1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "AMDGPUSubtarget.h" 28 #include "SIDefines.h" 29 #include "SIInstrInfo.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIRegisterInfo.h" 32 #include "Utils/AMDGPUBaseInfo.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/PostOrderIterator.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <cstring> 56 #include <memory> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "si-insert-waitcnts" 63 64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 65 "Force emit s_waitcnt expcnt(0) instrs"); 66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 67 "Force emit s_waitcnt lgkmcnt(0) instrs"); 68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 69 "Force emit s_waitcnt vmcnt(0) instrs"); 70 71 static cl::opt<bool> ForceEmitZeroFlag( 72 "amdgpu-waitcnt-forcezero", 73 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 74 cl::init(false), cl::Hidden); 75 76 namespace { 77 78 template <typename EnumT> 79 class enum_iterator 80 : public iterator_facade_base<enum_iterator<EnumT>, 81 std::forward_iterator_tag, const EnumT> { 82 EnumT Value; 83 public: 84 enum_iterator() = default; 85 enum_iterator(EnumT Value) : Value(Value) {} 86 87 enum_iterator &operator++() { 88 Value = static_cast<EnumT>(Value + 1); 89 return *this; 90 } 91 92 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 93 94 EnumT operator*() const { return Value; } 95 }; 96 97 // Class of object that encapsulates latest instruction counter score 98 // associated with the operand. Used for determining whether 99 // s_waitcnt instruction needs to be emited. 100 101 #define CNT_MASK(t) (1u << (t)) 102 103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 104 105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 106 return make_range(enum_iterator<InstCounterType>(VM_CNT), 107 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 108 } 109 110 using RegInterval = std::pair<signed, signed>; 111 112 struct { 113 uint32_t VmcntMax; 114 uint32_t ExpcntMax; 115 uint32_t LgkmcntMax; 116 uint32_t VscntMax; 117 int32_t NumVGPRsMax; 118 int32_t NumSGPRsMax; 119 } HardwareLimits; 120 121 struct { 122 unsigned VGPR0; 123 unsigned VGPRL; 124 unsigned SGPR0; 125 unsigned SGPRL; 126 } RegisterEncoding; 127 128 enum WaitEventType { 129 VMEM_ACCESS, // vector-memory read & write 130 VMEM_READ_ACCESS, // vector-memory read 131 VMEM_WRITE_ACCESS,// vector-memory write 132 LDS_ACCESS, // lds read & write 133 GDS_ACCESS, // gds read & write 134 SQ_MESSAGE, // send message 135 SMEM_ACCESS, // scalar-memory read & write 136 EXP_GPR_LOCK, // export holding on its data src 137 GDS_GPR_LOCK, // GDS holding on its data and addr src 138 EXP_POS_ACCESS, // write to export position 139 EXP_PARAM_ACCESS, // write to export parameter 140 VMW_GPR_LOCK, // vector-memory write holding on its data src 141 NUM_WAIT_EVENTS, 142 }; 143 144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { 145 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 146 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 147 (1 << SQ_MESSAGE), 148 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 149 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 150 (1 << VMEM_WRITE_ACCESS) 151 }; 152 153 // The mapping is: 154 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 155 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 156 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 157 // We reserve a fixed number of VGPR slots in the scoring tables for 158 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 159 enum RegisterMapping { 160 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 161 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 162 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 163 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 164 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 165 }; 166 167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 168 switch (T) { 169 case VM_CNT: 170 Wait.VmCnt = std::min(Wait.VmCnt, Count); 171 break; 172 case EXP_CNT: 173 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 174 break; 175 case LGKM_CNT: 176 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 177 break; 178 case VS_CNT: 179 Wait.VsCnt = std::min(Wait.VsCnt, Count); 180 break; 181 default: 182 llvm_unreachable("bad InstCounterType"); 183 } 184 } 185 186 // This objects maintains the current score brackets of each wait counter, and 187 // a per-register scoreboard for each wait counter. 188 // 189 // We also maintain the latest score for every event type that can change the 190 // waitcnt in order to know if there are multiple types of events within 191 // the brackets. When multiple types of event happen in the bracket, 192 // wait count may get decreased out of order, therefore we need to put in 193 // "s_waitcnt 0" before use. 194 class WaitcntBrackets { 195 public: 196 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { 197 for (auto T : inst_counter_types()) 198 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 199 } 200 201 static uint32_t getWaitCountMax(InstCounterType T) { 202 switch (T) { 203 case VM_CNT: 204 return HardwareLimits.VmcntMax; 205 case LGKM_CNT: 206 return HardwareLimits.LgkmcntMax; 207 case EXP_CNT: 208 return HardwareLimits.ExpcntMax; 209 case VS_CNT: 210 return HardwareLimits.VscntMax; 211 default: 212 break; 213 } 214 return 0; 215 } 216 217 uint32_t getScoreLB(InstCounterType T) const { 218 assert(T < NUM_INST_CNTS); 219 if (T >= NUM_INST_CNTS) 220 return 0; 221 return ScoreLBs[T]; 222 } 223 224 uint32_t getScoreUB(InstCounterType T) const { 225 assert(T < NUM_INST_CNTS); 226 if (T >= NUM_INST_CNTS) 227 return 0; 228 return ScoreUBs[T]; 229 } 230 231 // Mapping from event to counter. 232 InstCounterType eventCounter(WaitEventType E) { 233 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 234 return VM_CNT; 235 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 236 return LGKM_CNT; 237 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 238 return VS_CNT; 239 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 240 return EXP_CNT; 241 } 242 243 uint32_t getRegScore(int GprNo, InstCounterType T) { 244 if (GprNo < NUM_ALL_VGPRS) { 245 return VgprScores[T][GprNo]; 246 } 247 assert(T == LGKM_CNT); 248 return SgprScores[GprNo - NUM_ALL_VGPRS]; 249 } 250 251 void clear() { 252 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 253 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 254 PendingEvents = 0; 255 memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents)); 256 for (auto T : inst_counter_types()) 257 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 258 memset(SgprScores, 0, sizeof(SgprScores)); 259 } 260 261 bool merge(const WaitcntBrackets &Other); 262 263 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 264 const MachineRegisterInfo *MRI, 265 const SIRegisterInfo *TRI, unsigned OpNo, 266 bool Def) const; 267 268 int32_t getMaxVGPR() const { return VgprUB; } 269 int32_t getMaxSGPR() const { return SgprUB; } 270 271 bool counterOutOfOrder(InstCounterType T) const; 272 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 273 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 274 void determineWait(InstCounterType T, uint32_t ScoreToWait, 275 AMDGPU::Waitcnt &Wait) const; 276 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 277 void applyWaitcnt(InstCounterType T, unsigned Count); 278 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 279 const MachineRegisterInfo *MRI, WaitEventType E, 280 MachineInstr &MI); 281 282 bool hasPending() const { return PendingEvents != 0; } 283 bool hasPendingEvent(WaitEventType E) const { 284 return PendingEvents & (1 << E); 285 } 286 287 bool hasPendingFlat() const { 288 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 289 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 290 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 291 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 292 } 293 294 void setPendingFlat() { 295 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 296 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 297 } 298 299 void print(raw_ostream &); 300 void dump() { print(dbgs()); } 301 302 private: 303 struct MergeInfo { 304 uint32_t OldLB; 305 uint32_t OtherLB; 306 uint32_t MyShift; 307 uint32_t OtherShift; 308 }; 309 static bool mergeScore(const MergeInfo &M, uint32_t &Score, 310 uint32_t OtherScore); 311 312 void setScoreLB(InstCounterType T, uint32_t Val) { 313 assert(T < NUM_INST_CNTS); 314 if (T >= NUM_INST_CNTS) 315 return; 316 ScoreLBs[T] = Val; 317 } 318 319 void setScoreUB(InstCounterType T, uint32_t Val) { 320 assert(T < NUM_INST_CNTS); 321 if (T >= NUM_INST_CNTS) 322 return; 323 ScoreUBs[T] = Val; 324 if (T == EXP_CNT) { 325 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 326 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 327 ScoreLBs[T] = UB; 328 } 329 } 330 331 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { 332 if (GprNo < NUM_ALL_VGPRS) { 333 if (GprNo > VgprUB) { 334 VgprUB = GprNo; 335 } 336 VgprScores[T][GprNo] = Val; 337 } else { 338 assert(T == LGKM_CNT); 339 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 340 SgprUB = GprNo - NUM_ALL_VGPRS; 341 } 342 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 343 } 344 } 345 346 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 347 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 348 unsigned OpNo, uint32_t Val); 349 350 const GCNSubtarget *ST = nullptr; 351 uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; 352 uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; 353 uint32_t PendingEvents = 0; 354 bool MixedPendingEvents[NUM_INST_CNTS] = {false}; 355 // Remember the last flat memory operation. 356 uint32_t LastFlat[NUM_INST_CNTS] = {0}; 357 // wait_cnt scores for every vgpr. 358 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 359 int32_t VgprUB = 0; 360 int32_t SgprUB = 0; 361 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 362 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 363 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 364 }; 365 366 class SIInsertWaitcnts : public MachineFunctionPass { 367 private: 368 const GCNSubtarget *ST = nullptr; 369 const SIInstrInfo *TII = nullptr; 370 const SIRegisterInfo *TRI = nullptr; 371 const MachineRegisterInfo *MRI = nullptr; 372 AMDGPU::IsaVersion IV; 373 374 DenseSet<MachineInstr *> TrackedWaitcntSet; 375 DenseSet<MachineInstr *> VCCZBugHandledSet; 376 377 struct BlockInfo { 378 MachineBasicBlock *MBB; 379 std::unique_ptr<WaitcntBrackets> Incoming; 380 bool Dirty = true; 381 382 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 383 }; 384 385 std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index 386 DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap; 387 388 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 389 // because of amdgpu-waitcnt-forcezero flag 390 bool ForceEmitZeroWaitcnts; 391 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 392 393 public: 394 static char ID; 395 396 SIInsertWaitcnts() : MachineFunctionPass(ID) { 397 (void)ForceExpCounter; 398 (void)ForceLgkmCounter; 399 (void)ForceVMCounter; 400 } 401 402 bool runOnMachineFunction(MachineFunction &MF) override; 403 404 StringRef getPassName() const override { 405 return "SI insert wait instructions"; 406 } 407 408 void getAnalysisUsage(AnalysisUsage &AU) const override { 409 AU.setPreservesCFG(); 410 MachineFunctionPass::getAnalysisUsage(AU); 411 } 412 413 bool isForceEmitWaitcnt() const { 414 for (auto T : inst_counter_types()) 415 if (ForceEmitWaitcnt[T]) 416 return true; 417 return false; 418 } 419 420 void setForceEmitWaitcnt() { 421 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 422 // For debug builds, get the debug counter info and adjust if need be 423 #ifndef NDEBUG 424 if (DebugCounter::isCounterSet(ForceExpCounter) && 425 DebugCounter::shouldExecute(ForceExpCounter)) { 426 ForceEmitWaitcnt[EXP_CNT] = true; 427 } else { 428 ForceEmitWaitcnt[EXP_CNT] = false; 429 } 430 431 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 432 DebugCounter::shouldExecute(ForceLgkmCounter)) { 433 ForceEmitWaitcnt[LGKM_CNT] = true; 434 } else { 435 ForceEmitWaitcnt[LGKM_CNT] = false; 436 } 437 438 if (DebugCounter::isCounterSet(ForceVMCounter) && 439 DebugCounter::shouldExecute(ForceVMCounter)) { 440 ForceEmitWaitcnt[VM_CNT] = true; 441 } else { 442 ForceEmitWaitcnt[VM_CNT] = false; 443 } 444 #endif // NDEBUG 445 } 446 447 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 448 bool generateWaitcntInstBefore(MachineInstr &MI, 449 WaitcntBrackets &ScoreBrackets, 450 MachineInstr *OldWaitcntInstr); 451 void updateEventWaitcntAfter(MachineInstr &Inst, 452 WaitcntBrackets *ScoreBrackets); 453 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 454 WaitcntBrackets &ScoreBrackets); 455 }; 456 457 } // end anonymous namespace 458 459 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 460 const SIInstrInfo *TII, 461 const MachineRegisterInfo *MRI, 462 const SIRegisterInfo *TRI, 463 unsigned OpNo, bool Def) const { 464 const MachineOperand &Op = MI->getOperand(OpNo); 465 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 466 (Def && !Op.isDef())) 467 return {-1, -1}; 468 469 // A use via a PW operand does not need a waitcnt. 470 // A partial write is not a WAW. 471 assert(!Op.getSubReg() || !Op.isUndef()); 472 473 RegInterval Result; 474 const MachineRegisterInfo &MRIA = *MRI; 475 476 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 477 478 if (TRI->isVGPR(MRIA, Op.getReg())) { 479 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 480 Result.first = Reg - RegisterEncoding.VGPR0; 481 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 482 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 483 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 484 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 485 assert(Result.first >= NUM_ALL_VGPRS && 486 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 487 } 488 // TODO: Handle TTMP 489 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 490 else 491 return {-1, -1}; 492 493 const MachineInstr &MIA = *MI; 494 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 495 unsigned Size = TRI->getRegSizeInBits(*RC); 496 Result.second = Result.first + (Size / 32); 497 498 return Result; 499 } 500 501 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 502 const SIInstrInfo *TII, 503 const SIRegisterInfo *TRI, 504 const MachineRegisterInfo *MRI, unsigned OpNo, 505 uint32_t Val) { 506 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 507 LLVM_DEBUG({ 508 const MachineOperand &Opnd = MI->getOperand(OpNo); 509 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 510 }); 511 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 512 setRegScore(RegNo, EXP_CNT, Val); 513 } 514 } 515 516 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 517 const SIRegisterInfo *TRI, 518 const MachineRegisterInfo *MRI, 519 WaitEventType E, MachineInstr &Inst) { 520 const MachineRegisterInfo &MRIA = *MRI; 521 InstCounterType T = eventCounter(E); 522 uint32_t CurrScore = getScoreUB(T) + 1; 523 if (CurrScore == 0) 524 report_fatal_error("InsertWaitcnt score wraparound"); 525 // PendingEvents and ScoreUB need to be update regardless if this event 526 // changes the score of a register or not. 527 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 528 if (!hasPendingEvent(E)) { 529 if (PendingEvents & WaitEventMaskForInst[T]) 530 MixedPendingEvents[T] = true; 531 PendingEvents |= 1 << E; 532 } 533 setScoreUB(T, CurrScore); 534 535 if (T == EXP_CNT) { 536 // Put score on the source vgprs. If this is a store, just use those 537 // specific register(s). 538 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 539 int AddrOpIdx = 540 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 541 // All GDS operations must protect their address register (same as 542 // export.) 543 if (AddrOpIdx != -1) { 544 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 545 } else { 546 assert(Inst.getOpcode() == AMDGPU::DS_APPEND || 547 Inst.getOpcode() == AMDGPU::DS_CONSUME || 548 Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 549 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER); 550 } 551 552 if (Inst.mayStore()) { 553 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 554 AMDGPU::OpName::data0) != -1) { 555 setExpScore( 556 &Inst, TII, TRI, MRI, 557 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 558 CurrScore); 559 } 560 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 561 AMDGPU::OpName::data1) != -1) { 562 setExpScore(&Inst, TII, TRI, MRI, 563 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 564 AMDGPU::OpName::data1), 565 CurrScore); 566 } 567 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 568 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 569 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 570 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 571 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 572 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 573 Inst.getOpcode() != AMDGPU::DS_APPEND && 574 Inst.getOpcode() != AMDGPU::DS_CONSUME && 575 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 576 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 577 const MachineOperand &Op = Inst.getOperand(I); 578 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 579 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 580 } 581 } 582 } 583 } else if (TII->isFLAT(Inst)) { 584 if (Inst.mayStore()) { 585 setExpScore( 586 &Inst, TII, TRI, MRI, 587 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 588 CurrScore); 589 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 590 setExpScore( 591 &Inst, TII, TRI, MRI, 592 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 593 CurrScore); 594 } 595 } else if (TII->isMIMG(Inst)) { 596 if (Inst.mayStore()) { 597 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 598 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 599 setExpScore( 600 &Inst, TII, TRI, MRI, 601 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 602 CurrScore); 603 } 604 } else if (TII->isMTBUF(Inst)) { 605 if (Inst.mayStore()) { 606 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 607 } 608 } else if (TII->isMUBUF(Inst)) { 609 if (Inst.mayStore()) { 610 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 611 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 612 setExpScore( 613 &Inst, TII, TRI, MRI, 614 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 615 CurrScore); 616 } 617 } else { 618 if (TII->isEXP(Inst)) { 619 // For export the destination registers are really temps that 620 // can be used as the actual source after export patching, so 621 // we need to treat them like sources and set the EXP_CNT 622 // score. 623 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 624 MachineOperand &DefMO = Inst.getOperand(I); 625 if (DefMO.isReg() && DefMO.isDef() && 626 TRI->isVGPR(MRIA, DefMO.getReg())) { 627 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 628 CurrScore); 629 } 630 } 631 } 632 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 633 MachineOperand &MO = Inst.getOperand(I); 634 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 635 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 636 } 637 } 638 } 639 #if 0 // TODO: check if this is handled by MUBUF code above. 640 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 641 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 642 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 643 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 644 unsigned OpNo;//TODO: find the OpNo for this operand; 645 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 646 for (signed RegNo = Interval.first; RegNo < Interval.second; 647 ++RegNo) { 648 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 649 } 650 #endif 651 } else { 652 // Match the score to the destination registers. 653 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 654 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 655 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 656 continue; 657 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 658 setRegScore(RegNo, T, CurrScore); 659 } 660 } 661 if (TII->isDS(Inst) && Inst.mayStore()) { 662 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 663 } 664 } 665 } 666 667 void WaitcntBrackets::print(raw_ostream &OS) { 668 OS << '\n'; 669 for (auto T : inst_counter_types()) { 670 uint32_t LB = getScoreLB(T); 671 uint32_t UB = getScoreUB(T); 672 673 switch (T) { 674 case VM_CNT: 675 OS << " VM_CNT(" << UB - LB << "): "; 676 break; 677 case LGKM_CNT: 678 OS << " LGKM_CNT(" << UB - LB << "): "; 679 break; 680 case EXP_CNT: 681 OS << " EXP_CNT(" << UB - LB << "): "; 682 break; 683 case VS_CNT: 684 OS << " VS_CNT(" << UB - LB << "): "; 685 break; 686 default: 687 OS << " UNKNOWN(" << UB - LB << "): "; 688 break; 689 } 690 691 if (LB < UB) { 692 // Print vgpr scores. 693 for (int J = 0; J <= getMaxVGPR(); J++) { 694 uint32_t RegScore = getRegScore(J, T); 695 if (RegScore <= LB) 696 continue; 697 uint32_t RelScore = RegScore - LB - 1; 698 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 699 OS << RelScore << ":v" << J << " "; 700 } else { 701 OS << RelScore << ":ds "; 702 } 703 } 704 // Also need to print sgpr scores for lgkm_cnt. 705 if (T == LGKM_CNT) { 706 for (int J = 0; J <= getMaxSGPR(); J++) { 707 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 708 if (RegScore <= LB) 709 continue; 710 uint32_t RelScore = RegScore - LB - 1; 711 OS << RelScore << ":s" << J << " "; 712 } 713 } 714 } 715 OS << '\n'; 716 } 717 OS << '\n'; 718 } 719 720 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 721 /// whether a waitcnt instruction is needed at all. 722 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 723 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 724 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 725 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) | 726 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 727 } 728 729 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 730 unsigned &Count) const { 731 const uint32_t LB = getScoreLB(T); 732 const uint32_t UB = getScoreUB(T); 733 if (Count < UB && UB - Count > LB) 734 return true; 735 736 Count = ~0u; 737 return false; 738 } 739 740 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, 741 AMDGPU::Waitcnt &Wait) const { 742 // If the score of src_operand falls within the bracket, we need an 743 // s_waitcnt instruction. 744 const uint32_t LB = getScoreLB(T); 745 const uint32_t UB = getScoreUB(T); 746 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 747 if ((T == VM_CNT || T == LGKM_CNT) && 748 hasPendingFlat() && 749 !ST->hasFlatLgkmVMemCountInOrder()) { 750 // If there is a pending FLAT operation, and this is a VMem or LGKM 751 // waitcnt and the target can report early completion, then we need 752 // to force a waitcnt 0. 753 addWait(Wait, T, 0); 754 } else if (counterOutOfOrder(T)) { 755 // Counter can get decremented out-of-order when there 756 // are multiple types event in the bracket. Also emit an s_wait counter 757 // with a conservative value of 0 for the counter. 758 addWait(Wait, T, 0); 759 } else { 760 addWait(Wait, T, UB - ScoreToWait); 761 } 762 } 763 } 764 765 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 766 applyWaitcnt(VM_CNT, Wait.VmCnt); 767 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 768 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 769 applyWaitcnt(VS_CNT, Wait.VsCnt); 770 } 771 772 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 773 const uint32_t UB = getScoreUB(T); 774 if (Count >= UB) 775 return; 776 if (Count != 0) { 777 if (counterOutOfOrder(T)) 778 return; 779 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 780 } else { 781 setScoreLB(T, UB); 782 MixedPendingEvents[T] = false; 783 PendingEvents &= ~WaitEventMaskForInst[T]; 784 } 785 } 786 787 // Where there are multiple types of event in the bracket of a counter, 788 // the decrement may go out of order. 789 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 790 // Scalar memory read always can go out of order. 791 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 792 return true; 793 return MixedPendingEvents[T]; 794 } 795 796 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 797 false) 798 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 799 false) 800 801 char SIInsertWaitcnts::ID = 0; 802 803 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 804 805 FunctionPass *llvm::createSIInsertWaitcntsPass() { 806 return new SIInsertWaitcnts(); 807 } 808 809 static bool readsVCCZ(const MachineInstr &MI) { 810 unsigned Opc = MI.getOpcode(); 811 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 812 !MI.getOperand(1).isUndef(); 813 } 814 815 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 816 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 817 // Currently all conventions wait, but this may not always be the case. 818 // 819 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 820 // senses to omit the wait and do it in the caller. 821 return true; 822 } 823 824 /// \returns true if the callee is expected to wait for any outstanding waits 825 /// before returning. 826 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 827 return true; 828 } 829 830 /// Generate s_waitcnt instruction to be placed before cur_Inst. 831 /// Instructions of a given type are returned in order, 832 /// but instructions of different types can complete out of order. 833 /// We rely on this in-order completion 834 /// and simply assign a score to the memory access instructions. 835 /// We keep track of the active "score bracket" to determine 836 /// if an access of a memory read requires an s_waitcnt 837 /// and if so what the value of each counter is. 838 /// The "score bracket" is bound by the lower bound and upper bound 839 /// scores (*_score_LB and *_score_ub respectively). 840 bool SIInsertWaitcnts::generateWaitcntInstBefore( 841 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 842 MachineInstr *OldWaitcntInstr) { 843 setForceEmitWaitcnt(); 844 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 845 846 if (MI.isDebugInstr()) 847 return false; 848 849 AMDGPU::Waitcnt Wait; 850 851 // See if this instruction has a forced S_WAITCNT VM. 852 // TODO: Handle other cases of NeedsWaitcntVmBefore() 853 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 854 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 855 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 856 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 857 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 858 Wait.VmCnt = 0; 859 } 860 861 // All waits must be resolved at call return. 862 // NOTE: this could be improved with knowledge of all call sites or 863 // with knowledge of the called routines. 864 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 865 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 866 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 867 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 868 } 869 // Resolve vm waits before gs-done. 870 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 871 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 872 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 873 AMDGPU::SendMsg::ID_GS_DONE)) { 874 Wait.VmCnt = 0; 875 } 876 #if 0 // TODO: the following blocks of logic when we have fence. 877 else if (MI.getOpcode() == SC_FENCE) { 878 const unsigned int group_size = 879 context->shader_info->GetMaxThreadGroupSize(); 880 // group_size == 0 means thread group size is unknown at compile time 881 const bool group_is_multi_wave = 882 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 883 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 884 885 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 886 SCRegType src_type = Inst->GetSrcType(i); 887 switch (src_type) { 888 case SCMEM_LDS: 889 if (group_is_multi_wave || 890 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 891 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 892 ScoreBrackets->getScoreUB(LGKM_CNT)); 893 // LDS may have to wait for VM_CNT after buffer load to LDS 894 if (target_info->HasBufferLoadToLDS()) { 895 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 896 ScoreBrackets->getScoreUB(VM_CNT)); 897 } 898 } 899 break; 900 901 case SCMEM_GDS: 902 if (group_is_multi_wave || fence_is_global) { 903 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 904 ScoreBrackets->getScoreUB(EXP_CNT)); 905 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 906 ScoreBrackets->getScoreUB(LGKM_CNT)); 907 } 908 break; 909 910 case SCMEM_UAV: 911 case SCMEM_TFBUF: 912 case SCMEM_RING: 913 case SCMEM_SCATTER: 914 if (group_is_multi_wave || fence_is_global) { 915 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 916 ScoreBrackets->getScoreUB(EXP_CNT)); 917 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 918 ScoreBrackets->getScoreUB(VM_CNT)); 919 } 920 break; 921 922 case SCMEM_SCRATCH: 923 default: 924 break; 925 } 926 } 927 } 928 #endif 929 930 // Export & GDS instructions do not read the EXEC mask until after the export 931 // is granted (which can occur well after the instruction is issued). 932 // The shader program must flush all EXP operations on the export-count 933 // before overwriting the EXEC mask. 934 else { 935 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 936 // Export and GDS are tracked individually, either may trigger a waitcnt 937 // for EXEC. 938 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 939 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 940 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 941 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 942 Wait.ExpCnt = 0; 943 } 944 } 945 946 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 947 // Don't bother waiting on anything except the call address. The function 948 // is going to insert a wait on everything in its prolog. This still needs 949 // to be careful if the call target is a load (e.g. a GOT load). 950 Wait = AMDGPU::Waitcnt(); 951 952 int CallAddrOpIdx = 953 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 954 RegInterval Interval = ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, 955 CallAddrOpIdx, false); 956 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 957 ScoreBrackets.determineWait( 958 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 959 } 960 } else { 961 // FIXME: Should not be relying on memoperands. 962 // Look at the source operands of every instruction to see if 963 // any of them results from a previous memory operation that affects 964 // its current usage. If so, an s_waitcnt instruction needs to be 965 // emitted. 966 // If the source operand was defined by a load, add the s_waitcnt 967 // instruction. 968 for (const MachineMemOperand *Memop : MI.memoperands()) { 969 unsigned AS = Memop->getAddrSpace(); 970 if (AS != AMDGPUAS::LOCAL_ADDRESS) 971 continue; 972 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 973 // VM_CNT is only relevant to vgpr or LDS. 974 ScoreBrackets.determineWait( 975 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 976 } 977 978 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 979 const MachineOperand &Op = MI.getOperand(I); 980 const MachineRegisterInfo &MRIA = *MRI; 981 RegInterval Interval = 982 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); 983 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 984 if (TRI->isVGPR(MRIA, Op.getReg())) { 985 // VM_CNT is only relevant to vgpr or LDS. 986 ScoreBrackets.determineWait( 987 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 988 } 989 ScoreBrackets.determineWait( 990 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 991 } 992 } 993 // End of for loop that looks at all source operands to decide vm_wait_cnt 994 // and lgk_wait_cnt. 995 996 // Two cases are handled for destination operands: 997 // 1) If the destination operand was defined by a load, add the s_waitcnt 998 // instruction to guarantee the right WAW order. 999 // 2) If a destination operand that was used by a recent export/store ins, 1000 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1001 if (MI.mayStore()) { 1002 // FIXME: Should not be relying on memoperands. 1003 for (const MachineMemOperand *Memop : MI.memoperands()) { 1004 unsigned AS = Memop->getAddrSpace(); 1005 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1006 continue; 1007 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1008 ScoreBrackets.determineWait( 1009 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1010 ScoreBrackets.determineWait( 1011 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1012 } 1013 } 1014 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1015 MachineOperand &Def = MI.getOperand(I); 1016 const MachineRegisterInfo &MRIA = *MRI; 1017 RegInterval Interval = 1018 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); 1019 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1020 if (TRI->isVGPR(MRIA, Def.getReg())) { 1021 ScoreBrackets.determineWait( 1022 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1023 ScoreBrackets.determineWait( 1024 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1025 } 1026 ScoreBrackets.determineWait( 1027 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1028 } 1029 } // End of for loop that looks at all dest operands. 1030 } 1031 } 1032 1033 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1034 // occurs before the instruction. Doing it here prevents any additional 1035 // S_WAITCNTs from being emitted if the instruction was marked as 1036 // requiring a WAITCNT beforehand. 1037 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1038 !ST->hasAutoWaitcntBeforeBarrier()) { 1039 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 1040 } 1041 1042 // TODO: Remove this work-around, enable the assert for Bug 457939 1043 // after fixing the scheduler. Also, the Shader Compiler code is 1044 // independent of target. 1045 if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) { 1046 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1047 ScoreBrackets.getScoreUB(LGKM_CNT) && 1048 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1049 Wait.LgkmCnt = 0; 1050 } 1051 } 1052 1053 // Early-out if no wait is indicated. 1054 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1055 bool Modified = false; 1056 if (OldWaitcntInstr) { 1057 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1058 &*II != &MI; II = NextI, ++NextI) { 1059 if (II->isDebugInstr()) 1060 continue; 1061 1062 if (TrackedWaitcntSet.count(&*II)) { 1063 TrackedWaitcntSet.erase(&*II); 1064 II->eraseFromParent(); 1065 Modified = true; 1066 } else if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1067 int64_t Imm = II->getOperand(0).getImm(); 1068 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1069 } else { 1070 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1071 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1072 ScoreBrackets.applyWaitcnt( 1073 AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm())); 1074 } 1075 } 1076 } 1077 return Modified; 1078 } 1079 1080 if (ForceEmitZeroWaitcnts) 1081 Wait = AMDGPU::Waitcnt::allZero(IV); 1082 1083 if (ForceEmitWaitcnt[VM_CNT]) 1084 Wait.VmCnt = 0; 1085 if (ForceEmitWaitcnt[EXP_CNT]) 1086 Wait.ExpCnt = 0; 1087 if (ForceEmitWaitcnt[LGKM_CNT]) 1088 Wait.LgkmCnt = 0; 1089 if (ForceEmitWaitcnt[VS_CNT]) 1090 Wait.VsCnt = 0; 1091 1092 ScoreBrackets.applyWaitcnt(Wait); 1093 1094 AMDGPU::Waitcnt OldWait; 1095 bool Modified = false; 1096 1097 if (OldWaitcntInstr) { 1098 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1099 &*II != &MI; II = NextI, NextI++) { 1100 if (II->isDebugInstr()) 1101 continue; 1102 1103 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1104 unsigned IEnc = II->getOperand(0).getImm(); 1105 AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc); 1106 OldWait = OldWait.combined(IWait); 1107 if (!TrackedWaitcntSet.count(&*II)) 1108 Wait = Wait.combined(IWait); 1109 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 1110 if (IEnc != NewEnc) { 1111 II->getOperand(0).setImm(NewEnc); 1112 Modified = true; 1113 } 1114 Wait.VmCnt = ~0u; 1115 Wait.LgkmCnt = ~0u; 1116 Wait.ExpCnt = ~0u; 1117 } else { 1118 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1119 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1120 1121 unsigned ICnt = II->getOperand(1).getImm(); 1122 OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt); 1123 if (!TrackedWaitcntSet.count(&*II)) 1124 Wait.VsCnt = std::min(Wait.VsCnt, ICnt); 1125 if (Wait.VsCnt != ICnt) { 1126 II->getOperand(1).setImm(Wait.VsCnt); 1127 Modified = true; 1128 } 1129 Wait.VsCnt = ~0u; 1130 } 1131 1132 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1133 << "Old Instr: " << MI << '\n' 1134 << "New Instr: " << *II << '\n'); 1135 1136 if (!Wait.hasWait()) 1137 return Modified; 1138 } 1139 } 1140 1141 if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) { 1142 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1143 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1144 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1145 .addImm(Enc); 1146 TrackedWaitcntSet.insert(SWaitInst); 1147 Modified = true; 1148 1149 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1150 << "Old Instr: " << MI << '\n' 1151 << "New Instr: " << *SWaitInst << '\n'); 1152 } 1153 1154 if (Wait.VsCnt != ~0u) { 1155 assert(ST->hasVscnt()); 1156 1157 auto SWaitInst = 1158 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1159 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1160 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1161 .addImm(Wait.VsCnt); 1162 TrackedWaitcntSet.insert(SWaitInst); 1163 Modified = true; 1164 1165 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1166 << "Old Instr: " << MI << '\n' 1167 << "New Instr: " << *SWaitInst << '\n'); 1168 } 1169 1170 return Modified; 1171 } 1172 1173 // This is a flat memory operation. Check to see if it has memory 1174 // tokens for both LDS and Memory, and if so mark it as a flat. 1175 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1176 if (MI.memoperands_empty()) 1177 return true; 1178 1179 for (const MachineMemOperand *Memop : MI.memoperands()) { 1180 unsigned AS = Memop->getAddrSpace(); 1181 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1182 return true; 1183 } 1184 1185 return false; 1186 } 1187 1188 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1189 WaitcntBrackets *ScoreBrackets) { 1190 // Now look at the instruction opcode. If it is a memory access 1191 // instruction, update the upper-bound of the appropriate counter's 1192 // bracket and the destination operand scores. 1193 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1194 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1195 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1196 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1197 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1198 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1199 } else { 1200 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1201 } 1202 } else if (TII->isFLAT(Inst)) { 1203 assert(Inst.mayLoad() || Inst.mayStore()); 1204 1205 if (TII->usesVM_CNT(Inst)) { 1206 if (!ST->hasVscnt()) 1207 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1208 else if (Inst.mayLoad() && 1209 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) 1210 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1211 else 1212 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1213 } 1214 1215 if (TII->usesLGKM_CNT(Inst)) { 1216 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1217 1218 // This is a flat memory operation, so note it - it will require 1219 // that both the VM and LGKM be flushed to zero if it is pending when 1220 // a VM or LGKM dependency occurs. 1221 if (mayAccessLDSThroughFlat(Inst)) 1222 ScoreBrackets->setPendingFlat(); 1223 } 1224 } else if (SIInstrInfo::isVMEM(Inst) && 1225 // TODO: get a better carve out. 1226 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1227 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1228 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && 1229 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && 1230 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { 1231 if (!ST->hasVscnt()) 1232 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1233 else if ((Inst.mayLoad() && 1234 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) || 1235 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1236 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1237 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1238 else if (Inst.mayStore()) 1239 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1240 1241 if (ST->vmemWriteNeedsExpWaitcnt() && 1242 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1243 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1244 } 1245 } else if (TII->isSMRD(Inst)) { 1246 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1247 } else if (Inst.isCall()) { 1248 if (callWaitsOnFunctionReturn(Inst)) { 1249 // Act as a wait on everything 1250 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV)); 1251 } else { 1252 // May need to way wait for anything. 1253 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1254 } 1255 } else { 1256 switch (Inst.getOpcode()) { 1257 case AMDGPU::S_SENDMSG: 1258 case AMDGPU::S_SENDMSGHALT: 1259 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1260 break; 1261 case AMDGPU::EXP: 1262 case AMDGPU::EXP_DONE: { 1263 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1264 if (Imm >= 32 && Imm <= 63) 1265 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1266 else if (Imm >= 12 && Imm <= 15) 1267 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1268 else 1269 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1270 break; 1271 } 1272 case AMDGPU::S_MEMTIME: 1273 case AMDGPU::S_MEMREALTIME: 1274 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1275 break; 1276 default: 1277 break; 1278 } 1279 } 1280 } 1281 1282 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, 1283 uint32_t OtherScore) { 1284 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1285 uint32_t OtherShifted = 1286 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1287 Score = std::max(MyShifted, OtherShifted); 1288 return OtherShifted > MyShifted; 1289 } 1290 1291 /// Merge the pending events and associater score brackets of \p Other into 1292 /// this brackets status. 1293 /// 1294 /// Returns whether the merge resulted in a change that requires tighter waits 1295 /// (i.e. the merged brackets strictly dominate the original brackets). 1296 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1297 bool StrictDom = false; 1298 1299 for (auto T : inst_counter_types()) { 1300 // Merge event flags for this counter 1301 const bool OldOutOfOrder = counterOutOfOrder(T); 1302 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1303 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1304 if (OtherEvents & ~OldEvents) 1305 StrictDom = true; 1306 if (Other.MixedPendingEvents[T] || 1307 (OldEvents && OtherEvents && OldEvents != OtherEvents)) 1308 MixedPendingEvents[T] = true; 1309 PendingEvents |= OtherEvents; 1310 1311 // Merge scores for this counter 1312 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; 1313 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1314 MergeInfo M; 1315 M.OldLB = ScoreLBs[T]; 1316 M.OtherLB = Other.ScoreLBs[T]; 1317 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; 1318 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; 1319 1320 const uint32_t NewUB = ScoreUBs[T] + M.MyShift; 1321 if (NewUB < ScoreUBs[T]) 1322 report_fatal_error("waitcnt score overflow"); 1323 ScoreUBs[T] = NewUB; 1324 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); 1325 1326 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1327 1328 bool RegStrictDom = false; 1329 for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E; 1330 J++) { 1331 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1332 } 1333 1334 if (T == LGKM_CNT) { 1335 for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1; 1336 J != E; J++) { 1337 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1338 } 1339 } 1340 1341 if (RegStrictDom && !OldOutOfOrder) 1342 StrictDom = true; 1343 } 1344 1345 VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR()); 1346 SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR()); 1347 1348 return StrictDom; 1349 } 1350 1351 // Generate s_waitcnt instructions where needed. 1352 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1353 MachineBasicBlock &Block, 1354 WaitcntBrackets &ScoreBrackets) { 1355 bool Modified = false; 1356 1357 LLVM_DEBUG({ 1358 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1359 ScoreBrackets.dump(); 1360 }); 1361 1362 // Walk over the instructions. 1363 MachineInstr *OldWaitcntInstr = nullptr; 1364 1365 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1366 Iter != E;) { 1367 MachineInstr &Inst = *Iter; 1368 1369 // Track pre-existing waitcnts from earlier iterations. 1370 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1371 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1372 Inst.getOperand(0).isReg() && 1373 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1374 if (!OldWaitcntInstr) 1375 OldWaitcntInstr = &Inst; 1376 ++Iter; 1377 continue; 1378 } 1379 1380 bool VCCZBugWorkAround = false; 1381 if (readsVCCZ(Inst) && 1382 (!VCCZBugHandledSet.count(&Inst))) { 1383 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1384 ScoreBrackets.getScoreUB(LGKM_CNT) && 1385 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1386 if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1387 VCCZBugWorkAround = true; 1388 } 1389 } 1390 1391 // Generate an s_waitcnt instruction to be placed before 1392 // cur_Inst, if needed. 1393 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1394 OldWaitcntInstr = nullptr; 1395 1396 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1397 1398 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1399 // If this instruction generates a S_SETVSKIP because it is an 1400 // indexed resource, and we are on Tahiti, then it will also force 1401 // an S_WAITCNT vmcnt(0) 1402 if (RequireCheckResourceType(Inst, context)) { 1403 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1404 ScoreBrackets->setScoreLB(VM_CNT, 1405 ScoreBrackets->getScoreUB(VM_CNT)); 1406 } 1407 #endif 1408 1409 LLVM_DEBUG({ 1410 Inst.print(dbgs()); 1411 ScoreBrackets.dump(); 1412 }); 1413 1414 // TODO: Remove this work-around after fixing the scheduler and enable the 1415 // assert above. 1416 if (VCCZBugWorkAround) { 1417 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1418 // bit is updated, so we can restore the bit by reading the value of 1419 // vcc and then writing it back to the register. 1420 BuildMI(Block, Inst, Inst.getDebugLoc(), 1421 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1422 TRI->getVCC()) 1423 .addReg(TRI->getVCC()); 1424 VCCZBugHandledSet.insert(&Inst); 1425 Modified = true; 1426 } 1427 1428 ++Iter; 1429 } 1430 1431 return Modified; 1432 } 1433 1434 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1435 ST = &MF.getSubtarget<GCNSubtarget>(); 1436 TII = ST->getInstrInfo(); 1437 TRI = &TII->getRegisterInfo(); 1438 MRI = &MF.getRegInfo(); 1439 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1440 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1441 1442 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1443 for (auto T : inst_counter_types()) 1444 ForceEmitWaitcnt[T] = false; 1445 1446 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1447 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1448 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1449 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1450 1451 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1452 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1453 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1454 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1455 1456 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1457 RegisterEncoding.VGPRL = 1458 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1459 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1460 RegisterEncoding.SGPRL = 1461 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1462 1463 TrackedWaitcntSet.clear(); 1464 VCCZBugHandledSet.clear(); 1465 RpotIdxMap.clear(); 1466 BlockInfos.clear(); 1467 1468 // Keep iterating over the blocks in reverse post order, inserting and 1469 // updating s_waitcnt where needed, until a fix point is reached. 1470 for (MachineBasicBlock *MBB : 1471 ReversePostOrderTraversal<MachineFunction *>(&MF)) { 1472 RpotIdxMap[MBB] = BlockInfos.size(); 1473 BlockInfos.emplace_back(MBB); 1474 } 1475 1476 std::unique_ptr<WaitcntBrackets> Brackets; 1477 bool Modified = false; 1478 bool Repeat; 1479 do { 1480 Repeat = false; 1481 1482 for (BlockInfo &BI : BlockInfos) { 1483 if (!BI.Dirty) 1484 continue; 1485 1486 unsigned Idx = std::distance(&*BlockInfos.begin(), &BI); 1487 1488 if (BI.Incoming) { 1489 if (!Brackets) 1490 Brackets = llvm::make_unique<WaitcntBrackets>(*BI.Incoming); 1491 else 1492 *Brackets = *BI.Incoming; 1493 } else { 1494 if (!Brackets) 1495 Brackets = llvm::make_unique<WaitcntBrackets>(ST); 1496 else 1497 Brackets->clear(); 1498 } 1499 1500 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1501 BI.Dirty = false; 1502 1503 if (Brackets->hasPending()) { 1504 BlockInfo *MoveBracketsToSucc = nullptr; 1505 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1506 unsigned SuccIdx = RpotIdxMap[Succ]; 1507 BlockInfo &SuccBI = BlockInfos[SuccIdx]; 1508 if (!SuccBI.Incoming) { 1509 SuccBI.Dirty = true; 1510 if (SuccIdx <= Idx) 1511 Repeat = true; 1512 if (!MoveBracketsToSucc) { 1513 MoveBracketsToSucc = &SuccBI; 1514 } else { 1515 SuccBI.Incoming = llvm::make_unique<WaitcntBrackets>(*Brackets); 1516 } 1517 } else if (SuccBI.Incoming->merge(*Brackets)) { 1518 SuccBI.Dirty = true; 1519 if (SuccIdx <= Idx) 1520 Repeat = true; 1521 } 1522 } 1523 if (MoveBracketsToSucc) 1524 MoveBracketsToSucc->Incoming = std::move(Brackets); 1525 } 1526 } 1527 } while (Repeat); 1528 1529 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1530 1531 bool HaveScalarStores = false; 1532 1533 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1534 ++BI) { 1535 MachineBasicBlock &MBB = *BI; 1536 1537 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1538 ++I) { 1539 if (!HaveScalarStores && TII->isScalarStore(*I)) 1540 HaveScalarStores = true; 1541 1542 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1543 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1544 EndPgmBlocks.push_back(&MBB); 1545 } 1546 } 1547 1548 if (HaveScalarStores) { 1549 // If scalar writes are used, the cache must be flushed or else the next 1550 // wave to reuse the same scratch memory can be clobbered. 1551 // 1552 // Insert s_dcache_wb at wave termination points if there were any scalar 1553 // stores, and only if the cache hasn't already been flushed. This could be 1554 // improved by looking across blocks for flushes in postdominating blocks 1555 // from the stores but an explicitly requested flush is probably very rare. 1556 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1557 bool SeenDCacheWB = false; 1558 1559 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1560 ++I) { 1561 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1562 SeenDCacheWB = true; 1563 else if (TII->isScalarStore(*I)) 1564 SeenDCacheWB = false; 1565 1566 // FIXME: It would be better to insert this before a waitcnt if any. 1567 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1568 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1569 !SeenDCacheWB) { 1570 Modified = true; 1571 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1572 } 1573 } 1574 } 1575 } 1576 1577 if (!MFI->isEntryFunction()) { 1578 // Wait for any outstanding memory operations that the input registers may 1579 // depend on. We can't track them and it's better to the wait after the 1580 // costly call sequence. 1581 1582 // TODO: Could insert earlier and schedule more liberally with operations 1583 // that only use caller preserved registers. 1584 MachineBasicBlock &EntryBB = MF.front(); 1585 if (ST->hasVscnt()) 1586 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), 1587 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1588 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1589 .addImm(0); 1590 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1591 .addImm(0); 1592 1593 Modified = true; 1594 } 1595 1596 return Modified; 1597 } 1598