1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "SIDefines.h" 22 #include "SIInstrInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "SIRegisterInfo.h" 25 #include "Utils/AMDGPUBaseInfo.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <cstring> 49 #include <memory> 50 #include <utility> 51 #include <vector> 52 53 #define DEBUG_TYPE "si-insert-waitcnts" 54 55 using namespace llvm; 56 57 namespace { 58 59 // Class of object that encapsulates latest instruction counter score 60 // associated with the operand. Used for determining whether 61 // s_waitcnt instruction needs to be emited. 62 63 #define CNT_MASK(t) (1u << (t)) 64 65 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 66 67 using RegInterval = std::pair<signed, signed>; 68 69 struct { 70 int32_t VmcntMax; 71 int32_t ExpcntMax; 72 int32_t LgkmcntMax; 73 int32_t NumVGPRsMax; 74 int32_t NumSGPRsMax; 75 } HardwareLimits; 76 77 struct { 78 unsigned VGPR0; 79 unsigned VGPRL; 80 unsigned SGPR0; 81 unsigned SGPRL; 82 } RegisterEncoding; 83 84 enum WaitEventType { 85 VMEM_ACCESS, // vector-memory read & write 86 LDS_ACCESS, // lds read & write 87 GDS_ACCESS, // gds read & write 88 SQ_MESSAGE, // send message 89 SMEM_ACCESS, // scalar-memory read & write 90 EXP_GPR_LOCK, // export holding on its data src 91 GDS_GPR_LOCK, // GDS holding on its data and addr src 92 EXP_POS_ACCESS, // write to export position 93 EXP_PARAM_ACCESS, // write to export parameter 94 VMW_GPR_LOCK, // vector-memory write holding on its data src 95 NUM_WAIT_EVENTS, 96 }; 97 98 // The mapping is: 99 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 100 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 101 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 102 // We reserve a fixed number of VGPR slots in the scoring tables for 103 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 104 enum RegisterMapping { 105 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 106 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 107 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 108 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 109 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 110 }; 111 112 #define ForAllWaitEventType(w) \ 113 for (enum WaitEventType w = (enum WaitEventType)0; \ 114 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ 115 (w) = (enum WaitEventType)((w) + 1)) 116 117 // This is a per-basic-block object that maintains current score brackets 118 // of each wait counter, and a per-register scoreboard for each wait counter. 119 // We also maintain the latest score for every event type that can change the 120 // waitcnt in order to know if there are multiple types of events within 121 // the brackets. When multiple types of event happen in the bracket, 122 // wait count may get decreased out of order, therefore we need to put in 123 // "s_waitcnt 0" before use. 124 class BlockWaitcntBrackets { 125 public: 126 BlockWaitcntBrackets() { 127 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 128 T = (enum InstCounterType)(T + 1)) { 129 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 130 } 131 } 132 133 ~BlockWaitcntBrackets() = default; 134 135 static int32_t getWaitCountMax(InstCounterType T) { 136 switch (T) { 137 case VM_CNT: 138 return HardwareLimits.VmcntMax; 139 case LGKM_CNT: 140 return HardwareLimits.LgkmcntMax; 141 case EXP_CNT: 142 return HardwareLimits.ExpcntMax; 143 default: 144 break; 145 } 146 return 0; 147 } 148 149 void setScoreLB(InstCounterType T, int32_t Val) { 150 assert(T < NUM_INST_CNTS); 151 if (T >= NUM_INST_CNTS) 152 return; 153 ScoreLBs[T] = Val; 154 } 155 156 void setScoreUB(InstCounterType T, int32_t Val) { 157 assert(T < NUM_INST_CNTS); 158 if (T >= NUM_INST_CNTS) 159 return; 160 ScoreUBs[T] = Val; 161 if (T == EXP_CNT) { 162 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); 163 if (ScoreLBs[T] < UB) 164 ScoreLBs[T] = UB; 165 } 166 } 167 168 int32_t getScoreLB(InstCounterType T) { 169 assert(T < NUM_INST_CNTS); 170 if (T >= NUM_INST_CNTS) 171 return 0; 172 return ScoreLBs[T]; 173 } 174 175 int32_t getScoreUB(InstCounterType T) { 176 assert(T < NUM_INST_CNTS); 177 if (T >= NUM_INST_CNTS) 178 return 0; 179 return ScoreUBs[T]; 180 } 181 182 // Mapping from event to counter. 183 InstCounterType eventCounter(WaitEventType E) { 184 switch (E) { 185 case VMEM_ACCESS: 186 return VM_CNT; 187 case LDS_ACCESS: 188 case GDS_ACCESS: 189 case SQ_MESSAGE: 190 case SMEM_ACCESS: 191 return LGKM_CNT; 192 case EXP_GPR_LOCK: 193 case GDS_GPR_LOCK: 194 case VMW_GPR_LOCK: 195 case EXP_POS_ACCESS: 196 case EXP_PARAM_ACCESS: 197 return EXP_CNT; 198 default: 199 llvm_unreachable("unhandled event type"); 200 } 201 return NUM_INST_CNTS; 202 } 203 204 void setRegScore(int GprNo, InstCounterType T, int32_t Val) { 205 if (GprNo < NUM_ALL_VGPRS) { 206 if (GprNo > VgprUB) { 207 VgprUB = GprNo; 208 } 209 VgprScores[T][GprNo] = Val; 210 } else { 211 assert(T == LGKM_CNT); 212 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 213 SgprUB = GprNo - NUM_ALL_VGPRS; 214 } 215 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 216 } 217 } 218 219 int32_t getRegScore(int GprNo, InstCounterType T) { 220 if (GprNo < NUM_ALL_VGPRS) { 221 return VgprScores[T][GprNo]; 222 } 223 return SgprScores[GprNo - NUM_ALL_VGPRS]; 224 } 225 226 void clear() { 227 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 228 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 229 memset(EventUBs, 0, sizeof(EventUBs)); 230 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 231 T = (enum InstCounterType)(T + 1)) { 232 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 233 } 234 memset(SgprScores, 0, sizeof(SgprScores)); 235 } 236 237 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 238 const MachineRegisterInfo *MRI, 239 const SIRegisterInfo *TRI, unsigned OpNo, 240 bool Def) const; 241 242 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 243 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 244 unsigned OpNo, int32_t Val); 245 246 void setWaitAtBeginning() { WaitAtBeginning = true; } 247 void clearWaitAtBeginning() { WaitAtBeginning = false; } 248 bool getWaitAtBeginning() const { return WaitAtBeginning; } 249 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } 250 int32_t getMaxVGPR() const { return VgprUB; } 251 int32_t getMaxSGPR() const { return SgprUB; } 252 253 int32_t getEventUB(enum WaitEventType W) const { 254 assert(W < NUM_WAIT_EVENTS); 255 return EventUBs[W]; 256 } 257 258 bool counterOutOfOrder(InstCounterType T); 259 unsigned int updateByWait(InstCounterType T, int ScoreToWait); 260 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 261 const MachineRegisterInfo *MRI, WaitEventType E, 262 MachineInstr &MI); 263 264 bool hasPendingSMEM() const { 265 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 266 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); 267 } 268 269 bool hasPendingFlat() const { 270 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 271 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 272 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 273 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 274 } 275 276 void setPendingFlat() { 277 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 278 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 279 } 280 281 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } 282 283 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } 284 285 bool getRevisitLoop() const { return RevisitLoop; } 286 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } 287 288 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } 289 int32_t getPostOrder() const { return PostOrder; } 290 291 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } 292 void clearWaitcnt() { Waitcnt = nullptr; } 293 MachineInstr *getWaitcnt() const { return Waitcnt; } 294 295 bool mixedExpTypes() const { return MixedExpTypes; } 296 void setMixedExpTypes(bool MixedExpTypesIn) { 297 MixedExpTypes = MixedExpTypesIn; 298 } 299 300 void print(raw_ostream &); 301 void dump() { print(dbgs()); } 302 303 private: 304 bool WaitAtBeginning = false; 305 bool RevisitLoop = false; 306 bool MixedExpTypes = false; 307 int32_t PostOrder = 0; 308 MachineInstr *Waitcnt = nullptr; 309 int32_t ScoreLBs[NUM_INST_CNTS] = {0}; 310 int32_t ScoreUBs[NUM_INST_CNTS] = {0}; 311 int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; 312 // Remember the last flat memory operation. 313 int32_t LastFlat[NUM_INST_CNTS] = {0}; 314 // wait_cnt scores for every vgpr. 315 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 316 int32_t VgprUB = 0; 317 int32_t SgprUB = 0; 318 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 319 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 320 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 321 }; 322 323 // This is a per-loop-region object that records waitcnt status at the end of 324 // loop footer from the previous iteration. We also maintain an iteration 325 // count to track the number of times the loop has been visited. When it 326 // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 327 // at the end of the loop footer. 328 class LoopWaitcntData { 329 public: 330 LoopWaitcntData() = default; 331 ~LoopWaitcntData() = default; 332 333 void incIterCnt() { IterCnt++; } 334 void resetIterCnt() { IterCnt = 0; } 335 int32_t getIterCnt() { return IterCnt; } 336 337 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } 338 MachineInstr *getWaitcnt() const { return LfWaitcnt; } 339 340 void print() { 341 DEBUG(dbgs() << " iteration " << IterCnt << '\n';); 342 } 343 344 private: 345 // s_waitcnt added at the end of loop footer to stablize wait scores 346 // at the end of the loop footer. 347 MachineInstr *LfWaitcnt = nullptr; 348 // Number of iterations the loop has been visited, not including the initial 349 // walk over. 350 int32_t IterCnt = 0; 351 }; 352 353 class SIInsertWaitcnts : public MachineFunctionPass { 354 private: 355 const SISubtarget *ST = nullptr; 356 const SIInstrInfo *TII = nullptr; 357 const SIRegisterInfo *TRI = nullptr; 358 const MachineRegisterInfo *MRI = nullptr; 359 const MachineLoopInfo *MLI = nullptr; 360 AMDGPU::IsaInfo::IsaVersion IV; 361 AMDGPUAS AMDGPUASI; 362 363 DenseSet<MachineBasicBlock *> BlockVisitedSet; 364 DenseSet<MachineInstr *> TrackedWaitcntSet; 365 DenseSet<MachineInstr *> VCCZBugHandledSet; 366 367 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> 368 BlockWaitcntBracketsMap; 369 370 DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet; 371 372 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; 373 374 std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; 375 376 public: 377 static char ID; 378 379 SIInsertWaitcnts() : MachineFunctionPass(ID) {} 380 381 bool runOnMachineFunction(MachineFunction &MF) override; 382 383 StringRef getPassName() const override { 384 return "SI insert wait instructions"; 385 } 386 387 void getAnalysisUsage(AnalysisUsage &AU) const override { 388 AU.setPreservesCFG(); 389 AU.addRequired<MachineLoopInfo>(); 390 MachineFunctionPass::getAnalysisUsage(AU); 391 } 392 393 void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { 394 // The waitcnt information is copied because it changes as the block is 395 // traversed. 396 KillWaitBrackets.push_back( 397 llvm::make_unique<BlockWaitcntBrackets>(*Bracket)); 398 } 399 400 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 401 void generateSWaitCntInstBefore(MachineInstr &MI, 402 BlockWaitcntBrackets *ScoreBrackets); 403 void updateEventWaitCntAfter(MachineInstr &Inst, 404 BlockWaitcntBrackets *ScoreBrackets); 405 void mergeInputScoreBrackets(MachineBasicBlock &Block); 406 MachineBasicBlock *loopBottom(const MachineLoop *Loop); 407 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); 408 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); 409 bool isWaitcntStronger(unsigned LHS, unsigned RHS); 410 unsigned combineWaitcnt(unsigned LHS, unsigned RHS); 411 }; 412 413 } // end anonymous namespace 414 415 RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, 416 const SIInstrInfo *TII, 417 const MachineRegisterInfo *MRI, 418 const SIRegisterInfo *TRI, 419 unsigned OpNo, 420 bool Def) const { 421 const MachineOperand &Op = MI->getOperand(OpNo); 422 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 423 (Def && !Op.isDef())) 424 return {-1, -1}; 425 426 // A use via a PW operand does not need a waitcnt. 427 // A partial write is not a WAW. 428 assert(!Op.getSubReg() || !Op.isUndef()); 429 430 RegInterval Result; 431 const MachineRegisterInfo &MRIA = *MRI; 432 433 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 434 435 if (TRI->isVGPR(MRIA, Op.getReg())) { 436 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 437 Result.first = Reg - RegisterEncoding.VGPR0; 438 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 439 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 440 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 441 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 442 assert(Result.first >= NUM_ALL_VGPRS && 443 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 444 } 445 // TODO: Handle TTMP 446 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 447 else 448 return {-1, -1}; 449 450 const MachineInstr &MIA = *MI; 451 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 452 unsigned Size = TRI->getRegSizeInBits(*RC); 453 Result.second = Result.first + (Size / 32); 454 455 return Result; 456 } 457 458 void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, 459 const SIInstrInfo *TII, 460 const SIRegisterInfo *TRI, 461 const MachineRegisterInfo *MRI, 462 unsigned OpNo, int32_t Val) { 463 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 464 DEBUG({ 465 const MachineOperand &Opnd = MI->getOperand(OpNo); 466 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 467 }); 468 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 469 setRegScore(RegNo, EXP_CNT, Val); 470 } 471 } 472 473 void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 474 const SIRegisterInfo *TRI, 475 const MachineRegisterInfo *MRI, 476 WaitEventType E, MachineInstr &Inst) { 477 const MachineRegisterInfo &MRIA = *MRI; 478 InstCounterType T = eventCounter(E); 479 int32_t CurrScore = getScoreUB(T) + 1; 480 // EventUB and ScoreUB need to be update regardless if this event changes 481 // the score of a register or not. 482 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 483 EventUBs[E] = CurrScore; 484 setScoreUB(T, CurrScore); 485 486 if (T == EXP_CNT) { 487 // Check for mixed export types. If they are mixed, then a waitcnt exp(0) 488 // is required. 489 if (!MixedExpTypes) { 490 MixedExpTypes = counterOutOfOrder(EXP_CNT); 491 } 492 493 // Put score on the source vgprs. If this is a store, just use those 494 // specific register(s). 495 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 496 // All GDS operations must protect their address register (same as 497 // export.) 498 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 499 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 500 setExpScore( 501 &Inst, TII, TRI, MRI, 502 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 503 CurrScore); 504 } 505 if (Inst.mayStore()) { 506 setExpScore( 507 &Inst, TII, TRI, MRI, 508 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 509 CurrScore); 510 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 511 AMDGPU::OpName::data1) != -1) { 512 setExpScore(&Inst, TII, TRI, MRI, 513 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 514 AMDGPU::OpName::data1), 515 CurrScore); 516 } 517 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 518 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 519 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 520 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 521 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 522 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 523 Inst.getOpcode() != AMDGPU::DS_APPEND && 524 Inst.getOpcode() != AMDGPU::DS_CONSUME && 525 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 526 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 527 const MachineOperand &Op = Inst.getOperand(I); 528 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 529 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 530 } 531 } 532 } 533 } else if (TII->isFLAT(Inst)) { 534 if (Inst.mayStore()) { 535 setExpScore( 536 &Inst, TII, TRI, MRI, 537 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 538 CurrScore); 539 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 540 setExpScore( 541 &Inst, TII, TRI, MRI, 542 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 543 CurrScore); 544 } 545 } else if (TII->isMIMG(Inst)) { 546 if (Inst.mayStore()) { 547 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 548 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 549 setExpScore( 550 &Inst, TII, TRI, MRI, 551 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 552 CurrScore); 553 } 554 } else if (TII->isMTBUF(Inst)) { 555 if (Inst.mayStore()) { 556 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 557 } 558 } else if (TII->isMUBUF(Inst)) { 559 if (Inst.mayStore()) { 560 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 561 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 562 setExpScore( 563 &Inst, TII, TRI, MRI, 564 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 565 CurrScore); 566 } 567 } else { 568 if (TII->isEXP(Inst)) { 569 // For export the destination registers are really temps that 570 // can be used as the actual source after export patching, so 571 // we need to treat them like sources and set the EXP_CNT 572 // score. 573 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 574 MachineOperand &DefMO = Inst.getOperand(I); 575 if (DefMO.isReg() && DefMO.isDef() && 576 TRI->isVGPR(MRIA, DefMO.getReg())) { 577 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 578 CurrScore); 579 } 580 } 581 } 582 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 583 MachineOperand &MO = Inst.getOperand(I); 584 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 585 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 586 } 587 } 588 } 589 #if 0 // TODO: check if this is handled by MUBUF code above. 590 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 591 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 592 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 593 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 594 unsigned OpNo;//TODO: find the OpNo for this operand; 595 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 596 for (signed RegNo = Interval.first; RegNo < Interval.second; 597 ++RegNo) { 598 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 599 } 600 #endif 601 } else { 602 // Match the score to the destination registers. 603 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 604 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 605 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 606 continue; 607 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 608 setRegScore(RegNo, T, CurrScore); 609 } 610 } 611 if (TII->isDS(Inst) && Inst.mayStore()) { 612 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 613 } 614 } 615 } 616 617 void BlockWaitcntBrackets::print(raw_ostream &OS) { 618 OS << '\n'; 619 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 620 T = (enum InstCounterType)(T + 1)) { 621 int LB = getScoreLB(T); 622 int UB = getScoreUB(T); 623 624 switch (T) { 625 case VM_CNT: 626 OS << " VM_CNT(" << UB - LB << "): "; 627 break; 628 case LGKM_CNT: 629 OS << " LGKM_CNT(" << UB - LB << "): "; 630 break; 631 case EXP_CNT: 632 OS << " EXP_CNT(" << UB - LB << "): "; 633 break; 634 default: 635 OS << " UNKNOWN(" << UB - LB << "): "; 636 break; 637 } 638 639 if (LB < UB) { 640 // Print vgpr scores. 641 for (int J = 0; J <= getMaxVGPR(); J++) { 642 int RegScore = getRegScore(J, T); 643 if (RegScore <= LB) 644 continue; 645 int RelScore = RegScore - LB - 1; 646 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 647 OS << RelScore << ":v" << J << " "; 648 } else { 649 OS << RelScore << ":ds "; 650 } 651 } 652 // Also need to print sgpr scores for lgkm_cnt. 653 if (T == LGKM_CNT) { 654 for (int J = 0; J <= getMaxSGPR(); J++) { 655 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 656 if (RegScore <= LB) 657 continue; 658 int RelScore = RegScore - LB - 1; 659 OS << RelScore << ":s" << J << " "; 660 } 661 } 662 } 663 OS << '\n'; 664 } 665 OS << '\n'; 666 } 667 668 unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, 669 int ScoreToWait) { 670 unsigned int NeedWait = 0; 671 if (ScoreToWait == -1) { 672 // The score to wait is unknown. This implies that it was not encountered 673 // during the path of the CFG walk done during the current traversal but 674 // may be seen on a different path. Emit an s_wait counter with a 675 // conservative value of 0 for the counter. 676 NeedWait = CNT_MASK(T); 677 setScoreLB(T, getScoreUB(T)); 678 return NeedWait; 679 } 680 681 // If the score of src_operand falls within the bracket, we need an 682 // s_waitcnt instruction. 683 const int32_t LB = getScoreLB(T); 684 const int32_t UB = getScoreUB(T); 685 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 686 if (T == VM_CNT && hasPendingFlat()) { 687 // If there is a pending FLAT operation, and this is a VM waitcnt, 688 // then we need to force a waitcnt 0 for VM. 689 NeedWait = CNT_MASK(T); 690 setScoreLB(T, getScoreUB(T)); 691 } else if (counterOutOfOrder(T)) { 692 // Counter can get decremented out-of-order when there 693 // are multiple types event in the bracket. Also emit an s_wait counter 694 // with a conservative value of 0 for the counter. 695 NeedWait = CNT_MASK(T); 696 setScoreLB(T, getScoreUB(T)); 697 } else { 698 NeedWait = CNT_MASK(T); 699 setScoreLB(T, ScoreToWait); 700 } 701 } 702 703 return NeedWait; 704 } 705 706 // Where there are multiple types of event in the bracket of a counter, 707 // the decrement may go out of order. 708 bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { 709 switch (T) { 710 case VM_CNT: 711 return false; 712 case LGKM_CNT: { 713 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 714 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { 715 // Scalar memory read always can go out of order. 716 return true; 717 } 718 int NumEventTypes = 0; 719 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && 720 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 721 NumEventTypes++; 722 } 723 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && 724 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 725 NumEventTypes++; 726 } 727 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && 728 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { 729 NumEventTypes++; 730 } 731 if (NumEventTypes <= 1) { 732 return false; 733 } 734 break; 735 } 736 case EXP_CNT: { 737 // If there has been a mixture of export types, then a waitcnt exp(0) is 738 // required. 739 if (MixedExpTypes) 740 return true; 741 int NumEventTypes = 0; 742 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && 743 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 744 NumEventTypes++; 745 } 746 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && 747 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 748 NumEventTypes++; 749 } 750 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && 751 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 752 NumEventTypes++; 753 } 754 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && 755 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { 756 NumEventTypes++; 757 } 758 759 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && 760 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { 761 NumEventTypes++; 762 } 763 764 if (NumEventTypes <= 1) { 765 return false; 766 } 767 break; 768 } 769 default: 770 break; 771 } 772 return true; 773 } 774 775 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 776 false) 777 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 778 false) 779 780 char SIInsertWaitcnts::ID = 0; 781 782 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 783 784 FunctionPass *llvm::createSIInsertWaitcntsPass() { 785 return new SIInsertWaitcnts(); 786 } 787 788 static bool readsVCCZ(const MachineInstr &MI) { 789 unsigned Opc = MI.getOpcode(); 790 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 791 !MI.getOperand(1).isUndef(); 792 } 793 794 /// \brief Given wait count encodings checks if LHS is stronger than RHS. 795 bool SIInsertWaitcnts::isWaitcntStronger(unsigned LHS, unsigned RHS) { 796 if (AMDGPU::decodeVmcnt(IV, LHS) > AMDGPU::decodeVmcnt(IV, RHS)) 797 return false; 798 if (AMDGPU::decodeLgkmcnt(IV, LHS) > AMDGPU::decodeLgkmcnt(IV, RHS)) 799 return false; 800 if (AMDGPU::decodeExpcnt(IV, LHS) > AMDGPU::decodeExpcnt(IV, RHS)) 801 return false; 802 return true; 803 } 804 805 /// \brief Given wait count encodings create a new encoding which is stronger 806 /// or equal to both. 807 unsigned SIInsertWaitcnts::combineWaitcnt(unsigned LHS, unsigned RHS) { 808 unsigned VmCnt = std::min(AMDGPU::decodeVmcnt(IV, LHS), 809 AMDGPU::decodeVmcnt(IV, RHS)); 810 unsigned LgkmCnt = std::min(AMDGPU::decodeLgkmcnt(IV, LHS), 811 AMDGPU::decodeLgkmcnt(IV, RHS)); 812 unsigned ExpCnt = std::min(AMDGPU::decodeExpcnt(IV, LHS), 813 AMDGPU::decodeExpcnt(IV, RHS)); 814 return AMDGPU::encodeWaitcnt(IV, VmCnt, ExpCnt, LgkmCnt); 815 } 816 817 /// \brief Generate s_waitcnt instruction to be placed before cur_Inst. 818 /// Instructions of a given type are returned in order, 819 /// but instructions of different types can complete out of order. 820 /// We rely on this in-order completion 821 /// and simply assign a score to the memory access instructions. 822 /// We keep track of the active "score bracket" to determine 823 /// if an access of a memory read requires an s_waitcnt 824 /// and if so what the value of each counter is. 825 /// The "score bracket" is bound by the lower bound and upper bound 826 /// scores (*_score_LB and *_score_ub respectively). 827 void SIInsertWaitcnts::generateSWaitCntInstBefore( 828 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { 829 // To emit, or not to emit - that's the question! 830 // Start with an assumption that there is no need to emit. 831 unsigned int EmitSwaitcnt = 0; 832 // No need to wait before phi. If a phi-move exists, then the wait should 833 // has been inserted before the move. If a phi-move does not exist, then 834 // wait should be inserted before the real use. The same is true for 835 // sc-merge. It is not a coincident that all these cases correspond to the 836 // instructions that are skipped in the assembling loop. 837 bool NeedLineMapping = false; // TODO: Check on this. 838 if (MI.isDebugValue() && 839 // TODO: any other opcode? 840 !NeedLineMapping) { 841 return; 842 } 843 844 // See if an s_waitcnt is forced at block entry, or is needed at 845 // program end. 846 if (ScoreBrackets->getWaitAtBeginning()) { 847 // Note that we have already cleared the state, so we don't need to update 848 // it. 849 ScoreBrackets->clearWaitAtBeginning(); 850 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 851 T = (enum InstCounterType)(T + 1)) { 852 EmitSwaitcnt |= CNT_MASK(T); 853 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 854 } 855 } 856 857 // See if this instruction has a forced S_WAITCNT VM. 858 // TODO: Handle other cases of NeedsWaitcntVmBefore() 859 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 860 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 861 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 862 EmitSwaitcnt |= 863 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 864 } 865 866 // All waits must be resolved at call return. 867 // NOTE: this could be improved with knowledge of all call sites or 868 // with knowledge of the called routines. 869 if (MI.getOpcode() == AMDGPU::RETURN || 870 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 871 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 872 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 873 T = (enum InstCounterType)(T + 1)) { 874 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 875 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 876 EmitSwaitcnt |= CNT_MASK(T); 877 } 878 } 879 } 880 // Resolve vm waits before gs-done. 881 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 882 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 883 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 884 AMDGPU::SendMsg::ID_GS_DONE)) { 885 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { 886 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 887 EmitSwaitcnt |= CNT_MASK(VM_CNT); 888 } 889 } 890 #if 0 // TODO: the following blocks of logic when we have fence. 891 else if (MI.getOpcode() == SC_FENCE) { 892 const unsigned int group_size = 893 context->shader_info->GetMaxThreadGroupSize(); 894 // group_size == 0 means thread group size is unknown at compile time 895 const bool group_is_multi_wave = 896 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 897 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 898 899 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 900 SCRegType src_type = Inst->GetSrcType(i); 901 switch (src_type) { 902 case SCMEM_LDS: 903 if (group_is_multi_wave || 904 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 905 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 906 ScoreBrackets->getScoreUB(LGKM_CNT)); 907 // LDS may have to wait for VM_CNT after buffer load to LDS 908 if (target_info->HasBufferLoadToLDS()) { 909 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 910 ScoreBrackets->getScoreUB(VM_CNT)); 911 } 912 } 913 break; 914 915 case SCMEM_GDS: 916 if (group_is_multi_wave || fence_is_global) { 917 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 918 ScoreBrackets->getScoreUB(EXP_CNT)); 919 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 920 ScoreBrackets->getScoreUB(LGKM_CNT)); 921 } 922 break; 923 924 case SCMEM_UAV: 925 case SCMEM_TFBUF: 926 case SCMEM_RING: 927 case SCMEM_SCATTER: 928 if (group_is_multi_wave || fence_is_global) { 929 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 930 ScoreBrackets->getScoreUB(EXP_CNT)); 931 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 932 ScoreBrackets->getScoreUB(VM_CNT)); 933 } 934 break; 935 936 case SCMEM_SCRATCH: 937 default: 938 break; 939 } 940 } 941 } 942 #endif 943 944 // Export & GDS instructions do not read the EXEC mask until after the export 945 // is granted (which can occur well after the instruction is issued). 946 // The shader program must flush all EXP operations on the export-count 947 // before overwriting the EXEC mask. 948 else { 949 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 950 // Export and GDS are tracked individually, either may trigger a waitcnt 951 // for EXEC. 952 EmitSwaitcnt |= ScoreBrackets->updateByWait( 953 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); 954 EmitSwaitcnt |= ScoreBrackets->updateByWait( 955 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); 956 EmitSwaitcnt |= ScoreBrackets->updateByWait( 957 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); 958 EmitSwaitcnt |= ScoreBrackets->updateByWait( 959 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); 960 } 961 962 #if 0 // TODO: the following code to handle CALL. 963 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 964 // However, there is a problem with EXP_CNT, because the call cannot 965 // easily tell if a register is used in the function, and if it did, then 966 // the referring instruction would have to have an S_WAITCNT, which is 967 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 968 // before the call. 969 if (MI.getOpcode() == SC_CALL) { 970 if (ScoreBrackets->getScoreUB(EXP_CNT) > 971 ScoreBrackets->getScoreLB(EXP_CNT)) { 972 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 973 EmitSwaitcnt |= CNT_MASK(EXP_CNT); 974 } 975 } 976 #endif 977 978 // FIXME: Should not be relying on memoperands. 979 // Look at the source operands of every instruction to see if 980 // any of them results from a previous memory operation that affects 981 // its current usage. If so, an s_waitcnt instruction needs to be 982 // emitted. 983 // If the source operand was defined by a load, add the s_waitcnt 984 // instruction. 985 for (const MachineMemOperand *Memop : MI.memoperands()) { 986 unsigned AS = Memop->getAddrSpace(); 987 if (AS != AMDGPUASI.LOCAL_ADDRESS) 988 continue; 989 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 990 // VM_CNT is only relevant to vgpr or LDS. 991 EmitSwaitcnt |= ScoreBrackets->updateByWait( 992 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 993 } 994 995 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 996 const MachineOperand &Op = MI.getOperand(I); 997 const MachineRegisterInfo &MRIA = *MRI; 998 RegInterval Interval = 999 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); 1000 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1001 if (TRI->isVGPR(MRIA, Op.getReg())) { 1002 // VM_CNT is only relevant to vgpr or LDS. 1003 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1004 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1005 } 1006 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1007 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1008 } 1009 } 1010 // End of for loop that looks at all source operands to decide vm_wait_cnt 1011 // and lgk_wait_cnt. 1012 1013 // Two cases are handled for destination operands: 1014 // 1) If the destination operand was defined by a load, add the s_waitcnt 1015 // instruction to guarantee the right WAW order. 1016 // 2) If a destination operand that was used by a recent export/store ins, 1017 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1018 if (MI.mayStore()) { 1019 // FIXME: Should not be relying on memoperands. 1020 for (const MachineMemOperand *Memop : MI.memoperands()) { 1021 unsigned AS = Memop->getAddrSpace(); 1022 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1023 continue; 1024 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1025 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1026 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1027 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1028 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1029 } 1030 } 1031 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1032 MachineOperand &Def = MI.getOperand(I); 1033 const MachineRegisterInfo &MRIA = *MRI; 1034 RegInterval Interval = 1035 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); 1036 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1037 if (TRI->isVGPR(MRIA, Def.getReg())) { 1038 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1039 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1040 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1041 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1042 } 1043 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1044 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1045 } 1046 } // End of for loop that looks at all dest operands. 1047 } 1048 1049 // TODO: Tie force zero to a compiler triage option. 1050 bool ForceZero = false; 1051 1052 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1053 // occurs before the instruction. Doing it here prevents any additional 1054 // S_WAITCNTs from being emitted if the instruction was marked as 1055 // requiring a WAITCNT beforehand. 1056 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1057 !ST->hasAutoWaitcntBeforeBarrier()) { 1058 EmitSwaitcnt |= 1059 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1060 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1061 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1062 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1063 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); 1064 } 1065 1066 // TODO: Remove this work-around, enable the assert for Bug 457939 1067 // after fixing the scheduler. Also, the Shader Compiler code is 1068 // independent of target. 1069 if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { 1070 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1071 ScoreBrackets->getScoreUB(LGKM_CNT) && 1072 ScoreBrackets->hasPendingSMEM()) { 1073 // Wait on everything, not just LGKM. vccz reads usually come from 1074 // terminators, and we always wait on everything at the end of the 1075 // block, so if we only wait on LGKM here, we might end up with 1076 // another s_waitcnt inserted right after this if there are non-LGKM 1077 // instructions still outstanding. 1078 ForceZero = true; 1079 EmitSwaitcnt = true; 1080 } 1081 } 1082 1083 // Does this operand processing indicate s_wait counter update? 1084 if (EmitSwaitcnt) { 1085 int CntVal[NUM_INST_CNTS]; 1086 1087 bool UseDefaultWaitcntStrategy = true; 1088 if (ForceZero) { 1089 // Force all waitcnts to 0. 1090 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1091 T = (enum InstCounterType)(T + 1)) { 1092 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1093 } 1094 CntVal[VM_CNT] = 0; 1095 CntVal[EXP_CNT] = 0; 1096 CntVal[LGKM_CNT] = 0; 1097 UseDefaultWaitcntStrategy = false; 1098 } 1099 1100 if (UseDefaultWaitcntStrategy) { 1101 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1102 T = (enum InstCounterType)(T + 1)) { 1103 if (EmitSwaitcnt & CNT_MASK(T)) { 1104 int Delta = 1105 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); 1106 int MaxDelta = ScoreBrackets->getWaitCountMax(T); 1107 if (Delta >= MaxDelta) { 1108 Delta = -1; 1109 if (T != EXP_CNT) { 1110 ScoreBrackets->setScoreLB( 1111 T, ScoreBrackets->getScoreUB(T) - MaxDelta); 1112 } 1113 EmitSwaitcnt &= ~CNT_MASK(T); 1114 } 1115 CntVal[T] = Delta; 1116 } else { 1117 // If we are not waiting for a particular counter then encode 1118 // it as -1 which means "don't care." 1119 CntVal[T] = -1; 1120 } 1121 } 1122 } 1123 1124 // If we are not waiting on any counter we can skip the wait altogether. 1125 if (EmitSwaitcnt != 0) { 1126 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); 1127 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); 1128 if (!OldWaitcnt || 1129 (AMDGPU::decodeVmcnt(IV, Imm) != 1130 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || 1131 (AMDGPU::decodeExpcnt(IV, Imm) != 1132 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || 1133 (AMDGPU::decodeLgkmcnt(IV, Imm) != 1134 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { 1135 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); 1136 if (ContainingLoop) { 1137 MachineBasicBlock *TBB = ContainingLoop->getHeader(); 1138 BlockWaitcntBrackets *ScoreBracket = 1139 BlockWaitcntBracketsMap[TBB].get(); 1140 if (!ScoreBracket) { 1141 assert(!BlockVisitedSet.count(TBB)); 1142 BlockWaitcntBracketsMap[TBB] = 1143 llvm::make_unique<BlockWaitcntBrackets>(); 1144 ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); 1145 } 1146 ScoreBracket->setRevisitLoop(true); 1147 DEBUG(dbgs() << "set-revisit: Block" 1148 << ContainingLoop->getHeader()->getNumber() << '\n';); 1149 } 1150 } 1151 1152 // Update an existing waitcount, or make a new one. 1153 unsigned Enc = AMDGPU::encodeWaitcnt(IV, CntVal[VM_CNT], 1154 CntVal[EXP_CNT], CntVal[LGKM_CNT]); 1155 // We don't remove waitcnts that existed prior to the waitcnt 1156 // pass. Check if the waitcnt to-be-inserted can be avoided 1157 // or if the prev waitcnt can be updated. 1158 bool insertSWaitInst = true; 1159 for (MachineBasicBlock::iterator I = MI.getIterator(), 1160 B = MI.getParent()->begin(); 1161 insertSWaitInst && I != B; --I) { 1162 if (I == MI.getIterator()) 1163 continue; 1164 1165 switch (I->getOpcode()) { 1166 case AMDGPU::S_WAITCNT: 1167 if (isWaitcntStronger(I->getOperand(0).getImm(), Enc)) 1168 insertSWaitInst = false; 1169 else if (!OldWaitcnt) { 1170 OldWaitcnt = &*I; 1171 Enc = combineWaitcnt(I->getOperand(0).getImm(), Enc); 1172 } 1173 break; 1174 // TODO: skip over instructions which never require wait. 1175 } 1176 break; 1177 } 1178 if (insertSWaitInst) { 1179 if (OldWaitcnt && OldWaitcnt->getOpcode() == AMDGPU::S_WAITCNT) { 1180 OldWaitcnt->getOperand(0).setImm(Enc); 1181 if (!OldWaitcnt->getParent()) 1182 MI.getParent()->insert(MI, OldWaitcnt); 1183 1184 DEBUG(dbgs() << "updateWaitcntInBlock\n" 1185 << "Old Instr: " << MI << '\n' 1186 << "New Instr: " << *OldWaitcnt << '\n'); 1187 } else { 1188 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1189 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1190 .addImm(Enc); 1191 TrackedWaitcntSet.insert(SWaitInst); 1192 1193 DEBUG(dbgs() << "insertWaitcntInBlock\n" 1194 << "Old Instr: " << MI << '\n' 1195 << "New Instr: " << *SWaitInst << '\n'); 1196 } 1197 } 1198 1199 if (CntVal[EXP_CNT] == 0) { 1200 ScoreBrackets->setMixedExpTypes(false); 1201 } 1202 } 1203 } 1204 } 1205 1206 void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, 1207 MachineInstr *Waitcnt) { 1208 if (MBB.empty()) { 1209 MBB.push_back(Waitcnt); 1210 return; 1211 } 1212 1213 MachineBasicBlock::iterator It = MBB.end(); 1214 MachineInstr *MI = &*(--It); 1215 if (MI->isBranch()) { 1216 MBB.insert(It, Waitcnt); 1217 } else { 1218 MBB.push_back(Waitcnt); 1219 } 1220 } 1221 1222 // This is a flat memory operation. Check to see if it has memory 1223 // tokens for both LDS and Memory, and if so mark it as a flat. 1224 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1225 if (MI.memoperands_empty()) 1226 return true; 1227 1228 for (const MachineMemOperand *Memop : MI.memoperands()) { 1229 unsigned AS = Memop->getAddrSpace(); 1230 if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) 1231 return true; 1232 } 1233 1234 return false; 1235 } 1236 1237 void SIInsertWaitcnts::updateEventWaitCntAfter( 1238 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { 1239 // Now look at the instruction opcode. If it is a memory access 1240 // instruction, update the upper-bound of the appropriate counter's 1241 // bracket and the destination operand scores. 1242 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1243 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1244 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1245 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1246 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1247 } else { 1248 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1249 } 1250 } else if (TII->isFLAT(Inst)) { 1251 assert(Inst.mayLoad() || Inst.mayStore()); 1252 1253 if (TII->usesVM_CNT(Inst)) 1254 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1255 1256 if (TII->usesLGKM_CNT(Inst)) { 1257 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1258 1259 // This is a flat memory operation, so note it - it will require 1260 // that both the VM and LGKM be flushed to zero if it is pending when 1261 // a VM or LGKM dependency occurs. 1262 if (mayAccessLDSThroughFlat(Inst)) 1263 ScoreBrackets->setPendingFlat(); 1264 } 1265 } else if (SIInstrInfo::isVMEM(Inst) && 1266 // TODO: get a better carve out. 1267 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1268 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1269 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1270 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1271 if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() && 1272 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1273 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1274 } 1275 } else if (TII->isSMRD(Inst)) { 1276 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1277 } else { 1278 switch (Inst.getOpcode()) { 1279 case AMDGPU::S_SENDMSG: 1280 case AMDGPU::S_SENDMSGHALT: 1281 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1282 break; 1283 case AMDGPU::EXP: 1284 case AMDGPU::EXP_DONE: { 1285 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1286 if (Imm >= 32 && Imm <= 63) 1287 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1288 else if (Imm >= 12 && Imm <= 15) 1289 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1290 else 1291 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1292 break; 1293 } 1294 case AMDGPU::S_MEMTIME: 1295 case AMDGPU::S_MEMREALTIME: 1296 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1297 break; 1298 default: 1299 break; 1300 } 1301 } 1302 } 1303 1304 // Merge the score brackets of the Block's predecessors; 1305 // this merged score bracket is used when adding waitcnts to the Block 1306 void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { 1307 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1308 int32_t MaxPending[NUM_INST_CNTS] = {0}; 1309 int32_t MaxFlat[NUM_INST_CNTS] = {0}; 1310 bool MixedExpTypes = false; 1311 1312 // For single basic block loops, we need to retain the Block's 1313 // score bracket to have accurate Pred info. So, make a copy of Block's 1314 // score bracket, clear() it (which retains several important bits of info), 1315 // populate, and then replace en masse. For non-single basic block loops, 1316 // just clear Block's current score bracket and repopulate in-place. 1317 bool IsSelfPred; 1318 std::unique_ptr<BlockWaitcntBrackets> S; 1319 1320 IsSelfPred = (std::find(Block.pred_begin(), Block.pred_end(), &Block)) 1321 != Block.pred_end(); 1322 if (IsSelfPred) { 1323 S = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1324 ScoreBrackets = S.get(); 1325 } 1326 1327 ScoreBrackets->clear(); 1328 1329 // See if there are any uninitialized predecessors. If so, emit an 1330 // s_waitcnt 0 at the beginning of the block. 1331 for (MachineBasicBlock *Pred : Block.predecessors()) { 1332 BlockWaitcntBrackets *PredScoreBrackets = 1333 BlockWaitcntBracketsMap[Pred].get(); 1334 bool Visited = BlockVisitedSet.count(Pred); 1335 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1336 continue; 1337 } 1338 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1339 T = (enum InstCounterType)(T + 1)) { 1340 int span = 1341 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); 1342 MaxPending[T] = std::max(MaxPending[T], span); 1343 span = 1344 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); 1345 MaxFlat[T] = std::max(MaxFlat[T], span); 1346 } 1347 1348 MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); 1349 } 1350 1351 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1352 // Also handle kills for exit block. 1353 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1354 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1355 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1356 T = (enum InstCounterType)(T + 1)) { 1357 int Span = KillWaitBrackets[I]->getScoreUB(T) - 1358 KillWaitBrackets[I]->getScoreLB(T); 1359 MaxPending[T] = std::max(MaxPending[T], Span); 1360 Span = KillWaitBrackets[I]->pendingFlat(T) - 1361 KillWaitBrackets[I]->getScoreLB(T); 1362 MaxFlat[T] = std::max(MaxFlat[T], Span); 1363 } 1364 1365 MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); 1366 } 1367 } 1368 1369 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. 1370 for (MachineBasicBlock *Pred : Block.predecessors()) { 1371 BlockWaitcntBrackets *PredScoreBrackets = 1372 BlockWaitcntBracketsMap[Pred].get(); 1373 bool Visited = BlockVisitedSet.count(Pred); 1374 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1375 continue; 1376 } 1377 1378 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - 1379 PredScoreBrackets->getScoreLB(EXP_CNT); 1380 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1381 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - 1382 PredScoreBrackets->getScoreLB(EXP_CNT); 1383 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1384 } 1385 1386 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1387 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1388 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1389 int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - 1390 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1391 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1392 int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - 1393 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1394 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1395 } 1396 } 1397 1398 #if 0 1399 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. 1400 // TODO: how does LC distinguish between function entry and main entry? 1401 // If this is the entry to a function, force a wait. 1402 MachineBasicBlock &Entry = Block.getParent()->front(); 1403 if (Entry.getNumber() == Block.getNumber()) { 1404 ScoreBrackets->setWaitAtBeginning(); 1405 return; 1406 } 1407 #endif 1408 1409 // Now set the current Block's brackets to the largest ending bracket. 1410 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1411 T = (enum InstCounterType)(T + 1)) { 1412 ScoreBrackets->setScoreUB(T, MaxPending[T]); 1413 ScoreBrackets->setScoreLB(T, 0); 1414 ScoreBrackets->setLastFlat(T, MaxFlat[T]); 1415 } 1416 1417 ScoreBrackets->setMixedExpTypes(MixedExpTypes); 1418 1419 // Set the register scoreboard. 1420 for (MachineBasicBlock *Pred : Block.predecessors()) { 1421 if (!BlockVisitedSet.count(Pred)) { 1422 continue; 1423 } 1424 1425 BlockWaitcntBrackets *PredScoreBrackets = 1426 BlockWaitcntBracketsMap[Pred].get(); 1427 1428 // Now merge the gpr_reg_score information 1429 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1430 T = (enum InstCounterType)(T + 1)) { 1431 int PredLB = PredScoreBrackets->getScoreLB(T); 1432 int PredUB = PredScoreBrackets->getScoreUB(T); 1433 if (PredLB < PredUB) { 1434 int PredScale = MaxPending[T] - PredUB; 1435 // Merge vgpr scores. 1436 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { 1437 int PredRegScore = PredScoreBrackets->getRegScore(J, T); 1438 if (PredRegScore <= PredLB) 1439 continue; 1440 int NewRegScore = PredScale + PredRegScore; 1441 ScoreBrackets->setRegScore( 1442 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1443 } 1444 // Also need to merge sgpr scores for lgkm_cnt. 1445 if (T == LGKM_CNT) { 1446 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { 1447 int PredRegScore = 1448 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1449 if (PredRegScore <= PredLB) 1450 continue; 1451 int NewRegScore = PredScale + PredRegScore; 1452 ScoreBrackets->setRegScore( 1453 J + NUM_ALL_VGPRS, LGKM_CNT, 1454 std::max( 1455 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1456 NewRegScore)); 1457 } 1458 } 1459 } 1460 } 1461 1462 // Also merge the WaitEvent information. 1463 ForAllWaitEventType(W) { 1464 enum InstCounterType T = PredScoreBrackets->eventCounter(W); 1465 int PredEventUB = PredScoreBrackets->getEventUB(W); 1466 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { 1467 int NewEventUB = 1468 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); 1469 if (NewEventUB > 0) { 1470 ScoreBrackets->setEventUB( 1471 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1472 } 1473 } 1474 } 1475 } 1476 1477 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1478 // Set the register scoreboard. 1479 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1480 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1481 // Now merge the gpr_reg_score information. 1482 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1483 T = (enum InstCounterType)(T + 1)) { 1484 int PredLB = KillWaitBrackets[I]->getScoreLB(T); 1485 int PredUB = KillWaitBrackets[I]->getScoreUB(T); 1486 if (PredLB < PredUB) { 1487 int PredScale = MaxPending[T] - PredUB; 1488 // Merge vgpr scores. 1489 for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { 1490 int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); 1491 if (PredRegScore <= PredLB) 1492 continue; 1493 int NewRegScore = PredScale + PredRegScore; 1494 ScoreBrackets->setRegScore( 1495 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1496 } 1497 // Also need to merge sgpr scores for lgkm_cnt. 1498 if (T == LGKM_CNT) { 1499 for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { 1500 int PredRegScore = 1501 KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1502 if (PredRegScore <= PredLB) 1503 continue; 1504 int NewRegScore = PredScale + PredRegScore; 1505 ScoreBrackets->setRegScore( 1506 J + NUM_ALL_VGPRS, LGKM_CNT, 1507 std::max( 1508 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1509 NewRegScore)); 1510 } 1511 } 1512 } 1513 } 1514 1515 // Also merge the WaitEvent information. 1516 ForAllWaitEventType(W) { 1517 enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); 1518 int PredEventUB = KillWaitBrackets[I]->getEventUB(W); 1519 if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { 1520 int NewEventUB = 1521 MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); 1522 if (NewEventUB > 0) { 1523 ScoreBrackets->setEventUB( 1524 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1525 } 1526 } 1527 } 1528 } 1529 } 1530 1531 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the 1532 // sequencing predecessors, because changes to EXEC require waitcnts due to 1533 // the delayed nature of these operations. 1534 for (MachineBasicBlock *Pred : Block.predecessors()) { 1535 if (!BlockVisitedSet.count(Pred)) { 1536 continue; 1537 } 1538 1539 BlockWaitcntBrackets *PredScoreBrackets = 1540 BlockWaitcntBracketsMap[Pred].get(); 1541 1542 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); 1543 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1544 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - 1545 PredScoreBrackets->getScoreUB(EXP_CNT); 1546 if (new_gds_ub > 0) { 1547 ScoreBrackets->setEventUB( 1548 GDS_GPR_LOCK, 1549 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); 1550 } 1551 } 1552 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); 1553 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1554 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - 1555 PredScoreBrackets->getScoreUB(EXP_CNT); 1556 if (new_exp_ub > 0) { 1557 ScoreBrackets->setEventUB( 1558 EXP_GPR_LOCK, 1559 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); 1560 } 1561 } 1562 } 1563 1564 // if a single block loop, update the score brackets. Not needed for other 1565 // blocks, as we did this in-place 1566 if (IsSelfPred) { 1567 BlockWaitcntBracketsMap[&Block] = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1568 } 1569 } 1570 1571 /// Return the "bottom" block of a loop. This differs from 1572 /// MachineLoop::getBottomBlock in that it works even if the loop is 1573 /// discontiguous. 1574 MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) { 1575 MachineBasicBlock *Bottom = Loop->getHeader(); 1576 for (MachineBasicBlock *MBB : Loop->blocks()) 1577 if (MBB->getNumber() > Bottom->getNumber()) 1578 Bottom = MBB; 1579 return Bottom; 1580 } 1581 1582 // Generate s_waitcnt instructions where needed. 1583 void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1584 MachineBasicBlock &Block) { 1585 // Initialize the state information. 1586 mergeInputScoreBrackets(Block); 1587 1588 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1589 1590 DEBUG({ 1591 dbgs() << "Block" << Block.getNumber(); 1592 ScoreBrackets->dump(); 1593 }); 1594 1595 // Walk over the instructions. 1596 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1597 Iter != E;) { 1598 MachineInstr &Inst = *Iter; 1599 // Remove any previously existing waitcnts. 1600 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1601 // Leave pre-existing waitcnts, but note their existence via setWaitcnt. 1602 // Remove the waitcnt-pass-generated waitcnts; the pass will add them back 1603 // as needed. 1604 if (!TrackedWaitcntSet.count(&Inst)) 1605 ++Iter; 1606 else { 1607 ++Iter; 1608 Inst.removeFromParent(); 1609 } 1610 ScoreBrackets->setWaitcnt(&Inst); 1611 continue; 1612 } 1613 1614 // Kill instructions generate a conditional branch to the endmain block. 1615 // Merge the current waitcnt state into the endmain block information. 1616 // TODO: Are there other flavors of KILL instruction? 1617 if (Inst.getOpcode() == AMDGPU::KILL) { 1618 addKillWaitBracket(ScoreBrackets); 1619 } 1620 1621 bool VCCZBugWorkAround = false; 1622 if (readsVCCZ(Inst) && 1623 (!VCCZBugHandledSet.count(&Inst))) { 1624 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1625 ScoreBrackets->getScoreUB(LGKM_CNT) && 1626 ScoreBrackets->hasPendingSMEM()) { 1627 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) 1628 VCCZBugWorkAround = true; 1629 } 1630 } 1631 1632 // Generate an s_waitcnt instruction to be placed before 1633 // cur_Inst, if needed. 1634 generateSWaitCntInstBefore(Inst, ScoreBrackets); 1635 1636 updateEventWaitCntAfter(Inst, ScoreBrackets); 1637 1638 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1639 // If this instruction generates a S_SETVSKIP because it is an 1640 // indexed resource, and we are on Tahiti, then it will also force 1641 // an S_WAITCNT vmcnt(0) 1642 if (RequireCheckResourceType(Inst, context)) { 1643 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1644 ScoreBrackets->setScoreLB(VM_CNT, 1645 ScoreBrackets->getScoreUB(VM_CNT)); 1646 } 1647 #endif 1648 1649 ScoreBrackets->clearWaitcnt(); 1650 1651 DEBUG({ 1652 Inst.print(dbgs()); 1653 ScoreBrackets->dump(); 1654 }); 1655 1656 // Check to see if this is a GWS instruction. If so, and if this is CI or 1657 // VI, then the generated code sequence will include an S_WAITCNT 0. 1658 // TODO: Are these the only GWS instructions? 1659 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1660 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1661 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1662 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1663 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1664 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1665 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1666 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1667 ScoreBrackets->updateByWait(LGKM_CNT, 1668 ScoreBrackets->getScoreUB(LGKM_CNT)); 1669 } 1670 1671 // TODO: Remove this work-around after fixing the scheduler and enable the 1672 // assert above. 1673 if (VCCZBugWorkAround) { 1674 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1675 // bit is updated, so we can restore the bit by reading the value of 1676 // vcc and then writing it back to the register. 1677 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1678 AMDGPU::VCC) 1679 .addReg(AMDGPU::VCC); 1680 VCCZBugHandledSet.insert(&Inst); 1681 } 1682 1683 ++Iter; 1684 } 1685 1686 // Check if we need to force convergence at loop footer. 1687 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); 1688 if (ContainingLoop && loopBottom(ContainingLoop) == &Block) { 1689 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1690 WaitcntData->print(); 1691 DEBUG(dbgs() << '\n';); 1692 1693 // The iterative waitcnt insertion algorithm aims for optimal waitcnt 1694 // placement and doesn't always guarantee convergence for a loop. Each 1695 // loop should take at most 2 iterations for it to converge naturally. 1696 // When this max is reached and result doesn't converge, we force 1697 // convergence by inserting a s_waitcnt at the end of loop footer. 1698 if (WaitcntData->getIterCnt() > 2) { 1699 // To ensure convergence, need to make wait events at loop footer be no 1700 // more than those from the previous iteration. 1701 // As a simplification, instead of tracking individual scores and 1702 // generating the precise wait count, just wait on 0. 1703 bool HasPending = false; 1704 MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); 1705 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1706 T = (enum InstCounterType)(T + 1)) { 1707 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 1708 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1709 HasPending = true; 1710 } 1711 } 1712 1713 if (HasPending) { 1714 if (!SWaitInst) { 1715 SWaitInst = Block.getParent()->CreateMachineInstr( 1716 TII->get(AMDGPU::S_WAITCNT), DebugLoc()); 1717 TrackedWaitcntSet.insert(SWaitInst); 1718 const MachineOperand &Op = MachineOperand::CreateImm(0); 1719 SWaitInst->addOperand(MF, Op); 1720 #if 0 // TODO: Format the debug output 1721 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); 1722 OutputTransformAdd(SWaitInst, context); 1723 #endif 1724 } 1725 #if 0 // TODO: ?? 1726 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) 1727 #endif 1728 } 1729 1730 if (SWaitInst) { 1731 DEBUG({ 1732 SWaitInst->print(dbgs()); 1733 dbgs() << "\nAdjusted score board:"; 1734 ScoreBrackets->dump(); 1735 }); 1736 1737 // Add this waitcnt to the block. It is either newly created or 1738 // created in previous iterations and added back since block traversal 1739 // always removes waitcnts. 1740 insertWaitcntBeforeCF(Block, SWaitInst); 1741 WaitcntData->setWaitcnt(SWaitInst); 1742 } 1743 } 1744 } 1745 } 1746 1747 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1748 ST = &MF.getSubtarget<SISubtarget>(); 1749 TII = ST->getInstrInfo(); 1750 TRI = &TII->getRegisterInfo(); 1751 MRI = &MF.getRegInfo(); 1752 MLI = &getAnalysis<MachineLoopInfo>(); 1753 IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); 1754 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1755 AMDGPUASI = ST->getAMDGPUAS(); 1756 1757 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1758 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1759 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1760 1761 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1762 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1763 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1764 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1765 1766 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1767 RegisterEncoding.VGPRL = 1768 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1769 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1770 RegisterEncoding.SGPRL = 1771 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1772 1773 TrackedWaitcntSet.clear(); 1774 BlockVisitedSet.clear(); 1775 VCCZBugHandledSet.clear(); 1776 1777 // Walk over the blocks in reverse post-dominator order, inserting 1778 // s_waitcnt where needed. 1779 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1780 bool Modified = false; 1781 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1782 I = RPOT.begin(), 1783 E = RPOT.end(), J = RPOT.begin(); 1784 I != E;) { 1785 MachineBasicBlock &MBB = **I; 1786 1787 BlockVisitedSet.insert(&MBB); 1788 1789 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1790 if (!ScoreBrackets) { 1791 BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(); 1792 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1793 } 1794 ScoreBrackets->setPostOrder(MBB.getNumber()); 1795 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); 1796 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) 1797 LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>(); 1798 1799 // If we are walking into the block from before the loop, then guarantee 1800 // at least 1 re-walk over the loop to propagate the information, even if 1801 // no S_WAITCNT instructions were generated. 1802 if (ContainingLoop && ContainingLoop->getHeader() == &MBB && J < I && 1803 (!BlockWaitcntProcessedSet.count(&MBB))) { 1804 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); 1805 DEBUG(dbgs() << "set-revisit: Block" 1806 << ContainingLoop->getHeader()->getNumber() << '\n';); 1807 } 1808 1809 // Walk over the instructions. 1810 insertWaitcntInBlock(MF, MBB); 1811 1812 // Flag that waitcnts have been processed at least once. 1813 BlockWaitcntProcessedSet.insert(&MBB); 1814 1815 // See if we want to revisit the loop. 1816 if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) { 1817 MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); 1818 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); 1819 if (EntrySB && EntrySB->getRevisitLoop()) { 1820 EntrySB->setRevisitLoop(false); 1821 J = I; 1822 int32_t PostOrder = EntrySB->getPostOrder(); 1823 // TODO: Avoid this loop. Find another way to set I. 1824 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1825 X = RPOT.begin(), 1826 Y = RPOT.end(); 1827 X != Y; ++X) { 1828 MachineBasicBlock &MBBX = **X; 1829 if (MBBX.getNumber() == PostOrder) { 1830 I = X; 1831 break; 1832 } 1833 } 1834 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1835 WaitcntData->incIterCnt(); 1836 DEBUG(dbgs() << "revisit: Block" << EntryBB->getNumber() << '\n';); 1837 continue; 1838 } else { 1839 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1840 // Loop converged, reset iteration count. If this loop gets revisited, 1841 // it must be from an outer loop, the counter will restart, this will 1842 // ensure we don't force convergence on such revisits. 1843 WaitcntData->resetIterCnt(); 1844 } 1845 } 1846 1847 J = I; 1848 ++I; 1849 } 1850 1851 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1852 1853 bool HaveScalarStores = false; 1854 1855 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1856 ++BI) { 1857 MachineBasicBlock &MBB = *BI; 1858 1859 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1860 ++I) { 1861 if (!HaveScalarStores && TII->isScalarStore(*I)) 1862 HaveScalarStores = true; 1863 1864 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1865 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1866 EndPgmBlocks.push_back(&MBB); 1867 } 1868 } 1869 1870 if (HaveScalarStores) { 1871 // If scalar writes are used, the cache must be flushed or else the next 1872 // wave to reuse the same scratch memory can be clobbered. 1873 // 1874 // Insert s_dcache_wb at wave termination points if there were any scalar 1875 // stores, and only if the cache hasn't already been flushed. This could be 1876 // improved by looking across blocks for flushes in postdominating blocks 1877 // from the stores but an explicitly requested flush is probably very rare. 1878 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1879 bool SeenDCacheWB = false; 1880 1881 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1882 ++I) { 1883 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1884 SeenDCacheWB = true; 1885 else if (TII->isScalarStore(*I)) 1886 SeenDCacheWB = false; 1887 1888 // FIXME: It would be better to insert this before a waitcnt if any. 1889 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1890 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1891 !SeenDCacheWB) { 1892 Modified = true; 1893 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1894 } 1895 } 1896 } 1897 } 1898 1899 if (!MFI->isEntryFunction()) { 1900 // Wait for any outstanding memory operations that the input registers may 1901 // depend on. We can't track them and it's better to the wait after the 1902 // costly call sequence. 1903 1904 // TODO: Could insert earlier and schedule more liberally with operations 1905 // that only use caller preserved registers. 1906 MachineBasicBlock &EntryBB = MF.front(); 1907 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1908 .addImm(0); 1909 1910 Modified = true; 1911 } 1912 1913 return Modified; 1914 } 1915