1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "SIDefines.h" 22 #include "SIInstrInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "SIRegisterInfo.h" 25 #include "Utils/AMDGPUBaseInfo.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <cstring> 49 #include <memory> 50 #include <utility> 51 #include <vector> 52 53 #define DEBUG_TYPE "si-insert-waitcnts" 54 55 using namespace llvm; 56 57 namespace { 58 59 // Class of object that encapsulates latest instruction counter score 60 // associated with the operand. Used for determining whether 61 // s_waitcnt instruction needs to be emited. 62 63 #define CNT_MASK(t) (1u << (t)) 64 65 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 66 67 using RegInterval = std::pair<signed, signed>; 68 69 struct { 70 int32_t VmcntMax; 71 int32_t ExpcntMax; 72 int32_t LgkmcntMax; 73 int32_t NumVGPRsMax; 74 int32_t NumSGPRsMax; 75 } HardwareLimits; 76 77 struct { 78 unsigned VGPR0; 79 unsigned VGPRL; 80 unsigned SGPR0; 81 unsigned SGPRL; 82 } RegisterEncoding; 83 84 enum WaitEventType { 85 VMEM_ACCESS, // vector-memory read & write 86 LDS_ACCESS, // lds read & write 87 GDS_ACCESS, // gds read & write 88 SQ_MESSAGE, // send message 89 SMEM_ACCESS, // scalar-memory read & write 90 EXP_GPR_LOCK, // export holding on its data src 91 GDS_GPR_LOCK, // GDS holding on its data and addr src 92 EXP_POS_ACCESS, // write to export position 93 EXP_PARAM_ACCESS, // write to export parameter 94 VMW_GPR_LOCK, // vector-memory write holding on its data src 95 NUM_WAIT_EVENTS, 96 }; 97 98 // The mapping is: 99 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 100 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 101 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 102 // We reserve a fixed number of VGPR slots in the scoring tables for 103 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 104 enum RegisterMapping { 105 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 106 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 107 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 108 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 109 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 110 }; 111 112 #define ForAllWaitEventType(w) \ 113 for (enum WaitEventType w = (enum WaitEventType)0; \ 114 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ 115 (w) = (enum WaitEventType)((w) + 1)) 116 117 // This is a per-basic-block object that maintains current score brackets 118 // of each wait-counter, and a per-register scoreboard for each wait-couner. 119 // We also maintain the latest score for every event type that can change the 120 // waitcnt in order to know if there are multiple types of events within 121 // the brackets. When multiple types of event happen in the bracket, 122 // wait-count may get decreased out of order, therefore we need to put in 123 // "s_waitcnt 0" before use. 124 class BlockWaitcntBrackets { 125 public: 126 BlockWaitcntBrackets() { 127 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 128 T = (enum InstCounterType)(T + 1)) { 129 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 130 } 131 } 132 133 ~BlockWaitcntBrackets() = default; 134 135 static int32_t getWaitCountMax(InstCounterType T) { 136 switch (T) { 137 case VM_CNT: 138 return HardwareLimits.VmcntMax; 139 case LGKM_CNT: 140 return HardwareLimits.LgkmcntMax; 141 case EXP_CNT: 142 return HardwareLimits.ExpcntMax; 143 default: 144 break; 145 } 146 return 0; 147 } 148 149 void setScoreLB(InstCounterType T, int32_t Val) { 150 assert(T < NUM_INST_CNTS); 151 if (T >= NUM_INST_CNTS) 152 return; 153 ScoreLBs[T] = Val; 154 } 155 156 void setScoreUB(InstCounterType T, int32_t Val) { 157 assert(T < NUM_INST_CNTS); 158 if (T >= NUM_INST_CNTS) 159 return; 160 ScoreUBs[T] = Val; 161 if (T == EXP_CNT) { 162 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); 163 if (ScoreLBs[T] < UB) 164 ScoreLBs[T] = UB; 165 } 166 } 167 168 int32_t getScoreLB(InstCounterType T) { 169 assert(T < NUM_INST_CNTS); 170 if (T >= NUM_INST_CNTS) 171 return 0; 172 return ScoreLBs[T]; 173 } 174 175 int32_t getScoreUB(InstCounterType T) { 176 assert(T < NUM_INST_CNTS); 177 if (T >= NUM_INST_CNTS) 178 return 0; 179 return ScoreUBs[T]; 180 } 181 182 // Mapping from event to counter. 183 InstCounterType eventCounter(WaitEventType E) { 184 switch (E) { 185 case VMEM_ACCESS: 186 return VM_CNT; 187 case LDS_ACCESS: 188 case GDS_ACCESS: 189 case SQ_MESSAGE: 190 case SMEM_ACCESS: 191 return LGKM_CNT; 192 case EXP_GPR_LOCK: 193 case GDS_GPR_LOCK: 194 case VMW_GPR_LOCK: 195 case EXP_POS_ACCESS: 196 case EXP_PARAM_ACCESS: 197 return EXP_CNT; 198 default: 199 llvm_unreachable("unhandled event type"); 200 } 201 return NUM_INST_CNTS; 202 } 203 204 void setRegScore(int GprNo, InstCounterType T, int32_t Val) { 205 if (GprNo < NUM_ALL_VGPRS) { 206 if (GprNo > VgprUB) { 207 VgprUB = GprNo; 208 } 209 VgprScores[T][GprNo] = Val; 210 } else { 211 assert(T == LGKM_CNT); 212 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 213 SgprUB = GprNo - NUM_ALL_VGPRS; 214 } 215 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 216 } 217 } 218 219 int32_t getRegScore(int GprNo, InstCounterType T) { 220 if (GprNo < NUM_ALL_VGPRS) { 221 return VgprScores[T][GprNo]; 222 } 223 return SgprScores[GprNo - NUM_ALL_VGPRS]; 224 } 225 226 void clear() { 227 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 228 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 229 memset(EventUBs, 0, sizeof(EventUBs)); 230 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 231 T = (enum InstCounterType)(T + 1)) { 232 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 233 } 234 memset(SgprScores, 0, sizeof(SgprScores)); 235 } 236 237 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 238 const MachineRegisterInfo *MRI, 239 const SIRegisterInfo *TRI, unsigned OpNo, 240 bool Def) const; 241 242 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 243 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 244 unsigned OpNo, int32_t Val); 245 246 void setWaitAtBeginning() { WaitAtBeginning = true; } 247 void clearWaitAtBeginning() { WaitAtBeginning = false; } 248 bool getWaitAtBeginning() const { return WaitAtBeginning; } 249 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } 250 int32_t getMaxVGPR() const { return VgprUB; } 251 int32_t getMaxSGPR() const { return SgprUB; } 252 253 int32_t getEventUB(enum WaitEventType W) const { 254 assert(W < NUM_WAIT_EVENTS); 255 return EventUBs[W]; 256 } 257 258 bool counterOutOfOrder(InstCounterType T); 259 unsigned int updateByWait(InstCounterType T, int ScoreToWait); 260 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 261 const MachineRegisterInfo *MRI, WaitEventType E, 262 MachineInstr &MI); 263 264 bool hasPendingSMEM() const { 265 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 266 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); 267 } 268 269 bool hasPendingFlat() const { 270 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 271 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 272 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 273 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 274 } 275 276 void setPendingFlat() { 277 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 278 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 279 } 280 281 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } 282 283 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } 284 285 bool getRevisitLoop() const { return RevisitLoop; } 286 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } 287 288 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } 289 int32_t getPostOrder() const { return PostOrder; } 290 291 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } 292 void clearWaitcnt() { Waitcnt = nullptr; } 293 MachineInstr *getWaitcnt() const { return Waitcnt; } 294 295 bool mixedExpTypes() const { return MixedExpTypes; } 296 void setMixedExpTypes(bool MixedExpTypesIn) { 297 MixedExpTypes = MixedExpTypesIn; 298 } 299 300 void print(raw_ostream &); 301 void dump() { print(dbgs()); } 302 303 private: 304 bool WaitAtBeginning = false; 305 bool RevisitLoop = false; 306 bool MixedExpTypes = false; 307 int32_t PostOrder = 0; 308 MachineInstr *Waitcnt = nullptr; 309 int32_t ScoreLBs[NUM_INST_CNTS] = {0}; 310 int32_t ScoreUBs[NUM_INST_CNTS] = {0}; 311 int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; 312 // Remember the last flat memory operation. 313 int32_t LastFlat[NUM_INST_CNTS] = {0}; 314 // wait_cnt scores for every vgpr. 315 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 316 int32_t VgprUB = 0; 317 int32_t SgprUB = 0; 318 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 319 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 320 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 321 }; 322 323 // This is a per-loop-region object that records waitcnt status at the end of 324 // loop footer from the previous iteration. We also maintain an iteration 325 // count to track the number of times the loop has been visited. When it 326 // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 327 // at the end of the loop footer. 328 class LoopWaitcntData { 329 public: 330 LoopWaitcntData() = default; 331 ~LoopWaitcntData() = default; 332 333 void incIterCnt() { IterCnt++; } 334 void resetIterCnt() { IterCnt = 0; } 335 int32_t getIterCnt() { return IterCnt; } 336 337 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } 338 MachineInstr *getWaitcnt() const { return LfWaitcnt; } 339 340 void print() { 341 DEBUG(dbgs() << " iteration " << IterCnt << '\n';); 342 } 343 344 private: 345 // s_waitcnt added at the end of loop footer to stablize wait scores 346 // at the end of the loop footer. 347 MachineInstr *LfWaitcnt = nullptr; 348 // Number of iterations the loop has been visited, not including the initial 349 // walk over. 350 int32_t IterCnt = 0; 351 }; 352 353 class SIInsertWaitcnts : public MachineFunctionPass { 354 private: 355 const SISubtarget *ST = nullptr; 356 const SIInstrInfo *TII = nullptr; 357 const SIRegisterInfo *TRI = nullptr; 358 const MachineRegisterInfo *MRI = nullptr; 359 const MachineLoopInfo *MLI = nullptr; 360 AMDGPU::IsaInfo::IsaVersion IV; 361 AMDGPUAS AMDGPUASI; 362 363 DenseSet<MachineBasicBlock *> BlockVisitedSet; 364 DenseSet<MachineInstr *> CompilerGeneratedWaitcntSet; 365 DenseSet<MachineInstr *> VCCZBugHandledSet; 366 367 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> 368 BlockWaitcntBracketsMap; 369 370 DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet; 371 372 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; 373 374 std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; 375 376 public: 377 static char ID; 378 379 SIInsertWaitcnts() : MachineFunctionPass(ID) {} 380 381 bool runOnMachineFunction(MachineFunction &MF) override; 382 383 StringRef getPassName() const override { 384 return "SI insert wait instructions"; 385 } 386 387 void getAnalysisUsage(AnalysisUsage &AU) const override { 388 AU.setPreservesCFG(); 389 AU.addRequired<MachineLoopInfo>(); 390 MachineFunctionPass::getAnalysisUsage(AU); 391 } 392 393 void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { 394 // The waitcnt information is copied because it changes as the block is 395 // traversed. 396 KillWaitBrackets.push_back( 397 llvm::make_unique<BlockWaitcntBrackets>(*Bracket)); 398 } 399 400 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 401 MachineInstr *generateSWaitCntInstBefore(MachineInstr &MI, 402 BlockWaitcntBrackets *ScoreBrackets); 403 void updateEventWaitCntAfter(MachineInstr &Inst, 404 BlockWaitcntBrackets *ScoreBrackets); 405 void mergeInputScoreBrackets(MachineBasicBlock &Block); 406 MachineBasicBlock *loopBottom(const MachineLoop *Loop); 407 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); 408 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); 409 }; 410 411 } // end anonymous namespace 412 413 RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, 414 const SIInstrInfo *TII, 415 const MachineRegisterInfo *MRI, 416 const SIRegisterInfo *TRI, 417 unsigned OpNo, 418 bool Def) const { 419 const MachineOperand &Op = MI->getOperand(OpNo); 420 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 421 (Def && !Op.isDef())) 422 return {-1, -1}; 423 424 // A use via a PW operand does not need a waitcnt. 425 // A partial write is not a WAW. 426 assert(!Op.getSubReg() || !Op.isUndef()); 427 428 RegInterval Result; 429 const MachineRegisterInfo &MRIA = *MRI; 430 431 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 432 433 if (TRI->isVGPR(MRIA, Op.getReg())) { 434 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 435 Result.first = Reg - RegisterEncoding.VGPR0; 436 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 437 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 438 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 439 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 440 assert(Result.first >= NUM_ALL_VGPRS && 441 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 442 } 443 // TODO: Handle TTMP 444 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 445 else 446 return {-1, -1}; 447 448 const MachineInstr &MIA = *MI; 449 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 450 unsigned Size = TRI->getRegSizeInBits(*RC); 451 Result.second = Result.first + (Size / 32); 452 453 return Result; 454 } 455 456 void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, 457 const SIInstrInfo *TII, 458 const SIRegisterInfo *TRI, 459 const MachineRegisterInfo *MRI, 460 unsigned OpNo, int32_t Val) { 461 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 462 DEBUG({ 463 const MachineOperand &Opnd = MI->getOperand(OpNo); 464 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 465 }); 466 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 467 setRegScore(RegNo, EXP_CNT, Val); 468 } 469 } 470 471 void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 472 const SIRegisterInfo *TRI, 473 const MachineRegisterInfo *MRI, 474 WaitEventType E, MachineInstr &Inst) { 475 const MachineRegisterInfo &MRIA = *MRI; 476 InstCounterType T = eventCounter(E); 477 int32_t CurrScore = getScoreUB(T) + 1; 478 // EventUB and ScoreUB need to be update regardless if this event changes 479 // the score of a register or not. 480 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 481 EventUBs[E] = CurrScore; 482 setScoreUB(T, CurrScore); 483 484 if (T == EXP_CNT) { 485 // Check for mixed export types. If they are mixed, then a waitcnt exp(0) 486 // is required. 487 if (!MixedExpTypes) { 488 MixedExpTypes = counterOutOfOrder(EXP_CNT); 489 } 490 491 // Put score on the source vgprs. If this is a store, just use those 492 // specific register(s). 493 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 494 // All GDS operations must protect their address register (same as 495 // export.) 496 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 497 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 498 setExpScore( 499 &Inst, TII, TRI, MRI, 500 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 501 CurrScore); 502 } 503 if (Inst.mayStore()) { 504 setExpScore( 505 &Inst, TII, TRI, MRI, 506 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 507 CurrScore); 508 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 509 AMDGPU::OpName::data1) != -1) { 510 setExpScore(&Inst, TII, TRI, MRI, 511 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 512 AMDGPU::OpName::data1), 513 CurrScore); 514 } 515 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 516 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 517 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 518 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 519 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 520 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 521 Inst.getOpcode() != AMDGPU::DS_APPEND && 522 Inst.getOpcode() != AMDGPU::DS_CONSUME && 523 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 524 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 525 const MachineOperand &Op = Inst.getOperand(I); 526 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 527 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 528 } 529 } 530 } 531 } else if (TII->isFLAT(Inst)) { 532 if (Inst.mayStore()) { 533 setExpScore( 534 &Inst, TII, TRI, MRI, 535 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 536 CurrScore); 537 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 538 setExpScore( 539 &Inst, TII, TRI, MRI, 540 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 541 CurrScore); 542 } 543 } else if (TII->isMIMG(Inst)) { 544 if (Inst.mayStore()) { 545 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 546 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 547 setExpScore( 548 &Inst, TII, TRI, MRI, 549 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 550 CurrScore); 551 } 552 } else if (TII->isMTBUF(Inst)) { 553 if (Inst.mayStore()) { 554 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 555 } 556 } else if (TII->isMUBUF(Inst)) { 557 if (Inst.mayStore()) { 558 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 559 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 560 setExpScore( 561 &Inst, TII, TRI, MRI, 562 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 563 CurrScore); 564 } 565 } else { 566 if (TII->isEXP(Inst)) { 567 // For export the destination registers are really temps that 568 // can be used as the actual source after export patching, so 569 // we need to treat them like sources and set the EXP_CNT 570 // score. 571 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 572 MachineOperand &DefMO = Inst.getOperand(I); 573 if (DefMO.isReg() && DefMO.isDef() && 574 TRI->isVGPR(MRIA, DefMO.getReg())) { 575 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 576 CurrScore); 577 } 578 } 579 } 580 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 581 MachineOperand &MO = Inst.getOperand(I); 582 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 583 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 584 } 585 } 586 } 587 #if 0 // TODO: check if this is handled by MUBUF code above. 588 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 589 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 590 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 591 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 592 unsigned OpNo;//TODO: find the OpNo for this operand; 593 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 594 for (signed RegNo = Interval.first; RegNo < Interval.second; 595 ++RegNo) { 596 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 597 } 598 #endif 599 } else { 600 // Match the score to the destination registers. 601 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 602 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 603 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 604 continue; 605 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 606 setRegScore(RegNo, T, CurrScore); 607 } 608 } 609 if (TII->isDS(Inst) && Inst.mayStore()) { 610 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 611 } 612 } 613 } 614 615 void BlockWaitcntBrackets::print(raw_ostream &OS) { 616 OS << '\n'; 617 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 618 T = (enum InstCounterType)(T + 1)) { 619 int LB = getScoreLB(T); 620 int UB = getScoreUB(T); 621 622 switch (T) { 623 case VM_CNT: 624 OS << " VM_CNT(" << UB - LB << "): "; 625 break; 626 case LGKM_CNT: 627 OS << " LGKM_CNT(" << UB - LB << "): "; 628 break; 629 case EXP_CNT: 630 OS << " EXP_CNT(" << UB - LB << "): "; 631 break; 632 default: 633 OS << " UNKNOWN(" << UB - LB << "): "; 634 break; 635 } 636 637 if (LB < UB) { 638 // Print vgpr scores. 639 for (int J = 0; J <= getMaxVGPR(); J++) { 640 int RegScore = getRegScore(J, T); 641 if (RegScore <= LB) 642 continue; 643 int RelScore = RegScore - LB - 1; 644 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 645 OS << RelScore << ":v" << J << " "; 646 } else { 647 OS << RelScore << ":ds "; 648 } 649 } 650 // Also need to print sgpr scores for lgkm_cnt. 651 if (T == LGKM_CNT) { 652 for (int J = 0; J <= getMaxSGPR(); J++) { 653 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 654 if (RegScore <= LB) 655 continue; 656 int RelScore = RegScore - LB - 1; 657 OS << RelScore << ":s" << J << " "; 658 } 659 } 660 } 661 OS << '\n'; 662 } 663 OS << '\n'; 664 } 665 666 unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, 667 int ScoreToWait) { 668 unsigned int NeedWait = 0; 669 if (ScoreToWait == -1) { 670 // The score to wait is unknown. This implies that it was not encountered 671 // during the path of the CFG walk done during the current traversal but 672 // may be seen on a different path. Emit an s_wait counter with a 673 // conservative value of 0 for the counter. 674 NeedWait = CNT_MASK(T); 675 setScoreLB(T, getScoreUB(T)); 676 return NeedWait; 677 } 678 679 // If the score of src_operand falls within the bracket, we need an 680 // s_waitcnt instruction. 681 const int32_t LB = getScoreLB(T); 682 const int32_t UB = getScoreUB(T); 683 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 684 if (T == VM_CNT && hasPendingFlat()) { 685 // If there is a pending FLAT operation, and this is a VM waitcnt, 686 // then we need to force a waitcnt 0 for VM. 687 NeedWait = CNT_MASK(T); 688 setScoreLB(T, getScoreUB(T)); 689 } else if (counterOutOfOrder(T)) { 690 // Counter can get decremented out-of-order when there 691 // are multiple types event in the brack. Also emit an s_wait counter 692 // with a conservative value of 0 for the counter. 693 NeedWait = CNT_MASK(T); 694 setScoreLB(T, getScoreUB(T)); 695 } else { 696 NeedWait = CNT_MASK(T); 697 setScoreLB(T, ScoreToWait); 698 } 699 } 700 701 return NeedWait; 702 } 703 704 // Where there are multiple types of event in the bracket of a counter, 705 // the decrement may go out of order. 706 bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { 707 switch (T) { 708 case VM_CNT: 709 return false; 710 case LGKM_CNT: { 711 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 712 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { 713 // Scalar memory read always can go out of order. 714 return true; 715 } 716 int NumEventTypes = 0; 717 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && 718 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 719 NumEventTypes++; 720 } 721 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && 722 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 723 NumEventTypes++; 724 } 725 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && 726 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { 727 NumEventTypes++; 728 } 729 if (NumEventTypes <= 1) { 730 return false; 731 } 732 break; 733 } 734 case EXP_CNT: { 735 // If there has been a mixture of export types, then a waitcnt exp(0) is 736 // required. 737 if (MixedExpTypes) 738 return true; 739 int NumEventTypes = 0; 740 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && 741 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 742 NumEventTypes++; 743 } 744 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && 745 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 746 NumEventTypes++; 747 } 748 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && 749 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 750 NumEventTypes++; 751 } 752 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && 753 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { 754 NumEventTypes++; 755 } 756 757 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && 758 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { 759 NumEventTypes++; 760 } 761 762 if (NumEventTypes <= 1) { 763 return false; 764 } 765 break; 766 } 767 default: 768 break; 769 } 770 return true; 771 } 772 773 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 774 false) 775 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 776 false) 777 778 char SIInsertWaitcnts::ID = 0; 779 780 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 781 782 FunctionPass *llvm::createSIInsertWaitcntsPass() { 783 return new SIInsertWaitcnts(); 784 } 785 786 static bool readsVCCZ(const MachineInstr &MI) { 787 unsigned Opc = MI.getOpcode(); 788 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 789 !MI.getOperand(1).isUndef(); 790 } 791 792 /// \brief Generate s_waitcnt instruction to be placed before cur_Inst. 793 /// Instructions of a given type are returned in order, 794 /// but instructions of different types can complete out of order. 795 /// We rely on this in-order completion 796 /// and simply assign a score to the memory access instructions. 797 /// We keep track of the active "score bracket" to determine 798 /// if an access of a memory read requires an s_waitcnt 799 /// and if so what the value of each counter is. 800 /// The "score bracket" is bound by the lower bound and upper bound 801 /// scores (*_score_LB and *_score_ub respectively). 802 MachineInstr *SIInsertWaitcnts::generateSWaitCntInstBefore( 803 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { 804 // To emit, or not to emit - that's the question! 805 // Start with an assumption that there is no need to emit. 806 unsigned int EmitSwaitcnt = 0; 807 // s_waitcnt instruction to return; default is NULL. 808 MachineInstr *SWaitInst = nullptr; 809 // No need to wait before phi. If a phi-move exists, then the wait should 810 // has been inserted before the move. If a phi-move does not exist, then 811 // wait should be inserted before the real use. The same is true for 812 // sc-merge. It is not a coincident that all these cases correspond to the 813 // instructions that are skipped in the assembling loop. 814 bool NeedLineMapping = false; // TODO: Check on this. 815 if (MI.isDebugValue() && 816 // TODO: any other opcode? 817 !NeedLineMapping) { 818 return SWaitInst; 819 } 820 821 // See if an s_waitcnt is forced at block entry, or is needed at 822 // program end. 823 if (ScoreBrackets->getWaitAtBeginning()) { 824 // Note that we have already cleared the state, so we don't need to update 825 // it. 826 ScoreBrackets->clearWaitAtBeginning(); 827 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 828 T = (enum InstCounterType)(T + 1)) { 829 EmitSwaitcnt |= CNT_MASK(T); 830 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 831 } 832 } 833 834 // See if this instruction has a forced S_WAITCNT VM. 835 // TODO: Handle other cases of NeedsWaitcntVmBefore() 836 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 837 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 838 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 839 EmitSwaitcnt |= 840 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 841 } 842 843 // All waits must be resolved at call return. 844 // NOTE: this could be improved with knowledge of all call sites or 845 // with knowledge of the called routines. 846 if (MI.getOpcode() == AMDGPU::RETURN || 847 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 848 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 849 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 850 T = (enum InstCounterType)(T + 1)) { 851 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 852 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 853 EmitSwaitcnt |= CNT_MASK(T); 854 } 855 } 856 } 857 // Resolve vm waits before gs-done. 858 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 859 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 860 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 861 AMDGPU::SendMsg::ID_GS_DONE)) { 862 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { 863 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 864 EmitSwaitcnt |= CNT_MASK(VM_CNT); 865 } 866 } 867 #if 0 // TODO: the following blocks of logic when we have fence. 868 else if (MI.getOpcode() == SC_FENCE) { 869 const unsigned int group_size = 870 context->shader_info->GetMaxThreadGroupSize(); 871 // group_size == 0 means thread group size is unknown at compile time 872 const bool group_is_multi_wave = 873 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 874 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 875 876 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 877 SCRegType src_type = Inst->GetSrcType(i); 878 switch (src_type) { 879 case SCMEM_LDS: 880 if (group_is_multi_wave || 881 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 882 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 883 ScoreBrackets->getScoreUB(LGKM_CNT)); 884 // LDS may have to wait for VM_CNT after buffer load to LDS 885 if (target_info->HasBufferLoadToLDS()) { 886 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 887 ScoreBrackets->getScoreUB(VM_CNT)); 888 } 889 } 890 break; 891 892 case SCMEM_GDS: 893 if (group_is_multi_wave || fence_is_global) { 894 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 895 ScoreBrackets->getScoreUB(EXP_CNT)); 896 EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 897 ScoreBrackets->getScoreUB(LGKM_CNT)); 898 } 899 break; 900 901 case SCMEM_UAV: 902 case SCMEM_TFBUF: 903 case SCMEM_RING: 904 case SCMEM_SCATTER: 905 if (group_is_multi_wave || fence_is_global) { 906 EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 907 ScoreBrackets->getScoreUB(EXP_CNT)); 908 EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 909 ScoreBrackets->getScoreUB(VM_CNT)); 910 } 911 break; 912 913 case SCMEM_SCRATCH: 914 default: 915 break; 916 } 917 } 918 } 919 #endif 920 921 // Export & GDS instructions do not read the EXEC mask until after the export 922 // is granted (which can occur well after the instruction is issued). 923 // The shader program must flush all EXP operations on the export-count 924 // before overwriting the EXEC mask. 925 else { 926 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 927 // Export and GDS are tracked individually, either may trigger a waitcnt 928 // for EXEC. 929 EmitSwaitcnt |= ScoreBrackets->updateByWait( 930 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); 931 EmitSwaitcnt |= ScoreBrackets->updateByWait( 932 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); 933 EmitSwaitcnt |= ScoreBrackets->updateByWait( 934 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); 935 EmitSwaitcnt |= ScoreBrackets->updateByWait( 936 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); 937 } 938 939 #if 0 // TODO: the following code to handle CALL. 940 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 941 // However, there is a problem with EXP_CNT, because the call cannot 942 // easily tell if a register is used in the function, and if it did, then 943 // the referring instruction would have to have an S_WAITCNT, which is 944 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 945 // before the call. 946 if (MI.getOpcode() == SC_CALL) { 947 if (ScoreBrackets->getScoreUB(EXP_CNT) > 948 ScoreBrackets->getScoreLB(EXP_CNT)) { 949 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 950 EmitSwaitcnt |= CNT_MASK(EXP_CNT); 951 } 952 } 953 #endif 954 955 // FIXME: Should not be relying on memoperands. 956 // Look at the source operands of every instruction to see if 957 // any of them results from a previous memory operation that affects 958 // its current usage. If so, an s_waitcnt instruction needs to be 959 // emitted. 960 // If the source operand was defined by a load, add the s_waitcnt 961 // instruction. 962 for (const MachineMemOperand *Memop : MI.memoperands()) { 963 unsigned AS = Memop->getAddrSpace(); 964 if (AS != AMDGPUASI.LOCAL_ADDRESS) 965 continue; 966 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 967 // VM_CNT is only relevant to vgpr or LDS. 968 EmitSwaitcnt |= ScoreBrackets->updateByWait( 969 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 970 } 971 972 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 973 const MachineOperand &Op = MI.getOperand(I); 974 const MachineRegisterInfo &MRIA = *MRI; 975 RegInterval Interval = 976 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); 977 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 978 if (TRI->isVGPR(MRIA, Op.getReg())) { 979 // VM_CNT is only relevant to vgpr or LDS. 980 EmitSwaitcnt |= ScoreBrackets->updateByWait( 981 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 982 } 983 EmitSwaitcnt |= ScoreBrackets->updateByWait( 984 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 985 } 986 } 987 // End of for loop that looks at all source operands to decide vm_wait_cnt 988 // and lgk_wait_cnt. 989 990 // Two cases are handled for destination operands: 991 // 1) If the destination operand was defined by a load, add the s_waitcnt 992 // instruction to guarantee the right WAW order. 993 // 2) If a destination operand that was used by a recent export/store ins, 994 // add s_waitcnt on exp_cnt to guarantee the WAR order. 995 if (MI.mayStore()) { 996 // FIXME: Should not be relying on memoperands. 997 for (const MachineMemOperand *Memop : MI.memoperands()) { 998 unsigned AS = Memop->getAddrSpace(); 999 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1000 continue; 1001 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1002 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1003 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1004 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1005 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1006 } 1007 } 1008 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1009 MachineOperand &Def = MI.getOperand(I); 1010 const MachineRegisterInfo &MRIA = *MRI; 1011 RegInterval Interval = 1012 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); 1013 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1014 if (TRI->isVGPR(MRIA, Def.getReg())) { 1015 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1016 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1017 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1018 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1019 } 1020 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1021 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1022 } 1023 } // End of for loop that looks at all dest operands. 1024 } 1025 1026 // TODO: Tie force zero to a compiler triage option. 1027 bool ForceZero = false; 1028 1029 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1030 // occurs before the instruction. Doing it here prevents any additional 1031 // S_WAITCNTs from being emitted if the instruction was marked as 1032 // requiring a WAITCNT beforehand. 1033 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1034 !ST->hasAutoWaitcntBeforeBarrier()) { 1035 EmitSwaitcnt |= 1036 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1037 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1038 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1039 EmitSwaitcnt |= ScoreBrackets->updateByWait( 1040 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); 1041 } 1042 1043 // TODO: Remove this work-around, enable the assert for Bug 457939 1044 // after fixing the scheduler. Also, the Shader Compiler code is 1045 // independent of target. 1046 if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { 1047 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1048 ScoreBrackets->getScoreUB(LGKM_CNT) && 1049 ScoreBrackets->hasPendingSMEM()) { 1050 // Wait on everything, not just LGKM. vccz reads usually come from 1051 // terminators, and we always wait on everything at the end of the 1052 // block, so if we only wait on LGKM here, we might end up with 1053 // another s_waitcnt inserted right after this if there are non-LGKM 1054 // instructions still outstanding. 1055 ForceZero = true; 1056 EmitSwaitcnt = true; 1057 } 1058 } 1059 1060 // Does this operand processing indicate s_wait counter update? 1061 if (EmitSwaitcnt) { 1062 int CntVal[NUM_INST_CNTS]; 1063 1064 bool UseDefaultWaitcntStrategy = true; 1065 if (ForceZero) { 1066 // Force all waitcnts to 0. 1067 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1068 T = (enum InstCounterType)(T + 1)) { 1069 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1070 } 1071 CntVal[VM_CNT] = 0; 1072 CntVal[EXP_CNT] = 0; 1073 CntVal[LGKM_CNT] = 0; 1074 UseDefaultWaitcntStrategy = false; 1075 } 1076 1077 if (UseDefaultWaitcntStrategy) { 1078 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1079 T = (enum InstCounterType)(T + 1)) { 1080 if (EmitSwaitcnt & CNT_MASK(T)) { 1081 int Delta = 1082 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); 1083 int MaxDelta = ScoreBrackets->getWaitCountMax(T); 1084 if (Delta >= MaxDelta) { 1085 Delta = -1; 1086 if (T != EXP_CNT) { 1087 ScoreBrackets->setScoreLB( 1088 T, ScoreBrackets->getScoreUB(T) - MaxDelta); 1089 } 1090 EmitSwaitcnt &= ~CNT_MASK(T); 1091 } 1092 CntVal[T] = Delta; 1093 } else { 1094 // If we are not waiting for a particular counter then encode 1095 // it as -1 which means "don't care." 1096 CntVal[T] = -1; 1097 } 1098 } 1099 } 1100 1101 // If we are not waiting on any counter we can skip the wait altogether. 1102 if (EmitSwaitcnt != 0) { 1103 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); 1104 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); 1105 if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) != 1106 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || 1107 (AMDGPU::decodeExpcnt(IV, Imm) != 1108 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || 1109 (AMDGPU::decodeLgkmcnt(IV, Imm) != 1110 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { 1111 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); 1112 if (ContainingLoop) { 1113 MachineBasicBlock *TBB = ContainingLoop->getHeader(); 1114 BlockWaitcntBrackets *ScoreBracket = 1115 BlockWaitcntBracketsMap[TBB].get(); 1116 if (!ScoreBracket) { 1117 assert(BlockVisitedSet.find(TBB) == BlockVisitedSet.end()); 1118 BlockWaitcntBracketsMap[TBB] = 1119 llvm::make_unique<BlockWaitcntBrackets>(); 1120 ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); 1121 } 1122 ScoreBracket->setRevisitLoop(true); 1123 DEBUG(dbgs() << "set-revisit: block" 1124 << ContainingLoop->getHeader()->getNumber() << '\n';); 1125 } 1126 } 1127 1128 // Update an existing waitcount, or make a new one. 1129 MachineFunction &MF = *MI.getParent()->getParent(); 1130 if (OldWaitcnt && OldWaitcnt->getOpcode() != AMDGPU::S_WAITCNT) { 1131 SWaitInst = OldWaitcnt; 1132 } else { 1133 SWaitInst = MF.CreateMachineInstr(TII->get(AMDGPU::S_WAITCNT), 1134 MI.getDebugLoc()); 1135 CompilerGeneratedWaitcntSet.insert(SWaitInst); 1136 } 1137 1138 const MachineOperand &Op = 1139 MachineOperand::CreateImm(AMDGPU::encodeWaitcnt( 1140 IV, CntVal[VM_CNT], CntVal[EXP_CNT], CntVal[LGKM_CNT])); 1141 SWaitInst->addOperand(MF, Op); 1142 1143 if (CntVal[EXP_CNT] == 0) { 1144 ScoreBrackets->setMixedExpTypes(false); 1145 } 1146 } 1147 } 1148 1149 return SWaitInst; 1150 } 1151 1152 void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, 1153 MachineInstr *Waitcnt) { 1154 if (MBB.empty()) { 1155 MBB.push_back(Waitcnt); 1156 return; 1157 } 1158 1159 MachineBasicBlock::iterator It = MBB.end(); 1160 MachineInstr *MI = &*(--It); 1161 if (MI->isBranch()) { 1162 MBB.insert(It, Waitcnt); 1163 } else { 1164 MBB.push_back(Waitcnt); 1165 } 1166 } 1167 1168 // This is a flat memory operation. Check to see if it has memory 1169 // tokens for both LDS and Memory, and if so mark it as a flat. 1170 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1171 if (MI.memoperands_empty()) 1172 return true; 1173 1174 for (const MachineMemOperand *Memop : MI.memoperands()) { 1175 unsigned AS = Memop->getAddrSpace(); 1176 if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) 1177 return true; 1178 } 1179 1180 return false; 1181 } 1182 1183 void SIInsertWaitcnts::updateEventWaitCntAfter( 1184 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { 1185 // Now look at the instruction opcode. If it is a memory access 1186 // instruction, update the upper-bound of the appropriate counter's 1187 // bracket and the destination operand scores. 1188 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1189 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1190 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1191 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1192 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1193 } else { 1194 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1195 } 1196 } else if (TII->isFLAT(Inst)) { 1197 assert(Inst.mayLoad() || Inst.mayStore()); 1198 1199 if (TII->usesVM_CNT(Inst)) 1200 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1201 1202 if (TII->usesLGKM_CNT(Inst)) { 1203 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1204 1205 // This is a flat memory operation, so note it - it will require 1206 // that both the VM and LGKM be flushed to zero if it is pending when 1207 // a VM or LGKM dependency occurs. 1208 if (mayAccessLDSThroughFlat(Inst)) 1209 ScoreBrackets->setPendingFlat(); 1210 } 1211 } else if (SIInstrInfo::isVMEM(Inst) && 1212 // TODO: get a better carve out. 1213 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1214 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1215 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1216 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1217 if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() && 1218 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1219 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1220 } 1221 } else if (TII->isSMRD(Inst)) { 1222 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1223 } else { 1224 switch (Inst.getOpcode()) { 1225 case AMDGPU::S_SENDMSG: 1226 case AMDGPU::S_SENDMSGHALT: 1227 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1228 break; 1229 case AMDGPU::EXP: 1230 case AMDGPU::EXP_DONE: { 1231 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1232 if (Imm >= 32 && Imm <= 63) 1233 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1234 else if (Imm >= 12 && Imm <= 15) 1235 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1236 else 1237 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1238 break; 1239 } 1240 case AMDGPU::S_MEMTIME: 1241 case AMDGPU::S_MEMREALTIME: 1242 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1243 break; 1244 default: 1245 break; 1246 } 1247 } 1248 } 1249 1250 void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { 1251 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1252 int32_t MaxPending[NUM_INST_CNTS] = {0}; 1253 int32_t MaxFlat[NUM_INST_CNTS] = {0}; 1254 bool MixedExpTypes = false; 1255 1256 // Clear the score bracket state. 1257 ScoreBrackets->clear(); 1258 1259 // Compute the number of pending elements on block entry. 1260 1261 // IMPORTANT NOTE: If iterative handling of loops is added, the code will 1262 // need to handle single BBs with backedges to themselves. This means that 1263 // they will need to retain and not clear their initial state. 1264 1265 // See if there are any uninitialized predecessors. If so, emit an 1266 // s_waitcnt 0 at the beginning of the block. 1267 for (MachineBasicBlock *pred : Block.predecessors()) { 1268 BlockWaitcntBrackets *PredScoreBrackets = 1269 BlockWaitcntBracketsMap[pred].get(); 1270 bool Visited = BlockVisitedSet.find(pred) != BlockVisitedSet.end(); 1271 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1272 break; 1273 } 1274 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1275 T = (enum InstCounterType)(T + 1)) { 1276 int span = 1277 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); 1278 MaxPending[T] = std::max(MaxPending[T], span); 1279 span = 1280 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); 1281 MaxFlat[T] = std::max(MaxFlat[T], span); 1282 } 1283 1284 MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); 1285 } 1286 1287 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1288 // Also handle kills for exit block. 1289 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1290 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1291 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1292 T = (enum InstCounterType)(T + 1)) { 1293 int Span = KillWaitBrackets[I]->getScoreUB(T) - 1294 KillWaitBrackets[I]->getScoreLB(T); 1295 MaxPending[T] = std::max(MaxPending[T], Span); 1296 Span = KillWaitBrackets[I]->pendingFlat(T) - 1297 KillWaitBrackets[I]->getScoreLB(T); 1298 MaxFlat[T] = std::max(MaxFlat[T], Span); 1299 } 1300 1301 MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); 1302 } 1303 } 1304 1305 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. 1306 for (MachineBasicBlock *Pred : Block.predecessors()) { 1307 BlockWaitcntBrackets *PredScoreBrackets = 1308 BlockWaitcntBracketsMap[Pred].get(); 1309 bool Visited = BlockVisitedSet.find(Pred) != BlockVisitedSet.end(); 1310 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1311 break; 1312 } 1313 1314 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - 1315 PredScoreBrackets->getScoreLB(EXP_CNT); 1316 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1317 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - 1318 PredScoreBrackets->getScoreLB(EXP_CNT); 1319 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1320 } 1321 1322 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1323 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1324 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1325 int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - 1326 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1327 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1328 int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - 1329 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1330 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1331 } 1332 } 1333 1334 #if 0 1335 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. 1336 // TODO: how does LC distinguish between function entry and main entry? 1337 // If this is the entry to a function, force a wait. 1338 MachineBasicBlock &Entry = Block.getParent()->front(); 1339 if (Entry.getNumber() == Block.getNumber()) { 1340 ScoreBrackets->setWaitAtBeginning(); 1341 return; 1342 } 1343 #endif 1344 1345 // Now set the current Block's brackets to the largest ending bracket. 1346 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1347 T = (enum InstCounterType)(T + 1)) { 1348 ScoreBrackets->setScoreUB(T, MaxPending[T]); 1349 ScoreBrackets->setScoreLB(T, 0); 1350 ScoreBrackets->setLastFlat(T, MaxFlat[T]); 1351 } 1352 1353 ScoreBrackets->setMixedExpTypes(MixedExpTypes); 1354 1355 // Set the register scoreboard. 1356 for (MachineBasicBlock *Pred : Block.predecessors()) { 1357 if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) { 1358 break; 1359 } 1360 1361 BlockWaitcntBrackets *PredScoreBrackets = 1362 BlockWaitcntBracketsMap[Pred].get(); 1363 1364 // Now merge the gpr_reg_score information 1365 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1366 T = (enum InstCounterType)(T + 1)) { 1367 int PredLB = PredScoreBrackets->getScoreLB(T); 1368 int PredUB = PredScoreBrackets->getScoreUB(T); 1369 if (PredLB < PredUB) { 1370 int PredScale = MaxPending[T] - PredUB; 1371 // Merge vgpr scores. 1372 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { 1373 int PredRegScore = PredScoreBrackets->getRegScore(J, T); 1374 if (PredRegScore <= PredLB) 1375 continue; 1376 int NewRegScore = PredScale + PredRegScore; 1377 ScoreBrackets->setRegScore( 1378 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1379 } 1380 // Also need to merge sgpr scores for lgkm_cnt. 1381 if (T == LGKM_CNT) { 1382 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { 1383 int PredRegScore = 1384 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1385 if (PredRegScore <= PredLB) 1386 continue; 1387 int NewRegScore = PredScale + PredRegScore; 1388 ScoreBrackets->setRegScore( 1389 J + NUM_ALL_VGPRS, LGKM_CNT, 1390 std::max( 1391 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1392 NewRegScore)); 1393 } 1394 } 1395 } 1396 } 1397 1398 // Also merge the WaitEvent information. 1399 ForAllWaitEventType(W) { 1400 enum InstCounterType T = PredScoreBrackets->eventCounter(W); 1401 int PredEventUB = PredScoreBrackets->getEventUB(W); 1402 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { 1403 int NewEventUB = 1404 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); 1405 if (NewEventUB > 0) { 1406 ScoreBrackets->setEventUB( 1407 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1408 } 1409 } 1410 } 1411 } 1412 1413 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1414 // Set the register scoreboard. 1415 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1416 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1417 // Now merge the gpr_reg_score information. 1418 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1419 T = (enum InstCounterType)(T + 1)) { 1420 int PredLB = KillWaitBrackets[I]->getScoreLB(T); 1421 int PredUB = KillWaitBrackets[I]->getScoreUB(T); 1422 if (PredLB < PredUB) { 1423 int PredScale = MaxPending[T] - PredUB; 1424 // Merge vgpr scores. 1425 for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { 1426 int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); 1427 if (PredRegScore <= PredLB) 1428 continue; 1429 int NewRegScore = PredScale + PredRegScore; 1430 ScoreBrackets->setRegScore( 1431 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1432 } 1433 // Also need to merge sgpr scores for lgkm_cnt. 1434 if (T == LGKM_CNT) { 1435 for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { 1436 int PredRegScore = 1437 KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1438 if (PredRegScore <= PredLB) 1439 continue; 1440 int NewRegScore = PredScale + PredRegScore; 1441 ScoreBrackets->setRegScore( 1442 J + NUM_ALL_VGPRS, LGKM_CNT, 1443 std::max( 1444 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1445 NewRegScore)); 1446 } 1447 } 1448 } 1449 } 1450 1451 // Also merge the WaitEvent information. 1452 ForAllWaitEventType(W) { 1453 enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); 1454 int PredEventUB = KillWaitBrackets[I]->getEventUB(W); 1455 if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { 1456 int NewEventUB = 1457 MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); 1458 if (NewEventUB > 0) { 1459 ScoreBrackets->setEventUB( 1460 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1461 } 1462 } 1463 } 1464 } 1465 } 1466 1467 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the 1468 // sequencing predecessors, because changes to EXEC require waitcnts due to 1469 // the delayed nature of these operations. 1470 for (MachineBasicBlock *Pred : Block.predecessors()) { 1471 if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) { 1472 break; 1473 } 1474 1475 BlockWaitcntBrackets *PredScoreBrackets = 1476 BlockWaitcntBracketsMap[Pred].get(); 1477 1478 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); 1479 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1480 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - 1481 PredScoreBrackets->getScoreUB(EXP_CNT); 1482 if (new_gds_ub > 0) { 1483 ScoreBrackets->setEventUB( 1484 GDS_GPR_LOCK, 1485 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); 1486 } 1487 } 1488 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); 1489 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1490 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - 1491 PredScoreBrackets->getScoreUB(EXP_CNT); 1492 if (new_exp_ub > 0) { 1493 ScoreBrackets->setEventUB( 1494 EXP_GPR_LOCK, 1495 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); 1496 } 1497 } 1498 } 1499 } 1500 1501 /// Return the "bottom" block of a loop. This differs from 1502 /// MachineLoop::getBottomBlock in that it works even if the loop is 1503 /// discontiguous. 1504 MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) { 1505 MachineBasicBlock *Bottom = Loop->getHeader(); 1506 for (MachineBasicBlock *MBB : Loop->blocks()) 1507 if (MBB->getNumber() > Bottom->getNumber()) 1508 Bottom = MBB; 1509 return Bottom; 1510 } 1511 1512 // Generate s_waitcnt instructions where needed. 1513 void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1514 MachineBasicBlock &Block) { 1515 // Initialize the state information. 1516 mergeInputScoreBrackets(Block); 1517 1518 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1519 1520 DEBUG({ 1521 dbgs() << "Block" << Block.getNumber(); 1522 ScoreBrackets->dump(); 1523 }); 1524 1525 bool InsertNOP = false; 1526 1527 // Walk over the instructions. 1528 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1529 Iter != E;) { 1530 MachineInstr &Inst = *Iter; 1531 // Remove any previously existing waitcnts. 1532 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1533 // TODO: Register the old waitcnt and optimize the following waitcnts. 1534 // Leaving the previously existing waitcnts is conservatively correct. 1535 if (CompilerGeneratedWaitcntSet.find(&Inst) == 1536 CompilerGeneratedWaitcntSet.end()) 1537 ++Iter; 1538 else { 1539 ScoreBrackets->setWaitcnt(&Inst); 1540 ++Iter; 1541 Inst.removeFromParent(); 1542 } 1543 continue; 1544 } 1545 1546 // Kill instructions generate a conditional branch to the endmain block. 1547 // Merge the current waitcnt state into the endmain block information. 1548 // TODO: Are there other flavors of KILL instruction? 1549 if (Inst.getOpcode() == AMDGPU::KILL) { 1550 addKillWaitBracket(ScoreBrackets); 1551 } 1552 1553 bool VCCZBugWorkAround = false; 1554 if (readsVCCZ(Inst) && 1555 (VCCZBugHandledSet.find(&Inst) == VCCZBugHandledSet.end())) { 1556 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1557 ScoreBrackets->getScoreUB(LGKM_CNT) && 1558 ScoreBrackets->hasPendingSMEM()) { 1559 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) 1560 VCCZBugWorkAround = true; 1561 } 1562 } 1563 1564 // Generate an s_waitcnt instruction to be placed before 1565 // cur_Inst, if needed. 1566 MachineInstr *SWaitInst = generateSWaitCntInstBefore(Inst, ScoreBrackets); 1567 1568 if (SWaitInst) { 1569 Block.insert(Inst, SWaitInst); 1570 if (ScoreBrackets->getWaitcnt() != SWaitInst) { 1571 DEBUG(dbgs() << "insertWaitcntInBlock\n" 1572 << "Old Instr: " << Inst << '\n' 1573 << "New Instr: " << *SWaitInst << '\n';); 1574 } 1575 } 1576 1577 updateEventWaitCntAfter(Inst, ScoreBrackets); 1578 1579 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1580 // If this instruction generates a S_SETVSKIP because it is an 1581 // indexed resource, and we are on Tahiti, then it will also force 1582 // an S_WAITCNT vmcnt(0) 1583 if (RequireCheckResourceType(Inst, context)) { 1584 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1585 ScoreBrackets->setScoreLB(VM_CNT, 1586 ScoreBrackets->getScoreUB(VM_CNT)); 1587 } 1588 #endif 1589 1590 ScoreBrackets->clearWaitcnt(); 1591 1592 if (SWaitInst) { 1593 DEBUG({ SWaitInst->print(dbgs() << '\n'); }); 1594 } 1595 DEBUG({ 1596 Inst.print(dbgs()); 1597 ScoreBrackets->dump(); 1598 }); 1599 1600 // Check to see if this is a GWS instruction. If so, and if this is CI or 1601 // VI, then the generated code sequence will include an S_WAITCNT 0. 1602 // TODO: Are these the only GWS instructions? 1603 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1604 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1605 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1606 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1607 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1608 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1609 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1610 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1611 ScoreBrackets->updateByWait(LGKM_CNT, 1612 ScoreBrackets->getScoreUB(LGKM_CNT)); 1613 } 1614 1615 // TODO: Remove this work-around after fixing the scheduler and enable the 1616 // assert above. 1617 if (VCCZBugWorkAround) { 1618 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1619 // bit is updated, so we can restore the bit by reading the value of 1620 // vcc and then writing it back to the register. 1621 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1622 AMDGPU::VCC) 1623 .addReg(AMDGPU::VCC); 1624 VCCZBugHandledSet.insert(&Inst); 1625 } 1626 1627 if (ST->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) { 1628 1629 // This avoids a s_nop after a waitcnt has just been inserted. 1630 if (!SWaitInst && InsertNOP) { 1631 BuildMI(Block, Inst, DebugLoc(), TII->get(AMDGPU::S_NOP)).addImm(0); 1632 } 1633 InsertNOP = false; 1634 1635 // Any occurrence of consecutive VMEM or SMEM instructions forms a VMEM 1636 // or SMEM clause, respectively. 1637 // 1638 // The temporary workaround is to break the clauses with S_NOP. 1639 // 1640 // The proper solution would be to allocate registers such that all source 1641 // and destination registers don't overlap, e.g. this is illegal: 1642 // r0 = load r2 1643 // r2 = load r0 1644 bool IsSMEM = false; 1645 bool IsVMEM = false; 1646 if (TII->isSMRD(Inst)) 1647 IsSMEM = true; 1648 else if (TII->usesVM_CNT(Inst)) 1649 IsVMEM = true; 1650 1651 ++Iter; 1652 if (Iter == E) 1653 break; 1654 1655 MachineInstr &Next = *Iter; 1656 1657 // TODO: How about consecutive SMEM instructions? 1658 // The comments above says break the clause but the code does not. 1659 // if ((TII->isSMRD(next) && isSMEM) || 1660 if (!IsSMEM && TII->usesVM_CNT(Next) && IsVMEM && 1661 // TODO: Enable this check when hasSoftClause is upstreamed. 1662 // ST->hasSoftClauses() && 1663 ST->isXNACKEnabled()) { 1664 // Insert a NOP to break the clause. 1665 InsertNOP = true; 1666 continue; 1667 } 1668 1669 // There must be "S_NOP 0" between an instruction writing M0 and 1670 // S_SENDMSG. 1671 if ((Next.getOpcode() == AMDGPU::S_SENDMSG || 1672 Next.getOpcode() == AMDGPU::S_SENDMSGHALT) && 1673 Inst.definesRegister(AMDGPU::M0)) 1674 InsertNOP = true; 1675 1676 continue; 1677 } 1678 1679 ++Iter; 1680 } 1681 1682 // Check if we need to force convergence at loop footer. 1683 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); 1684 if (ContainingLoop && loopBottom(ContainingLoop) == &Block) { 1685 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1686 WaitcntData->print(); 1687 DEBUG(dbgs() << '\n';); 1688 1689 // The iterative waitcnt insertion algorithm aims for optimal waitcnt 1690 // placement and doesn't always guarantee convergence for a loop. Each 1691 // loop should take at most 2 iterations for it to converge naturally. 1692 // When this max is reached and result doesn't converge, we force 1693 // convergence by inserting a s_waitcnt at the end of loop footer. 1694 if (WaitcntData->getIterCnt() > 2) { 1695 // To ensure convergence, need to make wait events at loop footer be no 1696 // more than those from the previous iteration. 1697 // As a simplification, Instead of tracking individual scores and 1698 // generate the precise wait count, just wait on 0. 1699 bool HasPending = false; 1700 MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); 1701 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1702 T = (enum InstCounterType)(T + 1)) { 1703 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 1704 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1705 HasPending = true; 1706 } 1707 } 1708 1709 if (HasPending) { 1710 if (!SWaitInst) { 1711 SWaitInst = Block.getParent()->CreateMachineInstr( 1712 TII->get(AMDGPU::S_WAITCNT), DebugLoc()); 1713 CompilerGeneratedWaitcntSet.insert(SWaitInst); 1714 const MachineOperand &Op = MachineOperand::CreateImm(0); 1715 SWaitInst->addOperand(MF, Op); 1716 #if 0 // TODO: Format the debug output 1717 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); 1718 OutputTransformAdd(SWaitInst, context); 1719 #endif 1720 } 1721 #if 0 // TODO: ?? 1722 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) 1723 #endif 1724 } 1725 1726 if (SWaitInst) { 1727 DEBUG({ 1728 SWaitInst->print(dbgs()); 1729 dbgs() << "\nAdjusted score board:"; 1730 ScoreBrackets->dump(); 1731 }); 1732 1733 // Add this waitcnt to the block. It is either newly created or 1734 // created in previous iterations and added back since block traversal 1735 // always remove waitcnt. 1736 insertWaitcntBeforeCF(Block, SWaitInst); 1737 WaitcntData->setWaitcnt(SWaitInst); 1738 } 1739 } 1740 } 1741 } 1742 1743 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1744 ST = &MF.getSubtarget<SISubtarget>(); 1745 TII = ST->getInstrInfo(); 1746 TRI = &TII->getRegisterInfo(); 1747 MRI = &MF.getRegInfo(); 1748 MLI = &getAnalysis<MachineLoopInfo>(); 1749 IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); 1750 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1751 AMDGPUASI = ST->getAMDGPUAS(); 1752 1753 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1754 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1755 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1756 1757 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1758 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1759 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1760 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1761 1762 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1763 RegisterEncoding.VGPRL = 1764 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1765 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1766 RegisterEncoding.SGPRL = 1767 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1768 1769 // Walk over the blocks in reverse post-dominator order, inserting 1770 // s_waitcnt where needed. 1771 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1772 bool Modified = false; 1773 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1774 I = RPOT.begin(), 1775 E = RPOT.end(), J = RPOT.begin(); 1776 I != E;) { 1777 MachineBasicBlock &MBB = **I; 1778 1779 BlockVisitedSet.insert(&MBB); 1780 1781 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1782 if (!ScoreBrackets) { 1783 BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(); 1784 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1785 } 1786 ScoreBrackets->setPostOrder(MBB.getNumber()); 1787 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); 1788 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) 1789 LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>(); 1790 1791 // If we are walking into the block from before the loop, then guarantee 1792 // at least 1 re-walk over the loop to propagate the information, even if 1793 // no S_WAITCNT instructions were generated. 1794 if (ContainingLoop && ContainingLoop->getHeader() == &MBB && J < I && 1795 (BlockWaitcntProcessedSet.find(&MBB) == 1796 BlockWaitcntProcessedSet.end())) { 1797 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); 1798 DEBUG(dbgs() << "set-revisit: block" 1799 << ContainingLoop->getHeader()->getNumber() << '\n';); 1800 } 1801 1802 // Walk over the instructions. 1803 insertWaitcntInBlock(MF, MBB); 1804 1805 // Flag that waitcnts have been processed at least once. 1806 BlockWaitcntProcessedSet.insert(&MBB); 1807 1808 // See if we want to revisit the loop. 1809 if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) { 1810 MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); 1811 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); 1812 if (EntrySB && EntrySB->getRevisitLoop()) { 1813 EntrySB->setRevisitLoop(false); 1814 J = I; 1815 int32_t PostOrder = EntrySB->getPostOrder(); 1816 // TODO: Avoid this loop. Find another way to set I. 1817 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1818 X = RPOT.begin(), 1819 Y = RPOT.end(); 1820 X != Y; ++X) { 1821 MachineBasicBlock &MBBX = **X; 1822 if (MBBX.getNumber() == PostOrder) { 1823 I = X; 1824 break; 1825 } 1826 } 1827 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1828 WaitcntData->incIterCnt(); 1829 DEBUG(dbgs() << "revisit: block" << EntryBB->getNumber() << '\n';); 1830 continue; 1831 } else { 1832 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1833 // Loop converged, reset iteration count. If this loop gets revisited, 1834 // it must be from an outer loop, the counter will restart, this will 1835 // ensure we don't force convergence on such revisits. 1836 WaitcntData->resetIterCnt(); 1837 } 1838 } 1839 1840 J = I; 1841 ++I; 1842 } 1843 1844 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1845 1846 bool HaveScalarStores = false; 1847 1848 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1849 ++BI) { 1850 MachineBasicBlock &MBB = *BI; 1851 1852 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1853 ++I) { 1854 if (!HaveScalarStores && TII->isScalarStore(*I)) 1855 HaveScalarStores = true; 1856 1857 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1858 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1859 EndPgmBlocks.push_back(&MBB); 1860 } 1861 } 1862 1863 if (HaveScalarStores) { 1864 // If scalar writes are used, the cache must be flushed or else the next 1865 // wave to reuse the same scratch memory can be clobbered. 1866 // 1867 // Insert s_dcache_wb at wave termination points if there were any scalar 1868 // stores, and only if the cache hasn't already been flushed. This could be 1869 // improved by looking across blocks for flushes in postdominating blocks 1870 // from the stores but an explicitly requested flush is probably very rare. 1871 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1872 bool SeenDCacheWB = false; 1873 1874 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1875 ++I) { 1876 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1877 SeenDCacheWB = true; 1878 else if (TII->isScalarStore(*I)) 1879 SeenDCacheWB = false; 1880 1881 // FIXME: It would be better to insert this before a waitcnt if any. 1882 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1883 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1884 !SeenDCacheWB) { 1885 Modified = true; 1886 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1887 } 1888 } 1889 } 1890 } 1891 1892 if (!MFI->isEntryFunction()) { 1893 // Wait for any outstanding memory operations that the input registers may 1894 // depend on. We can't track them and it's better to to the wait after the 1895 // costly call sequence. 1896 1897 // TODO: Could insert earlier and schedule more liberally with operations 1898 // that only use caller preserved registers. 1899 MachineBasicBlock &EntryBB = MF.front(); 1900 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1901 .addImm(0); 1902 1903 Modified = true; 1904 } 1905 1906 return Modified; 1907 } 1908