1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "SIDefines.h" 22 #include "SIInstrInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "SIRegisterInfo.h" 25 #include "Utils/AMDGPUBaseInfo.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/DebugCounter.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstdint> 49 #include <cstring> 50 #include <memory> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "si-insert-waitcnts" 57 58 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 59 "Force emit s_waitcnt expcnt(0) instrs"); 60 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 61 "Force emit s_waitcnt lgkmcnt(0) instrs"); 62 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 63 "Force emit s_waitcnt vmcnt(0) instrs"); 64 65 static cl::opt<unsigned> ForceEmitZeroFlag( 66 "amdgpu-waitcnt-forcezero", 67 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 68 cl::init(0), cl::Hidden); 69 70 namespace { 71 72 // Class of object that encapsulates latest instruction counter score 73 // associated with the operand. Used for determining whether 74 // s_waitcnt instruction needs to be emited. 75 76 #define CNT_MASK(t) (1u << (t)) 77 78 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 79 80 using RegInterval = std::pair<signed, signed>; 81 82 struct { 83 int32_t VmcntMax; 84 int32_t ExpcntMax; 85 int32_t LgkmcntMax; 86 int32_t NumVGPRsMax; 87 int32_t NumSGPRsMax; 88 } HardwareLimits; 89 90 struct { 91 unsigned VGPR0; 92 unsigned VGPRL; 93 unsigned SGPR0; 94 unsigned SGPRL; 95 } RegisterEncoding; 96 97 enum WaitEventType { 98 VMEM_ACCESS, // vector-memory read & write 99 LDS_ACCESS, // lds read & write 100 GDS_ACCESS, // gds read & write 101 SQ_MESSAGE, // send message 102 SMEM_ACCESS, // scalar-memory read & write 103 EXP_GPR_LOCK, // export holding on its data src 104 GDS_GPR_LOCK, // GDS holding on its data and addr src 105 EXP_POS_ACCESS, // write to export position 106 EXP_PARAM_ACCESS, // write to export parameter 107 VMW_GPR_LOCK, // vector-memory write holding on its data src 108 NUM_WAIT_EVENTS, 109 }; 110 111 // The mapping is: 112 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 113 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 114 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 115 // We reserve a fixed number of VGPR slots in the scoring tables for 116 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 117 enum RegisterMapping { 118 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 119 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 120 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 121 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 122 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 123 }; 124 125 #define ForAllWaitEventType(w) \ 126 for (enum WaitEventType w = (enum WaitEventType)0; \ 127 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ 128 (w) = (enum WaitEventType)((w) + 1)) 129 130 // This is a per-basic-block object that maintains current score brackets 131 // of each wait counter, and a per-register scoreboard for each wait counter. 132 // We also maintain the latest score for every event type that can change the 133 // waitcnt in order to know if there are multiple types of events within 134 // the brackets. When multiple types of event happen in the bracket, 135 // wait count may get decreased out of order, therefore we need to put in 136 // "s_waitcnt 0" before use. 137 class BlockWaitcntBrackets { 138 public: 139 BlockWaitcntBrackets() { 140 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 141 T = (enum InstCounterType)(T + 1)) { 142 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 143 } 144 } 145 146 ~BlockWaitcntBrackets() = default; 147 148 static int32_t getWaitCountMax(InstCounterType T) { 149 switch (T) { 150 case VM_CNT: 151 return HardwareLimits.VmcntMax; 152 case LGKM_CNT: 153 return HardwareLimits.LgkmcntMax; 154 case EXP_CNT: 155 return HardwareLimits.ExpcntMax; 156 default: 157 break; 158 } 159 return 0; 160 } 161 162 void setScoreLB(InstCounterType T, int32_t Val) { 163 assert(T < NUM_INST_CNTS); 164 if (T >= NUM_INST_CNTS) 165 return; 166 ScoreLBs[T] = Val; 167 } 168 169 void setScoreUB(InstCounterType T, int32_t Val) { 170 assert(T < NUM_INST_CNTS); 171 if (T >= NUM_INST_CNTS) 172 return; 173 ScoreUBs[T] = Val; 174 if (T == EXP_CNT) { 175 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); 176 if (ScoreLBs[T] < UB) 177 ScoreLBs[T] = UB; 178 } 179 } 180 181 int32_t getScoreLB(InstCounterType T) { 182 assert(T < NUM_INST_CNTS); 183 if (T >= NUM_INST_CNTS) 184 return 0; 185 return ScoreLBs[T]; 186 } 187 188 int32_t getScoreUB(InstCounterType T) { 189 assert(T < NUM_INST_CNTS); 190 if (T >= NUM_INST_CNTS) 191 return 0; 192 return ScoreUBs[T]; 193 } 194 195 // Mapping from event to counter. 196 InstCounterType eventCounter(WaitEventType E) { 197 switch (E) { 198 case VMEM_ACCESS: 199 return VM_CNT; 200 case LDS_ACCESS: 201 case GDS_ACCESS: 202 case SQ_MESSAGE: 203 case SMEM_ACCESS: 204 return LGKM_CNT; 205 case EXP_GPR_LOCK: 206 case GDS_GPR_LOCK: 207 case VMW_GPR_LOCK: 208 case EXP_POS_ACCESS: 209 case EXP_PARAM_ACCESS: 210 return EXP_CNT; 211 default: 212 llvm_unreachable("unhandled event type"); 213 } 214 return NUM_INST_CNTS; 215 } 216 217 void setRegScore(int GprNo, InstCounterType T, int32_t Val) { 218 if (GprNo < NUM_ALL_VGPRS) { 219 if (GprNo > VgprUB) { 220 VgprUB = GprNo; 221 } 222 VgprScores[T][GprNo] = Val; 223 } else { 224 assert(T == LGKM_CNT); 225 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 226 SgprUB = GprNo - NUM_ALL_VGPRS; 227 } 228 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 229 } 230 } 231 232 int32_t getRegScore(int GprNo, InstCounterType T) { 233 if (GprNo < NUM_ALL_VGPRS) { 234 return VgprScores[T][GprNo]; 235 } 236 return SgprScores[GprNo - NUM_ALL_VGPRS]; 237 } 238 239 void clear() { 240 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 241 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 242 memset(EventUBs, 0, sizeof(EventUBs)); 243 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 244 T = (enum InstCounterType)(T + 1)) { 245 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 246 } 247 memset(SgprScores, 0, sizeof(SgprScores)); 248 } 249 250 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 251 const MachineRegisterInfo *MRI, 252 const SIRegisterInfo *TRI, unsigned OpNo, 253 bool Def) const; 254 255 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 256 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 257 unsigned OpNo, int32_t Val); 258 259 void setWaitAtBeginning() { WaitAtBeginning = true; } 260 void clearWaitAtBeginning() { WaitAtBeginning = false; } 261 bool getWaitAtBeginning() const { return WaitAtBeginning; } 262 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } 263 int32_t getMaxVGPR() const { return VgprUB; } 264 int32_t getMaxSGPR() const { return SgprUB; } 265 266 int32_t getEventUB(enum WaitEventType W) const { 267 assert(W < NUM_WAIT_EVENTS); 268 return EventUBs[W]; 269 } 270 271 bool counterOutOfOrder(InstCounterType T); 272 unsigned int updateByWait(InstCounterType T, int ScoreToWait); 273 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 274 const MachineRegisterInfo *MRI, WaitEventType E, 275 MachineInstr &MI); 276 277 bool hasPendingSMEM() const { 278 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 279 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); 280 } 281 282 bool hasPendingFlat() const { 283 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 284 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 285 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 286 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 287 } 288 289 void setPendingFlat() { 290 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 291 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 292 } 293 294 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } 295 296 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } 297 298 bool getRevisitLoop() const { return RevisitLoop; } 299 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } 300 301 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } 302 int32_t getPostOrder() const { return PostOrder; } 303 304 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } 305 void clearWaitcnt() { Waitcnt = nullptr; } 306 MachineInstr *getWaitcnt() const { return Waitcnt; } 307 308 bool mixedExpTypes() const { return MixedExpTypes; } 309 void setMixedExpTypes(bool MixedExpTypesIn) { 310 MixedExpTypes = MixedExpTypesIn; 311 } 312 313 void print(raw_ostream &); 314 void dump() { print(dbgs()); } 315 316 private: 317 bool WaitAtBeginning = false; 318 bool RevisitLoop = false; 319 bool MixedExpTypes = false; 320 int32_t PostOrder = 0; 321 MachineInstr *Waitcnt = nullptr; 322 int32_t ScoreLBs[NUM_INST_CNTS] = {0}; 323 int32_t ScoreUBs[NUM_INST_CNTS] = {0}; 324 int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; 325 // Remember the last flat memory operation. 326 int32_t LastFlat[NUM_INST_CNTS] = {0}; 327 // wait_cnt scores for every vgpr. 328 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 329 int32_t VgprUB = 0; 330 int32_t SgprUB = 0; 331 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 332 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 333 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 334 }; 335 336 // This is a per-loop-region object that records waitcnt status at the end of 337 // loop footer from the previous iteration. We also maintain an iteration 338 // count to track the number of times the loop has been visited. When it 339 // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 340 // at the end of the loop footer. 341 class LoopWaitcntData { 342 public: 343 LoopWaitcntData() = default; 344 ~LoopWaitcntData() = default; 345 346 void incIterCnt() { IterCnt++; } 347 void resetIterCnt() { IterCnt = 0; } 348 unsigned getIterCnt() { return IterCnt; } 349 350 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } 351 MachineInstr *getWaitcnt() const { return LfWaitcnt; } 352 353 void print() { LLVM_DEBUG(dbgs() << " iteration " << IterCnt << '\n';); } 354 355 private: 356 // s_waitcnt added at the end of loop footer to stablize wait scores 357 // at the end of the loop footer. 358 MachineInstr *LfWaitcnt = nullptr; 359 // Number of iterations the loop has been visited, not including the initial 360 // walk over. 361 int32_t IterCnt = 0; 362 }; 363 364 class SIInsertWaitcnts : public MachineFunctionPass { 365 private: 366 const SISubtarget *ST = nullptr; 367 const SIInstrInfo *TII = nullptr; 368 const SIRegisterInfo *TRI = nullptr; 369 const MachineRegisterInfo *MRI = nullptr; 370 const MachineLoopInfo *MLI = nullptr; 371 AMDGPU::IsaInfo::IsaVersion IV; 372 AMDGPUAS AMDGPUASI; 373 374 DenseSet<MachineBasicBlock *> BlockVisitedSet; 375 DenseSet<MachineInstr *> TrackedWaitcntSet; 376 DenseSet<MachineInstr *> VCCZBugHandledSet; 377 378 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> 379 BlockWaitcntBracketsMap; 380 381 std::vector<MachineBasicBlock *> BlockWaitcntProcessedSet; 382 383 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; 384 385 std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; 386 387 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 388 // because of amdgpu-waitcnt-forcezero flag 389 bool ForceEmitZeroWaitcnts; 390 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 391 392 public: 393 static char ID; 394 395 SIInsertWaitcnts() : MachineFunctionPass(ID) {} 396 397 bool runOnMachineFunction(MachineFunction &MF) override; 398 399 StringRef getPassName() const override { 400 return "SI insert wait instructions"; 401 } 402 403 void getAnalysisUsage(AnalysisUsage &AU) const override { 404 AU.setPreservesCFG(); 405 AU.addRequired<MachineLoopInfo>(); 406 MachineFunctionPass::getAnalysisUsage(AU); 407 } 408 409 void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { 410 // The waitcnt information is copied because it changes as the block is 411 // traversed. 412 KillWaitBrackets.push_back( 413 llvm::make_unique<BlockWaitcntBrackets>(*Bracket)); 414 } 415 416 bool isForceEmitWaitcnt() const { 417 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 418 T = (enum InstCounterType)(T + 1)) 419 if (ForceEmitWaitcnt[T]) 420 return true; 421 return false; 422 } 423 424 void setForceEmitWaitcnt() { 425 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 426 // For debug builds, get the debug counter info and adjust if need be 427 #ifndef NDEBUG 428 if (DebugCounter::isCounterSet(ForceExpCounter) && 429 DebugCounter::shouldExecute(ForceExpCounter)) { 430 ForceEmitWaitcnt[EXP_CNT] = true; 431 } else { 432 ForceEmitWaitcnt[EXP_CNT] = false; 433 } 434 435 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 436 DebugCounter::shouldExecute(ForceLgkmCounter)) { 437 ForceEmitWaitcnt[LGKM_CNT] = true; 438 } else { 439 ForceEmitWaitcnt[LGKM_CNT] = false; 440 } 441 442 if (DebugCounter::isCounterSet(ForceVMCounter) && 443 DebugCounter::shouldExecute(ForceVMCounter)) { 444 ForceEmitWaitcnt[VM_CNT] = true; 445 } else { 446 ForceEmitWaitcnt[VM_CNT] = false; 447 } 448 #endif // NDEBUG 449 } 450 451 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 452 void generateWaitcntInstBefore(MachineInstr &MI, 453 BlockWaitcntBrackets *ScoreBrackets); 454 void updateEventWaitcntAfter(MachineInstr &Inst, 455 BlockWaitcntBrackets *ScoreBrackets); 456 void mergeInputScoreBrackets(MachineBasicBlock &Block); 457 bool isLoopBottom(const MachineLoop *Loop, const MachineBasicBlock *Block); 458 unsigned countNumBottomBlocks(const MachineLoop *Loop); 459 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); 460 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); 461 bool isWaitcntStronger(unsigned LHS, unsigned RHS); 462 unsigned combineWaitcnt(unsigned LHS, unsigned RHS); 463 }; 464 465 } // end anonymous namespace 466 467 RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, 468 const SIInstrInfo *TII, 469 const MachineRegisterInfo *MRI, 470 const SIRegisterInfo *TRI, 471 unsigned OpNo, 472 bool Def) const { 473 const MachineOperand &Op = MI->getOperand(OpNo); 474 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 475 (Def && !Op.isDef())) 476 return {-1, -1}; 477 478 // A use via a PW operand does not need a waitcnt. 479 // A partial write is not a WAW. 480 assert(!Op.getSubReg() || !Op.isUndef()); 481 482 RegInterval Result; 483 const MachineRegisterInfo &MRIA = *MRI; 484 485 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 486 487 if (TRI->isVGPR(MRIA, Op.getReg())) { 488 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 489 Result.first = Reg - RegisterEncoding.VGPR0; 490 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 491 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 492 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 493 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 494 assert(Result.first >= NUM_ALL_VGPRS && 495 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 496 } 497 // TODO: Handle TTMP 498 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 499 else 500 return {-1, -1}; 501 502 const MachineInstr &MIA = *MI; 503 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 504 unsigned Size = TRI->getRegSizeInBits(*RC); 505 Result.second = Result.first + (Size / 32); 506 507 return Result; 508 } 509 510 void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, 511 const SIInstrInfo *TII, 512 const SIRegisterInfo *TRI, 513 const MachineRegisterInfo *MRI, 514 unsigned OpNo, int32_t Val) { 515 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 516 LLVM_DEBUG({ 517 const MachineOperand &Opnd = MI->getOperand(OpNo); 518 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 519 }); 520 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 521 setRegScore(RegNo, EXP_CNT, Val); 522 } 523 } 524 525 void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 526 const SIRegisterInfo *TRI, 527 const MachineRegisterInfo *MRI, 528 WaitEventType E, MachineInstr &Inst) { 529 const MachineRegisterInfo &MRIA = *MRI; 530 InstCounterType T = eventCounter(E); 531 int32_t CurrScore = getScoreUB(T) + 1; 532 // EventUB and ScoreUB need to be update regardless if this event changes 533 // the score of a register or not. 534 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 535 EventUBs[E] = CurrScore; 536 setScoreUB(T, CurrScore); 537 538 if (T == EXP_CNT) { 539 // Check for mixed export types. If they are mixed, then a waitcnt exp(0) 540 // is required. 541 if (!MixedExpTypes) { 542 MixedExpTypes = counterOutOfOrder(EXP_CNT); 543 } 544 545 // Put score on the source vgprs. If this is a store, just use those 546 // specific register(s). 547 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 548 // All GDS operations must protect their address register (same as 549 // export.) 550 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 551 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 552 setExpScore( 553 &Inst, TII, TRI, MRI, 554 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 555 CurrScore); 556 } 557 if (Inst.mayStore()) { 558 setExpScore( 559 &Inst, TII, TRI, MRI, 560 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 561 CurrScore); 562 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 563 AMDGPU::OpName::data1) != -1) { 564 setExpScore(&Inst, TII, TRI, MRI, 565 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 566 AMDGPU::OpName::data1), 567 CurrScore); 568 } 569 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 570 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 571 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 572 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 573 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 574 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 575 Inst.getOpcode() != AMDGPU::DS_APPEND && 576 Inst.getOpcode() != AMDGPU::DS_CONSUME && 577 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 578 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 579 const MachineOperand &Op = Inst.getOperand(I); 580 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 581 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 582 } 583 } 584 } 585 } else if (TII->isFLAT(Inst)) { 586 if (Inst.mayStore()) { 587 setExpScore( 588 &Inst, TII, TRI, MRI, 589 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 590 CurrScore); 591 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 592 setExpScore( 593 &Inst, TII, TRI, MRI, 594 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 595 CurrScore); 596 } 597 } else if (TII->isMIMG(Inst)) { 598 if (Inst.mayStore()) { 599 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 600 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 601 setExpScore( 602 &Inst, TII, TRI, MRI, 603 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 604 CurrScore); 605 } 606 } else if (TII->isMTBUF(Inst)) { 607 if (Inst.mayStore()) { 608 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 609 } 610 } else if (TII->isMUBUF(Inst)) { 611 if (Inst.mayStore()) { 612 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 613 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 614 setExpScore( 615 &Inst, TII, TRI, MRI, 616 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 617 CurrScore); 618 } 619 } else { 620 if (TII->isEXP(Inst)) { 621 // For export the destination registers are really temps that 622 // can be used as the actual source after export patching, so 623 // we need to treat them like sources and set the EXP_CNT 624 // score. 625 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 626 MachineOperand &DefMO = Inst.getOperand(I); 627 if (DefMO.isReg() && DefMO.isDef() && 628 TRI->isVGPR(MRIA, DefMO.getReg())) { 629 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 630 CurrScore); 631 } 632 } 633 } 634 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 635 MachineOperand &MO = Inst.getOperand(I); 636 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 637 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 638 } 639 } 640 } 641 #if 0 // TODO: check if this is handled by MUBUF code above. 642 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 643 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 644 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 645 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 646 unsigned OpNo;//TODO: find the OpNo for this operand; 647 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 648 for (signed RegNo = Interval.first; RegNo < Interval.second; 649 ++RegNo) { 650 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 651 } 652 #endif 653 } else { 654 // Match the score to the destination registers. 655 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 656 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 657 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 658 continue; 659 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 660 setRegScore(RegNo, T, CurrScore); 661 } 662 } 663 if (TII->isDS(Inst) && Inst.mayStore()) { 664 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 665 } 666 } 667 } 668 669 void BlockWaitcntBrackets::print(raw_ostream &OS) { 670 OS << '\n'; 671 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 672 T = (enum InstCounterType)(T + 1)) { 673 int LB = getScoreLB(T); 674 int UB = getScoreUB(T); 675 676 switch (T) { 677 case VM_CNT: 678 OS << " VM_CNT(" << UB - LB << "): "; 679 break; 680 case LGKM_CNT: 681 OS << " LGKM_CNT(" << UB - LB << "): "; 682 break; 683 case EXP_CNT: 684 OS << " EXP_CNT(" << UB - LB << "): "; 685 break; 686 default: 687 OS << " UNKNOWN(" << UB - LB << "): "; 688 break; 689 } 690 691 if (LB < UB) { 692 // Print vgpr scores. 693 for (int J = 0; J <= getMaxVGPR(); J++) { 694 int RegScore = getRegScore(J, T); 695 if (RegScore <= LB) 696 continue; 697 int RelScore = RegScore - LB - 1; 698 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 699 OS << RelScore << ":v" << J << " "; 700 } else { 701 OS << RelScore << ":ds "; 702 } 703 } 704 // Also need to print sgpr scores for lgkm_cnt. 705 if (T == LGKM_CNT) { 706 for (int J = 0; J <= getMaxSGPR(); J++) { 707 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 708 if (RegScore <= LB) 709 continue; 710 int RelScore = RegScore - LB - 1; 711 OS << RelScore << ":s" << J << " "; 712 } 713 } 714 } 715 OS << '\n'; 716 } 717 OS << '\n'; 718 } 719 720 unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, 721 int ScoreToWait) { 722 unsigned int NeedWait = 0; 723 if (ScoreToWait == -1) { 724 // The score to wait is unknown. This implies that it was not encountered 725 // during the path of the CFG walk done during the current traversal but 726 // may be seen on a different path. Emit an s_wait counter with a 727 // conservative value of 0 for the counter. 728 NeedWait = CNT_MASK(T); 729 setScoreLB(T, getScoreUB(T)); 730 return NeedWait; 731 } 732 733 // If the score of src_operand falls within the bracket, we need an 734 // s_waitcnt instruction. 735 const int32_t LB = getScoreLB(T); 736 const int32_t UB = getScoreUB(T); 737 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 738 if (T == VM_CNT && hasPendingFlat()) { 739 // If there is a pending FLAT operation, and this is a VM waitcnt, 740 // then we need to force a waitcnt 0 for VM. 741 NeedWait = CNT_MASK(T); 742 setScoreLB(T, getScoreUB(T)); 743 } else if (counterOutOfOrder(T)) { 744 // Counter can get decremented out-of-order when there 745 // are multiple types event in the bracket. Also emit an s_wait counter 746 // with a conservative value of 0 for the counter. 747 NeedWait = CNT_MASK(T); 748 setScoreLB(T, getScoreUB(T)); 749 } else { 750 NeedWait = CNT_MASK(T); 751 setScoreLB(T, ScoreToWait); 752 } 753 } 754 755 return NeedWait; 756 } 757 758 // Where there are multiple types of event in the bracket of a counter, 759 // the decrement may go out of order. 760 bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { 761 switch (T) { 762 case VM_CNT: 763 return false; 764 case LGKM_CNT: { 765 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 766 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { 767 // Scalar memory read always can go out of order. 768 return true; 769 } 770 int NumEventTypes = 0; 771 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && 772 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 773 NumEventTypes++; 774 } 775 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && 776 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 777 NumEventTypes++; 778 } 779 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && 780 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { 781 NumEventTypes++; 782 } 783 if (NumEventTypes <= 1) { 784 return false; 785 } 786 break; 787 } 788 case EXP_CNT: { 789 // If there has been a mixture of export types, then a waitcnt exp(0) is 790 // required. 791 if (MixedExpTypes) 792 return true; 793 int NumEventTypes = 0; 794 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && 795 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 796 NumEventTypes++; 797 } 798 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && 799 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 800 NumEventTypes++; 801 } 802 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && 803 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 804 NumEventTypes++; 805 } 806 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && 807 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { 808 NumEventTypes++; 809 } 810 811 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && 812 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { 813 NumEventTypes++; 814 } 815 816 if (NumEventTypes <= 1) { 817 return false; 818 } 819 break; 820 } 821 default: 822 break; 823 } 824 return true; 825 } 826 827 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 828 false) 829 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 830 false) 831 832 char SIInsertWaitcnts::ID = 0; 833 834 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 835 836 FunctionPass *llvm::createSIInsertWaitcntsPass() { 837 return new SIInsertWaitcnts(); 838 } 839 840 static bool readsVCCZ(const MachineInstr &MI) { 841 unsigned Opc = MI.getOpcode(); 842 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 843 !MI.getOperand(1).isUndef(); 844 } 845 846 /// Given wait count encodings checks if LHS is stronger than RHS. 847 bool SIInsertWaitcnts::isWaitcntStronger(unsigned LHS, unsigned RHS) { 848 if (AMDGPU::decodeVmcnt(IV, LHS) > AMDGPU::decodeVmcnt(IV, RHS)) 849 return false; 850 if (AMDGPU::decodeLgkmcnt(IV, LHS) > AMDGPU::decodeLgkmcnt(IV, RHS)) 851 return false; 852 if (AMDGPU::decodeExpcnt(IV, LHS) > AMDGPU::decodeExpcnt(IV, RHS)) 853 return false; 854 return true; 855 } 856 857 /// Given wait count encodings create a new encoding which is stronger 858 /// or equal to both. 859 unsigned SIInsertWaitcnts::combineWaitcnt(unsigned LHS, unsigned RHS) { 860 unsigned VmCnt = std::min(AMDGPU::decodeVmcnt(IV, LHS), 861 AMDGPU::decodeVmcnt(IV, RHS)); 862 unsigned LgkmCnt = std::min(AMDGPU::decodeLgkmcnt(IV, LHS), 863 AMDGPU::decodeLgkmcnt(IV, RHS)); 864 unsigned ExpCnt = std::min(AMDGPU::decodeExpcnt(IV, LHS), 865 AMDGPU::decodeExpcnt(IV, RHS)); 866 return AMDGPU::encodeWaitcnt(IV, VmCnt, ExpCnt, LgkmCnt); 867 } 868 869 /// Generate s_waitcnt instruction to be placed before cur_Inst. 870 /// Instructions of a given type are returned in order, 871 /// but instructions of different types can complete out of order. 872 /// We rely on this in-order completion 873 /// and simply assign a score to the memory access instructions. 874 /// We keep track of the active "score bracket" to determine 875 /// if an access of a memory read requires an s_waitcnt 876 /// and if so what the value of each counter is. 877 /// The "score bracket" is bound by the lower bound and upper bound 878 /// scores (*_score_LB and *_score_ub respectively). 879 void SIInsertWaitcnts::generateWaitcntInstBefore( 880 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { 881 // To emit, or not to emit - that's the question! 882 // Start with an assumption that there is no need to emit. 883 unsigned int EmitWaitcnt = 0; 884 885 // No need to wait before phi. If a phi-move exists, then the wait should 886 // has been inserted before the move. If a phi-move does not exist, then 887 // wait should be inserted before the real use. The same is true for 888 // sc-merge. It is not a coincident that all these cases correspond to the 889 // instructions that are skipped in the assembling loop. 890 bool NeedLineMapping = false; // TODO: Check on this. 891 892 // ForceEmitZeroWaitcnt: force a single s_waitcnt 0 due to hw bug 893 bool ForceEmitZeroWaitcnt = false; 894 895 setForceEmitWaitcnt(); 896 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 897 898 if (MI.isDebugInstr() && 899 // TODO: any other opcode? 900 !NeedLineMapping) { 901 return; 902 } 903 904 // See if an s_waitcnt is forced at block entry, or is needed at 905 // program end. 906 if (ScoreBrackets->getWaitAtBeginning()) { 907 // Note that we have already cleared the state, so we don't need to update 908 // it. 909 ScoreBrackets->clearWaitAtBeginning(); 910 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 911 T = (enum InstCounterType)(T + 1)) { 912 EmitWaitcnt |= CNT_MASK(T); 913 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 914 } 915 } 916 917 // See if this instruction has a forced S_WAITCNT VM. 918 // TODO: Handle other cases of NeedsWaitcntVmBefore() 919 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 920 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 921 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 922 EmitWaitcnt |= 923 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 924 } 925 926 // All waits must be resolved at call return. 927 // NOTE: this could be improved with knowledge of all call sites or 928 // with knowledge of the called routines. 929 if (MI.getOpcode() == AMDGPU::RETURN || 930 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 931 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 932 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 933 T = (enum InstCounterType)(T + 1)) { 934 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 935 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 936 EmitWaitcnt |= CNT_MASK(T); 937 } 938 } 939 } 940 // Resolve vm waits before gs-done. 941 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 942 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 943 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 944 AMDGPU::SendMsg::ID_GS_DONE)) { 945 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { 946 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 947 EmitWaitcnt |= CNT_MASK(VM_CNT); 948 } 949 } 950 #if 0 // TODO: the following blocks of logic when we have fence. 951 else if (MI.getOpcode() == SC_FENCE) { 952 const unsigned int group_size = 953 context->shader_info->GetMaxThreadGroupSize(); 954 // group_size == 0 means thread group size is unknown at compile time 955 const bool group_is_multi_wave = 956 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 957 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 958 959 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 960 SCRegType src_type = Inst->GetSrcType(i); 961 switch (src_type) { 962 case SCMEM_LDS: 963 if (group_is_multi_wave || 964 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 965 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 966 ScoreBrackets->getScoreUB(LGKM_CNT)); 967 // LDS may have to wait for VM_CNT after buffer load to LDS 968 if (target_info->HasBufferLoadToLDS()) { 969 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 970 ScoreBrackets->getScoreUB(VM_CNT)); 971 } 972 } 973 break; 974 975 case SCMEM_GDS: 976 if (group_is_multi_wave || fence_is_global) { 977 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 978 ScoreBrackets->getScoreUB(EXP_CNT)); 979 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 980 ScoreBrackets->getScoreUB(LGKM_CNT)); 981 } 982 break; 983 984 case SCMEM_UAV: 985 case SCMEM_TFBUF: 986 case SCMEM_RING: 987 case SCMEM_SCATTER: 988 if (group_is_multi_wave || fence_is_global) { 989 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 990 ScoreBrackets->getScoreUB(EXP_CNT)); 991 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 992 ScoreBrackets->getScoreUB(VM_CNT)); 993 } 994 break; 995 996 case SCMEM_SCRATCH: 997 default: 998 break; 999 } 1000 } 1001 } 1002 #endif 1003 1004 // Export & GDS instructions do not read the EXEC mask until after the export 1005 // is granted (which can occur well after the instruction is issued). 1006 // The shader program must flush all EXP operations on the export-count 1007 // before overwriting the EXEC mask. 1008 else { 1009 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1010 // Export and GDS are tracked individually, either may trigger a waitcnt 1011 // for EXEC. 1012 EmitWaitcnt |= ScoreBrackets->updateByWait( 1013 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); 1014 EmitWaitcnt |= ScoreBrackets->updateByWait( 1015 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); 1016 EmitWaitcnt |= ScoreBrackets->updateByWait( 1017 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); 1018 EmitWaitcnt |= ScoreBrackets->updateByWait( 1019 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); 1020 } 1021 1022 #if 0 // TODO: the following code to handle CALL. 1023 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 1024 // However, there is a problem with EXP_CNT, because the call cannot 1025 // easily tell if a register is used in the function, and if it did, then 1026 // the referring instruction would have to have an S_WAITCNT, which is 1027 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 1028 // before the call. 1029 if (MI.getOpcode() == SC_CALL) { 1030 if (ScoreBrackets->getScoreUB(EXP_CNT) > 1031 ScoreBrackets->getScoreLB(EXP_CNT)) { 1032 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1033 EmitWaitcnt |= CNT_MASK(EXP_CNT); 1034 } 1035 } 1036 #endif 1037 1038 // FIXME: Should not be relying on memoperands. 1039 // Look at the source operands of every instruction to see if 1040 // any of them results from a previous memory operation that affects 1041 // its current usage. If so, an s_waitcnt instruction needs to be 1042 // emitted. 1043 // If the source operand was defined by a load, add the s_waitcnt 1044 // instruction. 1045 for (const MachineMemOperand *Memop : MI.memoperands()) { 1046 unsigned AS = Memop->getAddrSpace(); 1047 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1048 continue; 1049 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1050 // VM_CNT is only relevant to vgpr or LDS. 1051 EmitWaitcnt |= ScoreBrackets->updateByWait( 1052 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1053 } 1054 1055 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1056 const MachineOperand &Op = MI.getOperand(I); 1057 const MachineRegisterInfo &MRIA = *MRI; 1058 RegInterval Interval = 1059 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); 1060 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1061 if (TRI->isVGPR(MRIA, Op.getReg())) { 1062 // VM_CNT is only relevant to vgpr or LDS. 1063 EmitWaitcnt |= ScoreBrackets->updateByWait( 1064 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1065 } 1066 EmitWaitcnt |= ScoreBrackets->updateByWait( 1067 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1068 } 1069 } 1070 // End of for loop that looks at all source operands to decide vm_wait_cnt 1071 // and lgk_wait_cnt. 1072 1073 // Two cases are handled for destination operands: 1074 // 1) If the destination operand was defined by a load, add the s_waitcnt 1075 // instruction to guarantee the right WAW order. 1076 // 2) If a destination operand that was used by a recent export/store ins, 1077 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1078 if (MI.mayStore()) { 1079 // FIXME: Should not be relying on memoperands. 1080 for (const MachineMemOperand *Memop : MI.memoperands()) { 1081 unsigned AS = Memop->getAddrSpace(); 1082 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1083 continue; 1084 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1085 EmitWaitcnt |= ScoreBrackets->updateByWait( 1086 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1087 EmitWaitcnt |= ScoreBrackets->updateByWait( 1088 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1089 } 1090 } 1091 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1092 MachineOperand &Def = MI.getOperand(I); 1093 const MachineRegisterInfo &MRIA = *MRI; 1094 RegInterval Interval = 1095 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); 1096 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1097 if (TRI->isVGPR(MRIA, Def.getReg())) { 1098 EmitWaitcnt |= ScoreBrackets->updateByWait( 1099 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1100 EmitWaitcnt |= ScoreBrackets->updateByWait( 1101 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1102 } 1103 EmitWaitcnt |= ScoreBrackets->updateByWait( 1104 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1105 } 1106 } // End of for loop that looks at all dest operands. 1107 } 1108 1109 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1110 // occurs before the instruction. Doing it here prevents any additional 1111 // S_WAITCNTs from being emitted if the instruction was marked as 1112 // requiring a WAITCNT beforehand. 1113 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1114 !ST->hasAutoWaitcntBeforeBarrier()) { 1115 EmitWaitcnt |= 1116 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1117 EmitWaitcnt |= ScoreBrackets->updateByWait( 1118 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1119 EmitWaitcnt |= ScoreBrackets->updateByWait( 1120 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); 1121 } 1122 1123 // TODO: Remove this work-around, enable the assert for Bug 457939 1124 // after fixing the scheduler. Also, the Shader Compiler code is 1125 // independent of target. 1126 if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { 1127 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1128 ScoreBrackets->getScoreUB(LGKM_CNT) && 1129 ScoreBrackets->hasPendingSMEM()) { 1130 // Wait on everything, not just LGKM. vccz reads usually come from 1131 // terminators, and we always wait on everything at the end of the 1132 // block, so if we only wait on LGKM here, we might end up with 1133 // another s_waitcnt inserted right after this if there are non-LGKM 1134 // instructions still outstanding. 1135 // FIXME: this is too conservative / the comment is wrong. 1136 // We don't wait on everything at the end of the block and we combine 1137 // waitcnts so we should never have back-to-back waitcnts. 1138 ForceEmitZeroWaitcnt = true; 1139 EmitWaitcnt = true; 1140 } 1141 } 1142 1143 // Does this operand processing indicate s_wait counter update? 1144 if (EmitWaitcnt || IsForceEmitWaitcnt) { 1145 int CntVal[NUM_INST_CNTS]; 1146 1147 bool UseDefaultWaitcntStrategy = true; 1148 if (ForceEmitZeroWaitcnt || ForceEmitZeroWaitcnts) { 1149 // Force all waitcnts to 0. 1150 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1151 T = (enum InstCounterType)(T + 1)) { 1152 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1153 } 1154 CntVal[VM_CNT] = 0; 1155 CntVal[EXP_CNT] = 0; 1156 CntVal[LGKM_CNT] = 0; 1157 UseDefaultWaitcntStrategy = false; 1158 } 1159 1160 if (UseDefaultWaitcntStrategy) { 1161 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1162 T = (enum InstCounterType)(T + 1)) { 1163 if (EmitWaitcnt & CNT_MASK(T)) { 1164 int Delta = 1165 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); 1166 int MaxDelta = ScoreBrackets->getWaitCountMax(T); 1167 if (Delta >= MaxDelta) { 1168 Delta = -1; 1169 if (T != EXP_CNT) { 1170 ScoreBrackets->setScoreLB( 1171 T, ScoreBrackets->getScoreUB(T) - MaxDelta); 1172 } 1173 EmitWaitcnt &= ~CNT_MASK(T); 1174 } 1175 CntVal[T] = Delta; 1176 } else { 1177 // If we are not waiting for a particular counter then encode 1178 // it as -1 which means "don't care." 1179 CntVal[T] = -1; 1180 } 1181 } 1182 } 1183 1184 // If we are not waiting on any counter we can skip the wait altogether. 1185 if (EmitWaitcnt != 0 || IsForceEmitWaitcnt) { 1186 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); 1187 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); 1188 if (!OldWaitcnt || 1189 (AMDGPU::decodeVmcnt(IV, Imm) != 1190 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || 1191 (AMDGPU::decodeExpcnt(IV, Imm) != 1192 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || 1193 (AMDGPU::decodeLgkmcnt(IV, Imm) != 1194 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { 1195 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); 1196 if (ContainingLoop) { 1197 MachineBasicBlock *TBB = ContainingLoop->getHeader(); 1198 BlockWaitcntBrackets *ScoreBracket = 1199 BlockWaitcntBracketsMap[TBB].get(); 1200 if (!ScoreBracket) { 1201 assert(!BlockVisitedSet.count(TBB)); 1202 BlockWaitcntBracketsMap[TBB] = 1203 llvm::make_unique<BlockWaitcntBrackets>(); 1204 ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); 1205 } 1206 ScoreBracket->setRevisitLoop(true); 1207 LLVM_DEBUG(dbgs() 1208 << "set-revisit2: Block" 1209 << ContainingLoop->getHeader()->getNumber() << '\n';); 1210 } 1211 } 1212 1213 // Update an existing waitcount, or make a new one. 1214 unsigned Enc = AMDGPU::encodeWaitcnt(IV, 1215 ForceEmitWaitcnt[VM_CNT] ? 0 : CntVal[VM_CNT], 1216 ForceEmitWaitcnt[EXP_CNT] ? 0 : CntVal[EXP_CNT], 1217 ForceEmitWaitcnt[LGKM_CNT] ? 0 : CntVal[LGKM_CNT]); 1218 // We don't remove waitcnts that existed prior to the waitcnt 1219 // pass. Check if the waitcnt to-be-inserted can be avoided 1220 // or if the prev waitcnt can be updated. 1221 bool insertSWaitInst = true; 1222 for (MachineBasicBlock::iterator I = MI.getIterator(), 1223 B = MI.getParent()->begin(); 1224 insertSWaitInst && I != B; --I) { 1225 if (I == MI.getIterator()) 1226 continue; 1227 1228 switch (I->getOpcode()) { 1229 case AMDGPU::S_WAITCNT: 1230 if (isWaitcntStronger(I->getOperand(0).getImm(), Enc)) 1231 insertSWaitInst = false; 1232 else if (!OldWaitcnt) { 1233 OldWaitcnt = &*I; 1234 Enc = combineWaitcnt(I->getOperand(0).getImm(), Enc); 1235 } 1236 break; 1237 // TODO: skip over instructions which never require wait. 1238 } 1239 break; 1240 } 1241 if (insertSWaitInst) { 1242 if (OldWaitcnt && OldWaitcnt->getOpcode() == AMDGPU::S_WAITCNT) { 1243 if (ForceEmitZeroWaitcnts) 1244 LLVM_DEBUG( 1245 dbgs() 1246 << "Force emit s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)\n"); 1247 if (IsForceEmitWaitcnt) 1248 LLVM_DEBUG(dbgs() 1249 << "Force emit a s_waitcnt due to debug counter\n"); 1250 1251 OldWaitcnt->getOperand(0).setImm(Enc); 1252 if (!OldWaitcnt->getParent()) 1253 MI.getParent()->insert(MI, OldWaitcnt); 1254 1255 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1256 << "Old Instr: " << MI << '\n' 1257 << "New Instr: " << *OldWaitcnt << '\n'); 1258 } else { 1259 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1260 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1261 .addImm(Enc); 1262 TrackedWaitcntSet.insert(SWaitInst); 1263 1264 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1265 << "Old Instr: " << MI << '\n' 1266 << "New Instr: " << *SWaitInst << '\n'); 1267 } 1268 } 1269 1270 if (CntVal[EXP_CNT] == 0) { 1271 ScoreBrackets->setMixedExpTypes(false); 1272 } 1273 } 1274 } 1275 } 1276 1277 void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, 1278 MachineInstr *Waitcnt) { 1279 if (MBB.empty()) { 1280 MBB.push_back(Waitcnt); 1281 return; 1282 } 1283 1284 MachineBasicBlock::iterator It = MBB.end(); 1285 MachineInstr *MI = &*(--It); 1286 if (MI->isBranch()) { 1287 MBB.insert(It, Waitcnt); 1288 } else { 1289 MBB.push_back(Waitcnt); 1290 } 1291 } 1292 1293 // This is a flat memory operation. Check to see if it has memory 1294 // tokens for both LDS and Memory, and if so mark it as a flat. 1295 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1296 if (MI.memoperands_empty()) 1297 return true; 1298 1299 for (const MachineMemOperand *Memop : MI.memoperands()) { 1300 unsigned AS = Memop->getAddrSpace(); 1301 if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) 1302 return true; 1303 } 1304 1305 return false; 1306 } 1307 1308 void SIInsertWaitcnts::updateEventWaitcntAfter( 1309 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { 1310 // Now look at the instruction opcode. If it is a memory access 1311 // instruction, update the upper-bound of the appropriate counter's 1312 // bracket and the destination operand scores. 1313 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1314 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1315 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1316 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1317 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1318 } else { 1319 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1320 } 1321 } else if (TII->isFLAT(Inst)) { 1322 assert(Inst.mayLoad() || Inst.mayStore()); 1323 1324 if (TII->usesVM_CNT(Inst)) 1325 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1326 1327 if (TII->usesLGKM_CNT(Inst)) { 1328 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1329 1330 // This is a flat memory operation, so note it - it will require 1331 // that both the VM and LGKM be flushed to zero if it is pending when 1332 // a VM or LGKM dependency occurs. 1333 if (mayAccessLDSThroughFlat(Inst)) 1334 ScoreBrackets->setPendingFlat(); 1335 } 1336 } else if (SIInstrInfo::isVMEM(Inst) && 1337 // TODO: get a better carve out. 1338 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1339 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1340 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1341 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1342 if (ST->vmemWriteNeedsExpWaitcnt() && 1343 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1344 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1345 } 1346 } else if (TII->isSMRD(Inst)) { 1347 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1348 } else { 1349 switch (Inst.getOpcode()) { 1350 case AMDGPU::S_SENDMSG: 1351 case AMDGPU::S_SENDMSGHALT: 1352 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1353 break; 1354 case AMDGPU::EXP: 1355 case AMDGPU::EXP_DONE: { 1356 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1357 if (Imm >= 32 && Imm <= 63) 1358 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1359 else if (Imm >= 12 && Imm <= 15) 1360 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1361 else 1362 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1363 break; 1364 } 1365 case AMDGPU::S_MEMTIME: 1366 case AMDGPU::S_MEMREALTIME: 1367 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1368 break; 1369 default: 1370 break; 1371 } 1372 } 1373 } 1374 1375 // Merge the score brackets of the Block's predecessors; 1376 // this merged score bracket is used when adding waitcnts to the Block 1377 void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { 1378 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1379 int32_t MaxPending[NUM_INST_CNTS] = {0}; 1380 int32_t MaxFlat[NUM_INST_CNTS] = {0}; 1381 bool MixedExpTypes = false; 1382 1383 // For single basic block loops, we need to retain the Block's 1384 // score bracket to have accurate Pred info. So, make a copy of Block's 1385 // score bracket, clear() it (which retains several important bits of info), 1386 // populate, and then replace en masse. For non-single basic block loops, 1387 // just clear Block's current score bracket and repopulate in-place. 1388 bool IsSelfPred; 1389 std::unique_ptr<BlockWaitcntBrackets> S; 1390 1391 IsSelfPred = (std::find(Block.pred_begin(), Block.pred_end(), &Block)) 1392 != Block.pred_end(); 1393 if (IsSelfPred) { 1394 S = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1395 ScoreBrackets = S.get(); 1396 } 1397 1398 ScoreBrackets->clear(); 1399 1400 // See if there are any uninitialized predecessors. If so, emit an 1401 // s_waitcnt 0 at the beginning of the block. 1402 for (MachineBasicBlock *Pred : Block.predecessors()) { 1403 BlockWaitcntBrackets *PredScoreBrackets = 1404 BlockWaitcntBracketsMap[Pred].get(); 1405 bool Visited = BlockVisitedSet.count(Pred); 1406 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1407 continue; 1408 } 1409 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1410 T = (enum InstCounterType)(T + 1)) { 1411 int span = 1412 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); 1413 MaxPending[T] = std::max(MaxPending[T], span); 1414 span = 1415 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); 1416 MaxFlat[T] = std::max(MaxFlat[T], span); 1417 } 1418 1419 MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); 1420 } 1421 1422 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1423 // Also handle kills for exit block. 1424 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1425 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1426 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1427 T = (enum InstCounterType)(T + 1)) { 1428 int Span = KillWaitBrackets[I]->getScoreUB(T) - 1429 KillWaitBrackets[I]->getScoreLB(T); 1430 MaxPending[T] = std::max(MaxPending[T], Span); 1431 Span = KillWaitBrackets[I]->pendingFlat(T) - 1432 KillWaitBrackets[I]->getScoreLB(T); 1433 MaxFlat[T] = std::max(MaxFlat[T], Span); 1434 } 1435 1436 MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); 1437 } 1438 } 1439 1440 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. 1441 for (MachineBasicBlock *Pred : Block.predecessors()) { 1442 BlockWaitcntBrackets *PredScoreBrackets = 1443 BlockWaitcntBracketsMap[Pred].get(); 1444 bool Visited = BlockVisitedSet.count(Pred); 1445 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1446 continue; 1447 } 1448 1449 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - 1450 PredScoreBrackets->getScoreLB(EXP_CNT); 1451 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1452 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - 1453 PredScoreBrackets->getScoreLB(EXP_CNT); 1454 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1455 } 1456 1457 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1458 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1459 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1460 int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - 1461 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1462 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1463 int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - 1464 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1465 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1466 } 1467 } 1468 1469 #if 0 1470 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. 1471 // TODO: how does LC distinguish between function entry and main entry? 1472 // If this is the entry to a function, force a wait. 1473 MachineBasicBlock &Entry = Block.getParent()->front(); 1474 if (Entry.getNumber() == Block.getNumber()) { 1475 ScoreBrackets->setWaitAtBeginning(); 1476 return; 1477 } 1478 #endif 1479 1480 // Now set the current Block's brackets to the largest ending bracket. 1481 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1482 T = (enum InstCounterType)(T + 1)) { 1483 ScoreBrackets->setScoreUB(T, MaxPending[T]); 1484 ScoreBrackets->setScoreLB(T, 0); 1485 ScoreBrackets->setLastFlat(T, MaxFlat[T]); 1486 } 1487 1488 ScoreBrackets->setMixedExpTypes(MixedExpTypes); 1489 1490 // Set the register scoreboard. 1491 for (MachineBasicBlock *Pred : Block.predecessors()) { 1492 if (!BlockVisitedSet.count(Pred)) { 1493 continue; 1494 } 1495 1496 BlockWaitcntBrackets *PredScoreBrackets = 1497 BlockWaitcntBracketsMap[Pred].get(); 1498 1499 // Now merge the gpr_reg_score information 1500 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1501 T = (enum InstCounterType)(T + 1)) { 1502 int PredLB = PredScoreBrackets->getScoreLB(T); 1503 int PredUB = PredScoreBrackets->getScoreUB(T); 1504 if (PredLB < PredUB) { 1505 int PredScale = MaxPending[T] - PredUB; 1506 // Merge vgpr scores. 1507 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { 1508 int PredRegScore = PredScoreBrackets->getRegScore(J, T); 1509 if (PredRegScore <= PredLB) 1510 continue; 1511 int NewRegScore = PredScale + PredRegScore; 1512 ScoreBrackets->setRegScore( 1513 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1514 } 1515 // Also need to merge sgpr scores for lgkm_cnt. 1516 if (T == LGKM_CNT) { 1517 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { 1518 int PredRegScore = 1519 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1520 if (PredRegScore <= PredLB) 1521 continue; 1522 int NewRegScore = PredScale + PredRegScore; 1523 ScoreBrackets->setRegScore( 1524 J + NUM_ALL_VGPRS, LGKM_CNT, 1525 std::max( 1526 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1527 NewRegScore)); 1528 } 1529 } 1530 } 1531 } 1532 1533 // Also merge the WaitEvent information. 1534 ForAllWaitEventType(W) { 1535 enum InstCounterType T = PredScoreBrackets->eventCounter(W); 1536 int PredEventUB = PredScoreBrackets->getEventUB(W); 1537 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { 1538 int NewEventUB = 1539 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); 1540 if (NewEventUB > 0) { 1541 ScoreBrackets->setEventUB( 1542 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1543 } 1544 } 1545 } 1546 } 1547 1548 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1549 // Set the register scoreboard. 1550 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1551 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1552 // Now merge the gpr_reg_score information. 1553 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1554 T = (enum InstCounterType)(T + 1)) { 1555 int PredLB = KillWaitBrackets[I]->getScoreLB(T); 1556 int PredUB = KillWaitBrackets[I]->getScoreUB(T); 1557 if (PredLB < PredUB) { 1558 int PredScale = MaxPending[T] - PredUB; 1559 // Merge vgpr scores. 1560 for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { 1561 int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); 1562 if (PredRegScore <= PredLB) 1563 continue; 1564 int NewRegScore = PredScale + PredRegScore; 1565 ScoreBrackets->setRegScore( 1566 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1567 } 1568 // Also need to merge sgpr scores for lgkm_cnt. 1569 if (T == LGKM_CNT) { 1570 for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { 1571 int PredRegScore = 1572 KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1573 if (PredRegScore <= PredLB) 1574 continue; 1575 int NewRegScore = PredScale + PredRegScore; 1576 ScoreBrackets->setRegScore( 1577 J + NUM_ALL_VGPRS, LGKM_CNT, 1578 std::max( 1579 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1580 NewRegScore)); 1581 } 1582 } 1583 } 1584 } 1585 1586 // Also merge the WaitEvent information. 1587 ForAllWaitEventType(W) { 1588 enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); 1589 int PredEventUB = KillWaitBrackets[I]->getEventUB(W); 1590 if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { 1591 int NewEventUB = 1592 MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); 1593 if (NewEventUB > 0) { 1594 ScoreBrackets->setEventUB( 1595 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1596 } 1597 } 1598 } 1599 } 1600 } 1601 1602 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the 1603 // sequencing predecessors, because changes to EXEC require waitcnts due to 1604 // the delayed nature of these operations. 1605 for (MachineBasicBlock *Pred : Block.predecessors()) { 1606 if (!BlockVisitedSet.count(Pred)) { 1607 continue; 1608 } 1609 1610 BlockWaitcntBrackets *PredScoreBrackets = 1611 BlockWaitcntBracketsMap[Pred].get(); 1612 1613 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); 1614 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1615 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - 1616 PredScoreBrackets->getScoreUB(EXP_CNT); 1617 if (new_gds_ub > 0) { 1618 ScoreBrackets->setEventUB( 1619 GDS_GPR_LOCK, 1620 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); 1621 } 1622 } 1623 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); 1624 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1625 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - 1626 PredScoreBrackets->getScoreUB(EXP_CNT); 1627 if (new_exp_ub > 0) { 1628 ScoreBrackets->setEventUB( 1629 EXP_GPR_LOCK, 1630 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); 1631 } 1632 } 1633 } 1634 1635 // if a single block loop, update the score brackets. Not needed for other 1636 // blocks, as we did this in-place 1637 if (IsSelfPred) { 1638 BlockWaitcntBracketsMap[&Block] = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1639 } 1640 } 1641 1642 /// Return true if the given basic block is a "bottom" block of a loop. 1643 /// This works even if the loop is discontiguous. This also handles 1644 /// multiple back-edges for the same "header" block of a loop. 1645 bool SIInsertWaitcnts::isLoopBottom(const MachineLoop *Loop, 1646 const MachineBasicBlock *Block) { 1647 for (MachineBasicBlock *MBB : Loop->blocks()) { 1648 if (MBB == Block && MBB->isSuccessor(Loop->getHeader())) { 1649 return true; 1650 } 1651 } 1652 return false; 1653 } 1654 1655 /// Count the number of "bottom" basic blocks of a loop. 1656 unsigned SIInsertWaitcnts::countNumBottomBlocks(const MachineLoop *Loop) { 1657 unsigned Count = 0; 1658 for (MachineBasicBlock *MBB : Loop->blocks()) { 1659 if (MBB->isSuccessor(Loop->getHeader())) { 1660 Count++; 1661 } 1662 } 1663 return Count; 1664 } 1665 1666 // Generate s_waitcnt instructions where needed. 1667 void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1668 MachineBasicBlock &Block) { 1669 // Initialize the state information. 1670 mergeInputScoreBrackets(Block); 1671 1672 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1673 1674 LLVM_DEBUG({ 1675 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1676 ScoreBrackets->dump(); 1677 }); 1678 1679 // Walk over the instructions. 1680 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1681 Iter != E;) { 1682 MachineInstr &Inst = *Iter; 1683 // Remove any previously existing waitcnts. 1684 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1685 // Leave pre-existing waitcnts, but note their existence via setWaitcnt. 1686 // Remove the waitcnt-pass-generated waitcnts; the pass will add them back 1687 // as needed. 1688 if (!TrackedWaitcntSet.count(&Inst)) 1689 ++Iter; 1690 else { 1691 ++Iter; 1692 Inst.removeFromParent(); 1693 } 1694 ScoreBrackets->setWaitcnt(&Inst); 1695 continue; 1696 } 1697 1698 // Kill instructions generate a conditional branch to the endmain block. 1699 // Merge the current waitcnt state into the endmain block information. 1700 // TODO: Are there other flavors of KILL instruction? 1701 if (Inst.getOpcode() == AMDGPU::KILL) { 1702 addKillWaitBracket(ScoreBrackets); 1703 } 1704 1705 bool VCCZBugWorkAround = false; 1706 if (readsVCCZ(Inst) && 1707 (!VCCZBugHandledSet.count(&Inst))) { 1708 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1709 ScoreBrackets->getScoreUB(LGKM_CNT) && 1710 ScoreBrackets->hasPendingSMEM()) { 1711 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) 1712 VCCZBugWorkAround = true; 1713 } 1714 } 1715 1716 // Generate an s_waitcnt instruction to be placed before 1717 // cur_Inst, if needed. 1718 generateWaitcntInstBefore(Inst, ScoreBrackets); 1719 1720 updateEventWaitcntAfter(Inst, ScoreBrackets); 1721 1722 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1723 // If this instruction generates a S_SETVSKIP because it is an 1724 // indexed resource, and we are on Tahiti, then it will also force 1725 // an S_WAITCNT vmcnt(0) 1726 if (RequireCheckResourceType(Inst, context)) { 1727 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1728 ScoreBrackets->setScoreLB(VM_CNT, 1729 ScoreBrackets->getScoreUB(VM_CNT)); 1730 } 1731 #endif 1732 1733 ScoreBrackets->clearWaitcnt(); 1734 1735 LLVM_DEBUG({ 1736 Inst.print(dbgs()); 1737 ScoreBrackets->dump(); 1738 }); 1739 1740 // Check to see if this is a GWS instruction. If so, and if this is CI or 1741 // VI, then the generated code sequence will include an S_WAITCNT 0. 1742 // TODO: Are these the only GWS instructions? 1743 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1744 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1745 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1746 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1747 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1748 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1749 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1750 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1751 ScoreBrackets->updateByWait(LGKM_CNT, 1752 ScoreBrackets->getScoreUB(LGKM_CNT)); 1753 } 1754 1755 // TODO: Remove this work-around after fixing the scheduler and enable the 1756 // assert above. 1757 if (VCCZBugWorkAround) { 1758 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1759 // bit is updated, so we can restore the bit by reading the value of 1760 // vcc and then writing it back to the register. 1761 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1762 AMDGPU::VCC) 1763 .addReg(AMDGPU::VCC); 1764 VCCZBugHandledSet.insert(&Inst); 1765 } 1766 1767 ++Iter; 1768 } 1769 1770 // Check if we need to force convergence at loop footer. 1771 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); 1772 if (ContainingLoop && isLoopBottom(ContainingLoop, &Block)) { 1773 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1774 WaitcntData->print(); 1775 LLVM_DEBUG(dbgs() << '\n';); 1776 1777 // The iterative waitcnt insertion algorithm aims for optimal waitcnt 1778 // placement, but doesn't guarantee convergence for a loop. Each 1779 // loop should take at most (n+1) iterations for it to converge naturally, 1780 // where n is the number of bottom blocks. If this threshold is reached and 1781 // the result hasn't converged, then we force convergence by inserting 1782 // a s_waitcnt at the end of loop footer. 1783 if (WaitcntData->getIterCnt() > (countNumBottomBlocks(ContainingLoop) + 1)) { 1784 // To ensure convergence, need to make wait events at loop footer be no 1785 // more than those from the previous iteration. 1786 // As a simplification, instead of tracking individual scores and 1787 // generating the precise wait count, just wait on 0. 1788 bool HasPending = false; 1789 MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); 1790 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1791 T = (enum InstCounterType)(T + 1)) { 1792 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 1793 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1794 HasPending = true; 1795 break; 1796 } 1797 } 1798 1799 if (HasPending) { 1800 if (!SWaitInst) { 1801 SWaitInst = BuildMI(Block, Block.getFirstNonPHI(), 1802 DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1803 .addImm(0); 1804 TrackedWaitcntSet.insert(SWaitInst); 1805 #if 0 // TODO: Format the debug output 1806 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); 1807 OutputTransformAdd(SWaitInst, context); 1808 #endif 1809 } 1810 #if 0 // TODO: ?? 1811 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) 1812 #endif 1813 } 1814 1815 if (SWaitInst) { 1816 LLVM_DEBUG({ 1817 SWaitInst->print(dbgs()); 1818 dbgs() << "\nAdjusted score board:"; 1819 ScoreBrackets->dump(); 1820 }); 1821 1822 // Add this waitcnt to the block. It is either newly created or 1823 // created in previous iterations and added back since block traversal 1824 // always removes waitcnts. 1825 insertWaitcntBeforeCF(Block, SWaitInst); 1826 WaitcntData->setWaitcnt(SWaitInst); 1827 } 1828 } 1829 } 1830 } 1831 1832 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1833 ST = &MF.getSubtarget<SISubtarget>(); 1834 TII = ST->getInstrInfo(); 1835 TRI = &TII->getRegisterInfo(); 1836 MRI = &MF.getRegInfo(); 1837 MLI = &getAnalysis<MachineLoopInfo>(); 1838 IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); 1839 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1840 AMDGPUASI = ST->getAMDGPUAS(); 1841 1842 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1843 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1844 T = (enum InstCounterType)(T + 1)) 1845 ForceEmitWaitcnt[T] = false; 1846 1847 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1848 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1849 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1850 1851 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1852 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1853 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1854 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1855 1856 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1857 RegisterEncoding.VGPRL = 1858 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1859 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1860 RegisterEncoding.SGPRL = 1861 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1862 1863 TrackedWaitcntSet.clear(); 1864 BlockVisitedSet.clear(); 1865 VCCZBugHandledSet.clear(); 1866 LoopWaitcntDataMap.clear(); 1867 1868 // Walk over the blocks in reverse post-dominator order, inserting 1869 // s_waitcnt where needed. 1870 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1871 bool Modified = false; 1872 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1873 I = RPOT.begin(), 1874 E = RPOT.end(), J = RPOT.begin(); 1875 I != E;) { 1876 MachineBasicBlock &MBB = **I; 1877 1878 BlockVisitedSet.insert(&MBB); 1879 1880 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1881 if (!ScoreBrackets) { 1882 BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(); 1883 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1884 } 1885 ScoreBrackets->setPostOrder(MBB.getNumber()); 1886 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); 1887 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) 1888 LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>(); 1889 1890 // If we are walking into the block from before the loop, then guarantee 1891 // at least 1 re-walk over the loop to propagate the information, even if 1892 // no S_WAITCNT instructions were generated. 1893 if (ContainingLoop && ContainingLoop->getHeader() == &MBB) { 1894 unsigned Count = countNumBottomBlocks(ContainingLoop); 1895 1896 // If the loop has multiple back-edges, and so more than one "bottom" 1897 // basic block, we have to guarantee a re-walk over every blocks. 1898 if ((std::count(BlockWaitcntProcessedSet.begin(), 1899 BlockWaitcntProcessedSet.end(), &MBB) < Count)) { 1900 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); 1901 LLVM_DEBUG(dbgs() << "set-revisit1: Block" 1902 << ContainingLoop->getHeader()->getNumber() << '\n';); 1903 } 1904 } 1905 1906 // Walk over the instructions. 1907 insertWaitcntInBlock(MF, MBB); 1908 1909 // Record that waitcnts have been processed at least once for this block. 1910 BlockWaitcntProcessedSet.push_back(&MBB); 1911 1912 // See if we want to revisit the loop. If a loop has multiple back-edges, 1913 // we shouldn't revisit the same "bottom" basic block. 1914 if (ContainingLoop && isLoopBottom(ContainingLoop, &MBB) && 1915 std::count(BlockWaitcntProcessedSet.begin(), 1916 BlockWaitcntProcessedSet.end(), &MBB) == 1) { 1917 MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); 1918 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); 1919 if (EntrySB && EntrySB->getRevisitLoop()) { 1920 EntrySB->setRevisitLoop(false); 1921 J = I; 1922 int32_t PostOrder = EntrySB->getPostOrder(); 1923 // TODO: Avoid this loop. Find another way to set I. 1924 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1925 X = RPOT.begin(), 1926 Y = RPOT.end(); 1927 X != Y; ++X) { 1928 MachineBasicBlock &MBBX = **X; 1929 if (MBBX.getNumber() == PostOrder) { 1930 I = X; 1931 break; 1932 } 1933 } 1934 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1935 WaitcntData->incIterCnt(); 1936 LLVM_DEBUG(dbgs() << "revisit: Block" << EntryBB->getNumber() << '\n';); 1937 continue; 1938 } else { 1939 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1940 // Loop converged, reset iteration count. If this loop gets revisited, 1941 // it must be from an outer loop, the counter will restart, this will 1942 // ensure we don't force convergence on such revisits. 1943 WaitcntData->resetIterCnt(); 1944 } 1945 } 1946 1947 J = I; 1948 ++I; 1949 } 1950 1951 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1952 1953 bool HaveScalarStores = false; 1954 1955 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1956 ++BI) { 1957 MachineBasicBlock &MBB = *BI; 1958 1959 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1960 ++I) { 1961 if (!HaveScalarStores && TII->isScalarStore(*I)) 1962 HaveScalarStores = true; 1963 1964 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1965 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1966 EndPgmBlocks.push_back(&MBB); 1967 } 1968 } 1969 1970 if (HaveScalarStores) { 1971 // If scalar writes are used, the cache must be flushed or else the next 1972 // wave to reuse the same scratch memory can be clobbered. 1973 // 1974 // Insert s_dcache_wb at wave termination points if there were any scalar 1975 // stores, and only if the cache hasn't already been flushed. This could be 1976 // improved by looking across blocks for flushes in postdominating blocks 1977 // from the stores but an explicitly requested flush is probably very rare. 1978 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1979 bool SeenDCacheWB = false; 1980 1981 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1982 ++I) { 1983 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1984 SeenDCacheWB = true; 1985 else if (TII->isScalarStore(*I)) 1986 SeenDCacheWB = false; 1987 1988 // FIXME: It would be better to insert this before a waitcnt if any. 1989 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1990 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1991 !SeenDCacheWB) { 1992 Modified = true; 1993 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1994 } 1995 } 1996 } 1997 } 1998 1999 if (!MFI->isEntryFunction()) { 2000 // Wait for any outstanding memory operations that the input registers may 2001 // depend on. We can't track them and it's better to the wait after the 2002 // costly call sequence. 2003 2004 // TODO: Could insert earlier and schedule more liberally with operations 2005 // that only use caller preserved registers. 2006 MachineBasicBlock &EntryBB = MF.front(); 2007 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 2008 .addImm(0); 2009 2010 Modified = true; 2011 } 2012 2013 return Modified; 2014 } 2015