1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "AMDGPUSubtarget.h" 28 #include "SIDefines.h" 29 #include "SIInstrInfo.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIRegisterInfo.h" 32 #include "Utils/AMDGPUBaseInfo.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/PostOrderIterator.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <cstring> 56 #include <memory> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "si-insert-waitcnts" 63 64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 65 "Force emit s_waitcnt expcnt(0) instrs"); 66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 67 "Force emit s_waitcnt lgkmcnt(0) instrs"); 68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 69 "Force emit s_waitcnt vmcnt(0) instrs"); 70 71 static cl::opt<bool> ForceEmitZeroFlag( 72 "amdgpu-waitcnt-forcezero", 73 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 74 cl::init(false), cl::Hidden); 75 76 namespace { 77 78 template <typename EnumT> 79 class enum_iterator 80 : public iterator_facade_base<enum_iterator<EnumT>, 81 std::forward_iterator_tag, const EnumT> { 82 EnumT Value; 83 public: 84 enum_iterator() = default; 85 enum_iterator(EnumT Value) : Value(Value) {} 86 87 enum_iterator &operator++() { 88 Value = static_cast<EnumT>(Value + 1); 89 return *this; 90 } 91 92 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 93 94 EnumT operator*() const { return Value; } 95 }; 96 97 // Class of object that encapsulates latest instruction counter score 98 // associated with the operand. Used for determining whether 99 // s_waitcnt instruction needs to be emited. 100 101 #define CNT_MASK(t) (1u << (t)) 102 103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 104 105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 106 return make_range(enum_iterator<InstCounterType>(VM_CNT), 107 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 108 } 109 110 using RegInterval = std::pair<signed, signed>; 111 112 struct { 113 uint32_t VmcntMax; 114 uint32_t ExpcntMax; 115 uint32_t LgkmcntMax; 116 uint32_t VscntMax; 117 int32_t NumVGPRsMax; 118 int32_t NumSGPRsMax; 119 } HardwareLimits; 120 121 struct { 122 unsigned VGPR0; 123 unsigned VGPRL; 124 unsigned SGPR0; 125 unsigned SGPRL; 126 } RegisterEncoding; 127 128 enum WaitEventType { 129 VMEM_ACCESS, // vector-memory read & write 130 VMEM_READ_ACCESS, // vector-memory read 131 VMEM_WRITE_ACCESS,// vector-memory write 132 LDS_ACCESS, // lds read & write 133 GDS_ACCESS, // gds read & write 134 SQ_MESSAGE, // send message 135 SMEM_ACCESS, // scalar-memory read & write 136 EXP_GPR_LOCK, // export holding on its data src 137 GDS_GPR_LOCK, // GDS holding on its data and addr src 138 EXP_POS_ACCESS, // write to export position 139 EXP_PARAM_ACCESS, // write to export parameter 140 VMW_GPR_LOCK, // vector-memory write holding on its data src 141 NUM_WAIT_EVENTS, 142 }; 143 144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { 145 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 146 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 147 (1 << SQ_MESSAGE), 148 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 149 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 150 (1 << VMEM_WRITE_ACCESS) 151 }; 152 153 // The mapping is: 154 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 155 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 156 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 157 // We reserve a fixed number of VGPR slots in the scoring tables for 158 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 159 enum RegisterMapping { 160 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 161 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 162 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 163 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 164 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 165 }; 166 167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 168 switch (T) { 169 case VM_CNT: 170 Wait.VmCnt = std::min(Wait.VmCnt, Count); 171 break; 172 case EXP_CNT: 173 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 174 break; 175 case LGKM_CNT: 176 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 177 break; 178 case VS_CNT: 179 Wait.VsCnt = std::min(Wait.VsCnt, Count); 180 break; 181 default: 182 llvm_unreachable("bad InstCounterType"); 183 } 184 } 185 186 // This objects maintains the current score brackets of each wait counter, and 187 // a per-register scoreboard for each wait counter. 188 // 189 // We also maintain the latest score for every event type that can change the 190 // waitcnt in order to know if there are multiple types of events within 191 // the brackets. When multiple types of event happen in the bracket, 192 // wait count may get decreased out of order, therefore we need to put in 193 // "s_waitcnt 0" before use. 194 class WaitcntBrackets { 195 public: 196 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { 197 for (auto T : inst_counter_types()) 198 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 199 } 200 201 static uint32_t getWaitCountMax(InstCounterType T) { 202 switch (T) { 203 case VM_CNT: 204 return HardwareLimits.VmcntMax; 205 case LGKM_CNT: 206 return HardwareLimits.LgkmcntMax; 207 case EXP_CNT: 208 return HardwareLimits.ExpcntMax; 209 case VS_CNT: 210 return HardwareLimits.VscntMax; 211 default: 212 break; 213 } 214 return 0; 215 } 216 217 uint32_t getScoreLB(InstCounterType T) const { 218 assert(T < NUM_INST_CNTS); 219 if (T >= NUM_INST_CNTS) 220 return 0; 221 return ScoreLBs[T]; 222 } 223 224 uint32_t getScoreUB(InstCounterType T) const { 225 assert(T < NUM_INST_CNTS); 226 if (T >= NUM_INST_CNTS) 227 return 0; 228 return ScoreUBs[T]; 229 } 230 231 // Mapping from event to counter. 232 InstCounterType eventCounter(WaitEventType E) { 233 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 234 return VM_CNT; 235 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 236 return LGKM_CNT; 237 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 238 return VS_CNT; 239 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 240 return EXP_CNT; 241 } 242 243 uint32_t getRegScore(int GprNo, InstCounterType T) { 244 if (GprNo < NUM_ALL_VGPRS) { 245 return VgprScores[T][GprNo]; 246 } 247 assert(T == LGKM_CNT); 248 return SgprScores[GprNo - NUM_ALL_VGPRS]; 249 } 250 251 void clear() { 252 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 253 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 254 PendingEvents = 0; 255 memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents)); 256 for (auto T : inst_counter_types()) 257 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 258 memset(SgprScores, 0, sizeof(SgprScores)); 259 } 260 261 bool merge(const WaitcntBrackets &Other); 262 263 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 264 const MachineRegisterInfo *MRI, 265 const SIRegisterInfo *TRI, unsigned OpNo, 266 bool Def) const; 267 268 int32_t getMaxVGPR() const { return VgprUB; } 269 int32_t getMaxSGPR() const { return SgprUB; } 270 271 bool counterOutOfOrder(InstCounterType T) const; 272 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 273 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 274 void determineWait(InstCounterType T, uint32_t ScoreToWait, 275 AMDGPU::Waitcnt &Wait) const; 276 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 277 void applyWaitcnt(InstCounterType T, unsigned Count); 278 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 279 const MachineRegisterInfo *MRI, WaitEventType E, 280 MachineInstr &MI); 281 282 bool hasPending() const { return PendingEvents != 0; } 283 bool hasPendingEvent(WaitEventType E) const { 284 return PendingEvents & (1 << E); 285 } 286 287 bool hasPendingFlat() const { 288 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 289 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 290 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 291 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 292 } 293 294 void setPendingFlat() { 295 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 296 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 297 } 298 299 void print(raw_ostream &); 300 void dump() { print(dbgs()); } 301 302 private: 303 struct MergeInfo { 304 uint32_t OldLB; 305 uint32_t OtherLB; 306 uint32_t MyShift; 307 uint32_t OtherShift; 308 }; 309 static bool mergeScore(const MergeInfo &M, uint32_t &Score, 310 uint32_t OtherScore); 311 312 void setScoreLB(InstCounterType T, uint32_t Val) { 313 assert(T < NUM_INST_CNTS); 314 if (T >= NUM_INST_CNTS) 315 return; 316 ScoreLBs[T] = Val; 317 } 318 319 void setScoreUB(InstCounterType T, uint32_t Val) { 320 assert(T < NUM_INST_CNTS); 321 if (T >= NUM_INST_CNTS) 322 return; 323 ScoreUBs[T] = Val; 324 if (T == EXP_CNT) { 325 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 326 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 327 ScoreLBs[T] = UB; 328 } 329 } 330 331 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { 332 if (GprNo < NUM_ALL_VGPRS) { 333 if (GprNo > VgprUB) { 334 VgprUB = GprNo; 335 } 336 VgprScores[T][GprNo] = Val; 337 } else { 338 assert(T == LGKM_CNT); 339 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 340 SgprUB = GprNo - NUM_ALL_VGPRS; 341 } 342 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 343 } 344 } 345 346 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 347 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 348 unsigned OpNo, uint32_t Val); 349 350 const GCNSubtarget *ST = nullptr; 351 uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; 352 uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; 353 uint32_t PendingEvents = 0; 354 bool MixedPendingEvents[NUM_INST_CNTS] = {false}; 355 // Remember the last flat memory operation. 356 uint32_t LastFlat[NUM_INST_CNTS] = {0}; 357 // wait_cnt scores for every vgpr. 358 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 359 int32_t VgprUB = 0; 360 int32_t SgprUB = 0; 361 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 362 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 363 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 364 }; 365 366 class SIInsertWaitcnts : public MachineFunctionPass { 367 private: 368 const GCNSubtarget *ST = nullptr; 369 const SIInstrInfo *TII = nullptr; 370 const SIRegisterInfo *TRI = nullptr; 371 const MachineRegisterInfo *MRI = nullptr; 372 AMDGPU::IsaVersion IV; 373 374 DenseSet<MachineInstr *> TrackedWaitcntSet; 375 DenseSet<MachineInstr *> VCCZBugHandledSet; 376 377 struct BlockInfo { 378 MachineBasicBlock *MBB; 379 std::unique_ptr<WaitcntBrackets> Incoming; 380 bool Dirty = true; 381 382 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 383 }; 384 385 std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index 386 DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap; 387 388 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 389 // because of amdgpu-waitcnt-forcezero flag 390 bool ForceEmitZeroWaitcnts; 391 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 392 393 public: 394 static char ID; 395 396 SIInsertWaitcnts() : MachineFunctionPass(ID) { 397 (void)ForceExpCounter; 398 (void)ForceLgkmCounter; 399 (void)ForceVMCounter; 400 } 401 402 bool runOnMachineFunction(MachineFunction &MF) override; 403 404 StringRef getPassName() const override { 405 return "SI insert wait instructions"; 406 } 407 408 void getAnalysisUsage(AnalysisUsage &AU) const override { 409 AU.setPreservesCFG(); 410 MachineFunctionPass::getAnalysisUsage(AU); 411 } 412 413 bool isForceEmitWaitcnt() const { 414 for (auto T : inst_counter_types()) 415 if (ForceEmitWaitcnt[T]) 416 return true; 417 return false; 418 } 419 420 void setForceEmitWaitcnt() { 421 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 422 // For debug builds, get the debug counter info and adjust if need be 423 #ifndef NDEBUG 424 if (DebugCounter::isCounterSet(ForceExpCounter) && 425 DebugCounter::shouldExecute(ForceExpCounter)) { 426 ForceEmitWaitcnt[EXP_CNT] = true; 427 } else { 428 ForceEmitWaitcnt[EXP_CNT] = false; 429 } 430 431 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 432 DebugCounter::shouldExecute(ForceLgkmCounter)) { 433 ForceEmitWaitcnt[LGKM_CNT] = true; 434 } else { 435 ForceEmitWaitcnt[LGKM_CNT] = false; 436 } 437 438 if (DebugCounter::isCounterSet(ForceVMCounter) && 439 DebugCounter::shouldExecute(ForceVMCounter)) { 440 ForceEmitWaitcnt[VM_CNT] = true; 441 } else { 442 ForceEmitWaitcnt[VM_CNT] = false; 443 } 444 #endif // NDEBUG 445 } 446 447 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 448 bool generateWaitcntInstBefore(MachineInstr &MI, 449 WaitcntBrackets &ScoreBrackets, 450 MachineInstr *OldWaitcntInstr); 451 void updateEventWaitcntAfter(MachineInstr &Inst, 452 WaitcntBrackets *ScoreBrackets); 453 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 454 WaitcntBrackets &ScoreBrackets); 455 }; 456 457 } // end anonymous namespace 458 459 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 460 const SIInstrInfo *TII, 461 const MachineRegisterInfo *MRI, 462 const SIRegisterInfo *TRI, 463 unsigned OpNo, bool Def) const { 464 const MachineOperand &Op = MI->getOperand(OpNo); 465 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 466 (Def && !Op.isDef())) 467 return {-1, -1}; 468 469 // A use via a PW operand does not need a waitcnt. 470 // A partial write is not a WAW. 471 assert(!Op.getSubReg() || !Op.isUndef()); 472 473 RegInterval Result; 474 const MachineRegisterInfo &MRIA = *MRI; 475 476 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 477 478 if (TRI->isVGPR(MRIA, Op.getReg())) { 479 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 480 Result.first = Reg - RegisterEncoding.VGPR0; 481 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 482 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 483 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 484 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 485 assert(Result.first >= NUM_ALL_VGPRS && 486 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 487 } 488 // TODO: Handle TTMP 489 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 490 else 491 return {-1, -1}; 492 493 const MachineInstr &MIA = *MI; 494 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 495 unsigned Size = TRI->getRegSizeInBits(*RC); 496 Result.second = Result.first + (Size / 32); 497 498 return Result; 499 } 500 501 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 502 const SIInstrInfo *TII, 503 const SIRegisterInfo *TRI, 504 const MachineRegisterInfo *MRI, unsigned OpNo, 505 uint32_t Val) { 506 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 507 LLVM_DEBUG({ 508 const MachineOperand &Opnd = MI->getOperand(OpNo); 509 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 510 }); 511 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 512 setRegScore(RegNo, EXP_CNT, Val); 513 } 514 } 515 516 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 517 const SIRegisterInfo *TRI, 518 const MachineRegisterInfo *MRI, 519 WaitEventType E, MachineInstr &Inst) { 520 const MachineRegisterInfo &MRIA = *MRI; 521 InstCounterType T = eventCounter(E); 522 uint32_t CurrScore = getScoreUB(T) + 1; 523 if (CurrScore == 0) 524 report_fatal_error("InsertWaitcnt score wraparound"); 525 // PendingEvents and ScoreUB need to be update regardless if this event 526 // changes the score of a register or not. 527 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 528 if (!hasPendingEvent(E)) { 529 if (PendingEvents & WaitEventMaskForInst[T]) 530 MixedPendingEvents[T] = true; 531 PendingEvents |= 1 << E; 532 } 533 setScoreUB(T, CurrScore); 534 535 if (T == EXP_CNT) { 536 // Put score on the source vgprs. If this is a store, just use those 537 // specific register(s). 538 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 539 // All GDS operations must protect their address register (same as 540 // export.) 541 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 542 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 543 setExpScore( 544 &Inst, TII, TRI, MRI, 545 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 546 CurrScore); 547 } 548 if (Inst.mayStore()) { 549 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 550 AMDGPU::OpName::data0) != -1) { 551 setExpScore( 552 &Inst, TII, TRI, MRI, 553 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 554 CurrScore); 555 } 556 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 557 AMDGPU::OpName::data1) != -1) { 558 setExpScore(&Inst, TII, TRI, MRI, 559 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 560 AMDGPU::OpName::data1), 561 CurrScore); 562 } 563 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 564 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 565 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 566 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 567 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 568 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 569 Inst.getOpcode() != AMDGPU::DS_APPEND && 570 Inst.getOpcode() != AMDGPU::DS_CONSUME && 571 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 572 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 573 const MachineOperand &Op = Inst.getOperand(I); 574 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 575 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 576 } 577 } 578 } 579 } else if (TII->isFLAT(Inst)) { 580 if (Inst.mayStore()) { 581 setExpScore( 582 &Inst, TII, TRI, MRI, 583 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 584 CurrScore); 585 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 586 setExpScore( 587 &Inst, TII, TRI, MRI, 588 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 589 CurrScore); 590 } 591 } else if (TII->isMIMG(Inst)) { 592 if (Inst.mayStore()) { 593 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 594 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 595 setExpScore( 596 &Inst, TII, TRI, MRI, 597 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 598 CurrScore); 599 } 600 } else if (TII->isMTBUF(Inst)) { 601 if (Inst.mayStore()) { 602 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 603 } 604 } else if (TII->isMUBUF(Inst)) { 605 if (Inst.mayStore()) { 606 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 607 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 608 setExpScore( 609 &Inst, TII, TRI, MRI, 610 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 611 CurrScore); 612 } 613 } else { 614 if (TII->isEXP(Inst)) { 615 // For export the destination registers are really temps that 616 // can be used as the actual source after export patching, so 617 // we need to treat them like sources and set the EXP_CNT 618 // score. 619 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 620 MachineOperand &DefMO = Inst.getOperand(I); 621 if (DefMO.isReg() && DefMO.isDef() && 622 TRI->isVGPR(MRIA, DefMO.getReg())) { 623 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 624 CurrScore); 625 } 626 } 627 } 628 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 629 MachineOperand &MO = Inst.getOperand(I); 630 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 631 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 632 } 633 } 634 } 635 #if 0 // TODO: check if this is handled by MUBUF code above. 636 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 637 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 638 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 639 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 640 unsigned OpNo;//TODO: find the OpNo for this operand; 641 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 642 for (signed RegNo = Interval.first; RegNo < Interval.second; 643 ++RegNo) { 644 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 645 } 646 #endif 647 } else { 648 // Match the score to the destination registers. 649 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 650 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 651 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 652 continue; 653 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 654 setRegScore(RegNo, T, CurrScore); 655 } 656 } 657 if (TII->isDS(Inst) && Inst.mayStore()) { 658 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 659 } 660 } 661 } 662 663 void WaitcntBrackets::print(raw_ostream &OS) { 664 OS << '\n'; 665 for (auto T : inst_counter_types()) { 666 uint32_t LB = getScoreLB(T); 667 uint32_t UB = getScoreUB(T); 668 669 switch (T) { 670 case VM_CNT: 671 OS << " VM_CNT(" << UB - LB << "): "; 672 break; 673 case LGKM_CNT: 674 OS << " LGKM_CNT(" << UB - LB << "): "; 675 break; 676 case EXP_CNT: 677 OS << " EXP_CNT(" << UB - LB << "): "; 678 break; 679 case VS_CNT: 680 OS << " VS_CNT(" << UB - LB << "): "; 681 break; 682 default: 683 OS << " UNKNOWN(" << UB - LB << "): "; 684 break; 685 } 686 687 if (LB < UB) { 688 // Print vgpr scores. 689 for (int J = 0; J <= getMaxVGPR(); J++) { 690 uint32_t RegScore = getRegScore(J, T); 691 if (RegScore <= LB) 692 continue; 693 uint32_t RelScore = RegScore - LB - 1; 694 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 695 OS << RelScore << ":v" << J << " "; 696 } else { 697 OS << RelScore << ":ds "; 698 } 699 } 700 // Also need to print sgpr scores for lgkm_cnt. 701 if (T == LGKM_CNT) { 702 for (int J = 0; J <= getMaxSGPR(); J++) { 703 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 704 if (RegScore <= LB) 705 continue; 706 uint32_t RelScore = RegScore - LB - 1; 707 OS << RelScore << ":s" << J << " "; 708 } 709 } 710 } 711 OS << '\n'; 712 } 713 OS << '\n'; 714 } 715 716 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 717 /// whether a waitcnt instruction is needed at all. 718 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 719 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 720 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 721 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) | 722 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 723 } 724 725 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 726 unsigned &Count) const { 727 const uint32_t LB = getScoreLB(T); 728 const uint32_t UB = getScoreUB(T); 729 if (Count < UB && UB - Count > LB) 730 return true; 731 732 Count = ~0u; 733 return false; 734 } 735 736 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, 737 AMDGPU::Waitcnt &Wait) const { 738 // If the score of src_operand falls within the bracket, we need an 739 // s_waitcnt instruction. 740 const uint32_t LB = getScoreLB(T); 741 const uint32_t UB = getScoreUB(T); 742 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 743 if ((T == VM_CNT || T == LGKM_CNT) && 744 hasPendingFlat() && 745 !ST->hasFlatLgkmVMemCountInOrder()) { 746 // If there is a pending FLAT operation, and this is a VMem or LGKM 747 // waitcnt and the target can report early completion, then we need 748 // to force a waitcnt 0. 749 addWait(Wait, T, 0); 750 } else if (counterOutOfOrder(T)) { 751 // Counter can get decremented out-of-order when there 752 // are multiple types event in the bracket. Also emit an s_wait counter 753 // with a conservative value of 0 for the counter. 754 addWait(Wait, T, 0); 755 } else { 756 addWait(Wait, T, UB - ScoreToWait); 757 } 758 } 759 } 760 761 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 762 applyWaitcnt(VM_CNT, Wait.VmCnt); 763 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 764 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 765 applyWaitcnt(VS_CNT, Wait.VsCnt); 766 } 767 768 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 769 const uint32_t UB = getScoreUB(T); 770 if (Count >= UB) 771 return; 772 if (Count != 0) { 773 if (counterOutOfOrder(T)) 774 return; 775 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 776 } else { 777 setScoreLB(T, UB); 778 MixedPendingEvents[T] = false; 779 PendingEvents &= ~WaitEventMaskForInst[T]; 780 } 781 } 782 783 // Where there are multiple types of event in the bracket of a counter, 784 // the decrement may go out of order. 785 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 786 // Scalar memory read always can go out of order. 787 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 788 return true; 789 return MixedPendingEvents[T]; 790 } 791 792 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 793 false) 794 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 795 false) 796 797 char SIInsertWaitcnts::ID = 0; 798 799 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 800 801 FunctionPass *llvm::createSIInsertWaitcntsPass() { 802 return new SIInsertWaitcnts(); 803 } 804 805 static bool readsVCCZ(const MachineInstr &MI) { 806 unsigned Opc = MI.getOpcode(); 807 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 808 !MI.getOperand(1).isUndef(); 809 } 810 811 /// Generate s_waitcnt instruction to be placed before cur_Inst. 812 /// Instructions of a given type are returned in order, 813 /// but instructions of different types can complete out of order. 814 /// We rely on this in-order completion 815 /// and simply assign a score to the memory access instructions. 816 /// We keep track of the active "score bracket" to determine 817 /// if an access of a memory read requires an s_waitcnt 818 /// and if so what the value of each counter is. 819 /// The "score bracket" is bound by the lower bound and upper bound 820 /// scores (*_score_LB and *_score_ub respectively). 821 bool SIInsertWaitcnts::generateWaitcntInstBefore( 822 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 823 MachineInstr *OldWaitcntInstr) { 824 setForceEmitWaitcnt(); 825 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 826 827 if (MI.isDebugInstr()) 828 return false; 829 830 AMDGPU::Waitcnt Wait; 831 832 // See if this instruction has a forced S_WAITCNT VM. 833 // TODO: Handle other cases of NeedsWaitcntVmBefore() 834 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 835 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 836 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 837 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 838 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 839 Wait.VmCnt = 0; 840 } 841 842 // All waits must be resolved at call return. 843 // NOTE: this could be improved with knowledge of all call sites or 844 // with knowledge of the called routines. 845 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 846 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 847 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 848 } 849 // Resolve vm waits before gs-done. 850 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 851 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 852 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 853 AMDGPU::SendMsg::ID_GS_DONE)) { 854 Wait.VmCnt = 0; 855 } 856 #if 0 // TODO: the following blocks of logic when we have fence. 857 else if (MI.getOpcode() == SC_FENCE) { 858 const unsigned int group_size = 859 context->shader_info->GetMaxThreadGroupSize(); 860 // group_size == 0 means thread group size is unknown at compile time 861 const bool group_is_multi_wave = 862 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 863 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 864 865 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 866 SCRegType src_type = Inst->GetSrcType(i); 867 switch (src_type) { 868 case SCMEM_LDS: 869 if (group_is_multi_wave || 870 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 871 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 872 ScoreBrackets->getScoreUB(LGKM_CNT)); 873 // LDS may have to wait for VM_CNT after buffer load to LDS 874 if (target_info->HasBufferLoadToLDS()) { 875 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 876 ScoreBrackets->getScoreUB(VM_CNT)); 877 } 878 } 879 break; 880 881 case SCMEM_GDS: 882 if (group_is_multi_wave || fence_is_global) { 883 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 884 ScoreBrackets->getScoreUB(EXP_CNT)); 885 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 886 ScoreBrackets->getScoreUB(LGKM_CNT)); 887 } 888 break; 889 890 case SCMEM_UAV: 891 case SCMEM_TFBUF: 892 case SCMEM_RING: 893 case SCMEM_SCATTER: 894 if (group_is_multi_wave || fence_is_global) { 895 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 896 ScoreBrackets->getScoreUB(EXP_CNT)); 897 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 898 ScoreBrackets->getScoreUB(VM_CNT)); 899 } 900 break; 901 902 case SCMEM_SCRATCH: 903 default: 904 break; 905 } 906 } 907 } 908 #endif 909 910 // Export & GDS instructions do not read the EXEC mask until after the export 911 // is granted (which can occur well after the instruction is issued). 912 // The shader program must flush all EXP operations on the export-count 913 // before overwriting the EXEC mask. 914 else { 915 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 916 // Export and GDS are tracked individually, either may trigger a waitcnt 917 // for EXEC. 918 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 919 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 920 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 921 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 922 Wait.ExpCnt = 0; 923 } 924 } 925 926 #if 0 // TODO: the following code to handle CALL. 927 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 928 // However, there is a problem with EXP_CNT, because the call cannot 929 // easily tell if a register is used in the function, and if it did, then 930 // the referring instruction would have to have an S_WAITCNT, which is 931 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 932 // before the call. 933 if (MI.getOpcode() == SC_CALL) { 934 if (ScoreBrackets->getScoreUB(EXP_CNT) > 935 ScoreBrackets->getScoreLB(EXP_CNT)) { 936 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 937 EmitWaitcnt |= CNT_MASK(EXP_CNT); 938 } 939 } 940 #endif 941 942 // FIXME: Should not be relying on memoperands. 943 // Look at the source operands of every instruction to see if 944 // any of them results from a previous memory operation that affects 945 // its current usage. If so, an s_waitcnt instruction needs to be 946 // emitted. 947 // If the source operand was defined by a load, add the s_waitcnt 948 // instruction. 949 for (const MachineMemOperand *Memop : MI.memoperands()) { 950 unsigned AS = Memop->getAddrSpace(); 951 if (AS != AMDGPUAS::LOCAL_ADDRESS) 952 continue; 953 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 954 // VM_CNT is only relevant to vgpr or LDS. 955 ScoreBrackets.determineWait( 956 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 957 } 958 959 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 960 const MachineOperand &Op = MI.getOperand(I); 961 const MachineRegisterInfo &MRIA = *MRI; 962 RegInterval Interval = 963 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); 964 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 965 if (TRI->isVGPR(MRIA, Op.getReg())) { 966 // VM_CNT is only relevant to vgpr or LDS. 967 ScoreBrackets.determineWait( 968 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 969 } 970 ScoreBrackets.determineWait( 971 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 972 } 973 } 974 // End of for loop that looks at all source operands to decide vm_wait_cnt 975 // and lgk_wait_cnt. 976 977 // Two cases are handled for destination operands: 978 // 1) If the destination operand was defined by a load, add the s_waitcnt 979 // instruction to guarantee the right WAW order. 980 // 2) If a destination operand that was used by a recent export/store ins, 981 // add s_waitcnt on exp_cnt to guarantee the WAR order. 982 if (MI.mayStore()) { 983 // FIXME: Should not be relying on memoperands. 984 for (const MachineMemOperand *Memop : MI.memoperands()) { 985 unsigned AS = Memop->getAddrSpace(); 986 if (AS != AMDGPUAS::LOCAL_ADDRESS) 987 continue; 988 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 989 ScoreBrackets.determineWait( 990 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 991 ScoreBrackets.determineWait( 992 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 993 } 994 } 995 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 996 MachineOperand &Def = MI.getOperand(I); 997 const MachineRegisterInfo &MRIA = *MRI; 998 RegInterval Interval = 999 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); 1000 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1001 if (TRI->isVGPR(MRIA, Def.getReg())) { 1002 ScoreBrackets.determineWait( 1003 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1004 ScoreBrackets.determineWait( 1005 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1006 } 1007 ScoreBrackets.determineWait( 1008 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1009 } 1010 } // End of for loop that looks at all dest operands. 1011 } 1012 1013 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1014 // occurs before the instruction. Doing it here prevents any additional 1015 // S_WAITCNTs from being emitted if the instruction was marked as 1016 // requiring a WAITCNT beforehand. 1017 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1018 !ST->hasAutoWaitcntBeforeBarrier()) { 1019 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 1020 } 1021 1022 // TODO: Remove this work-around, enable the assert for Bug 457939 1023 // after fixing the scheduler. Also, the Shader Compiler code is 1024 // independent of target. 1025 if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) { 1026 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1027 ScoreBrackets.getScoreUB(LGKM_CNT) && 1028 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1029 Wait.LgkmCnt = 0; 1030 } 1031 } 1032 1033 // Early-out if no wait is indicated. 1034 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1035 bool Modified = false; 1036 if (OldWaitcntInstr) { 1037 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1038 &*II != &MI; II = NextI, ++NextI) { 1039 if (II->isDebugInstr()) 1040 continue; 1041 1042 if (TrackedWaitcntSet.count(&*II)) { 1043 TrackedWaitcntSet.erase(&*II); 1044 II->eraseFromParent(); 1045 Modified = true; 1046 } else if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1047 int64_t Imm = II->getOperand(0).getImm(); 1048 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1049 } else { 1050 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1051 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1052 ScoreBrackets.applyWaitcnt( 1053 AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm())); 1054 } 1055 } 1056 } 1057 return Modified; 1058 } 1059 1060 if (ForceEmitZeroWaitcnts) 1061 Wait = AMDGPU::Waitcnt::allZero(IV); 1062 1063 if (ForceEmitWaitcnt[VM_CNT]) 1064 Wait.VmCnt = 0; 1065 if (ForceEmitWaitcnt[EXP_CNT]) 1066 Wait.ExpCnt = 0; 1067 if (ForceEmitWaitcnt[LGKM_CNT]) 1068 Wait.LgkmCnt = 0; 1069 if (ForceEmitWaitcnt[VS_CNT]) 1070 Wait.VsCnt = 0; 1071 1072 ScoreBrackets.applyWaitcnt(Wait); 1073 1074 AMDGPU::Waitcnt OldWait; 1075 bool Modified = false; 1076 1077 if (OldWaitcntInstr) { 1078 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1079 &*II != &MI; II = NextI, NextI++) { 1080 if (II->isDebugInstr()) 1081 continue; 1082 1083 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1084 unsigned IEnc = II->getOperand(0).getImm(); 1085 AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc); 1086 OldWait = OldWait.combined(IWait); 1087 if (!TrackedWaitcntSet.count(&*II)) 1088 Wait = Wait.combined(IWait); 1089 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 1090 if (IEnc != NewEnc) { 1091 II->getOperand(0).setImm(NewEnc); 1092 Modified = true; 1093 } 1094 Wait.VmCnt = ~0u; 1095 Wait.LgkmCnt = ~0u; 1096 Wait.ExpCnt = ~0u; 1097 } else { 1098 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1099 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1100 1101 unsigned ICnt = II->getOperand(1).getImm(); 1102 OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt); 1103 if (!TrackedWaitcntSet.count(&*II)) 1104 Wait.VsCnt = std::min(Wait.VsCnt, ICnt); 1105 if (Wait.VsCnt != ICnt) { 1106 II->getOperand(1).setImm(Wait.VsCnt); 1107 Modified = true; 1108 } 1109 Wait.VsCnt = ~0u; 1110 } 1111 1112 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1113 << "Old Instr: " << MI << '\n' 1114 << "New Instr: " << *II << '\n'); 1115 1116 if (!Wait.hasWait()) 1117 return Modified; 1118 } 1119 } 1120 1121 if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) { 1122 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1123 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1124 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1125 .addImm(Enc); 1126 TrackedWaitcntSet.insert(SWaitInst); 1127 Modified = true; 1128 1129 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1130 << "Old Instr: " << MI << '\n' 1131 << "New Instr: " << *SWaitInst << '\n'); 1132 } 1133 1134 if (Wait.VsCnt != ~0u) { 1135 assert(ST->hasVscnt()); 1136 1137 auto SWaitInst = 1138 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1139 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1140 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1141 .addImm(Wait.VsCnt); 1142 TrackedWaitcntSet.insert(SWaitInst); 1143 Modified = true; 1144 1145 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1146 << "Old Instr: " << MI << '\n' 1147 << "New Instr: " << *SWaitInst << '\n'); 1148 } 1149 1150 return Modified; 1151 } 1152 1153 // This is a flat memory operation. Check to see if it has memory 1154 // tokens for both LDS and Memory, and if so mark it as a flat. 1155 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1156 if (MI.memoperands_empty()) 1157 return true; 1158 1159 for (const MachineMemOperand *Memop : MI.memoperands()) { 1160 unsigned AS = Memop->getAddrSpace(); 1161 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1162 return true; 1163 } 1164 1165 return false; 1166 } 1167 1168 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1169 WaitcntBrackets *ScoreBrackets) { 1170 // Now look at the instruction opcode. If it is a memory access 1171 // instruction, update the upper-bound of the appropriate counter's 1172 // bracket and the destination operand scores. 1173 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1174 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1175 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1176 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1177 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1178 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1179 } else { 1180 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1181 } 1182 } else if (TII->isFLAT(Inst)) { 1183 assert(Inst.mayLoad() || Inst.mayStore()); 1184 1185 if (TII->usesVM_CNT(Inst)) { 1186 if (!ST->hasVscnt()) 1187 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1188 else if (Inst.mayLoad() && 1189 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) 1190 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1191 else 1192 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1193 } 1194 1195 if (TII->usesLGKM_CNT(Inst)) { 1196 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1197 1198 // This is a flat memory operation, so note it - it will require 1199 // that both the VM and LGKM be flushed to zero if it is pending when 1200 // a VM or LGKM dependency occurs. 1201 if (mayAccessLDSThroughFlat(Inst)) 1202 ScoreBrackets->setPendingFlat(); 1203 } 1204 } else if (SIInstrInfo::isVMEM(Inst) && 1205 // TODO: get a better carve out. 1206 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1207 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1208 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && 1209 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && 1210 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { 1211 if (!ST->hasVscnt()) 1212 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1213 else if ((Inst.mayLoad() && 1214 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) || 1215 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1216 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1217 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1218 else if (Inst.mayStore()) 1219 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1220 1221 if (ST->vmemWriteNeedsExpWaitcnt() && 1222 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1223 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1224 } 1225 } else if (TII->isSMRD(Inst)) { 1226 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1227 } else { 1228 switch (Inst.getOpcode()) { 1229 case AMDGPU::S_SENDMSG: 1230 case AMDGPU::S_SENDMSGHALT: 1231 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1232 break; 1233 case AMDGPU::EXP: 1234 case AMDGPU::EXP_DONE: { 1235 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1236 if (Imm >= 32 && Imm <= 63) 1237 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1238 else if (Imm >= 12 && Imm <= 15) 1239 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1240 else 1241 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1242 break; 1243 } 1244 case AMDGPU::S_MEMTIME: 1245 case AMDGPU::S_MEMREALTIME: 1246 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1247 break; 1248 default: 1249 break; 1250 } 1251 } 1252 } 1253 1254 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, 1255 uint32_t OtherScore) { 1256 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1257 uint32_t OtherShifted = 1258 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1259 Score = std::max(MyShifted, OtherShifted); 1260 return OtherShifted > MyShifted; 1261 } 1262 1263 /// Merge the pending events and associater score brackets of \p Other into 1264 /// this brackets status. 1265 /// 1266 /// Returns whether the merge resulted in a change that requires tighter waits 1267 /// (i.e. the merged brackets strictly dominate the original brackets). 1268 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1269 bool StrictDom = false; 1270 1271 for (auto T : inst_counter_types()) { 1272 // Merge event flags for this counter 1273 const bool OldOutOfOrder = counterOutOfOrder(T); 1274 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1275 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1276 if (OtherEvents & ~OldEvents) 1277 StrictDom = true; 1278 if (Other.MixedPendingEvents[T] || 1279 (OldEvents && OtherEvents && OldEvents != OtherEvents)) 1280 MixedPendingEvents[T] = true; 1281 PendingEvents |= OtherEvents; 1282 1283 // Merge scores for this counter 1284 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; 1285 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1286 MergeInfo M; 1287 M.OldLB = ScoreLBs[T]; 1288 M.OtherLB = Other.ScoreLBs[T]; 1289 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; 1290 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; 1291 1292 const uint32_t NewUB = ScoreUBs[T] + M.MyShift; 1293 if (NewUB < ScoreUBs[T]) 1294 report_fatal_error("waitcnt score overflow"); 1295 ScoreUBs[T] = NewUB; 1296 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); 1297 1298 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1299 1300 bool RegStrictDom = false; 1301 for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E; 1302 J++) { 1303 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1304 } 1305 1306 if (T == LGKM_CNT) { 1307 for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1; 1308 J != E; J++) { 1309 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1310 } 1311 } 1312 1313 if (RegStrictDom && !OldOutOfOrder) 1314 StrictDom = true; 1315 } 1316 1317 VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR()); 1318 SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR()); 1319 1320 return StrictDom; 1321 } 1322 1323 // Generate s_waitcnt instructions where needed. 1324 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1325 MachineBasicBlock &Block, 1326 WaitcntBrackets &ScoreBrackets) { 1327 bool Modified = false; 1328 1329 LLVM_DEBUG({ 1330 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1331 ScoreBrackets.dump(); 1332 }); 1333 1334 // Walk over the instructions. 1335 MachineInstr *OldWaitcntInstr = nullptr; 1336 1337 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1338 Iter != E;) { 1339 MachineInstr &Inst = *Iter; 1340 1341 // Track pre-existing waitcnts from earlier iterations. 1342 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1343 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1344 Inst.getOperand(0).isReg() && 1345 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1346 if (!OldWaitcntInstr) 1347 OldWaitcntInstr = &Inst; 1348 ++Iter; 1349 continue; 1350 } 1351 1352 bool VCCZBugWorkAround = false; 1353 if (readsVCCZ(Inst) && 1354 (!VCCZBugHandledSet.count(&Inst))) { 1355 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1356 ScoreBrackets.getScoreUB(LGKM_CNT) && 1357 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1358 if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1359 VCCZBugWorkAround = true; 1360 } 1361 } 1362 1363 // Generate an s_waitcnt instruction to be placed before 1364 // cur_Inst, if needed. 1365 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1366 OldWaitcntInstr = nullptr; 1367 1368 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1369 1370 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1371 // If this instruction generates a S_SETVSKIP because it is an 1372 // indexed resource, and we are on Tahiti, then it will also force 1373 // an S_WAITCNT vmcnt(0) 1374 if (RequireCheckResourceType(Inst, context)) { 1375 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1376 ScoreBrackets->setScoreLB(VM_CNT, 1377 ScoreBrackets->getScoreUB(VM_CNT)); 1378 } 1379 #endif 1380 1381 LLVM_DEBUG({ 1382 Inst.print(dbgs()); 1383 ScoreBrackets.dump(); 1384 }); 1385 1386 // Check to see if this is a GWS instruction. If so, and if this is CI or 1387 // VI, then the generated code sequence will include an S_WAITCNT 0. 1388 // TODO: Are these the only GWS instructions? 1389 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1390 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1391 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1392 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1393 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1394 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1395 ScoreBrackets.applyWaitcnt(AMDGPU::Waitcnt::allZeroExceptVsCnt()); 1396 } 1397 1398 // TODO: Remove this work-around after fixing the scheduler and enable the 1399 // assert above. 1400 if (VCCZBugWorkAround) { 1401 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1402 // bit is updated, so we can restore the bit by reading the value of 1403 // vcc and then writing it back to the register. 1404 BuildMI(Block, Inst, Inst.getDebugLoc(), 1405 TII->get(AMDGPU::S_MOV_B64), 1406 AMDGPU::VCC) 1407 .addReg(AMDGPU::VCC); 1408 VCCZBugHandledSet.insert(&Inst); 1409 Modified = true; 1410 } 1411 1412 ++Iter; 1413 } 1414 1415 return Modified; 1416 } 1417 1418 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1419 ST = &MF.getSubtarget<GCNSubtarget>(); 1420 TII = ST->getInstrInfo(); 1421 TRI = &TII->getRegisterInfo(); 1422 MRI = &MF.getRegInfo(); 1423 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1424 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1425 1426 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1427 for (auto T : inst_counter_types()) 1428 ForceEmitWaitcnt[T] = false; 1429 1430 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1431 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1432 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1433 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1434 1435 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1436 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1437 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1438 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1439 1440 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1441 RegisterEncoding.VGPRL = 1442 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1443 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1444 RegisterEncoding.SGPRL = 1445 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1446 1447 TrackedWaitcntSet.clear(); 1448 VCCZBugHandledSet.clear(); 1449 RpotIdxMap.clear(); 1450 BlockInfos.clear(); 1451 1452 // Keep iterating over the blocks in reverse post order, inserting and 1453 // updating s_waitcnt where needed, until a fix point is reached. 1454 for (MachineBasicBlock *MBB : 1455 ReversePostOrderTraversal<MachineFunction *>(&MF)) { 1456 RpotIdxMap[MBB] = BlockInfos.size(); 1457 BlockInfos.emplace_back(MBB); 1458 } 1459 1460 std::unique_ptr<WaitcntBrackets> Brackets; 1461 bool Modified = false; 1462 bool Repeat; 1463 do { 1464 Repeat = false; 1465 1466 for (BlockInfo &BI : BlockInfos) { 1467 if (!BI.Dirty) 1468 continue; 1469 1470 unsigned Idx = std::distance(&*BlockInfos.begin(), &BI); 1471 1472 if (BI.Incoming) { 1473 if (!Brackets) 1474 Brackets = llvm::make_unique<WaitcntBrackets>(*BI.Incoming); 1475 else 1476 *Brackets = *BI.Incoming; 1477 } else { 1478 if (!Brackets) 1479 Brackets = llvm::make_unique<WaitcntBrackets>(ST); 1480 else 1481 Brackets->clear(); 1482 } 1483 1484 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1485 BI.Dirty = false; 1486 1487 if (Brackets->hasPending()) { 1488 BlockInfo *MoveBracketsToSucc = nullptr; 1489 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1490 unsigned SuccIdx = RpotIdxMap[Succ]; 1491 BlockInfo &SuccBI = BlockInfos[SuccIdx]; 1492 if (!SuccBI.Incoming) { 1493 SuccBI.Dirty = true; 1494 if (SuccIdx <= Idx) 1495 Repeat = true; 1496 if (!MoveBracketsToSucc) { 1497 MoveBracketsToSucc = &SuccBI; 1498 } else { 1499 SuccBI.Incoming = llvm::make_unique<WaitcntBrackets>(*Brackets); 1500 } 1501 } else if (SuccBI.Incoming->merge(*Brackets)) { 1502 SuccBI.Dirty = true; 1503 if (SuccIdx <= Idx) 1504 Repeat = true; 1505 } 1506 } 1507 if (MoveBracketsToSucc) 1508 MoveBracketsToSucc->Incoming = std::move(Brackets); 1509 } 1510 } 1511 } while (Repeat); 1512 1513 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1514 1515 bool HaveScalarStores = false; 1516 1517 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1518 ++BI) { 1519 MachineBasicBlock &MBB = *BI; 1520 1521 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1522 ++I) { 1523 if (!HaveScalarStores && TII->isScalarStore(*I)) 1524 HaveScalarStores = true; 1525 1526 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1527 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1528 EndPgmBlocks.push_back(&MBB); 1529 } 1530 } 1531 1532 if (HaveScalarStores) { 1533 // If scalar writes are used, the cache must be flushed or else the next 1534 // wave to reuse the same scratch memory can be clobbered. 1535 // 1536 // Insert s_dcache_wb at wave termination points if there were any scalar 1537 // stores, and only if the cache hasn't already been flushed. This could be 1538 // improved by looking across blocks for flushes in postdominating blocks 1539 // from the stores but an explicitly requested flush is probably very rare. 1540 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1541 bool SeenDCacheWB = false; 1542 1543 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1544 ++I) { 1545 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1546 SeenDCacheWB = true; 1547 else if (TII->isScalarStore(*I)) 1548 SeenDCacheWB = false; 1549 1550 // FIXME: It would be better to insert this before a waitcnt if any. 1551 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1552 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1553 !SeenDCacheWB) { 1554 Modified = true; 1555 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1556 } 1557 } 1558 } 1559 } 1560 1561 if (!MFI->isEntryFunction()) { 1562 // Wait for any outstanding memory operations that the input registers may 1563 // depend on. We can't track them and it's better to the wait after the 1564 // costly call sequence. 1565 1566 // TODO: Could insert earlier and schedule more liberally with operations 1567 // that only use caller preserved registers. 1568 MachineBasicBlock &EntryBB = MF.front(); 1569 if (ST->hasVscnt()) 1570 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), 1571 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1572 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1573 .addImm(0); 1574 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1575 .addImm(0); 1576 1577 Modified = true; 1578 } 1579 1580 return Modified; 1581 } 1582