0); 1601 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1602 .addImm(0); 1603 1604 Modified = true; 1605 } 1606 1607 return Modified; 1608 } 1609