1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "SIDefines.h" 22 #include "SIInstrInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "SIRegisterInfo.h" 25 #include "Utils/AMDGPUBaseInfo.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <cstring> 49 #include <memory> 50 #include <utility> 51 #include <vector> 52 53 #define DEBUG_TYPE "si-insert-waitcnts" 54 55 using namespace llvm; 56 57 namespace { 58 59 // Class of object that encapsulates latest instruction counter score 60 // associated with the operand. Used for determining whether 61 // s_waitcnt instruction needs to be emited. 62 63 #define CNT_MASK(t) (1u << (t)) 64 65 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 66 67 using RegInterval = std::pair<signed, signed>; 68 69 struct { 70 int32_t VmcntMax; 71 int32_t ExpcntMax; 72 int32_t LgkmcntMax; 73 int32_t NumVGPRsMax; 74 int32_t NumSGPRsMax; 75 } HardwareLimits; 76 77 struct { 78 unsigned VGPR0; 79 unsigned VGPRL; 80 unsigned SGPR0; 81 unsigned SGPRL; 82 } RegisterEncoding; 83 84 enum WaitEventType { 85 VMEM_ACCESS, // vector-memory read & write 86 LDS_ACCESS, // lds read & write 87 GDS_ACCESS, // gds read & write 88 SQ_MESSAGE, // send message 89 SMEM_ACCESS, // scalar-memory read & write 90 EXP_GPR_LOCK, // export holding on its data src 91 GDS_GPR_LOCK, // GDS holding on its data and addr src 92 EXP_POS_ACCESS, // write to export position 93 EXP_PARAM_ACCESS, // write to export parameter 94 VMW_GPR_LOCK, // vector-memory write holding on its data src 95 NUM_WAIT_EVENTS, 96 }; 97 98 // The mapping is: 99 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 100 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 101 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 102 // We reserve a fixed number of VGPR slots in the scoring tables for 103 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 104 enum RegisterMapping { 105 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 106 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 107 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 108 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 109 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 110 }; 111 112 #define ForAllWaitEventType(w) \ 113 for (enum WaitEventType w = (enum WaitEventType)0; \ 114 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ 115 (w) = (enum WaitEventType)((w) + 1)) 116 117 // This is a per-basic-block object that maintains current score brackets 118 // of each wait-counter, and a per-register scoreboard for each wait-couner. 119 // We also maintain the latest score for every event type that can change the 120 // waitcnt in order to know if there are multiple types of events within 121 // the brackets. When multiple types of event happen in the bracket, 122 // wait-count may get decreased out of order, therefore we need to put in 123 // "s_waitcnt 0" before use. 124 class BlockWaitcntBrackets { 125 public: 126 BlockWaitcntBrackets() { 127 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 128 T = (enum InstCounterType)(T + 1)) { 129 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 130 } 131 } 132 133 ~BlockWaitcntBrackets() = default; 134 135 static int32_t getWaitCountMax(InstCounterType T) { 136 switch (T) { 137 case VM_CNT: 138 return HardwareLimits.VmcntMax; 139 case LGKM_CNT: 140 return HardwareLimits.LgkmcntMax; 141 case EXP_CNT: 142 return HardwareLimits.ExpcntMax; 143 default: 144 break; 145 } 146 return 0; 147 } 148 149 void setScoreLB(InstCounterType T, int32_t Val) { 150 assert(T < NUM_INST_CNTS); 151 if (T >= NUM_INST_CNTS) 152 return; 153 ScoreLBs[T] = Val; 154 } 155 156 void setScoreUB(InstCounterType T, int32_t Val) { 157 assert(T < NUM_INST_CNTS); 158 if (T >= NUM_INST_CNTS) 159 return; 160 ScoreUBs[T] = Val; 161 if (T == EXP_CNT) { 162 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); 163 if (ScoreLBs[T] < UB) 164 ScoreLBs[T] = UB; 165 } 166 } 167 168 int32_t getScoreLB(InstCounterType T) { 169 assert(T < NUM_INST_CNTS); 170 if (T >= NUM_INST_CNTS) 171 return 0; 172 return ScoreLBs[T]; 173 } 174 175 int32_t getScoreUB(InstCounterType T) { 176 assert(T < NUM_INST_CNTS); 177 if (T >= NUM_INST_CNTS) 178 return 0; 179 return ScoreUBs[T]; 180 } 181 182 // Mapping from event to counter. 183 InstCounterType eventCounter(WaitEventType E) { 184 switch (E) { 185 case VMEM_ACCESS: 186 return VM_CNT; 187 case LDS_ACCESS: 188 case GDS_ACCESS: 189 case SQ_MESSAGE: 190 case SMEM_ACCESS: 191 return LGKM_CNT; 192 case EXP_GPR_LOCK: 193 case GDS_GPR_LOCK: 194 case VMW_GPR_LOCK: 195 case EXP_POS_ACCESS: 196 case EXP_PARAM_ACCESS: 197 return EXP_CNT; 198 default: 199 llvm_unreachable("unhandled event type"); 200 } 201 return NUM_INST_CNTS; 202 } 203 204 void setRegScore(int GprNo, InstCounterType T, int32_t Val) { 205 if (GprNo < NUM_ALL_VGPRS) { 206 if (GprNo > VgprUB) { 207 VgprUB = GprNo; 208 } 209 VgprScores[T][GprNo] = Val; 210 } else { 211 assert(T == LGKM_CNT); 212 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 213 SgprUB = GprNo - NUM_ALL_VGPRS; 214 } 215 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 216 } 217 } 218 219 int32_t getRegScore(int GprNo, InstCounterType T) { 220 if (GprNo < NUM_ALL_VGPRS) { 221 return VgprScores[T][GprNo]; 222 } 223 return SgprScores[GprNo - NUM_ALL_VGPRS]; 224 } 225 226 void clear() { 227 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 228 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 229 memset(EventUBs, 0, sizeof(EventUBs)); 230 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 231 T = (enum InstCounterType)(T + 1)) { 232 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 233 } 234 memset(SgprScores, 0, sizeof(SgprScores)); 235 } 236 237 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 238 const MachineRegisterInfo *MRI, 239 const SIRegisterInfo *TRI, unsigned OpNo, 240 bool Def) const; 241 242 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 243 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 244 unsigned OpNo, int32_t Val); 245 246 void setWaitAtBeginning() { WaitAtBeginning = true; } 247 void clearWaitAtBeginning() { WaitAtBeginning = false; } 248 bool getWaitAtBeginning() const { return WaitAtBeginning; } 249 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } 250 int32_t getMaxVGPR() const { return VgprUB; } 251 int32_t getMaxSGPR() const { return SgprUB; } 252 253 int32_t getEventUB(enum WaitEventType W) const { 254 assert(W < NUM_WAIT_EVENTS); 255 return EventUBs[W]; 256 } 257 258 bool counterOutOfOrder(InstCounterType T); 259 unsigned int updateByWait(InstCounterType T, int ScoreToWait); 260 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 261 const MachineRegisterInfo *MRI, WaitEventType E, 262 MachineInstr &MI); 263 264 bool hasPendingSMEM() const { 265 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 266 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); 267 } 268 269 bool hasPendingFlat() const { 270 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 271 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 272 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 273 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 274 } 275 276 void setPendingFlat() { 277 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 278 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 279 } 280 281 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } 282 283 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } 284 285 bool getRevisitLoop() const { return RevisitLoop; } 286 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } 287 288 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } 289 int32_t getPostOrder() const { return PostOrder; } 290 291 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } 292 void clearWaitcnt() { Waitcnt = nullptr; } 293 MachineInstr *getWaitcnt() const { return Waitcnt; } 294 295 bool mixedExpTypes() const { return MixedExpTypes; } 296 void setMixedExpTypes(bool MixedExpTypesIn) { 297 MixedExpTypes = MixedExpTypesIn; 298 } 299 300 void print(raw_ostream &); 301 void dump() { print(dbgs()); } 302 303 private: 304 bool WaitAtBeginning = false; 305 bool RevisitLoop = false; 306 bool ValidLoop = false; 307 bool MixedExpTypes = false; 308 MachineLoop *LoopRegion = nullptr; 309 int32_t PostOrder = 0; 310 MachineInstr *Waitcnt = nullptr; 311 int32_t ScoreLBs[NUM_INST_CNTS] = {0}; 312 int32_t ScoreUBs[NUM_INST_CNTS] = {0}; 313 int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; 314 // Remember the last flat memory operation. 315 int32_t LastFlat[NUM_INST_CNTS] = {0}; 316 // wait_cnt scores for every vgpr. 317 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 318 int32_t VgprUB = 0; 319 int32_t SgprUB = 0; 320 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 321 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 322 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 323 }; 324 325 // This is a per-loop-region object that records waitcnt status at the end of 326 // loop footer from the previous iteration. We also maintain an iteration 327 // count to track the number of times the loop has been visited. When it 328 // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 329 // at the end of the loop footer. 330 class LoopWaitcntData { 331 public: 332 LoopWaitcntData() = default; 333 ~LoopWaitcntData() = default; 334 335 void incIterCnt() { IterCnt++; } 336 void resetIterCnt() { IterCnt = 0; } 337 int32_t getIterCnt() { return IterCnt; } 338 339 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } 340 MachineInstr *getWaitcnt() const { return LfWaitcnt; } 341 342 void print() { 343 DEBUG(dbgs() << " iteration " << IterCnt << '\n';); 344 } 345 346 private: 347 // s_waitcnt added at the end of loop footer to stablize wait scores 348 // at the end of the loop footer. 349 MachineInstr *LfWaitcnt = nullptr; 350 // Number of iterations the loop has been visited, not including the initial 351 // walk over. 352 int32_t IterCnt = 0; 353 }; 354 355 class SIInsertWaitcnts : public MachineFunctionPass { 356 private: 357 const SISubtarget *ST = nullptr; 358 const SIInstrInfo *TII = nullptr; 359 const SIRegisterInfo *TRI = nullptr; 360 const MachineRegisterInfo *MRI = nullptr; 361 const MachineLoopInfo *MLI = nullptr; 362 AMDGPU::IsaInfo::IsaVersion IV; 363 AMDGPUAS AMDGPUASI; 364 365 DenseSet<MachineBasicBlock *> BlockVisitedSet; 366 DenseSet<MachineInstr *> CompilerGeneratedWaitcntSet; 367 DenseSet<MachineInstr *> VCCZBugHandledSet; 368 369 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> 370 BlockWaitcntBracketsMap; 371 372 DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet; 373 374 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; 375 376 std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; 377 378 public: 379 static char ID; 380 381 SIInsertWaitcnts() : MachineFunctionPass(ID) {} 382 383 bool runOnMachineFunction(MachineFunction &MF) override; 384 385 StringRef getPassName() const override { 386 return "SI insert wait instructions"; 387 } 388 389 void getAnalysisUsage(AnalysisUsage &AU) const override { 390 AU.setPreservesCFG(); 391 AU.addRequired<MachineLoopInfo>(); 392 MachineFunctionPass::getAnalysisUsage(AU); 393 } 394 395 void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { 396 // The waitcnt information is copied because it changes as the block is 397 // traversed. 398 KillWaitBrackets.push_back( 399 llvm::make_unique<BlockWaitcntBrackets>(*Bracket)); 400 } 401 402 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 403 MachineInstr *generateSWaitCntInstBefore(MachineInstr &MI, 404 BlockWaitcntBrackets *ScoreBrackets); 405 void updateEventWaitCntAfter(MachineInstr &Inst, 406 BlockWaitcntBrackets *ScoreBrackets); 407 void mergeInputScoreBrackets(MachineBasicBlock &Block); 408 MachineBasicBlock *loopBottom(const MachineLoop *Loop); 409 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); 410 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); 411 }; 412 413 } // end anonymous namespace 414 415 RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, 416 const SIInstrInfo *TII, 417 const MachineRegisterInfo *MRI, 418 const SIRegisterInfo *TRI, 419 unsigned OpNo, 420 bool Def) const { 421 const MachineOperand &Op = MI->getOperand(OpNo); 422 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 423 (Def && !Op.isDef())) 424 return {-1, -1}; 425 426 // A use via a PW operand does not need a waitcnt. 427 // A partial write is not a WAW. 428 assert(!Op.getSubReg() || !Op.isUndef()); 429 430 RegInterval Result; 431 const MachineRegisterInfo &MRIA = *MRI; 432 433 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 434 435 if (TRI->isVGPR(MRIA, Op.getReg())) { 436 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 437 Result.first = Reg - RegisterEncoding.VGPR0; 438 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 439 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 440 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 441 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 442 assert(Result.first >= NUM_ALL_VGPRS && 443 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 444 } 445 // TODO: Handle TTMP 446 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 447 else 448 return {-1, -1}; 449 450 const MachineInstr &MIA = *MI; 451 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 452 unsigned Size = TRI->getRegSizeInBits(*RC); 453 Result.second = Result.first + (Size / 32); 454 455 return Result; 456 } 457 458 void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, 459 const SIInstrInfo *TII, 460 const SIRegisterInfo *TRI, 461 const MachineRegisterInfo *MRI, 462 unsigned OpNo, int32_t Val) { 463 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 464 DEBUG({ 465 const MachineOperand &Opnd = MI->getOperand(OpNo); 466 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 467 }); 468 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 469 setRegScore(RegNo, EXP_CNT, Val); 470 } 471 } 472 473 void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 474 const SIRegisterInfo *TRI, 475 const MachineRegisterInfo *MRI, 476 WaitEventType E, MachineInstr &Inst) { 477 const MachineRegisterInfo &MRIA = *MRI; 478 InstCounterType T = eventCounter(E); 479 int32_t CurrScore = getScoreUB(T) + 1; 480 // EventUB and ScoreUB need to be update regardless if this event changes 481 // the score of a register or not. 482 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 483 EventUBs[E] = CurrScore; 484 setScoreUB(T, CurrScore); 485 486 if (T == EXP_CNT) { 487 // Check for mixed export types. If they are mixed, then a waitcnt exp(0) 488 // is required. 489 if (!MixedExpTypes) { 490 MixedExpTypes = counterOutOfOrder(EXP_CNT); 491 } 492 493 // Put score on the source vgprs. If this is a store, just use those 494 // specific register(s). 495 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 496 // All GDS operations must protect their address register (same as 497 // export.) 498 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 499 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 500 setExpScore( 501 &Inst, TII, TRI, MRI, 502 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 503 CurrScore); 504 } 505 if (Inst.mayStore()) { 506 setExpScore( 507 &Inst, TII, TRI, MRI, 508 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 509 CurrScore); 510 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 511 AMDGPU::OpName::data1) != -1) { 512 setExpScore(&Inst, TII, TRI, MRI, 513 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 514 AMDGPU::OpName::data1), 515 CurrScore); 516 } 517 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 518 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 519 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 520 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 521 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 522 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 523 Inst.getOpcode() != AMDGPU::DS_APPEND && 524 Inst.getOpcode() != AMDGPU::DS_CONSUME && 525 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 526 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 527 const MachineOperand &Op = Inst.getOperand(I); 528 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 529 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 530 } 531 } 532 } 533 } else if (TII->isFLAT(Inst)) { 534 if (Inst.mayStore()) { 535 setExpScore( 536 &Inst, TII, TRI, MRI, 537 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 538 CurrScore); 539 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 540 setExpScore( 541 &Inst, TII, TRI, MRI, 542 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 543 CurrScore); 544 } 545 } else if (TII->isMIMG(Inst)) { 546 if (Inst.mayStore()) { 547 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 548 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 549 setExpScore( 550 &Inst, TII, TRI, MRI, 551 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 552 CurrScore); 553 } 554 } else if (TII->isMTBUF(Inst)) { 555 if (Inst.mayStore()) { 556 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 557 } 558 } else if (TII->isMUBUF(Inst)) { 559 if (Inst.mayStore()) { 560 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 561 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 562 setExpScore( 563 &Inst, TII, TRI, MRI, 564 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 565 CurrScore); 566 } 567 } else { 568 if (TII->isEXP(Inst)) { 569 // For export the destination registers are really temps that 570 // can be used as the actual source after export patching, so 571 // we need to treat them like sources and set the EXP_CNT 572 // score. 573 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 574 MachineOperand &DefMO = Inst.getOperand(I); 575 if (DefMO.isReg() && DefMO.isDef() && 576 TRI->isVGPR(MRIA, DefMO.getReg())) { 577 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 578 CurrScore); 579 } 580 } 581 } 582 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 583 MachineOperand &MO = Inst.getOperand(I); 584 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 585 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 586 } 587 } 588 } 589 #if 0 // TODO: check if this is handled by MUBUF code above. 590 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 591 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 592 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 593 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 594 unsigned OpNo;//TODO: find the OpNo for this operand; 595 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 596 for (signed RegNo = Interval.first; RegNo < Interval.second; 597 ++RegNo) { 598 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 599 } 600 #endif 601 } else { 602 // Match the score to the destination registers. 603 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 604 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 605 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 606 continue; 607 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 608 setRegScore(RegNo, T, CurrScore); 609 } 610 } 611 if (TII->isDS(Inst) && Inst.mayStore()) { 612 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 613 } 614 } 615 } 616 617 void BlockWaitcntBrackets::print(raw_ostream &OS) { 618 OS << '\n'; 619 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 620 T = (enum InstCounterType)(T + 1)) { 621 int LB = getScoreLB(T); 622 int UB = getScoreUB(T); 623 624 switch (T) { 625 case VM_CNT: 626 OS << " VM_CNT(" << UB - LB << "): "; 627 break; 628 case LGKM_CNT: 629 OS << " LGKM_CNT(" << UB - LB << "): "; 630 break; 631 case EXP_CNT: 632 OS << " EXP_CNT(" << UB - LB << "): "; 633 break; 634 default: 635 OS << " UNKNOWN(" << UB - LB << "): "; 636 break; 637 } 638 639 if (LB < UB) { 640 // Print vgpr scores. 641 for (int J = 0; J <= getMaxVGPR(); J++) { 642 int RegScore = getRegScore(J, T); 643 if (RegScore <= LB) 644 continue; 645 int RelScore = RegScore - LB - 1; 646 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 647 OS << RelScore << ":v" << J << " "; 648 } else { 649 OS << RelScore << ":ds "; 650 } 651 } 652 // Also need to print sgpr scores for lgkm_cnt. 653 if (T == LGKM_CNT) { 654 for (int J = 0; J <= getMaxSGPR(); J++) { 655 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 656 if (RegScore <= LB) 657 continue; 658 int RelScore = RegScore - LB - 1; 659 OS << RelScore << ":s" << J << " "; 660 } 661 } 662 } 663 OS << '\n'; 664 } 665 OS << '\n'; 666 } 667 668 unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, 669 int ScoreToWait) { 670 unsigned int NeedWait = 0; 671 if (ScoreToWait == -1) { 672 // The score to wait is unknown. This implies that it was not encountered 673 // during the path of the CFG walk done during the current traversal but 674 // may be seen on a different path. Emit an s_wait counter with a 675 // conservative value of 0 for the counter. 676 NeedWait = CNT_MASK(T); 677 setScoreLB(T, getScoreUB(T)); 678 return NeedWait; 679 } 680 681 // If the score of src_operand falls within the bracket, we need an 682 // s_waitcnt instruction. 683 const int32_t LB = getScoreLB(T); 684 const int32_t UB = getScoreUB(T); 685 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 686 if (T == VM_CNT && hasPendingFlat()) { 687 // If there is a pending FLAT operation, and this is a VM waitcnt, 688 // then we need to force a waitcnt 0 for VM. 689 NeedWait = CNT_MASK(T); 690 setScoreLB(T, getScoreUB(T)); 691 } else if (counterOutOfOrder(T)) { 692 // Counter can get decremented out-of-order when there 693 // are multiple types event in the brack. Also emit an s_wait counter 694 // with a conservative value of 0 for the counter. 695 NeedWait = CNT_MASK(T); 696 setScoreLB(T, getScoreUB(T)); 697 } else { 698 NeedWait = CNT_MASK(T); 699 setScoreLB(T, ScoreToWait); 700 } 701 } 702 703 return NeedWait; 704 } 705 706 // Where there are multiple types of event in the bracket of a counter, 707 // the decrement may go out of order. 708 bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { 709 switch (T) { 710 case VM_CNT: 711 return false; 712 case LGKM_CNT: { 713 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 714 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { 715 // Scalar memory read always can go out of order. 716 return true; 717 } 718 int NumEventTypes = 0; 719 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && 720 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 721 NumEventTypes++; 722 } 723 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && 724 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 725 NumEventTypes++; 726 } 727 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && 728 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { 729 NumEventTypes++; 730 } 731 if (NumEventTypes <= 1) { 732 return false; 733 } 734 break; 735 } 736 case EXP_CNT: { 737 // If there has been a mixture of export types, then a waitcnt exp(0) is 738 // required. 739 if (MixedExpTypes) 740 return true; 741 int NumEventTypes = 0; 742 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && 743 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 744 NumEventTypes++; 745 } 746 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && 747 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 748 NumEventTypes++; 749 } 750 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && 751 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 752 NumEventTypes++; 753 } 754 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && 755 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { 756 NumEventTypes++; 757 } 758 759 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && 760 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { 761 NumEventTypes++; 762 } 763 764 if (NumEventTypes <= 1) { 765 return false; 766 } 767 break; 768 } 769 default: 770 break; 771 } 772 return true; 773 } 774 775 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 776 false) 777 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 778 false) 779 780 char SIInsertWaitcnts::ID = 0; 781 782 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 783 784 FunctionPass *llvm::createSIInsertWaitcntsPass() { 785 return new SIInsertWaitcnts(); 786 } 787 788 static bool readsVCCZ(const MachineInstr &MI) { 789 unsigned Opc = MI.getOpcode(); 790 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 791 !MI.getOperand(1).isUndef(); 792 } 793 794 /// \brief Generate s_waitcnt instruction to be placed before cur_Inst. 795 /// Instructions of a given type are returned in order, 796 /// but instructions of different types can complete out of order. 797 /// We rely on this in-order completion 798 /// and simply assign a score to the memory access instructions. 799 /// We keep track of the active "score bracket" to determine 800 /// if an access of a memory read requires an s_waitcnt 801 /// and if so what the value of each counter is. 802 /// The "score bracket" is bound by the lower bound and upper bound 803 /// scores (*_score_LB and *_score_ub respectively). 804 MachineInstr *SIInsertWaitcnts::generateSWaitCntInstBefore( 805 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { 806 // To emit, or not to emit - that's the question! 807 // Start with an assumption that there is no need to emit. 808 unsigned int EmitSwaitcnt = 0; 809 // s_waitcnt instruction to return; default is NULL. 810 MachineInstr *SWaitInst = nullptr; 811 // No need to wait before phi. If a phi-move exists, then the wait should 812 // has been inserted before the move. If a phi-move does not exist, then 813 // wait should be inserted before the real use. The same is true for 814 // sc-merge. It is not a coincident that all these cases correspond to the 815 // instructions that are skipped in the assembling loop. 816 bool NeedLineMapping = false; // TODO: Check on this. 817 if (MI.isDebugValue() && 818 // TODO: any other opcode? 819 !NeedLineMapping) { 820 return SWaitInst; 821 } 822 823 // See if an s_waitcnt is forced at block entry, or is needed at 824 // program end. 825 if (ScoreBrackets->getWaitAtBeginning()) { 826 // Note that we have already cleared the state, so we don't need to update 827 // it. 828 ScoreBrackets->clearWaitAtBeginning(); 829 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 830 T = (enum InstCounterType)(T + 1)) { 831 EmitSwaitcnt |= CNT_MASK(T); 832 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 833 } 834 } 835 836 // See if this instruction has a forced S_WAITCNT VM. 837 // TODO: Handle other cases of NeedsWaitcntVmBefore() 838 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 839 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 840 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 841 EmitSwaitcnt |= 842 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 843 } 844 845 // All waits must be resolved at call return. 846 // NOTE: this could be improved with knowledge of all call sites or 847 // with knowledge of the called routines. 848 if (MI.getOpcode() == AMDGPU::RETURN || 849 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 850 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 851 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 852 T = (enum InstCounterType)(T + 1)) { 853 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 854 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 855 EmitSwaitcnt |= CNT_MASK(T); 856 } 857 } 858 } 859 // Resolve vm waits before gs-done. 860 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 861 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 862 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 863 AMDGPU::SendMsg::ID_GS_DONE)) { 864 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { 865 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 866 EmitSwaitcnt |= CNT_MASK(VM_CNT); 867 } 868 } 869 #if 0 // TODO: the following blocks of logic when we have fence. 870 else if (MI.getOpcode() == SC_FENCE) { 871 const unsigned int group_size = 872 context->shader_info->GetMaxThreadGroupSize(); 873 // group_size == 0 means thread group size is unknown at compile time 874 const bool group_is_multi_wave = 875 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 876 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 877 878 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 879 SCRegType src_type = Inst->GetSrcType(i); 880 switch (src_type) { 881 case SCMEM_LDS: 882 if (group_is_multi_wave || 883 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 884 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 885 ScoreBrackets->getScoreUB(LGKM_CNT)); 886 // LDS may have to wait for VM_CNT after buffer load to LDS 887 if (target_info->HasBufferLoadToLDS()) { 888 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 889 ScoreBrackets->getScoreUB(VM_CNT)); 890 } 891 } 892 break; 893 894 case SCMEM_GDS: 895 if (group_is_multi_wave || fence_is_global) { 896 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 897 ScoreBrackets->getScoreUB(EXP_CNT)); 898 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 899 ScoreBrackets->getScoreUB(LGKM_CNT)); 900 } 901 break; 902 903 case SCMEM_UAV: 904 case SCMEM_TFBUF: 905 case SCMEM_RING: 906 case SCMEM_SCATTER: 907 if (group_is_multi_wave || fence_is_global) { 908 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 909 ScoreBrackets->getScoreUB(EXP_CNT)); 910 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 911 ScoreBrackets->getScoreUB(VM_CNT)); 912 } 913 break; 914 915 case SCMEM_SCRATCH: 916 default: 917 break; 918 } 919 } 920 } 921 #endif 922 923 // Export & GDS instructions do not read the EXEC mask until after the export 924 // is granted (which can occur well after the instruction is issued). 925 // The shader program must flush all EXP operations on the export-count 926 // before overwriting the EXEC mask. 927 else { 928 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 929 // Export and GDS are tracked individually, either may trigger a waitcnt 930 // for EXEC. 931 EmitSwaitcnt |= ScoreBrackets->updateByWait( 932 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); 933 EmitSwaitcnt |= ScoreBrackets->updateByWait( 934 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); 935 EmitSwaitcnt |= ScoreBrackets->updateByWait( 936 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); 937 EmitSwaitcnt |= ScoreBrackets->updateByWait( 938 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); 939 } 940 941 #if 0 // TODO: the following code to handle CALL. 942 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 943 // However, there is a problem with EXP_CNT, because the call cannot 944 // easily tell if a register is used in the function, and if it did, then 945 // the referring instruction would have to have an S_WAITCNT, which is 946 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 947 // before the call. 948 if (MI.getOpcode() == SC_CALL) { 949 if (ScoreBrackets->getScoreUB(EXP_CNT) > 950 ScoreBrackets->getScoreLB(EXP_CNT)) { 951 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 952 EmitSwaitcnt |= CNT_MASK(EXP_CNT); 953 } 954 } 955 #endif 956 957 // FIXME: Should not be relying on memoperands. 958 // Look at the source operands of every instruction to see if 959 // any of them results from a previous memory operation that affects 960 // its current usage. If so, an s_waitcnt instruction needs to be 961 // emitted. 962 // If the source operand was defined by a load, add the s_waitcnt 963 // instruction. 964 for (const MachineMemOperand *Memop : MI.memoperands()) { 965 unsigned AS = Memop->getAddrSpace(); 966 if (AS != AMDGPUASI.LOCAL_ADDRESS) 967 continue; 968 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 969 // VM_CNT is only relevant to vgpr or LDS. 970 EmitSwaitcnt |= ScoreBrackets->updateByWait( 971 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 972 } 973 974 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 975 const MachineOperand &Op = MI.getOperand(I); 976 const MachineRegisterInfo &MRIA = *MRI; 977 RegInterval Interval = 978 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); 979 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 980 if (TRI->isVGPR(MRIA, Op.getReg())) { 981 // VM_CNT is only relevant to vgpr or LDS. 982 EmitSwaitcnt |= ScoreBrackets->updateByWait( 983 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 984 } 985 EmitSwaitcnt |= ScoreBrackets->updateByWait( 986 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 987 } 988 } 989 // End of for loop that looks at all source operands to decide vm_wait_cnt 990 // and lgk_wait_cnt. 991 992 // Two cases are handled for destination operands: 993 // 1) If the destination operand was defined by a load, add the s_waitcnt 994 // instruction to guarantee the right WAW order. 995 // 2) If a destination operand that was used by a recent export/store ins, 996 // add s_waitcnt on exp_cnt to guarantee the WAR order. 997 if (MI.mayStore()) { 998 // FIXME: Should not be relying on memoperands. 999 for (const MachineMemOperand *Memop : MI.memoperands()) { 1000 unsigned AS = Memop->getAddrSpace(); 1001 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1002 continue; 1003 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1004 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1005 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1006 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1007 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1008 } 1009 } 1010 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1011 MachineOperand &Def = MI.getOperand(I); 1012 const MachineRegisterInfo &MRIA = *MRI; 1013 RegInterval Interval = 1014 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); 1015 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1016 if (TRI->isVGPR(MRIA, Def.getReg())) { 1017 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1018 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1019 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1020 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1021 } 1022 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1023 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1024 } 1025 } // End of for loop that looks at all dest operands. 1026 } 1027 1028 // TODO: Tie force zero to a compiler triage option. 1029 bool ForceZero = false; 1030 1031 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1032 // occurs before the instruction. Doing it here prevents any additional 1033 // S_WAITCNTs from being emitted if the instruction was marked as 1034 // requiring a WAITCNT beforehand. 1035 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1036 !ST->hasAutoWaitcntBeforeBarrier()) { 1037 EmitSwaitcnt |= 1038 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1039 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1040 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1041 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1042 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); 1043 } 1044 1045 // TODO: Remove this work-around, enable the assert for Bug 457939 1046 // after fixing the scheduler. Also, the Shader Compiler code is 1047 // independent of target. 1048 if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { 1049 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1050 ScoreBrackets->getScoreUB(LGKM_CNT) && 1051 ScoreBrackets->hasPendingSMEM()) { 1052 // Wait on everything, not just LGKM. vccz reads usually come from 1053 // terminators, and we always wait on everything at the end of the 1054 // block, so if we only wait on LGKM here, we might end up with 1055 // another s_waitcnt inserted right after this if there are non-LGKM 1056 // instructions still outstanding. 1057 ForceZero = true; 1058 EmitSwaitcnt = true; 1059 } 1060 } 1061 1062 // Does this operand processing indicate s_wait counter update? 1063 if (EmitSwaitcnt) { 1064 int CntVal[NUM_INST_CNTS]; 1065 1066 bool UseDefaultWaitcntStrategy = true; 1067 if (ForceZero) { 1068 // Force all waitcnts to 0. 1069 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1070 T = (enum InstCounterType)(T + 1)) { 1071 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1072 } 1073 CntVal[VM_CNT] = 0; 1074 CntVal[EXP_CNT] = 0; 1075 CntVal[LGKM_CNT] = 0; 1076 UseDefaultWaitcntStrategy = false; 1077 } 1078 1079 if (UseDefaultWaitcntStrategy) { 1080 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1081 T = (enum InstCounterType)(T + 1)) { 1082 if (EmitSwaitcnt & CNT_MASK(T)) { 1083 int Delta = 1084 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); 1085 int MaxDelta = ScoreBrackets->getWaitCountMax(T); 1086 if (Delta >= MaxDelta) { 1087 Delta = -1; 1088 if (T != EXP_CNT) { 1089 ScoreBrackets->setScoreLB( 1090 T, ScoreBrackets->getScoreUB(T) - MaxDelta); 1091 } 1092 EmitSwaitcnt &= ~CNT_MASK(T); 1093 } 1094 CntVal[T] = Delta; 1095 } else { 1096 // If we are not waiting for a particular counter then encode 1097 // it as -1 which means "don't care." 1098 CntVal[T] = -1; 1099 } 1100 } 1101 } 1102 1103 // If we are not waiting on any counter we can skip the wait altogether. 1104 if (EmitSwaitcnt != 0) { 1105 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); 1106 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); 1107 if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) != 1108 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || 1109 (AMDGPU::decodeExpcnt(IV, Imm) != 1110 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || 1111 (AMDGPU::decodeLgkmcnt(IV, Imm) != 1112 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { 1113 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); 1114 if (ContainingLoop) { 1115 MachineBasicBlock *TBB = ContainingLoop->getHeader(); 1116 BlockWaitcntBrackets *ScoreBracket = 1117 BlockWaitcntBracketsMap[TBB].get(); 1118 if (!ScoreBracket) { 1119 assert(BlockVisitedSet.find(TBB) == BlockVisitedSet.end()); 1120 BlockWaitcntBracketsMap[TBB] = 1121 llvm::make_unique<BlockWaitcntBrackets>(); 1122 ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); 1123 } 1124 ScoreBracket->setRevisitLoop(true); 1125 DEBUG(dbgs() << "set-revisit: block" 1126 << ContainingLoop->getHeader()->getNumber() << '\n';); 1127 } 1128 } 1129 1130 // Update an existing waitcount, or make a new one. 1131 MachineFunction &MF = *MI.getParent()->getParent(); 1132 if (OldWaitcnt && OldWaitcnt->getOpcode() != AMDGPU::S_WAITCNT) { 1133 SWaitInst = OldWaitcnt; 1134 } else { 1135 SWaitInst = MF.CreateMachineInstr(TII->get(AMDGPU::S_WAITCNT), 1136 MI.getDebugLoc()); 1137 CompilerGeneratedWaitcntSet.insert(SWaitInst); 1138 } 1139 1140 const MachineOperand &Op = 1141 MachineOperand::CreateImm(AMDGPU::encodeWaitcnt( 1142 IV, CntVal[VM_CNT], CntVal[EXP_CNT], CntVal[LGKM_CNT])); 1143 SWaitInst->addOperand(MF, Op); 1144 1145 if (CntVal[EXP_CNT] == 0) { 1146 ScoreBrackets->setMixedExpTypes(false); 1147 } 1148 } 1149 } 1150 1151 return SWaitInst; 1152 } 1153 1154 void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, 1155 MachineInstr *Waitcnt) { 1156 if (MBB.empty()) { 1157 MBB.push_back(Waitcnt); 1158 return; 1159 } 1160 1161 MachineBasicBlock::iterator It = MBB.end(); 1162 MachineInstr *MI = &*(--It); 1163 if (MI->isBranch()) { 1164 MBB.insert(It, Waitcnt); 1165 } else { 1166 MBB.push_back(Waitcnt); 1167 } 1168 } 1169 1170 // This is a flat memory operation. Check to see if it has memory 1171 // tokens for both LDS and Memory, and if so mark it as a flat. 1172 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1173 if (MI.memoperands_empty()) 1174 return true; 1175 1176 for (const MachineMemOperand *Memop : MI.memoperands()) { 1177 unsigned AS = Memop->getAddrSpace(); 1178 if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) 1179 return true; 1180 } 1181 1182 return false; 1183 } 1184 1185 void SIInsertWaitcnts::updateEventWaitCntAfter( 1186 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { 1187 // Now look at the instruction opcode. If it is a memory access 1188 // instruction, update the upper-bound of the appropriate counter's 1189 // bracket and the destination operand scores. 1190 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1191 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1192 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1193 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1194 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1195 } else { 1196 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1197 } 1198 } else if (TII->isFLAT(Inst)) { 1199 assert(Inst.mayLoad() || Inst.mayStore()); 1200 1201 if (TII->usesVM_CNT(Inst)) 1202 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1203 1204 if (TII->usesLGKM_CNT(Inst)) { 1205 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1206 1207 // This is a flat memory operation, so note it - it will require 1208 // that both the VM and LGKM be flushed to zero if it is pending when 1209 // a VM or LGKM dependency occurs. 1210 if (mayAccessLDSThroughFlat(Inst)) 1211 ScoreBrackets->setPendingFlat(); 1212 } 1213 } else if (SIInstrInfo::isVMEM(Inst) && 1214 // TODO: get a better carve out. 1215 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1216 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1217 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1218 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1219 if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() && 1220 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1221 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1222 } 1223 } else if (TII->isSMRD(Inst)) { 1224 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1225 } else { 1226 switch (Inst.getOpcode()) { 1227 case AMDGPU::S_SENDMSG: 1228 case AMDGPU::S_SENDMSGHALT: 1229 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1230 break; 1231 case AMDGPU::EXP: 1232 case AMDGPU::EXP_DONE: { 1233 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1234 if (Imm >= 32 && Imm <= 63) 1235 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1236 else if (Imm >= 12 && Imm <= 15) 1237 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1238 else 1239 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1240 break; 1241 } 1242 case AMDGPU::S_MEMTIME: 1243 case AMDGPU::S_MEMREALTIME: 1244 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1245 break; 1246 default: 1247 break; 1248 } 1249 } 1250 } 1251 1252 void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { 1253 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1254 int32_t MaxPending[NUM_INST_CNTS] = {0}; 1255 int32_t MaxFlat[NUM_INST_CNTS] = {0}; 1256 bool MixedExpTypes = false; 1257 1258 // Clear the score bracket state. 1259 ScoreBrackets->clear(); 1260 1261 // Compute the number of pending elements on block entry. 1262 1263 // IMPORTANT NOTE: If iterative handling of loops is added, the code will 1264 // need to handle single BBs with backedges to themselves. This means that 1265 // they will need to retain and not clear their initial state. 1266 1267 // See if there are any uninitialized predecessors. If so, emit an 1268 // s_waitcnt 0 at the beginning of the block. 1269 for (MachineBasicBlock *pred : Block.predecessors()) { 1270 BlockWaitcntBrackets *PredScoreBrackets = 1271 BlockWaitcntBracketsMap[pred].get(); 1272 bool Visited = BlockVisitedSet.find(pred) != BlockVisitedSet.end(); 1273 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1274 break; 1275 } 1276 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1277 T = (enum InstCounterType)(T + 1)) { 1278 int span = 1279 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); 1280 MaxPending[T] = std::max(MaxPending[T], span); 1281 span = 1282 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); 1283 MaxFlat[T] = std::max(MaxFlat[T], span); 1284 } 1285 1286 MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); 1287 } 1288 1289 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1290 // Also handle kills for exit block. 1291 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1292 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1293 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1294 T = (enum InstCounterType)(T + 1)) { 1295 int Span = KillWaitBrackets[I]->getScoreUB(T) - 1296 KillWaitBrackets[I]->getScoreLB(T); 1297 MaxPending[T] = std::max(MaxPending[T], Span); 1298 Span = KillWaitBrackets[I]->pendingFlat(T) - 1299 KillWaitBrackets[I]->getScoreLB(T); 1300 MaxFlat[T] = std::max(MaxFlat[T], Span); 1301 } 1302 1303 MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); 1304 } 1305 } 1306 1307 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. 1308 for (MachineBasicBlock *Pred : Block.predecessors()) { 1309 BlockWaitcntBrackets *PredScoreBrackets = 1310 BlockWaitcntBracketsMap[Pred].get(); 1311 bool Visited = BlockVisitedSet.find(Pred) != BlockVisitedSet.end(); 1312 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1313 break; 1314 } 1315 1316 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - 1317 PredScoreBrackets->getScoreLB(EXP_CNT); 1318 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1319 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - 1320 PredScoreBrackets->getScoreLB(EXP_CNT); 1321 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1322 } 1323 1324 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1325 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1326 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1327 int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - 1328 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1329 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1330 int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - 1331 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1332 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1333 } 1334 } 1335 1336 #if 0 1337 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. 1338 // TODO: how does LC distinguish between function entry and main entry? 1339 // If this is the entry to a function, force a wait. 1340 MachineBasicBlock &Entry = Block.getParent()->front(); 1341 if (Entry.getNumber() == Block.getNumber()) { 1342 ScoreBrackets->setWaitAtBeginning(); 1343 return; 1344 } 1345 #endif 1346 1347 // Now set the current Block's brackets to the largest ending bracket. 1348 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1349 T = (enum InstCounterType)(T + 1)) { 1350 ScoreBrackets->setScoreUB(T, MaxPending[T]); 1351 ScoreBrackets->setScoreLB(T, 0); 1352 ScoreBrackets->setLastFlat(T, MaxFlat[T]); 1353 } 1354 1355 ScoreBrackets->setMixedExpTypes(MixedExpTypes); 1356 1357 // Set the register scoreboard. 1358 for (MachineBasicBlock *Pred : Block.predecessors()) { 1359 if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) { 1360 break; 1361 } 1362 1363 BlockWaitcntBrackets *PredScoreBrackets = 1364 BlockWaitcntBracketsMap[Pred].get(); 1365 1366 // Now merge the gpr_reg_score information 1367 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1368 T = (enum InstCounterType)(T + 1)) { 1369 int PredLB = PredScoreBrackets->getScoreLB(T); 1370 int PredUB = PredScoreBrackets->getScoreUB(T); 1371 if (PredLB < PredUB) { 1372 int PredScale = MaxPending[T] - PredUB; 1373 // Merge vgpr scores. 1374 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { 1375 int PredRegScore = PredScoreBrackets->getRegScore(J, T); 1376 if (PredRegScore <= PredLB) 1377 continue; 1378 int NewRegScore = PredScale + PredRegScore; 1379 ScoreBrackets->setRegScore( 1380 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1381 } 1382 // Also need to merge sgpr scores for lgkm_cnt. 1383 if (T == LGKM_CNT) { 1384 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { 1385 int PredRegScore = 1386 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1387 if (PredRegScore <= PredLB) 1388 continue; 1389 int NewRegScore = PredScale + PredRegScore; 1390 ScoreBrackets->setRegScore( 1391 J + NUM_ALL_VGPRS, LGKM_CNT, 1392 std::max( 1393 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1394 NewRegScore)); 1395 } 1396 } 1397 } 1398 } 1399 1400 // Also merge the WaitEvent information. 1401 ForAllWaitEventType(W) { 1402 enum InstCounterType T = PredScoreBrackets->eventCounter(W); 1403 int PredEventUB = PredScoreBrackets->getEventUB(W); 1404 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { 1405 int NewEventUB = 1406 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); 1407 if (NewEventUB > 0) { 1408 ScoreBrackets->setEventUB( 1409 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1410 } 1411 } 1412 } 1413 } 1414 1415 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1416 // Set the register scoreboard. 1417 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1418 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1419 // Now merge the gpr_reg_score information. 1420 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1421 T = (enum InstCounterType)(T + 1)) { 1422 int PredLB = KillWaitBrackets[I]->getScoreLB(T); 1423 int PredUB = KillWaitBrackets[I]->getScoreUB(T); 1424 if (PredLB < PredUB) { 1425 int PredScale = MaxPending[T] - PredUB; 1426 // Merge vgpr scores. 1427 for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { 1428 int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); 1429 if (PredRegScore <= PredLB) 1430 continue; 1431 int NewRegScore = PredScale + PredRegScore; 1432 ScoreBrackets->setRegScore( 1433 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1434 } 1435 // Also need to merge sgpr scores for lgkm_cnt. 1436 if (T == LGKM_CNT) { 1437 for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { 1438 int PredRegScore = 1439 KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1440 if (PredRegScore <= PredLB) 1441 continue; 1442 int NewRegScore = PredScale + PredRegScore; 1443 ScoreBrackets->setRegScore( 1444 J + NUM_ALL_VGPRS, LGKM_CNT, 1445 std::max( 1446 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1447 NewRegScore)); 1448 } 1449 } 1450 } 1451 } 1452 1453 // Also merge the WaitEvent information. 1454 ForAllWaitEventType(W) { 1455 enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); 1456 int PredEventUB = KillWaitBrackets[I]->getEventUB(W); 1457 if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { 1458 int NewEventUB = 1459 MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); 1460 if (NewEventUB > 0) { 1461 ScoreBrackets->setEventUB( 1462 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1463 } 1464 } 1465 } 1466 } 1467 } 1468 1469 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the 1470 // sequencing predecessors, because changes to EXEC require waitcnts due to 1471 // the delayed nature of these operations. 1472 for (MachineBasicBlock *Pred : Block.predecessors()) { 1473 if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) { 1474 break; 1475 } 1476 1477 BlockWaitcntBrackets *PredScoreBrackets = 1478 BlockWaitcntBracketsMap[Pred].get(); 1479 1480 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); 1481 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1482 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - 1483 PredScoreBrackets->getScoreUB(EXP_CNT); 1484 if (new_gds_ub > 0) { 1485 ScoreBrackets->setEventUB( 1486 GDS_GPR_LOCK, 1487 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); 1488 } 1489 } 1490 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); 1491 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1492 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - 1493 PredScoreBrackets->getScoreUB(EXP_CNT); 1494 if (new_exp_ub > 0) { 1495 ScoreBrackets->setEventUB( 1496 EXP_GPR_LOCK, 1497 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); 1498 } 1499 } 1500 } 1501 } 1502 1503 /// Return the "bottom" block of a loop. This differs from 1504 /// MachineLoop::getBottomBlock in that it works even if the loop is 1505 /// discontiguous. 1506 MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) { 1507 MachineBasicBlock *Bottom = Loop->getHeader(); 1508 for (MachineBasicBlock *MBB : Loop->blocks()) 1509 if (MBB->getNumber() > Bottom->getNumber()) 1510 Bottom = MBB; 1511 return Bottom; 1512 } 1513 1514 // Generate s_waitcnt instructions where needed. 1515 void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1516 MachineBasicBlock &Block) { 1517 // Initialize the state information. 1518 mergeInputScoreBrackets(Block); 1519 1520 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1521 1522 DEBUG({ 1523 dbgs() << "Block" << Block.getNumber(); 1524 ScoreBrackets->dump(); 1525 }); 1526 1527 bool InsertNOP = false; 1528 1529 // Walk over the instructions. 1530 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1531 Iter != E;) { 1532 MachineInstr &Inst = *Iter; 1533 // Remove any previously existing waitcnts. 1534 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1535 // TODO: Register the old waitcnt and optimize the following waitcnts. 1536 // Leaving the previously existing waitcnts is conservatively correct. 1537 if (CompilerGeneratedWaitcntSet.find(&Inst) == 1538 CompilerGeneratedWaitcntSet.end()) 1539 ++Iter; 1540 else { 1541 ScoreBrackets->setWaitcnt(&Inst); 1542 ++Iter; 1543 Inst.removeFromParent(); 1544 } 1545 continue; 1546 } 1547 1548 // Kill instructions generate a conditional branch to the endmain block. 1549 // Merge the current waitcnt state into the endmain block information. 1550 // TODO: Are there other flavors of KILL instruction? 1551 if (Inst.getOpcode() == AMDGPU::KILL) { 1552 addKillWaitBracket(ScoreBrackets); 1553 } 1554 1555 bool VCCZBugWorkAround = false; 1556 if (readsVCCZ(Inst) && 1557 (VCCZBugHandledSet.find(&Inst) == VCCZBugHandledSet.end())) { 1558 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1559 ScoreBrackets->getScoreUB(LGKM_CNT) && 1560 ScoreBrackets->hasPendingSMEM()) { 1561 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) 1562 VCCZBugWorkAround = true; 1563 } 1564 } 1565 1566 // Generate an s_waitcnt instruction to be placed before 1567 // cur_Inst, if needed. 1568 MachineInstr *SWaitInst = generateSWaitCntInstBefore(Inst, ScoreBrackets); 1569 1570 if (SWaitInst) { 1571 Block.insert(Inst, SWaitInst); 1572 if (ScoreBrackets->getWaitcnt() != SWaitInst) { 1573 DEBUG(dbgs() << "insertWaitcntInBlock\n" 1574 << "Old Instr: " << Inst << '\n' 1575 << "New Instr: " << *SWaitInst << '\n';); 1576 } 1577 } 1578 1579 updateEventWaitCntAfter(Inst, ScoreBrackets); 1580 1581 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1582 // If this instruction generates a S_SETVSKIP because it is an 1583 // indexed resource, and we are on Tahiti, then it will also force 1584 // an S_WAITCNT vmcnt(0) 1585 if (RequireCheckResourceType(Inst, context)) { 1586 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1587 ScoreBrackets->setScoreLB(VM_CNT, 1588 ScoreBrackets->getScoreUB(VM_CNT)); 1589 } 1590 #endif 1591 1592 ScoreBrackets->clearWaitcnt(); 1593 1594 if (SWaitInst) { 1595 DEBUG({ SWaitInst->print(dbgs() << '\n'); }); 1596 } 1597 DEBUG({ 1598 Inst.print(dbgs()); 1599 ScoreBrackets->dump(); 1600 }); 1601 1602 // Check to see if this is a GWS instruction. If so, and if this is CI or 1603 // VI, then the generated code sequence will include an S_WAITCNT 0. 1604 // TODO: Are these the only GWS instructions? 1605 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1606 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1607 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1608 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1609 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1610 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1611 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1612 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1613 ScoreBrackets->updateByWait(LGKM_CNT, 1614 ScoreBrackets->getScoreUB(LGKM_CNT)); 1615 } 1616 1617 // TODO: Remove this work-around after fixing the scheduler and enable the 1618 // assert above. 1619 if (VCCZBugWorkAround) { 1620 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1621 // bit is updated, so we can restore the bit by reading the value of 1622 // vcc and then writing it back to the register. 1623 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1624 AMDGPU::VCC) 1625 .addReg(AMDGPU::VCC); 1626 VCCZBugHandledSet.insert(&Inst); 1627 } 1628 1629 if (ST->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 1630 1631 // This avoids a s_nop after a waitcnt has just been inserted. 1632 if (!SWaitInst && InsertNOP) { 1633 BuildMI(Block, Inst, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0); 1634 } 1635 InsertNOP = false; 1636 1637 // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM 1638 // or SMEM clause, respectively. 1639 // 1640 // The temporary workaround is to break the clauses with S_NOP. 1641 // 1642 // The proper solution would be to allocate registers such that all source 1643 // and destination registers don't overlap, e.g. this is illegal: 1644 // r0 = load r2 1645 // r2 = load r0 1646 bool IsSMEM = false; 1647 bool IsVMEM = false; 1648 if (TII->isSMRD(Inst)) 1649 IsSMEM = true; 1650 else if (TII->usesVM_CNT(Inst)) 1651 IsVMEM = true; 1652 1653 ++Iter; 1654 if (Iter == E) 1655 break; 1656 1657 MachineInstr &Next = *Iter; 1658 1659 // TODO: How about consecutive SMEM instructions? 1660 // The comments above says break the clause but the code does not. 1661 // if ((TII->isSMRD(next) && isSMEM) || 1662 if (!IsSMEM && TII->usesVM_CNT(Next) && IsVMEM && 1663 // TODO: Enable this check when hasSoftClause is upstreamed. 1664 // ST->hasSoftClauses() && 1665 ST->isXNACKEnabled()) { 1666 // Insert a NOP to break the clause. 1667 InsertNOP = true; 1668 continue; 1669 } 1670 1671 // There must be "S_NOP 0" between an instruction writing M0 and 1672 // S_SENDMSG. 1673 if ((Next.getOpcode() == AMDGPU::S_SENDMSG || 1674 Next.getOpcode() == AMDGPU::S_SENDMSGHALT) && 1675 Inst.definesRegister(AMDGPU::M0)) 1676 InsertNOP = true; 1677 1678 continue; 1679 } 1680 1681 ++Iter; 1682 } 1683 1684 // Check if we need to force convergence at loop footer. 1685 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); 1686 if (ContainingLoop && loopBottom(ContainingLoop) == &Block) { 1687 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1688 WaitcntData->print(); 1689 DEBUG(dbgs() << '\n';); 1690 1691 // The iterative waitcnt insertion algorithm aims for optimal waitcnt 1692 // placement and doesn't always guarantee convergence for a loop. Each 1693 // loop should take at most 2 iterations for it to converge naturally. 1694 // When this max is reached and result doesn't converge, we force 1695 // convergence by inserting a s_waitcnt at the end of loop footer. 1696 if (WaitcntData->getIterCnt() > 2) { 1697 // To ensure convergence, need to make wait events at loop footer be no 1698 // more than those from the previous iteration. 1699 // As a simplification, Instead of tracking individual scores and 1700 // generate the precise wait count, just wait on 0. 1701 bool HasPending = false; 1702 MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); 1703 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1704 T = (enum InstCounterType)(T + 1)) { 1705 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 1706 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1707 HasPending = true; 1708 } 1709 } 1710 1711 if (HasPending) { 1712 if (!SWaitInst) { 1713 SWaitInst = Block.getParent()->CreateMachineInstr( 1714 TII->get(AMDGPU::S_WAITCNT), DebugLoc()); 1715 CompilerGeneratedWaitcntSet.insert(SWaitInst); 1716 const MachineOperand &Op = MachineOperand::CreateImm(0); 1717 SWaitInst->addOperand(MF, Op); 1718 #if 0 // TODO: Format the debug output 1719 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); 1720 OutputTransformAdd(SWaitInst, context); 1721 #endif 1722 } 1723 #if 0 // TODO: ?? 1724 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) 1725 #endif 1726 } 1727 1728 if (SWaitInst) { 1729 DEBUG({ 1730 SWaitInst->print(dbgs()); 1731 dbgs() << "\nAdjusted score board:"; 1732 ScoreBrackets->dump(); 1733 }); 1734 1735 // Add this waitcnt to the block. It is either newly created or 1736 // created in previous iterations and added back since block traversal 1737 // always remove waitcnt. 1738 insertWaitcntBeforeCF(Block, SWaitInst); 1739 WaitcntData->setWaitcnt(SWaitInst); 1740 } 1741 } 1742 } 1743 } 1744 1745 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1746 ST = &MF.getSubtarget<SISubtarget>(); 1747 TII = ST->getInstrInfo(); 1748 TRI = &TII->getRegisterInfo(); 1749 MRI = &MF.getRegInfo(); 1750 MLI = &getAnalysis<MachineLoopInfo>(); 1751 IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); 1752 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1753 AMDGPUASI = ST->getAMDGPUAS(); 1754 1755 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1756 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1757 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1758 1759 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1760 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1761 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1762 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1763 1764 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1765 RegisterEncoding.VGPRL = 1766 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1767 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1768 RegisterEncoding.SGPRL = 1769 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1770 1771 // Walk over the blocks in reverse post-dominator order, inserting 1772 // s_waitcnt where needed. 1773 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1774 bool Modified = false; 1775 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1776 I = RPOT.begin(), 1777 E = RPOT.end(), J = RPOT.begin(); 1778 I != E;) { 1779 MachineBasicBlock &MBB = **I; 1780 1781 BlockVisitedSet.insert(&MBB); 1782 1783 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1784 if (!ScoreBrackets) { 1785 BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(); 1786 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1787 } 1788 ScoreBrackets->setPostOrder(MBB.getNumber()); 1789 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); 1790 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) 1791 LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>(); 1792 1793 // If we are walking into the block from before the loop, then guarantee 1794 // at least 1 re-walk over the loop to propagate the information, even if 1795 // no S_WAITCNT instructions were generated. 1796 if (ContainingLoop && ContainingLoop->getHeader() == &MBB && J < I && 1797 (BlockWaitcntProcessedSet.find(&MBB) == 1798 BlockWaitcntProcessedSet.end())) { 1799 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); 1800 DEBUG(dbgs() << "set-revisit: block" 1801 << ContainingLoop->getHeader()->getNumber() << '\n';); 1802 } 1803 1804 // Walk over the instructions. 1805 insertWaitcntInBlock(MF, MBB); 1806 1807 // Flag that waitcnts have been processed at least once. 1808 BlockWaitcntProcessedSet.insert(&MBB); 1809 1810 // See if we want to revisit the loop. 1811 if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) { 1812 MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); 1813 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); 1814 if (EntrySB && EntrySB->getRevisitLoop()) { 1815 EntrySB->setRevisitLoop(false); 1816 J = I; 1817 int32_t PostOrder = EntrySB->getPostOrder(); 1818 // TODO: Avoid this loop. Find another way to set I. 1819 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1820 X = RPOT.begin(), 1821 Y = RPOT.end(); 1822 X != Y; ++X) { 1823 MachineBasicBlock &MBBX = **X; 1824 if (MBBX.getNumber() == PostOrder) { 1825 I = X; 1826 break; 1827 } 1828 } 1829 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1830 WaitcntData->incIterCnt(); 1831 DEBUG(dbgs() << "revisit: block" << EntryBB->getNumber() << '\n';); 1832 continue; 1833 } else { 1834 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1835 // Loop converged, reset iteration count. If this loop gets revisited, 1836 // it must be from an outer loop, the counter will restart, this will 1837 // ensure we don't force convergence on such revisits. 1838 WaitcntData->resetIterCnt(); 1839 } 1840 } 1841 1842 J = I; 1843 ++I; 1844 } 1845 1846 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1847 1848 bool HaveScalarStores = false; 1849 1850 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1851 ++BI) { 1852 MachineBasicBlock &MBB = *BI; 1853 1854 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1855 ++I) { 1856 if (!HaveScalarStores && TII->isScalarStore(*I)) 1857 HaveScalarStores = true; 1858 1859 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1860 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1861 EndPgmBlocks.push_back(&MBB); 1862 } 1863 } 1864 1865 if (HaveScalarStores) { 1866 // If scalar writes are used, the cache must be flushed or else the next 1867 // wave to reuse the same scratch memory can be clobbered. 1868 // 1869 // Insert s_dcache_wb at wave termination points if there were any scalar 1870 // stores, and only if the cache hasn't already been flushed. This could be 1871 // improved by looking across blocks for flushes in postdominating blocks 1872 // from the stores but an explicitly requested flush is probably very rare. 1873 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1874 bool SeenDCacheWB = false; 1875 1876 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1877 ++I) { 1878 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1879 SeenDCacheWB = true; 1880 else if (TII->isScalarStore(*I)) 1881 SeenDCacheWB = false; 1882 1883 // FIXME: It would be better to insert this before a waitcnt if any. 1884 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1885 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1886 !SeenDCacheWB) { 1887 Modified = true; 1888 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1889 } 1890 } 1891 } 1892 } 1893 1894 if (!MFI->isEntryFunction()) { 1895 // Wait for any outstanding memory operations that the input registers may 1896 // depend on. We can't track them and it's better to to the wait after the 1897 // costly call sequence. 1898 1899 // TODO: Could insert earlier and schedule more liberally with operations 1900 // that only use caller preserved registers. 1901 MachineBasicBlock &EntryBB = MF.front(); 1902 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1903 .addImm(0); 1904 1905 Modified = true; 1906 } 1907 1908 return Modified; 1909 } 1910