1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "SIDefines.h" 22 #include "SIInstrInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "SIRegisterInfo.h" 25 #include "Utils/AMDGPUBaseInfo.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/DebugCounter.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstdint> 49 #include <cstring> 50 #include <memory> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "si-insert-waitcnts" 57 58 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 59 "Force emit s_waitcnt expcnt(0) instrs"); 60 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 61 "Force emit s_waitcnt lgkmcnt(0) instrs"); 62 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 63 "Force emit s_waitcnt vmcnt(0) instrs"); 64 65 static cl::opt<unsigned> ForceEmitZeroFlag( 66 "amdgpu-waitcnt-forcezero", 67 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 68 cl::init(0), cl::Hidden); 69 70 namespace { 71 72 // Class of object that encapsulates latest instruction counter score 73 // associated with the operand. Used for determining whether 74 // s_waitcnt instruction needs to be emited. 75 76 #define CNT_MASK(t) (1u << (t)) 77 78 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 79 80 using RegInterval = std::pair<signed, signed>; 81 82 struct { 83 int32_t VmcntMax; 84 int32_t ExpcntMax; 85 int32_t LgkmcntMax; 86 int32_t NumVGPRsMax; 87 int32_t NumSGPRsMax; 88 } HardwareLimits; 89 90 struct { 91 unsigned VGPR0; 92 unsigned VGPRL; 93 unsigned SGPR0; 94 unsigned SGPRL; 95 } RegisterEncoding; 96 97 enum WaitEventType { 98 VMEM_ACCESS, // vector-memory read & write 99 LDS_ACCESS, // lds read & write 100 GDS_ACCESS, // gds read & write 101 SQ_MESSAGE, // send message 102 SMEM_ACCESS, // scalar-memory read & write 103 EXP_GPR_LOCK, // export holding on its data src 104 GDS_GPR_LOCK, // GDS holding on its data and addr src 105 EXP_POS_ACCESS, // write to export position 106 EXP_PARAM_ACCESS, // write to export parameter 107 VMW_GPR_LOCK, // vector-memory write holding on its data src 108 NUM_WAIT_EVENTS, 109 }; 110 111 // The mapping is: 112 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 113 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 114 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 115 // We reserve a fixed number of VGPR slots in the scoring tables for 116 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 117 enum RegisterMapping { 118 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 119 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 120 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 121 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 122 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 123 }; 124 125 #define ForAllWaitEventType(w) \ 126 for (enum WaitEventType w = (enum WaitEventType)0; \ 127 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ 128 (w) = (enum WaitEventType)((w) + 1)) 129 130 // This is a per-basic-block object that maintains current score brackets 131 // of each wait counter, and a per-register scoreboard for each wait counter. 132 // We also maintain the latest score for every event type that can change the 133 // waitcnt in order to know if there are multiple types of events within 134 // the brackets. When multiple types of event happen in the bracket, 135 // wait count may get decreased out of order, therefore we need to put in 136 // "s_waitcnt 0" before use. 137 class BlockWaitcntBrackets { 138 public: 139 BlockWaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { 140 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 141 T = (enum InstCounterType)(T + 1)) { 142 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 143 } 144 } 145 146 ~BlockWaitcntBrackets() = default; 147 148 static int32_t getWaitCountMax(InstCounterType T) { 149 switch (T) { 150 case VM_CNT: 151 return HardwareLimits.VmcntMax; 152 case LGKM_CNT: 153 return HardwareLimits.LgkmcntMax; 154 case EXP_CNT: 155 return HardwareLimits.ExpcntMax; 156 default: 157 break; 158 } 159 return 0; 160 } 161 162 void setScoreLB(InstCounterType T, int32_t Val) { 163 assert(T < NUM_INST_CNTS); 164 if (T >= NUM_INST_CNTS) 165 return; 166 ScoreLBs[T] = Val; 167 } 168 169 void setScoreUB(InstCounterType T, int32_t Val) { 170 assert(T < NUM_INST_CNTS); 171 if (T >= NUM_INST_CNTS) 172 return; 173 ScoreUBs[T] = Val; 174 if (T == EXP_CNT) { 175 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); 176 if (ScoreLBs[T] < UB) 177 ScoreLBs[T] = UB; 178 } 179 } 180 181 int32_t getScoreLB(InstCounterType T) { 182 assert(T < NUM_INST_CNTS); 183 if (T >= NUM_INST_CNTS) 184 return 0; 185 return ScoreLBs[T]; 186 } 187 188 int32_t getScoreUB(InstCounterType T) { 189 assert(T < NUM_INST_CNTS); 190 if (T >= NUM_INST_CNTS) 191 return 0; 192 return ScoreUBs[T]; 193 } 194 195 // Mapping from event to counter. 196 InstCounterType eventCounter(WaitEventType E) { 197 switch (E) { 198 case VMEM_ACCESS: 199 return VM_CNT; 200 case LDS_ACCESS: 201 case GDS_ACCESS: 202 case SQ_MESSAGE: 203 case SMEM_ACCESS: 204 return LGKM_CNT; 205 case EXP_GPR_LOCK: 206 case GDS_GPR_LOCK: 207 case VMW_GPR_LOCK: 208 case EXP_POS_ACCESS: 209 case EXP_PARAM_ACCESS: 210 return EXP_CNT; 211 default: 212 llvm_unreachable("unhandled event type"); 213 } 214 return NUM_INST_CNTS; 215 } 216 217 void setRegScore(int GprNo, InstCounterType T, int32_t Val) { 218 if (GprNo < NUM_ALL_VGPRS) { 219 if (GprNo > VgprUB) { 220 VgprUB = GprNo; 221 } 222 VgprScores[T][GprNo] = Val; 223 } else { 224 assert(T == LGKM_CNT); 225 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 226 SgprUB = GprNo - NUM_ALL_VGPRS; 227 } 228 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 229 } 230 } 231 232 int32_t getRegScore(int GprNo, InstCounterType T) { 233 if (GprNo < NUM_ALL_VGPRS) { 234 return VgprScores[T][GprNo]; 235 } 236 return SgprScores[GprNo - NUM_ALL_VGPRS]; 237 } 238 239 void clear() { 240 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 241 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 242 memset(EventUBs, 0, sizeof(EventUBs)); 243 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 244 T = (enum InstCounterType)(T + 1)) { 245 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 246 } 247 memset(SgprScores, 0, sizeof(SgprScores)); 248 } 249 250 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 251 const MachineRegisterInfo *MRI, 252 const SIRegisterInfo *TRI, unsigned OpNo, 253 bool Def) const; 254 255 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 256 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 257 unsigned OpNo, int32_t Val); 258 259 void setWaitAtBeginning() { WaitAtBeginning = true; } 260 void clearWaitAtBeginning() { WaitAtBeginning = false; } 261 bool getWaitAtBeginning() const { return WaitAtBeginning; } 262 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } 263 int32_t getMaxVGPR() const { return VgprUB; } 264 int32_t getMaxSGPR() const { return SgprUB; } 265 266 int32_t getEventUB(enum WaitEventType W) const { 267 assert(W < NUM_WAIT_EVENTS); 268 return EventUBs[W]; 269 } 270 271 bool counterOutOfOrder(InstCounterType T); 272 unsigned int updateByWait(InstCounterType T, int ScoreToWait); 273 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 274 const MachineRegisterInfo *MRI, WaitEventType E, 275 MachineInstr &MI); 276 277 bool hasPendingSMEM() const { 278 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 279 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); 280 } 281 282 bool hasPendingFlat() const { 283 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 284 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 285 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 286 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 287 } 288 289 void setPendingFlat() { 290 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 291 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 292 } 293 294 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } 295 296 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } 297 298 bool getRevisitLoop() const { return RevisitLoop; } 299 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } 300 301 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } 302 int32_t getPostOrder() const { return PostOrder; } 303 304 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } 305 void clearWaitcnt() { Waitcnt = nullptr; } 306 MachineInstr *getWaitcnt() const { return Waitcnt; } 307 308 bool mixedExpTypes() const { return MixedExpTypes; } 309 void setMixedExpTypes(bool MixedExpTypesIn) { 310 MixedExpTypes = MixedExpTypesIn; 311 } 312 313 void print(raw_ostream &); 314 void dump() { print(dbgs()); } 315 316 private: 317 const GCNSubtarget *ST = nullptr; 318 bool WaitAtBeginning = false; 319 bool RevisitLoop = false; 320 bool MixedExpTypes = false; 321 int32_t PostOrder = 0; 322 MachineInstr *Waitcnt = nullptr; 323 int32_t ScoreLBs[NUM_INST_CNTS] = {0}; 324 int32_t ScoreUBs[NUM_INST_CNTS] = {0}; 325 int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; 326 // Remember the last flat memory operation. 327 int32_t LastFlat[NUM_INST_CNTS] = {0}; 328 // wait_cnt scores for every vgpr. 329 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 330 int32_t VgprUB = 0; 331 int32_t SgprUB = 0; 332 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 333 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 334 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 335 }; 336 337 // This is a per-loop-region object that records waitcnt status at the end of 338 // loop footer from the previous iteration. We also maintain an iteration 339 // count to track the number of times the loop has been visited. When it 340 // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 341 // at the end of the loop footer. 342 class LoopWaitcntData { 343 public: 344 LoopWaitcntData() = default; 345 ~LoopWaitcntData() = default; 346 347 void incIterCnt() { IterCnt++; } 348 void resetIterCnt() { IterCnt = 0; } 349 unsigned getIterCnt() { return IterCnt; } 350 351 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } 352 MachineInstr *getWaitcnt() const { return LfWaitcnt; } 353 354 void print() { LLVM_DEBUG(dbgs() << " iteration " << IterCnt << '\n';); } 355 356 private: 357 // s_waitcnt added at the end of loop footer to stablize wait scores 358 // at the end of the loop footer. 359 MachineInstr *LfWaitcnt = nullptr; 360 // Number of iterations the loop has been visited, not including the initial 361 // walk over. 362 int32_t IterCnt = 0; 363 }; 364 365 class SIInsertWaitcnts : public MachineFunctionPass { 366 private: 367 const GCNSubtarget *ST = nullptr; 368 const SIInstrInfo *TII = nullptr; 369 const SIRegisterInfo *TRI = nullptr; 370 const MachineRegisterInfo *MRI = nullptr; 371 const MachineLoopInfo *MLI = nullptr; 372 AMDGPU::IsaVersion IV; 373 374 DenseSet<MachineBasicBlock *> BlockVisitedSet; 375 DenseSet<MachineInstr *> TrackedWaitcntSet; 376 DenseSet<MachineInstr *> VCCZBugHandledSet; 377 378 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> 379 BlockWaitcntBracketsMap; 380 381 std::vector<MachineBasicBlock *> BlockWaitcntProcessedSet; 382 383 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; 384 385 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 386 // because of amdgpu-waitcnt-forcezero flag 387 bool ForceEmitZeroWaitcnts; 388 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 389 390 public: 391 static char ID; 392 393 SIInsertWaitcnts() : MachineFunctionPass(ID) { 394 (void)ForceExpCounter; 395 (void)ForceLgkmCounter; 396 (void)ForceVMCounter; 397 } 398 399 bool runOnMachineFunction(MachineFunction &MF) override; 400 401 StringRef getPassName() const override { 402 return "SI insert wait instructions"; 403 } 404 405 void getAnalysisUsage(AnalysisUsage &AU) const override { 406 AU.setPreservesCFG(); 407 AU.addRequired<MachineLoopInfo>(); 408 MachineFunctionPass::getAnalysisUsage(AU); 409 } 410 411 bool isForceEmitWaitcnt() const { 412 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 413 T = (enum InstCounterType)(T + 1)) 414 if (ForceEmitWaitcnt[T]) 415 return true; 416 return false; 417 } 418 419 void setForceEmitWaitcnt() { 420 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 421 // For debug builds, get the debug counter info and adjust if need be 422 #ifndef NDEBUG 423 if (DebugCounter::isCounterSet(ForceExpCounter) && 424 DebugCounter::shouldExecute(ForceExpCounter)) { 425 ForceEmitWaitcnt[EXP_CNT] = true; 426 } else { 427 ForceEmitWaitcnt[EXP_CNT] = false; 428 } 429 430 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 431 DebugCounter::shouldExecute(ForceLgkmCounter)) { 432 ForceEmitWaitcnt[LGKM_CNT] = true; 433 } else { 434 ForceEmitWaitcnt[LGKM_CNT] = false; 435 } 436 437 if (DebugCounter::isCounterSet(ForceVMCounter) && 438 DebugCounter::shouldExecute(ForceVMCounter)) { 439 ForceEmitWaitcnt[VM_CNT] = true; 440 } else { 441 ForceEmitWaitcnt[VM_CNT] = false; 442 } 443 #endif // NDEBUG 444 } 445 446 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 447 void generateWaitcntInstBefore(MachineInstr &MI, 448 BlockWaitcntBrackets *ScoreBrackets); 449 void updateEventWaitcntAfter(MachineInstr &Inst, 450 BlockWaitcntBrackets *ScoreBrackets); 451 void mergeInputScoreBrackets(MachineBasicBlock &Block); 452 bool isLoopBottom(const MachineLoop *Loop, const MachineBasicBlock *Block); 453 unsigned countNumBottomBlocks(const MachineLoop *Loop); 454 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); 455 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); 456 bool isWaitcntStronger(unsigned LHS, unsigned RHS); 457 unsigned combineWaitcnt(unsigned LHS, unsigned RHS); 458 }; 459 460 } // end anonymous namespace 461 462 RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, 463 const SIInstrInfo *TII, 464 const MachineRegisterInfo *MRI, 465 const SIRegisterInfo *TRI, 466 unsigned OpNo, 467 bool Def) const { 468 const MachineOperand &Op = MI->getOperand(OpNo); 469 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 470 (Def && !Op.isDef())) 471 return {-1, -1}; 472 473 // A use via a PW operand does not need a waitcnt. 474 // A partial write is not a WAW. 475 assert(!Op.getSubReg() || !Op.isUndef()); 476 477 RegInterval Result; 478 const MachineRegisterInfo &MRIA = *MRI; 479 480 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 481 482 if (TRI->isVGPR(MRIA, Op.getReg())) { 483 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 484 Result.first = Reg - RegisterEncoding.VGPR0; 485 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 486 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 487 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 488 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 489 assert(Result.first >= NUM_ALL_VGPRS && 490 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 491 } 492 // TODO: Handle TTMP 493 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 494 else 495 return {-1, -1}; 496 497 const MachineInstr &MIA = *MI; 498 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 499 unsigned Size = TRI->getRegSizeInBits(*RC); 500 Result.second = Result.first + (Size / 32); 501 502 return Result; 503 } 504 505 void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, 506 const SIInstrInfo *TII, 507 const SIRegisterInfo *TRI, 508 const MachineRegisterInfo *MRI, 509 unsigned OpNo, int32_t Val) { 510 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 511 LLVM_DEBUG({ 512 const MachineOperand &Opnd = MI->getOperand(OpNo); 513 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 514 }); 515 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 516 setRegScore(RegNo, EXP_CNT, Val); 517 } 518 } 519 520 void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 521 const SIRegisterInfo *TRI, 522 const MachineRegisterInfo *MRI, 523 WaitEventType E, MachineInstr &Inst) { 524 const MachineRegisterInfo &MRIA = *MRI; 525 InstCounterType T = eventCounter(E); 526 int32_t CurrScore = getScoreUB(T) + 1; 527 // EventUB and ScoreUB need to be update regardless if this event changes 528 // the score of a register or not. 529 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 530 EventUBs[E] = CurrScore; 531 setScoreUB(T, CurrScore); 532 533 if (T == EXP_CNT) { 534 // Check for mixed export types. If they are mixed, then a waitcnt exp(0) 535 // is required. 536 if (!MixedExpTypes) { 537 MixedExpTypes = counterOutOfOrder(EXP_CNT); 538 } 539 540 // Put score on the source vgprs. If this is a store, just use those 541 // specific register(s). 542 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 543 // All GDS operations must protect their address register (same as 544 // export.) 545 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 546 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 547 setExpScore( 548 &Inst, TII, TRI, MRI, 549 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 550 CurrScore); 551 } 552 if (Inst.mayStore()) { 553 setExpScore( 554 &Inst, TII, TRI, MRI, 555 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 556 CurrScore); 557 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 558 AMDGPU::OpName::data1) != -1) { 559 setExpScore(&Inst, TII, TRI, MRI, 560 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 561 AMDGPU::OpName::data1), 562 CurrScore); 563 } 564 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 565 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 566 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 567 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 568 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 569 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 570 Inst.getOpcode() != AMDGPU::DS_APPEND && 571 Inst.getOpcode() != AMDGPU::DS_CONSUME && 572 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 573 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 574 const MachineOperand &Op = Inst.getOperand(I); 575 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 576 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 577 } 578 } 579 } 580 } else if (TII->isFLAT(Inst)) { 581 if (Inst.mayStore()) { 582 setExpScore( 583 &Inst, TII, TRI, MRI, 584 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 585 CurrScore); 586 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 587 setExpScore( 588 &Inst, TII, TRI, MRI, 589 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 590 CurrScore); 591 } 592 } else if (TII->isMIMG(Inst)) { 593 if (Inst.mayStore()) { 594 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 595 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 596 setExpScore( 597 &Inst, TII, TRI, MRI, 598 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 599 CurrScore); 600 } 601 } else if (TII->isMTBUF(Inst)) { 602 if (Inst.mayStore()) { 603 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 604 } 605 } else if (TII->isMUBUF(Inst)) { 606 if (Inst.mayStore()) { 607 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 608 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 609 setExpScore( 610 &Inst, TII, TRI, MRI, 611 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 612 CurrScore); 613 } 614 } else { 615 if (TII->isEXP(Inst)) { 616 // For export the destination registers are really temps that 617 // can be used as the actual source after export patching, so 618 // we need to treat them like sources and set the EXP_CNT 619 // score. 620 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 621 MachineOperand &DefMO = Inst.getOperand(I); 622 if (DefMO.isReg() && DefMO.isDef() && 623 TRI->isVGPR(MRIA, DefMO.getReg())) { 624 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 625 CurrScore); 626 } 627 } 628 } 629 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 630 MachineOperand &MO = Inst.getOperand(I); 631 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 632 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 633 } 634 } 635 } 636 #if 0 // TODO: check if this is handled by MUBUF code above. 637 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 638 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 639 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 640 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 641 unsigned OpNo;//TODO: find the OpNo for this operand; 642 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 643 for (signed RegNo = Interval.first; RegNo < Interval.second; 644 ++RegNo) { 645 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 646 } 647 #endif 648 } else { 649 // Match the score to the destination registers. 650 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 651 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 652 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 653 continue; 654 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 655 setRegScore(RegNo, T, CurrScore); 656 } 657 } 658 if (TII->isDS(Inst) && Inst.mayStore()) { 659 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 660 } 661 } 662 } 663 664 void BlockWaitcntBrackets::print(raw_ostream &OS) { 665 OS << '\n'; 666 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 667 T = (enum InstCounterType)(T + 1)) { 668 int LB = getScoreLB(T); 669 int UB = getScoreUB(T); 670 671 switch (T) { 672 case VM_CNT: 673 OS << " VM_CNT(" << UB - LB << "): "; 674 break; 675 case LGKM_CNT: 676 OS << " LGKM_CNT(" << UB - LB << "): "; 677 break; 678 case EXP_CNT: 679 OS << " EXP_CNT(" << UB - LB << "): "; 680 break; 681 default: 682 OS << " UNKNOWN(" << UB - LB << "): "; 683 break; 684 } 685 686 if (LB < UB) { 687 // Print vgpr scores. 688 for (int J = 0; J <= getMaxVGPR(); J++) { 689 int RegScore = getRegScore(J, T); 690 if (RegScore <= LB) 691 continue; 692 int RelScore = RegScore - LB - 1; 693 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 694 OS << RelScore << ":v" << J << " "; 695 } else { 696 OS << RelScore << ":ds "; 697 } 698 } 699 // Also need to print sgpr scores for lgkm_cnt. 700 if (T == LGKM_CNT) { 701 for (int J = 0; J <= getMaxSGPR(); J++) { 702 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 703 if (RegScore <= LB) 704 continue; 705 int RelScore = RegScore - LB - 1; 706 OS << RelScore << ":s" << J << " "; 707 } 708 } 709 } 710 OS << '\n'; 711 } 712 OS << '\n'; 713 } 714 715 unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, 716 int ScoreToWait) { 717 unsigned int NeedWait = 0; 718 if (ScoreToWait == -1) { 719 // The score to wait is unknown. This implies that it was not encountered 720 // during the path of the CFG walk done during the current traversal but 721 // may be seen on a different path. Emit an s_wait counter with a 722 // conservative value of 0 for the counter. 723 NeedWait = CNT_MASK(T); 724 setScoreLB(T, getScoreUB(T)); 725 return NeedWait; 726 } 727 728 // If the score of src_operand falls within the bracket, we need an 729 // s_waitcnt instruction. 730 const int32_t LB = getScoreLB(T); 731 const int32_t UB = getScoreUB(T); 732 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 733 if ((T == VM_CNT || T == LGKM_CNT) && 734 hasPendingFlat() && 735 !ST->hasFlatLgkmVMemCountInOrder()) { 736 // If there is a pending FLAT operation, and this is a VMem or LGKM 737 // waitcnt and the target can report early completion, then we need 738 // to force a waitcnt 0. 739 NeedWait = CNT_MASK(T); 740 setScoreLB(T, getScoreUB(T)); 741 } else if (counterOutOfOrder(T)) { 742 // Counter can get decremented out-of-order when there 743 // are multiple types event in the bracket. Also emit an s_wait counter 744 // with a conservative value of 0 for the counter. 745 NeedWait = CNT_MASK(T); 746 setScoreLB(T, getScoreUB(T)); 747 } else { 748 NeedWait = CNT_MASK(T); 749 setScoreLB(T, ScoreToWait); 750 } 751 } 752 753 return NeedWait; 754 } 755 756 // Where there are multiple types of event in the bracket of a counter, 757 // the decrement may go out of order. 758 bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { 759 switch (T) { 760 case VM_CNT: 761 return false; 762 case LGKM_CNT: { 763 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 764 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { 765 // Scalar memory read always can go out of order. 766 return true; 767 } 768 int NumEventTypes = 0; 769 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && 770 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 771 NumEventTypes++; 772 } 773 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && 774 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 775 NumEventTypes++; 776 } 777 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && 778 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { 779 NumEventTypes++; 780 } 781 if (NumEventTypes <= 1) { 782 return false; 783 } 784 break; 785 } 786 case EXP_CNT: { 787 // If there has been a mixture of export types, then a waitcnt exp(0) is 788 // required. 789 if (MixedExpTypes) 790 return true; 791 int NumEventTypes = 0; 792 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && 793 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 794 NumEventTypes++; 795 } 796 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && 797 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 798 NumEventTypes++; 799 } 800 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && 801 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 802 NumEventTypes++; 803 } 804 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && 805 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { 806 NumEventTypes++; 807 } 808 809 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && 810 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { 811 NumEventTypes++; 812 } 813 814 if (NumEventTypes <= 1) { 815 return false; 816 } 817 break; 818 } 819 default: 820 break; 821 } 822 return true; 823 } 824 825 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 826 false) 827 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 828 false) 829 830 char SIInsertWaitcnts::ID = 0; 831 832 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 833 834 FunctionPass *llvm::createSIInsertWaitcntsPass() { 835 return new SIInsertWaitcnts(); 836 } 837 838 static bool readsVCCZ(const MachineInstr &MI) { 839 unsigned Opc = MI.getOpcode(); 840 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 841 !MI.getOperand(1).isUndef(); 842 } 843 844 /// Given wait count encodings checks if LHS is stronger than RHS. 845 bool SIInsertWaitcnts::isWaitcntStronger(unsigned LHS, unsigned RHS) { 846 if (AMDGPU::decodeVmcnt(IV, LHS) > AMDGPU::decodeVmcnt(IV, RHS)) 847 return false; 848 if (AMDGPU::decodeLgkmcnt(IV, LHS) > AMDGPU::decodeLgkmcnt(IV, RHS)) 849 return false; 850 if (AMDGPU::decodeExpcnt(IV, LHS) > AMDGPU::decodeExpcnt(IV, RHS)) 851 return false; 852 return true; 853 } 854 855 /// Given wait count encodings create a new encoding which is stronger 856 /// or equal to both. 857 unsigned SIInsertWaitcnts::combineWaitcnt(unsigned LHS, unsigned RHS) { 858 unsigned VmCnt = std::min(AMDGPU::decodeVmcnt(IV, LHS), 859 AMDGPU::decodeVmcnt(IV, RHS)); 860 unsigned LgkmCnt = std::min(AMDGPU::decodeLgkmcnt(IV, LHS), 861 AMDGPU::decodeLgkmcnt(IV, RHS)); 862 unsigned ExpCnt = std::min(AMDGPU::decodeExpcnt(IV, LHS), 863 AMDGPU::decodeExpcnt(IV, RHS)); 864 return AMDGPU::encodeWaitcnt(IV, VmCnt, ExpCnt, LgkmCnt); 865 } 866 867 /// Generate s_waitcnt instruction to be placed before cur_Inst. 868 /// Instructions of a given type are returned in order, 869 /// but instructions of different types can complete out of order. 870 /// We rely on this in-order completion 871 /// and simply assign a score to the memory access instructions. 872 /// We keep track of the active "score bracket" to determine 873 /// if an access of a memory read requires an s_waitcnt 874 /// and if so what the value of each counter is. 875 /// The "score bracket" is bound by the lower bound and upper bound 876 /// scores (*_score_LB and *_score_ub respectively). 877 void SIInsertWaitcnts::generateWaitcntInstBefore( 878 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { 879 // To emit, or not to emit - that's the question! 880 // Start with an assumption that there is no need to emit. 881 unsigned int EmitWaitcnt = 0; 882 883 // ForceEmitZeroWaitcnt: force a single s_waitcnt 0 due to hw bug 884 bool ForceEmitZeroWaitcnt = false; 885 886 setForceEmitWaitcnt(); 887 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 888 889 if (MI.isDebugInstr()) 890 return; 891 892 // See if an s_waitcnt is forced at block entry, or is needed at 893 // program end. 894 if (ScoreBrackets->getWaitAtBeginning()) { 895 // Note that we have already cleared the state, so we don't need to update 896 // it. 897 ScoreBrackets->clearWaitAtBeginning(); 898 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 899 T = (enum InstCounterType)(T + 1)) { 900 EmitWaitcnt |= CNT_MASK(T); 901 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 902 } 903 } 904 905 // See if this instruction has a forced S_WAITCNT VM. 906 // TODO: Handle other cases of NeedsWaitcntVmBefore() 907 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 908 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 909 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 910 EmitWaitcnt |= 911 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 912 } 913 914 // All waits must be resolved at call return. 915 // NOTE: this could be improved with knowledge of all call sites or 916 // with knowledge of the called routines. 917 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 918 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 919 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 920 T = (enum InstCounterType)(T + 1)) { 921 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 922 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 923 EmitWaitcnt |= CNT_MASK(T); 924 } 925 } 926 } 927 // Resolve vm waits before gs-done. 928 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 929 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 930 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 931 AMDGPU::SendMsg::ID_GS_DONE)) { 932 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { 933 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 934 EmitWaitcnt |= CNT_MASK(VM_CNT); 935 } 936 } 937 #if 0 // TODO: the following blocks of logic when we have fence. 938 else if (MI.getOpcode() == SC_FENCE) { 939 const unsigned int group_size = 940 context->shader_info->GetMaxThreadGroupSize(); 941 // group_size == 0 means thread group size is unknown at compile time 942 const bool group_is_multi_wave = 943 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 944 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 945 946 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 947 SCRegType src_type = Inst->GetSrcType(i); 948 switch (src_type) { 949 case SCMEM_LDS: 950 if (group_is_multi_wave || 951 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 952 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 953 ScoreBrackets->getScoreUB(LGKM_CNT)); 954 // LDS may have to wait for VM_CNT after buffer load to LDS 955 if (target_info->HasBufferLoadToLDS()) { 956 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 957 ScoreBrackets->getScoreUB(VM_CNT)); 958 } 959 } 960 break; 961 962 case SCMEM_GDS: 963 if (group_is_multi_wave || fence_is_global) { 964 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 965 ScoreBrackets->getScoreUB(EXP_CNT)); 966 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 967 ScoreBrackets->getScoreUB(LGKM_CNT)); 968 } 969 break; 970 971 case SCMEM_UAV: 972 case SCMEM_TFBUF: 973 case SCMEM_RING: 974 case SCMEM_SCATTER: 975 if (group_is_multi_wave || fence_is_global) { 976 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 977 ScoreBrackets->getScoreUB(EXP_CNT)); 978 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 979 ScoreBrackets->getScoreUB(VM_CNT)); 980 } 981 break; 982 983 case SCMEM_SCRATCH: 984 default: 985 break; 986 } 987 } 988 } 989 #endif 990 991 // Export & GDS instructions do not read the EXEC mask until after the export 992 // is granted (which can occur well after the instruction is issued). 993 // The shader program must flush all EXP operations on the export-count 994 // before overwriting the EXEC mask. 995 else { 996 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 997 // Export and GDS are tracked individually, either may trigger a waitcnt 998 // for EXEC. 999 EmitWaitcnt |= ScoreBrackets->updateByWait( 1000 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); 1001 EmitWaitcnt |= ScoreBrackets->updateByWait( 1002 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); 1003 EmitWaitcnt |= ScoreBrackets->updateByWait( 1004 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); 1005 EmitWaitcnt |= ScoreBrackets->updateByWait( 1006 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); 1007 } 1008 1009 #if 0 // TODO: the following code to handle CALL. 1010 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 1011 // However, there is a problem with EXP_CNT, because the call cannot 1012 // easily tell if a register is used in the function, and if it did, then 1013 // the referring instruction would have to have an S_WAITCNT, which is 1014 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 1015 // before the call. 1016 if (MI.getOpcode() == SC_CALL) { 1017 if (ScoreBrackets->getScoreUB(EXP_CNT) > 1018 ScoreBrackets->getScoreLB(EXP_CNT)) { 1019 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1020 EmitWaitcnt |= CNT_MASK(EXP_CNT); 1021 } 1022 } 1023 #endif 1024 1025 // FIXME: Should not be relying on memoperands. 1026 // Look at the source operands of every instruction to see if 1027 // any of them results from a previous memory operation that affects 1028 // its current usage. If so, an s_waitcnt instruction needs to be 1029 // emitted. 1030 // If the source operand was defined by a load, add the s_waitcnt 1031 // instruction. 1032 for (const MachineMemOperand *Memop : MI.memoperands()) { 1033 unsigned AS = Memop->getAddrSpace(); 1034 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1035 continue; 1036 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1037 // VM_CNT is only relevant to vgpr or LDS. 1038 EmitWaitcnt |= ScoreBrackets->updateByWait( 1039 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1040 } 1041 1042 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1043 const MachineOperand &Op = MI.getOperand(I); 1044 const MachineRegisterInfo &MRIA = *MRI; 1045 RegInterval Interval = 1046 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); 1047 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1048 if (TRI->isVGPR(MRIA, Op.getReg())) { 1049 // VM_CNT is only relevant to vgpr or LDS. 1050 EmitWaitcnt |= ScoreBrackets->updateByWait( 1051 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1052 } 1053 EmitWaitcnt |= ScoreBrackets->updateByWait( 1054 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1055 } 1056 } 1057 // End of for loop that looks at all source operands to decide vm_wait_cnt 1058 // and lgk_wait_cnt. 1059 1060 // Two cases are handled for destination operands: 1061 // 1) If the destination operand was defined by a load, add the s_waitcnt 1062 // instruction to guarantee the right WAW order. 1063 // 2) If a destination operand that was used by a recent export/store ins, 1064 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1065 if (MI.mayStore()) { 1066 // FIXME: Should not be relying on memoperands. 1067 for (const MachineMemOperand *Memop : MI.memoperands()) { 1068 unsigned AS = Memop->getAddrSpace(); 1069 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1070 continue; 1071 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1072 EmitWaitcnt |= ScoreBrackets->updateByWait( 1073 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1074 EmitWaitcnt |= ScoreBrackets->updateByWait( 1075 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1076 } 1077 } 1078 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1079 MachineOperand &Def = MI.getOperand(I); 1080 const MachineRegisterInfo &MRIA = *MRI; 1081 RegInterval Interval = 1082 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); 1083 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1084 if (TRI->isVGPR(MRIA, Def.getReg())) { 1085 EmitWaitcnt |= ScoreBrackets->updateByWait( 1086 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1087 EmitWaitcnt |= ScoreBrackets->updateByWait( 1088 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1089 } 1090 EmitWaitcnt |= ScoreBrackets->updateByWait( 1091 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1092 } 1093 } // End of for loop that looks at all dest operands. 1094 } 1095 1096 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1097 // occurs before the instruction. Doing it here prevents any additional 1098 // S_WAITCNTs from being emitted if the instruction was marked as 1099 // requiring a WAITCNT beforehand. 1100 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1101 !ST->hasAutoWaitcntBeforeBarrier()) { 1102 EmitWaitcnt |= 1103 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1104 EmitWaitcnt |= ScoreBrackets->updateByWait( 1105 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1106 EmitWaitcnt |= ScoreBrackets->updateByWait( 1107 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); 1108 } 1109 1110 // TODO: Remove this work-around, enable the assert for Bug 457939 1111 // after fixing the scheduler. Also, the Shader Compiler code is 1112 // independent of target. 1113 if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) { 1114 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1115 ScoreBrackets->getScoreUB(LGKM_CNT) && 1116 ScoreBrackets->hasPendingSMEM()) { 1117 // Wait on everything, not just LGKM. vccz reads usually come from 1118 // terminators, and we always wait on everything at the end of the 1119 // block, so if we only wait on LGKM here, we might end up with 1120 // another s_waitcnt inserted right after this if there are non-LGKM 1121 // instructions still outstanding. 1122 // FIXME: this is too conservative / the comment is wrong. 1123 // We don't wait on everything at the end of the block and we combine 1124 // waitcnts so we should never have back-to-back waitcnts. 1125 ForceEmitZeroWaitcnt = true; 1126 EmitWaitcnt = true; 1127 } 1128 } 1129 1130 // Does this operand processing indicate s_wait counter update? 1131 if (EmitWaitcnt || IsForceEmitWaitcnt) { 1132 int CntVal[NUM_INST_CNTS]; 1133 1134 if (ForceEmitZeroWaitcnt || ForceEmitZeroWaitcnts) { 1135 // Force all waitcnts to 0. 1136 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1137 T = (enum InstCounterType)(T + 1)) { 1138 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1139 } 1140 CntVal[VM_CNT] = 0; 1141 CntVal[EXP_CNT] = 0; 1142 CntVal[LGKM_CNT] = 0; 1143 } else { 1144 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1145 T = (enum InstCounterType)(T + 1)) { 1146 if (EmitWaitcnt & CNT_MASK(T)) { 1147 int Delta = 1148 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); 1149 int MaxDelta = ScoreBrackets->getWaitCountMax(T); 1150 if (Delta >= MaxDelta) { 1151 Delta = -1; 1152 if (T != EXP_CNT) { 1153 ScoreBrackets->setScoreLB( 1154 T, ScoreBrackets->getScoreUB(T) - MaxDelta); 1155 } 1156 EmitWaitcnt &= ~CNT_MASK(T); 1157 } 1158 CntVal[T] = Delta; 1159 } else { 1160 // If we are not waiting for a particular counter then encode 1161 // it as -1 which means "don't care." 1162 CntVal[T] = -1; 1163 } 1164 } 1165 } 1166 1167 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); 1168 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); 1169 if (!OldWaitcnt || 1170 (AMDGPU::decodeVmcnt(IV, Imm) != 1171 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || 1172 (AMDGPU::decodeExpcnt(IV, Imm) != 1173 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || 1174 (AMDGPU::decodeLgkmcnt(IV, Imm) != 1175 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { 1176 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); 1177 if (ContainingLoop) { 1178 MachineBasicBlock *TBB = ContainingLoop->getHeader(); 1179 BlockWaitcntBrackets *ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); 1180 if (!ScoreBracket) { 1181 assert(!BlockVisitedSet.count(TBB)); 1182 BlockWaitcntBracketsMap[TBB] = 1183 llvm::make_unique<BlockWaitcntBrackets>(ST); 1184 ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); 1185 } 1186 ScoreBracket->setRevisitLoop(true); 1187 LLVM_DEBUG(dbgs() << "set-revisit2: Block" 1188 << ContainingLoop->getHeader()->getNumber() << '\n';); 1189 } 1190 } 1191 1192 // Update an existing waitcount, or make a new one. 1193 unsigned Enc = AMDGPU::encodeWaitcnt(IV, 1194 ForceEmitWaitcnt[VM_CNT] ? 0 : CntVal[VM_CNT], 1195 ForceEmitWaitcnt[EXP_CNT] ? 0 : CntVal[EXP_CNT], 1196 ForceEmitWaitcnt[LGKM_CNT] ? 0 : CntVal[LGKM_CNT]); 1197 // We don't remove waitcnts that existed prior to the waitcnt 1198 // pass. Check if the waitcnt to-be-inserted can be avoided 1199 // or if the prev waitcnt can be updated. 1200 bool insertSWaitInst = true; 1201 for (MachineBasicBlock::iterator I = MI.getIterator(), 1202 B = MI.getParent()->begin(); 1203 insertSWaitInst && I != B; --I) { 1204 if (I == MI.getIterator()) 1205 continue; 1206 1207 switch (I->getOpcode()) { 1208 case AMDGPU::S_WAITCNT: 1209 if (isWaitcntStronger(I->getOperand(0).getImm(), Enc)) 1210 insertSWaitInst = false; 1211 else if (!OldWaitcnt) { 1212 OldWaitcnt = &*I; 1213 Enc = combineWaitcnt(I->getOperand(0).getImm(), Enc); 1214 } 1215 break; 1216 // TODO: skip over instructions which never require wait. 1217 } 1218 break; 1219 } 1220 if (insertSWaitInst) { 1221 if (OldWaitcnt) { 1222 assert(OldWaitcnt->getOpcode() == AMDGPU::S_WAITCNT); 1223 if (ForceEmitZeroWaitcnts) 1224 LLVM_DEBUG(dbgs() 1225 << "Force emit s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)\n"); 1226 if (IsForceEmitWaitcnt) 1227 LLVM_DEBUG(dbgs() << "Force emit a s_waitcnt due to debug counter\n"); 1228 1229 OldWaitcnt->getOperand(0).setImm(Enc); 1230 if (!OldWaitcnt->getParent()) 1231 MI.getParent()->insert(MI, OldWaitcnt); 1232 1233 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1234 << "Old Instr: " << MI << '\n' 1235 << "New Instr: " << *OldWaitcnt << '\n'); 1236 } else { 1237 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1238 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1239 .addImm(Enc); 1240 TrackedWaitcntSet.insert(SWaitInst); 1241 1242 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1243 << "Old Instr: " << MI << '\n' 1244 << "New Instr: " << *SWaitInst << '\n'); 1245 } 1246 } 1247 1248 if (CntVal[EXP_CNT] == 0) { 1249 ScoreBrackets->setMixedExpTypes(false); 1250 } 1251 } 1252 } 1253 1254 void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, 1255 MachineInstr *Waitcnt) { 1256 if (MBB.empty()) { 1257 MBB.push_back(Waitcnt); 1258 return; 1259 } 1260 1261 MachineBasicBlock::iterator It = MBB.end(); 1262 MachineInstr *MI = &*(--It); 1263 if (MI->isBranch()) { 1264 MBB.insert(It, Waitcnt); 1265 } else { 1266 MBB.push_back(Waitcnt); 1267 } 1268 } 1269 1270 // This is a flat memory operation. Check to see if it has memory 1271 // tokens for both LDS and Memory, and if so mark it as a flat. 1272 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1273 if (MI.memoperands_empty()) 1274 return true; 1275 1276 for (const MachineMemOperand *Memop : MI.memoperands()) { 1277 unsigned AS = Memop->getAddrSpace(); 1278 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1279 return true; 1280 } 1281 1282 return false; 1283 } 1284 1285 void SIInsertWaitcnts::updateEventWaitcntAfter( 1286 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { 1287 // Now look at the instruction opcode. If it is a memory access 1288 // instruction, update the upper-bound of the appropriate counter's 1289 // bracket and the destination operand scores. 1290 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1291 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1292 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1293 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1294 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1295 } else { 1296 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1297 } 1298 } else if (TII->isFLAT(Inst)) { 1299 assert(Inst.mayLoad() || Inst.mayStore()); 1300 1301 if (TII->usesVM_CNT(Inst)) 1302 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1303 1304 if (TII->usesLGKM_CNT(Inst)) { 1305 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1306 1307 // This is a flat memory operation, so note it - it will require 1308 // that both the VM and LGKM be flushed to zero if it is pending when 1309 // a VM or LGKM dependency occurs. 1310 if (mayAccessLDSThroughFlat(Inst)) 1311 ScoreBrackets->setPendingFlat(); 1312 } 1313 } else if (SIInstrInfo::isVMEM(Inst) && 1314 // TODO: get a better carve out. 1315 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1316 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1317 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1318 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1319 if (ST->vmemWriteNeedsExpWaitcnt() && 1320 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1321 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1322 } 1323 } else if (TII->isSMRD(Inst)) { 1324 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1325 } else { 1326 switch (Inst.getOpcode()) { 1327 case AMDGPU::S_SENDMSG: 1328 case AMDGPU::S_SENDMSGHALT: 1329 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1330 break; 1331 case AMDGPU::EXP: 1332 case AMDGPU::EXP_DONE: { 1333 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1334 if (Imm >= 32 && Imm <= 63) 1335 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1336 else if (Imm >= 12 && Imm <= 15) 1337 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1338 else 1339 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1340 break; 1341 } 1342 case AMDGPU::S_MEMTIME: 1343 case AMDGPU::S_MEMREALTIME: 1344 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1345 break; 1346 default: 1347 break; 1348 } 1349 } 1350 } 1351 1352 // Merge the score brackets of the Block's predecessors; 1353 // this merged score bracket is used when adding waitcnts to the Block 1354 void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { 1355 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1356 int32_t MaxPending[NUM_INST_CNTS] = {0}; 1357 int32_t MaxFlat[NUM_INST_CNTS] = {0}; 1358 bool MixedExpTypes = false; 1359 1360 // For single basic block loops, we need to retain the Block's 1361 // score bracket to have accurate Pred info. So, make a copy of Block's 1362 // score bracket, clear() it (which retains several important bits of info), 1363 // populate, and then replace en masse. For non-single basic block loops, 1364 // just clear Block's current score bracket and repopulate in-place. 1365 bool IsSelfPred; 1366 std::unique_ptr<BlockWaitcntBrackets> S; 1367 1368 IsSelfPred = (std::find(Block.pred_begin(), Block.pred_end(), &Block)) 1369 != Block.pred_end(); 1370 if (IsSelfPred) { 1371 S = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1372 ScoreBrackets = S.get(); 1373 } 1374 1375 ScoreBrackets->clear(); 1376 1377 // See if there are any uninitialized predecessors. If so, emit an 1378 // s_waitcnt 0 at the beginning of the block. 1379 for (MachineBasicBlock *Pred : Block.predecessors()) { 1380 BlockWaitcntBrackets *PredScoreBrackets = 1381 BlockWaitcntBracketsMap[Pred].get(); 1382 bool Visited = BlockVisitedSet.count(Pred); 1383 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1384 continue; 1385 } 1386 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1387 T = (enum InstCounterType)(T + 1)) { 1388 int span = 1389 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); 1390 MaxPending[T] = std::max(MaxPending[T], span); 1391 span = 1392 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); 1393 MaxFlat[T] = std::max(MaxFlat[T], span); 1394 } 1395 1396 MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); 1397 } 1398 1399 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. 1400 for (MachineBasicBlock *Pred : Block.predecessors()) { 1401 BlockWaitcntBrackets *PredScoreBrackets = 1402 BlockWaitcntBracketsMap[Pred].get(); 1403 bool Visited = BlockVisitedSet.count(Pred); 1404 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1405 continue; 1406 } 1407 1408 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - 1409 PredScoreBrackets->getScoreLB(EXP_CNT); 1410 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1411 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - 1412 PredScoreBrackets->getScoreLB(EXP_CNT); 1413 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1414 } 1415 1416 #if 0 1417 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. 1418 // TODO: how does LC distinguish between function entry and main entry? 1419 // If this is the entry to a function, force a wait. 1420 MachineBasicBlock &Entry = Block.getParent()->front(); 1421 if (Entry.getNumber() == Block.getNumber()) { 1422 ScoreBrackets->setWaitAtBeginning(); 1423 return; 1424 } 1425 #endif 1426 1427 // Now set the current Block's brackets to the largest ending bracket. 1428 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1429 T = (enum InstCounterType)(T + 1)) { 1430 ScoreBrackets->setScoreUB(T, MaxPending[T]); 1431 ScoreBrackets->setScoreLB(T, 0); 1432 ScoreBrackets->setLastFlat(T, MaxFlat[T]); 1433 } 1434 1435 ScoreBrackets->setMixedExpTypes(MixedExpTypes); 1436 1437 // Set the register scoreboard. 1438 for (MachineBasicBlock *Pred : Block.predecessors()) { 1439 if (!BlockVisitedSet.count(Pred)) { 1440 continue; 1441 } 1442 1443 BlockWaitcntBrackets *PredScoreBrackets = 1444 BlockWaitcntBracketsMap[Pred].get(); 1445 1446 // Now merge the gpr_reg_score information 1447 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1448 T = (enum InstCounterType)(T + 1)) { 1449 int PredLB = PredScoreBrackets->getScoreLB(T); 1450 int PredUB = PredScoreBrackets->getScoreUB(T); 1451 if (PredLB < PredUB) { 1452 int PredScale = MaxPending[T] - PredUB; 1453 // Merge vgpr scores. 1454 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { 1455 int PredRegScore = PredScoreBrackets->getRegScore(J, T); 1456 if (PredRegScore <= PredLB) 1457 continue; 1458 int NewRegScore = PredScale + PredRegScore; 1459 ScoreBrackets->setRegScore( 1460 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1461 } 1462 // Also need to merge sgpr scores for lgkm_cnt. 1463 if (T == LGKM_CNT) { 1464 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { 1465 int PredRegScore = 1466 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1467 if (PredRegScore <= PredLB) 1468 continue; 1469 int NewRegScore = PredScale + PredRegScore; 1470 ScoreBrackets->setRegScore( 1471 J + NUM_ALL_VGPRS, LGKM_CNT, 1472 std::max( 1473 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1474 NewRegScore)); 1475 } 1476 } 1477 } 1478 } 1479 1480 // Also merge the WaitEvent information. 1481 ForAllWaitEventType(W) { 1482 enum InstCounterType T = PredScoreBrackets->eventCounter(W); 1483 int PredEventUB = PredScoreBrackets->getEventUB(W); 1484 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { 1485 int NewEventUB = 1486 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); 1487 if (NewEventUB > 0) { 1488 ScoreBrackets->setEventUB( 1489 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1490 } 1491 } 1492 } 1493 } 1494 1495 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the 1496 // sequencing predecessors, because changes to EXEC require waitcnts due to 1497 // the delayed nature of these operations. 1498 for (MachineBasicBlock *Pred : Block.predecessors()) { 1499 if (!BlockVisitedSet.count(Pred)) { 1500 continue; 1501 } 1502 1503 BlockWaitcntBrackets *PredScoreBrackets = 1504 BlockWaitcntBracketsMap[Pred].get(); 1505 1506 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); 1507 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1508 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - 1509 PredScoreBrackets->getScoreUB(EXP_CNT); 1510 if (new_gds_ub > 0) { 1511 ScoreBrackets->setEventUB( 1512 GDS_GPR_LOCK, 1513 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); 1514 } 1515 } 1516 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); 1517 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1518 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - 1519 PredScoreBrackets->getScoreUB(EXP_CNT); 1520 if (new_exp_ub > 0) { 1521 ScoreBrackets->setEventUB( 1522 EXP_GPR_LOCK, 1523 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); 1524 } 1525 } 1526 } 1527 1528 // if a single block loop, update the score brackets. Not needed for other 1529 // blocks, as we did this in-place 1530 if (IsSelfPred) { 1531 BlockWaitcntBracketsMap[&Block] = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1532 } 1533 } 1534 1535 /// Return true if the given basic block is a "bottom" block of a loop. 1536 /// This works even if the loop is discontiguous. This also handles 1537 /// multiple back-edges for the same "header" block of a loop. 1538 bool SIInsertWaitcnts::isLoopBottom(const MachineLoop *Loop, 1539 const MachineBasicBlock *Block) { 1540 for (MachineBasicBlock *MBB : Loop->blocks()) { 1541 if (MBB == Block && MBB->isSuccessor(Loop->getHeader())) { 1542 return true; 1543 } 1544 } 1545 return false; 1546 } 1547 1548 /// Count the number of "bottom" basic blocks of a loop. 1549 unsigned SIInsertWaitcnts::countNumBottomBlocks(const MachineLoop *Loop) { 1550 unsigned Count = 0; 1551 for (MachineBasicBlock *MBB : Loop->blocks()) { 1552 if (MBB->isSuccessor(Loop->getHeader())) { 1553 Count++; 1554 } 1555 } 1556 return Count; 1557 } 1558 1559 // Generate s_waitcnt instructions where needed. 1560 void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1561 MachineBasicBlock &Block) { 1562 // Initialize the state information. 1563 mergeInputScoreBrackets(Block); 1564 1565 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1566 1567 LLVM_DEBUG({ 1568 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1569 ScoreBrackets->dump(); 1570 }); 1571 1572 // Walk over the instructions. 1573 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1574 Iter != E;) { 1575 MachineInstr &Inst = *Iter; 1576 // Remove any previously existing waitcnts. 1577 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1578 // Leave pre-existing waitcnts, but note their existence via setWaitcnt. 1579 // Remove the waitcnt-pass-generated waitcnts; the pass will add them back 1580 // as needed. 1581 if (!TrackedWaitcntSet.count(&Inst)) 1582 ++Iter; 1583 else { 1584 ++Iter; 1585 Inst.removeFromParent(); 1586 } 1587 ScoreBrackets->setWaitcnt(&Inst); 1588 continue; 1589 } 1590 1591 bool VCCZBugWorkAround = false; 1592 if (readsVCCZ(Inst) && 1593 (!VCCZBugHandledSet.count(&Inst))) { 1594 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1595 ScoreBrackets->getScoreUB(LGKM_CNT) && 1596 ScoreBrackets->hasPendingSMEM()) { 1597 if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1598 VCCZBugWorkAround = true; 1599 } 1600 } 1601 1602 // Generate an s_waitcnt instruction to be placed before 1603 // cur_Inst, if needed. 1604 generateWaitcntInstBefore(Inst, ScoreBrackets); 1605 1606 updateEventWaitcntAfter(Inst, ScoreBrackets); 1607 1608 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1609 // If this instruction generates a S_SETVSKIP because it is an 1610 // indexed resource, and we are on Tahiti, then it will also force 1611 // an S_WAITCNT vmcnt(0) 1612 if (RequireCheckResourceType(Inst, context)) { 1613 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1614 ScoreBrackets->setScoreLB(VM_CNT, 1615 ScoreBrackets->getScoreUB(VM_CNT)); 1616 } 1617 #endif 1618 1619 ScoreBrackets->clearWaitcnt(); 1620 1621 LLVM_DEBUG({ 1622 Inst.print(dbgs()); 1623 ScoreBrackets->dump(); 1624 }); 1625 1626 // Check to see if this is a GWS instruction. If so, and if this is CI or 1627 // VI, then the generated code sequence will include an S_WAITCNT 0. 1628 // TODO: Are these the only GWS instructions? 1629 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1630 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1631 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1632 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1633 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1634 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1635 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1636 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1637 ScoreBrackets->updateByWait(LGKM_CNT, 1638 ScoreBrackets->getScoreUB(LGKM_CNT)); 1639 } 1640 1641 // TODO: Remove this work-around after fixing the scheduler and enable the 1642 // assert above. 1643 if (VCCZBugWorkAround) { 1644 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1645 // bit is updated, so we can restore the bit by reading the value of 1646 // vcc and then writing it back to the register. 1647 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1648 AMDGPU::VCC) 1649 .addReg(AMDGPU::VCC); 1650 VCCZBugHandledSet.insert(&Inst); 1651 } 1652 1653 ++Iter; 1654 } 1655 1656 // Check if we need to force convergence at loop footer. 1657 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); 1658 if (ContainingLoop && isLoopBottom(ContainingLoop, &Block)) { 1659 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1660 WaitcntData->print(); 1661 LLVM_DEBUG(dbgs() << '\n';); 1662 1663 // The iterative waitcnt insertion algorithm aims for optimal waitcnt 1664 // placement, but doesn't guarantee convergence for a loop. Each 1665 // loop should take at most (n+1) iterations for it to converge naturally, 1666 // where n is the number of bottom blocks. If this threshold is reached and 1667 // the result hasn't converged, then we force convergence by inserting 1668 // a s_waitcnt at the end of loop footer. 1669 if (WaitcntData->getIterCnt() > (countNumBottomBlocks(ContainingLoop) + 1)) { 1670 // To ensure convergence, need to make wait events at loop footer be no 1671 // more than those from the previous iteration. 1672 // As a simplification, instead of tracking individual scores and 1673 // generating the precise wait count, just wait on 0. 1674 bool HasPending = false; 1675 MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); 1676 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1677 T = (enum InstCounterType)(T + 1)) { 1678 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 1679 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1680 HasPending = true; 1681 break; 1682 } 1683 } 1684 1685 if (HasPending) { 1686 if (!SWaitInst) { 1687 SWaitInst = BuildMI(Block, Block.getFirstNonPHI(), 1688 DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1689 .addImm(0); 1690 TrackedWaitcntSet.insert(SWaitInst); 1691 #if 0 // TODO: Format the debug output 1692 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); 1693 OutputTransformAdd(SWaitInst, context); 1694 #endif 1695 } 1696 #if 0 // TODO: ?? 1697 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) 1698 #endif 1699 } 1700 1701 if (SWaitInst) { 1702 LLVM_DEBUG({ 1703 SWaitInst->print(dbgs()); 1704 dbgs() << "\nAdjusted score board:"; 1705 ScoreBrackets->dump(); 1706 }); 1707 1708 // Add this waitcnt to the block. It is either newly created or 1709 // created in previous iterations and added back since block traversal 1710 // always removes waitcnts. 1711 insertWaitcntBeforeCF(Block, SWaitInst); 1712 WaitcntData->setWaitcnt(SWaitInst); 1713 } 1714 } 1715 } 1716 } 1717 1718 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1719 ST = &MF.getSubtarget<GCNSubtarget>(); 1720 TII = ST->getInstrInfo(); 1721 TRI = &TII->getRegisterInfo(); 1722 MRI = &MF.getRegInfo(); 1723 MLI = &getAnalysis<MachineLoopInfo>(); 1724 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1725 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1726 1727 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1728 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1729 T = (enum InstCounterType)(T + 1)) 1730 ForceEmitWaitcnt[T] = false; 1731 1732 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1733 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1734 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1735 1736 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1737 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1738 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1739 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1740 1741 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1742 RegisterEncoding.VGPRL = 1743 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1744 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1745 RegisterEncoding.SGPRL = 1746 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1747 1748 TrackedWaitcntSet.clear(); 1749 BlockVisitedSet.clear(); 1750 VCCZBugHandledSet.clear(); 1751 LoopWaitcntDataMap.clear(); 1752 BlockWaitcntProcessedSet.clear(); 1753 1754 // Walk over the blocks in reverse post order, inserting 1755 // s_waitcnt where needed. 1756 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1757 bool Modified = false; 1758 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1759 I = RPOT.begin(), 1760 E = RPOT.end(), J = RPOT.begin(); 1761 I != E;) { 1762 MachineBasicBlock &MBB = **I; 1763 1764 BlockVisitedSet.insert(&MBB); 1765 1766 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1767 if (!ScoreBrackets) { 1768 BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(ST); 1769 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1770 } 1771 ScoreBrackets->setPostOrder(MBB.getNumber()); 1772 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); 1773 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) 1774 LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>(); 1775 1776 // If we are walking into the block from before the loop, then guarantee 1777 // at least 1 re-walk over the loop to propagate the information, even if 1778 // no S_WAITCNT instructions were generated. 1779 if (ContainingLoop && ContainingLoop->getHeader() == &MBB) { 1780 unsigned Count = countNumBottomBlocks(ContainingLoop); 1781 1782 // If the loop has multiple back-edges, and so more than one "bottom" 1783 // basic block, we have to guarantee a re-walk over every blocks. 1784 if ((std::count(BlockWaitcntProcessedSet.begin(), 1785 BlockWaitcntProcessedSet.end(), &MBB) < (int)Count)) { 1786 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); 1787 LLVM_DEBUG(dbgs() << "set-revisit1: Block" 1788 << ContainingLoop->getHeader()->getNumber() << '\n';); 1789 } 1790 } 1791 1792 // Walk over the instructions. 1793 insertWaitcntInBlock(MF, MBB); 1794 1795 // Record that waitcnts have been processed at least once for this block. 1796 BlockWaitcntProcessedSet.push_back(&MBB); 1797 1798 // See if we want to revisit the loop. If a loop has multiple back-edges, 1799 // we shouldn't revisit the same "bottom" basic block. 1800 if (ContainingLoop && isLoopBottom(ContainingLoop, &MBB) && 1801 std::count(BlockWaitcntProcessedSet.begin(), 1802 BlockWaitcntProcessedSet.end(), &MBB) == 1) { 1803 MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); 1804 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); 1805 if (EntrySB && EntrySB->getRevisitLoop()) { 1806 EntrySB->setRevisitLoop(false); 1807 J = I; 1808 int32_t PostOrder = EntrySB->getPostOrder(); 1809 // TODO: Avoid this loop. Find another way to set I. 1810 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1811 X = RPOT.begin(), 1812 Y = RPOT.end(); 1813 X != Y; ++X) { 1814 MachineBasicBlock &MBBX = **X; 1815 if (MBBX.getNumber() == PostOrder) { 1816 I = X; 1817 break; 1818 } 1819 } 1820 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1821 WaitcntData->incIterCnt(); 1822 LLVM_DEBUG(dbgs() << "revisit: Block" << EntryBB->getNumber() << '\n';); 1823 continue; 1824 } else { 1825 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1826 // Loop converged, reset iteration count. If this loop gets revisited, 1827 // it must be from an outer loop, the counter will restart, this will 1828 // ensure we don't force convergence on such revisits. 1829 WaitcntData->resetIterCnt(); 1830 } 1831 } 1832 1833 J = I; 1834 ++I; 1835 } 1836 1837 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1838 1839 bool HaveScalarStores = false; 1840 1841 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1842 ++BI) { 1843 MachineBasicBlock &MBB = *BI; 1844 1845 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1846 ++I) { 1847 if (!HaveScalarStores && TII->isScalarStore(*I)) 1848 HaveScalarStores = true; 1849 1850 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1851 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1852 EndPgmBlocks.push_back(&MBB); 1853 } 1854 } 1855 1856 if (HaveScalarStores) { 1857 // If scalar writes are used, the cache must be flushed or else the next 1858 // wave to reuse the same scratch memory can be clobbered. 1859 // 1860 // Insert s_dcache_wb at wave termination points if there were any scalar 1861 // stores, and only if the cache hasn't already been flushed. This could be 1862 // improved by looking across blocks for flushes in postdominating blocks 1863 // from the stores but an explicitly requested flush is probably very rare. 1864 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1865 bool SeenDCacheWB = false; 1866 1867 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1868 ++I) { 1869 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1870 SeenDCacheWB = true; 1871 else if (TII->isScalarStore(*I)) 1872 SeenDCacheWB = false; 1873 1874 // FIXME: It would be better to insert this before a waitcnt if any. 1875 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1876 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1877 !SeenDCacheWB) { 1878 Modified = true; 1879 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1880 } 1881 } 1882 } 1883 } 1884 1885 if (!MFI->isEntryFunction()) { 1886 // Wait for any outstanding memory operations that the input registers may 1887 // depend on. We can't track them and it's better to the wait after the 1888 // costly call sequence. 1889 1890 // TODO: Could insert earlier and schedule more liberally with operations 1891 // that only use caller preserved registers. 1892 MachineBasicBlock &EntryBB = MF.front(); 1893 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1894 .addImm(0); 1895 1896 Modified = true; 1897 } 1898 1899 return Modified; 1900 } 1901