1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "AMDGPU.h"
27 #include "AMDGPUSubtarget.h"
28 #include "SIDefines.h"
29 #include "SIInstrInfo.h"
30 #include "SIMachineFunctionInfo.h"
31 #include "SIRegisterInfo.h"
32 #include "Utils/AMDGPUBaseInfo.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/DebugCounter.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <cstring>
56 #include <memory>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "si-insert-waitcnts"
63 
64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
65               "Force emit s_waitcnt expcnt(0) instrs");
66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
67               "Force emit s_waitcnt lgkmcnt(0) instrs");
68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
69               "Force emit s_waitcnt vmcnt(0) instrs");
70 
71 static cl::opt<bool> ForceEmitZeroFlag(
72   "amdgpu-waitcnt-forcezero",
73   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
74   cl::init(false), cl::Hidden);
75 
76 namespace {
77 
78 template <typename EnumT>
79 class enum_iterator
80     : public iterator_facade_base<enum_iterator<EnumT>,
81                                   std::forward_iterator_tag, const EnumT> {
82   EnumT Value;
83 public:
84   enum_iterator() = default;
85   enum_iterator(EnumT Value) : Value(Value) {}
86 
87   enum_iterator &operator++() {
88     Value = static_cast<EnumT>(Value + 1);
89     return *this;
90   }
91 
92   bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
93 
94   EnumT operator*() const { return Value; }
95 };
96 
97 // Class of object that encapsulates latest instruction counter score
98 // associated with the operand.  Used for determining whether
99 // s_waitcnt instruction needs to be emited.
100 
101 #define CNT_MASK(t) (1u << (t))
102 
103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
104 
105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
106   return make_range(enum_iterator<InstCounterType>(VM_CNT),
107                     enum_iterator<InstCounterType>(NUM_INST_CNTS));
108 }
109 
110 using RegInterval = std::pair<signed, signed>;
111 
112 struct {
113   uint32_t VmcntMax;
114   uint32_t ExpcntMax;
115   uint32_t LgkmcntMax;
116   uint32_t VscntMax;
117   int32_t NumVGPRsMax;
118   int32_t NumSGPRsMax;
119 } HardwareLimits;
120 
121 struct {
122   unsigned VGPR0;
123   unsigned VGPRL;
124   unsigned SGPR0;
125   unsigned SGPRL;
126 } RegisterEncoding;
127 
128 enum WaitEventType {
129   VMEM_ACCESS,      // vector-memory read & write
130   VMEM_READ_ACCESS, // vector-memory read
131   VMEM_WRITE_ACCESS,// vector-memory write
132   LDS_ACCESS,       // lds read & write
133   GDS_ACCESS,       // gds read & write
134   SQ_MESSAGE,       // send message
135   SMEM_ACCESS,      // scalar-memory read & write
136   EXP_GPR_LOCK,     // export holding on its data src
137   GDS_GPR_LOCK,     // GDS holding on its data and addr src
138   EXP_POS_ACCESS,   // write to export position
139   EXP_PARAM_ACCESS, // write to export parameter
140   VMW_GPR_LOCK,     // vector-memory write holding on its data src
141   NUM_WAIT_EVENTS,
142 };
143 
144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = {
145   (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
146   (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
147       (1 << SQ_MESSAGE),
148   (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
149       (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
150   (1 << VMEM_WRITE_ACCESS)
151 };
152 
153 // The mapping is:
154 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
155 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
156 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
157 // We reserve a fixed number of VGPR slots in the scoring tables for
158 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
159 enum RegisterMapping {
160   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
161   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
162   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
163   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
164   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
165 };
166 
167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
168   switch (T) {
169   case VM_CNT:
170     Wait.VmCnt = std::min(Wait.VmCnt, Count);
171     break;
172   case EXP_CNT:
173     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
174     break;
175   case LGKM_CNT:
176     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
177     break;
178   case VS_CNT:
179     Wait.VsCnt = std::min(Wait.VsCnt, Count);
180     break;
181   default:
182     llvm_unreachable("bad InstCounterType");
183   }
184 }
185 
186 // This objects maintains the current score brackets of each wait counter, and
187 // a per-register scoreboard for each wait counter.
188 //
189 // We also maintain the latest score for every event type that can change the
190 // waitcnt in order to know if there are multiple types of events within
191 // the brackets. When multiple types of event happen in the bracket,
192 // wait count may get decreased out of order, therefore we need to put in
193 // "s_waitcnt 0" before use.
194 class WaitcntBrackets {
195 public:
196   WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {
197     for (auto T : inst_counter_types())
198       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
199   }
200 
201   static uint32_t getWaitCountMax(InstCounterType T) {
202     switch (T) {
203     case VM_CNT:
204       return HardwareLimits.VmcntMax;
205     case LGKM_CNT:
206       return HardwareLimits.LgkmcntMax;
207     case EXP_CNT:
208       return HardwareLimits.ExpcntMax;
209     case VS_CNT:
210       return HardwareLimits.VscntMax;
211     default:
212       break;
213     }
214     return 0;
215   }
216 
217   uint32_t getScoreLB(InstCounterType T) const {
218     assert(T < NUM_INST_CNTS);
219     if (T >= NUM_INST_CNTS)
220       return 0;
221     return ScoreLBs[T];
222   }
223 
224   uint32_t getScoreUB(InstCounterType T) const {
225     assert(T < NUM_INST_CNTS);
226     if (T >= NUM_INST_CNTS)
227       return 0;
228     return ScoreUBs[T];
229   }
230 
231   // Mapping from event to counter.
232   InstCounterType eventCounter(WaitEventType E) {
233     if (WaitEventMaskForInst[VM_CNT] & (1 << E))
234       return VM_CNT;
235     if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
236       return LGKM_CNT;
237     if (WaitEventMaskForInst[VS_CNT] & (1 << E))
238       return VS_CNT;
239     assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
240     return EXP_CNT;
241   }
242 
243   uint32_t getRegScore(int GprNo, InstCounterType T) {
244     if (GprNo < NUM_ALL_VGPRS) {
245       return VgprScores[T][GprNo];
246     }
247     assert(T == LGKM_CNT);
248     return SgprScores[GprNo - NUM_ALL_VGPRS];
249   }
250 
251   void clear() {
252     memset(ScoreLBs, 0, sizeof(ScoreLBs));
253     memset(ScoreUBs, 0, sizeof(ScoreUBs));
254     PendingEvents = 0;
255     memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents));
256     for (auto T : inst_counter_types())
257       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
258     memset(SgprScores, 0, sizeof(SgprScores));
259   }
260 
261   bool merge(const WaitcntBrackets &Other);
262 
263   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
264                              const MachineRegisterInfo *MRI,
265                              const SIRegisterInfo *TRI, unsigned OpNo,
266                              bool Def) const;
267 
268   int32_t getMaxVGPR() const { return VgprUB; }
269   int32_t getMaxSGPR() const { return SgprUB; }
270 
271   bool counterOutOfOrder(InstCounterType T) const;
272   bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
273   bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
274   void determineWait(InstCounterType T, uint32_t ScoreToWait,
275                      AMDGPU::Waitcnt &Wait) const;
276   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
277   void applyWaitcnt(InstCounterType T, unsigned Count);
278   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
279                      const MachineRegisterInfo *MRI, WaitEventType E,
280                      MachineInstr &MI);
281 
282   bool hasPending() const { return PendingEvents != 0; }
283   bool hasPendingEvent(WaitEventType E) const {
284     return PendingEvents & (1 << E);
285   }
286 
287   bool hasPendingFlat() const {
288     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
289              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
290             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
291              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
292   }
293 
294   void setPendingFlat() {
295     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
296     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
297   }
298 
299   void print(raw_ostream &);
300   void dump() { print(dbgs()); }
301 
302 private:
303   struct MergeInfo {
304     uint32_t OldLB;
305     uint32_t OtherLB;
306     uint32_t MyShift;
307     uint32_t OtherShift;
308   };
309   static bool mergeScore(const MergeInfo &M, uint32_t &Score,
310                          uint32_t OtherScore);
311 
312   void setScoreLB(InstCounterType T, uint32_t Val) {
313     assert(T < NUM_INST_CNTS);
314     if (T >= NUM_INST_CNTS)
315       return;
316     ScoreLBs[T] = Val;
317   }
318 
319   void setScoreUB(InstCounterType T, uint32_t Val) {
320     assert(T < NUM_INST_CNTS);
321     if (T >= NUM_INST_CNTS)
322       return;
323     ScoreUBs[T] = Val;
324     if (T == EXP_CNT) {
325       uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
326       if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
327         ScoreLBs[T] = UB;
328     }
329   }
330 
331   void setRegScore(int GprNo, InstCounterType T, uint32_t Val) {
332     if (GprNo < NUM_ALL_VGPRS) {
333       if (GprNo > VgprUB) {
334         VgprUB = GprNo;
335       }
336       VgprScores[T][GprNo] = Val;
337     } else {
338       assert(T == LGKM_CNT);
339       if (GprNo - NUM_ALL_VGPRS > SgprUB) {
340         SgprUB = GprNo - NUM_ALL_VGPRS;
341       }
342       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
343     }
344   }
345 
346   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
347                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
348                    unsigned OpNo, uint32_t Val);
349 
350   const GCNSubtarget *ST = nullptr;
351   uint32_t ScoreLBs[NUM_INST_CNTS] = {0};
352   uint32_t ScoreUBs[NUM_INST_CNTS] = {0};
353   uint32_t PendingEvents = 0;
354   bool MixedPendingEvents[NUM_INST_CNTS] = {false};
355   // Remember the last flat memory operation.
356   uint32_t LastFlat[NUM_INST_CNTS] = {0};
357   // wait_cnt scores for every vgpr.
358   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
359   int32_t VgprUB = 0;
360   int32_t SgprUB = 0;
361   uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
362   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
363   uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
364 };
365 
366 class SIInsertWaitcnts : public MachineFunctionPass {
367 private:
368   const GCNSubtarget *ST = nullptr;
369   const SIInstrInfo *TII = nullptr;
370   const SIRegisterInfo *TRI = nullptr;
371   const MachineRegisterInfo *MRI = nullptr;
372   AMDGPU::IsaVersion IV;
373 
374   DenseSet<MachineInstr *> TrackedWaitcntSet;
375 
376   struct BlockInfo {
377     MachineBasicBlock *MBB;
378     std::unique_ptr<WaitcntBrackets> Incoming;
379     bool Dirty = true;
380 
381     explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
382   };
383 
384   std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index
385   DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap;
386 
387   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
388   // because of amdgpu-waitcnt-forcezero flag
389   bool ForceEmitZeroWaitcnts;
390   bool ForceEmitWaitcnt[NUM_INST_CNTS];
391 
392 public:
393   static char ID;
394 
395   SIInsertWaitcnts() : MachineFunctionPass(ID) {
396     (void)ForceExpCounter;
397     (void)ForceLgkmCounter;
398     (void)ForceVMCounter;
399   }
400 
401   bool runOnMachineFunction(MachineFunction &MF) override;
402 
403   StringRef getPassName() const override {
404     return "SI insert wait instructions";
405   }
406 
407   void getAnalysisUsage(AnalysisUsage &AU) const override {
408     AU.setPreservesCFG();
409     MachineFunctionPass::getAnalysisUsage(AU);
410   }
411 
412   bool isForceEmitWaitcnt() const {
413     for (auto T : inst_counter_types())
414       if (ForceEmitWaitcnt[T])
415         return true;
416     return false;
417   }
418 
419   void setForceEmitWaitcnt() {
420 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
421 // For debug builds, get the debug counter info and adjust if need be
422 #ifndef NDEBUG
423     if (DebugCounter::isCounterSet(ForceExpCounter) &&
424         DebugCounter::shouldExecute(ForceExpCounter)) {
425       ForceEmitWaitcnt[EXP_CNT] = true;
426     } else {
427       ForceEmitWaitcnt[EXP_CNT] = false;
428     }
429 
430     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
431          DebugCounter::shouldExecute(ForceLgkmCounter)) {
432       ForceEmitWaitcnt[LGKM_CNT] = true;
433     } else {
434       ForceEmitWaitcnt[LGKM_CNT] = false;
435     }
436 
437     if (DebugCounter::isCounterSet(ForceVMCounter) &&
438         DebugCounter::shouldExecute(ForceVMCounter)) {
439       ForceEmitWaitcnt[VM_CNT] = true;
440     } else {
441       ForceEmitWaitcnt[VM_CNT] = false;
442     }
443 #endif // NDEBUG
444   }
445 
446   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
447   bool generateWaitcntInstBefore(MachineInstr &MI,
448                                  WaitcntBrackets &ScoreBrackets,
449                                  MachineInstr *OldWaitcntInstr);
450   void updateEventWaitcntAfter(MachineInstr &Inst,
451                                WaitcntBrackets *ScoreBrackets);
452   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
453                             WaitcntBrackets &ScoreBrackets);
454 };
455 
456 } // end anonymous namespace
457 
458 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
459                                             const SIInstrInfo *TII,
460                                             const MachineRegisterInfo *MRI,
461                                             const SIRegisterInfo *TRI,
462                                             unsigned OpNo, bool Def) const {
463   const MachineOperand &Op = MI->getOperand(OpNo);
464   if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
465       (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg()))
466     return {-1, -1};
467 
468   // A use via a PW operand does not need a waitcnt.
469   // A partial write is not a WAW.
470   assert(!Op.getSubReg() || !Op.isUndef());
471 
472   RegInterval Result;
473   const MachineRegisterInfo &MRIA = *MRI;
474 
475   unsigned Reg = TRI->getEncodingValue(Op.getReg());
476 
477   if (TRI->isVGPR(MRIA, Op.getReg())) {
478     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
479     Result.first = Reg - RegisterEncoding.VGPR0;
480     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
481   } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
482     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
483     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
484     assert(Result.first >= NUM_ALL_VGPRS &&
485            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
486   }
487   // TODO: Handle TTMP
488   // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
489   else
490     return {-1, -1};
491 
492   const MachineInstr &MIA = *MI;
493   const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
494   unsigned Size = TRI->getRegSizeInBits(*RC);
495   Result.second = Result.first + (Size / 32);
496 
497   return Result;
498 }
499 
500 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
501                                   const SIInstrInfo *TII,
502                                   const SIRegisterInfo *TRI,
503                                   const MachineRegisterInfo *MRI, unsigned OpNo,
504                                   uint32_t Val) {
505   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
506   LLVM_DEBUG({
507     const MachineOperand &Opnd = MI->getOperand(OpNo);
508     assert(TRI->isVGPR(*MRI, Opnd.getReg()));
509   });
510   for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
511     setRegScore(RegNo, EXP_CNT, Val);
512   }
513 }
514 
515 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
516                                     const SIRegisterInfo *TRI,
517                                     const MachineRegisterInfo *MRI,
518                                     WaitEventType E, MachineInstr &Inst) {
519   const MachineRegisterInfo &MRIA = *MRI;
520   InstCounterType T = eventCounter(E);
521   uint32_t CurrScore = getScoreUB(T) + 1;
522   if (CurrScore == 0)
523     report_fatal_error("InsertWaitcnt score wraparound");
524   // PendingEvents and ScoreUB need to be update regardless if this event
525   // changes the score of a register or not.
526   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
527   if (!hasPendingEvent(E)) {
528     if (PendingEvents & WaitEventMaskForInst[T])
529       MixedPendingEvents[T] = true;
530     PendingEvents |= 1 << E;
531   }
532   setScoreUB(T, CurrScore);
533 
534   if (T == EXP_CNT) {
535     // Put score on the source vgprs. If this is a store, just use those
536     // specific register(s).
537     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
538       int AddrOpIdx =
539           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
540       // All GDS operations must protect their address register (same as
541       // export.)
542       if (AddrOpIdx != -1) {
543         setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
544       }
545 
546       if (Inst.mayStore()) {
547         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
548                                        AMDGPU::OpName::data0) != -1) {
549           setExpScore(
550               &Inst, TII, TRI, MRI,
551               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
552               CurrScore);
553         }
554         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
555                                        AMDGPU::OpName::data1) != -1) {
556           setExpScore(&Inst, TII, TRI, MRI,
557                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
558                                                  AMDGPU::OpName::data1),
559                       CurrScore);
560         }
561       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
562                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
563                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
564                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
565                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
566                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
567                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
568                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
569                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
570         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
571           const MachineOperand &Op = Inst.getOperand(I);
572           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
573             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
574           }
575         }
576       }
577     } else if (TII->isFLAT(Inst)) {
578       if (Inst.mayStore()) {
579         setExpScore(
580             &Inst, TII, TRI, MRI,
581             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
582             CurrScore);
583       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
584         setExpScore(
585             &Inst, TII, TRI, MRI,
586             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
587             CurrScore);
588       }
589     } else if (TII->isMIMG(Inst)) {
590       if (Inst.mayStore()) {
591         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
592       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
593         setExpScore(
594             &Inst, TII, TRI, MRI,
595             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
596             CurrScore);
597       }
598     } else if (TII->isMTBUF(Inst)) {
599       if (Inst.mayStore()) {
600         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
601       }
602     } else if (TII->isMUBUF(Inst)) {
603       if (Inst.mayStore()) {
604         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
605       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
606         setExpScore(
607             &Inst, TII, TRI, MRI,
608             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
609             CurrScore);
610       }
611     } else {
612       if (TII->isEXP(Inst)) {
613         // For export the destination registers are really temps that
614         // can be used as the actual source after export patching, so
615         // we need to treat them like sources and set the EXP_CNT
616         // score.
617         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
618           MachineOperand &DefMO = Inst.getOperand(I);
619           if (DefMO.isReg() && DefMO.isDef() &&
620               TRI->isVGPR(MRIA, DefMO.getReg())) {
621             setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
622                         CurrScore);
623           }
624         }
625       }
626       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
627         MachineOperand &MO = Inst.getOperand(I);
628         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
629           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
630         }
631       }
632     }
633 #if 0 // TODO: check if this is handled by MUBUF code above.
634   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
635        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
636        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
637     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
638     unsigned OpNo;//TODO: find the OpNo for this operand;
639     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
640     for (signed RegNo = Interval.first; RegNo < Interval.second;
641     ++RegNo) {
642       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
643     }
644 #endif
645   } else {
646     // Match the score to the destination registers.
647     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
648       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
649       if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
650         continue;
651       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
652         setRegScore(RegNo, T, CurrScore);
653       }
654     }
655     if (TII->isDS(Inst) && Inst.mayStore()) {
656       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
657     }
658   }
659 }
660 
661 void WaitcntBrackets::print(raw_ostream &OS) {
662   OS << '\n';
663   for (auto T : inst_counter_types()) {
664     uint32_t LB = getScoreLB(T);
665     uint32_t UB = getScoreUB(T);
666 
667     switch (T) {
668     case VM_CNT:
669       OS << "    VM_CNT(" << UB - LB << "): ";
670       break;
671     case LGKM_CNT:
672       OS << "    LGKM_CNT(" << UB - LB << "): ";
673       break;
674     case EXP_CNT:
675       OS << "    EXP_CNT(" << UB - LB << "): ";
676       break;
677     case VS_CNT:
678       OS << "    VS_CNT(" << UB - LB << "): ";
679       break;
680     default:
681       OS << "    UNKNOWN(" << UB - LB << "): ";
682       break;
683     }
684 
685     if (LB < UB) {
686       // Print vgpr scores.
687       for (int J = 0; J <= getMaxVGPR(); J++) {
688         uint32_t RegScore = getRegScore(J, T);
689         if (RegScore <= LB)
690           continue;
691         uint32_t RelScore = RegScore - LB - 1;
692         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
693           OS << RelScore << ":v" << J << " ";
694         } else {
695           OS << RelScore << ":ds ";
696         }
697       }
698       // Also need to print sgpr scores for lgkm_cnt.
699       if (T == LGKM_CNT) {
700         for (int J = 0; J <= getMaxSGPR(); J++) {
701           uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
702           if (RegScore <= LB)
703             continue;
704           uint32_t RelScore = RegScore - LB - 1;
705           OS << RelScore << ":s" << J << " ";
706         }
707       }
708     }
709     OS << '\n';
710   }
711   OS << '\n';
712 }
713 
714 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
715 /// whether a waitcnt instruction is needed at all.
716 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
717   return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
718          simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
719          simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
720          simplifyWaitcnt(VS_CNT, Wait.VsCnt);
721 }
722 
723 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
724                                       unsigned &Count) const {
725   const uint32_t LB = getScoreLB(T);
726   const uint32_t UB = getScoreUB(T);
727   if (Count < UB && UB - Count > LB)
728     return true;
729 
730   Count = ~0u;
731   return false;
732 }
733 
734 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait,
735                                     AMDGPU::Waitcnt &Wait) const {
736   // If the score of src_operand falls within the bracket, we need an
737   // s_waitcnt instruction.
738   const uint32_t LB = getScoreLB(T);
739   const uint32_t UB = getScoreUB(T);
740   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
741     if ((T == VM_CNT || T == LGKM_CNT) &&
742         hasPendingFlat() &&
743         !ST->hasFlatLgkmVMemCountInOrder()) {
744       // If there is a pending FLAT operation, and this is a VMem or LGKM
745       // waitcnt and the target can report early completion, then we need
746       // to force a waitcnt 0.
747       addWait(Wait, T, 0);
748     } else if (counterOutOfOrder(T)) {
749       // Counter can get decremented out-of-order when there
750       // are multiple types event in the bracket. Also emit an s_wait counter
751       // with a conservative value of 0 for the counter.
752       addWait(Wait, T, 0);
753     } else {
754       // If a counter has been maxed out avoid overflow by waiting for
755       // MAX(CounterType) - 1 instead.
756       uint32_t NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
757       addWait(Wait, T, NeededWait);
758     }
759   }
760 }
761 
762 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
763   applyWaitcnt(VM_CNT, Wait.VmCnt);
764   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
765   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
766   applyWaitcnt(VS_CNT, Wait.VsCnt);
767 }
768 
769 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
770   const uint32_t UB = getScoreUB(T);
771   if (Count >= UB)
772     return;
773   if (Count != 0) {
774     if (counterOutOfOrder(T))
775       return;
776     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
777   } else {
778     setScoreLB(T, UB);
779     MixedPendingEvents[T] = false;
780     PendingEvents &= ~WaitEventMaskForInst[T];
781   }
782 }
783 
784 // Where there are multiple types of event in the bracket of a counter,
785 // the decrement may go out of order.
786 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
787   // Scalar memory read always can go out of order.
788   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
789     return true;
790   return MixedPendingEvents[T];
791 }
792 
793 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
794                       false)
795 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
796                     false)
797 
798 char SIInsertWaitcnts::ID = 0;
799 
800 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
801 
802 FunctionPass *llvm::createSIInsertWaitcntsPass() {
803   return new SIInsertWaitcnts();
804 }
805 
806 static bool readsVCCZ(const MachineInstr &MI) {
807   unsigned Opc = MI.getOpcode();
808   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
809          !MI.getOperand(1).isUndef();
810 }
811 
812 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
813 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
814   // Currently all conventions wait, but this may not always be the case.
815   //
816   // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
817   // senses to omit the wait and do it in the caller.
818   return true;
819 }
820 
821 /// \returns true if the callee is expected to wait for any outstanding waits
822 /// before returning.
823 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
824   return true;
825 }
826 
827 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
828 ///  Instructions of a given type are returned in order,
829 ///  but instructions of different types can complete out of order.
830 ///  We rely on this in-order completion
831 ///  and simply assign a score to the memory access instructions.
832 ///  We keep track of the active "score bracket" to determine
833 ///  if an access of a memory read requires an s_waitcnt
834 ///  and if so what the value of each counter is.
835 ///  The "score bracket" is bound by the lower bound and upper bound
836 ///  scores (*_score_LB and *_score_ub respectively).
837 bool SIInsertWaitcnts::generateWaitcntInstBefore(
838     MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
839     MachineInstr *OldWaitcntInstr) {
840   setForceEmitWaitcnt();
841   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
842 
843   if (MI.isDebugInstr())
844     return false;
845 
846   AMDGPU::Waitcnt Wait;
847 
848   // See if this instruction has a forced S_WAITCNT VM.
849   // TODO: Handle other cases of NeedsWaitcntVmBefore()
850   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
851       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
852       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
853       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
854       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
855     Wait.VmCnt = 0;
856   }
857 
858   // All waits must be resolved at call return.
859   // NOTE: this could be improved with knowledge of all call sites or
860   //   with knowledge of the called routines.
861   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
862       MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
863       (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
864     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
865   }
866   // Resolve vm waits before gs-done.
867   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
868             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
869            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
870             AMDGPU::SendMsg::ID_GS_DONE)) {
871     Wait.VmCnt = 0;
872   }
873 #if 0 // TODO: the following blocks of logic when we have fence.
874   else if (MI.getOpcode() == SC_FENCE) {
875     const unsigned int group_size =
876       context->shader_info->GetMaxThreadGroupSize();
877     // group_size == 0 means thread group size is unknown at compile time
878     const bool group_is_multi_wave =
879       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
880     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
881 
882     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
883       SCRegType src_type = Inst->GetSrcType(i);
884       switch (src_type) {
885         case SCMEM_LDS:
886           if (group_is_multi_wave ||
887             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
888             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
889                                ScoreBrackets->getScoreUB(LGKM_CNT));
890             // LDS may have to wait for VM_CNT after buffer load to LDS
891             if (target_info->HasBufferLoadToLDS()) {
892               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
893                                  ScoreBrackets->getScoreUB(VM_CNT));
894             }
895           }
896           break;
897 
898         case SCMEM_GDS:
899           if (group_is_multi_wave || fence_is_global) {
900             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
901               ScoreBrackets->getScoreUB(EXP_CNT));
902             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
903               ScoreBrackets->getScoreUB(LGKM_CNT));
904           }
905           break;
906 
907         case SCMEM_UAV:
908         case SCMEM_TFBUF:
909         case SCMEM_RING:
910         case SCMEM_SCATTER:
911           if (group_is_multi_wave || fence_is_global) {
912             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
913               ScoreBrackets->getScoreUB(EXP_CNT));
914             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
915               ScoreBrackets->getScoreUB(VM_CNT));
916           }
917           break;
918 
919         case SCMEM_SCRATCH:
920         default:
921           break;
922       }
923     }
924   }
925 #endif
926 
927   // Export & GDS instructions do not read the EXEC mask until after the export
928   // is granted (which can occur well after the instruction is issued).
929   // The shader program must flush all EXP operations on the export-count
930   // before overwriting the EXEC mask.
931   else {
932     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
933       // Export and GDS are tracked individually, either may trigger a waitcnt
934       // for EXEC.
935       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
936           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
937           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
938           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
939         Wait.ExpCnt = 0;
940       }
941     }
942 
943     if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
944       // The function is going to insert a wait on everything in its prolog.
945       // This still needs to be careful if the call target is a load (e.g. a GOT
946       // load). We also need to check WAW depenancy with saved PC.
947       Wait = AMDGPU::Waitcnt();
948 
949       int CallAddrOpIdx =
950           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
951       RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval(
952           &MI, TII, MRI, TRI, CallAddrOpIdx, false);
953 
954       for (signed RegNo = CallAddrOpInterval.first;
955            RegNo < CallAddrOpInterval.second; ++RegNo)
956         ScoreBrackets.determineWait(
957             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
958 
959       int RtnAddrOpIdx =
960             AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
961       if (RtnAddrOpIdx != -1) {
962         RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval(
963             &MI, TII, MRI, TRI, RtnAddrOpIdx, false);
964 
965         for (signed RegNo = RtnAddrOpInterval.first;
966              RegNo < RtnAddrOpInterval.second; ++RegNo)
967           ScoreBrackets.determineWait(
968               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
969       }
970 
971     } else {
972       // FIXME: Should not be relying on memoperands.
973       // Look at the source operands of every instruction to see if
974       // any of them results from a previous memory operation that affects
975       // its current usage. If so, an s_waitcnt instruction needs to be
976       // emitted.
977       // If the source operand was defined by a load, add the s_waitcnt
978       // instruction.
979       for (const MachineMemOperand *Memop : MI.memoperands()) {
980         unsigned AS = Memop->getAddrSpace();
981         if (AS != AMDGPUAS::LOCAL_ADDRESS)
982           continue;
983         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
984         // VM_CNT is only relevant to vgpr or LDS.
985         ScoreBrackets.determineWait(
986             VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
987       }
988 
989       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
990         const MachineOperand &Op = MI.getOperand(I);
991         const MachineRegisterInfo &MRIA = *MRI;
992         RegInterval Interval =
993             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false);
994         for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
995           if (TRI->isVGPR(MRIA, Op.getReg())) {
996             // VM_CNT is only relevant to vgpr or LDS.
997             ScoreBrackets.determineWait(
998                 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
999           }
1000           ScoreBrackets.determineWait(
1001               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1002         }
1003       }
1004       // End of for loop that looks at all source operands to decide vm_wait_cnt
1005       // and lgk_wait_cnt.
1006 
1007       // Two cases are handled for destination operands:
1008       // 1) If the destination operand was defined by a load, add the s_waitcnt
1009       // instruction to guarantee the right WAW order.
1010       // 2) If a destination operand that was used by a recent export/store ins,
1011       // add s_waitcnt on exp_cnt to guarantee the WAR order.
1012       if (MI.mayStore()) {
1013         // FIXME: Should not be relying on memoperands.
1014         for (const MachineMemOperand *Memop : MI.memoperands()) {
1015           unsigned AS = Memop->getAddrSpace();
1016           if (AS != AMDGPUAS::LOCAL_ADDRESS)
1017             continue;
1018           unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1019           ScoreBrackets.determineWait(
1020               VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1021           ScoreBrackets.determineWait(
1022               EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1023         }
1024       }
1025       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1026         MachineOperand &Def = MI.getOperand(I);
1027         const MachineRegisterInfo &MRIA = *MRI;
1028         RegInterval Interval =
1029             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true);
1030         for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1031           if (TRI->isVGPR(MRIA, Def.getReg())) {
1032             ScoreBrackets.determineWait(
1033                 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1034             ScoreBrackets.determineWait(
1035                 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1036           }
1037           ScoreBrackets.determineWait(
1038               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1039         }
1040       } // End of for loop that looks at all dest operands.
1041     }
1042   }
1043 
1044   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1045   // occurs before the instruction. Doing it here prevents any additional
1046   // S_WAITCNTs from being emitted if the instruction was marked as
1047   // requiring a WAITCNT beforehand.
1048   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1049       !ST->hasAutoWaitcntBeforeBarrier()) {
1050     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
1051   }
1052 
1053   // TODO: Remove this work-around, enable the assert for Bug 457939
1054   //       after fixing the scheduler. Also, the Shader Compiler code is
1055   //       independent of target.
1056   if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1057     if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1058             ScoreBrackets.getScoreUB(LGKM_CNT) &&
1059         ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1060       Wait.LgkmCnt = 0;
1061     }
1062   }
1063 
1064   // Early-out if no wait is indicated.
1065   if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
1066     bool Modified = false;
1067     if (OldWaitcntInstr) {
1068       for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1069            &*II != &MI; II = NextI, ++NextI) {
1070         if (II->isDebugInstr())
1071           continue;
1072 
1073         if (TrackedWaitcntSet.count(&*II)) {
1074           TrackedWaitcntSet.erase(&*II);
1075           II->eraseFromParent();
1076           Modified = true;
1077         } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1078           int64_t Imm = II->getOperand(0).getImm();
1079           ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
1080         } else {
1081           assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1082           assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1083           ScoreBrackets.applyWaitcnt(
1084               AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm()));
1085         }
1086       }
1087     }
1088     return Modified;
1089   }
1090 
1091   if (ForceEmitZeroWaitcnts)
1092     Wait = AMDGPU::Waitcnt::allZero(IV);
1093 
1094   if (ForceEmitWaitcnt[VM_CNT])
1095     Wait.VmCnt = 0;
1096   if (ForceEmitWaitcnt[EXP_CNT])
1097     Wait.ExpCnt = 0;
1098   if (ForceEmitWaitcnt[LGKM_CNT])
1099     Wait.LgkmCnt = 0;
1100   if (ForceEmitWaitcnt[VS_CNT])
1101     Wait.VsCnt = 0;
1102 
1103   ScoreBrackets.applyWaitcnt(Wait);
1104 
1105   AMDGPU::Waitcnt OldWait;
1106   bool Modified = false;
1107 
1108   if (OldWaitcntInstr) {
1109     for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1110          &*II != &MI; II = NextI, NextI++) {
1111       if (II->isDebugInstr())
1112         continue;
1113 
1114       if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1115         unsigned IEnc = II->getOperand(0).getImm();
1116         AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
1117         OldWait = OldWait.combined(IWait);
1118         if (!TrackedWaitcntSet.count(&*II))
1119           Wait = Wait.combined(IWait);
1120         unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
1121         if (IEnc != NewEnc) {
1122           II->getOperand(0).setImm(NewEnc);
1123           Modified = true;
1124         }
1125         Wait.VmCnt = ~0u;
1126         Wait.LgkmCnt = ~0u;
1127         Wait.ExpCnt = ~0u;
1128       } else {
1129         assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1130         assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1131 
1132         unsigned ICnt = II->getOperand(1).getImm();
1133         OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
1134         if (!TrackedWaitcntSet.count(&*II))
1135           Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
1136         if (Wait.VsCnt != ICnt) {
1137           II->getOperand(1).setImm(Wait.VsCnt);
1138           Modified = true;
1139         }
1140         Wait.VsCnt = ~0u;
1141       }
1142 
1143       LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1144                         << "Old Instr: " << MI << '\n'
1145                         << "New Instr: " << *II << '\n');
1146 
1147       if (!Wait.hasWait())
1148         return Modified;
1149     }
1150   }
1151 
1152   if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
1153     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1154     auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1155                              MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1156                          .addImm(Enc);
1157     TrackedWaitcntSet.insert(SWaitInst);
1158     Modified = true;
1159 
1160     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1161                       << "Old Instr: " << MI << '\n'
1162                       << "New Instr: " << *SWaitInst << '\n');
1163   }
1164 
1165   if (Wait.VsCnt != ~0u) {
1166     assert(ST->hasVscnt());
1167 
1168     auto SWaitInst =
1169         BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1170                 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1171             .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1172             .addImm(Wait.VsCnt);
1173     TrackedWaitcntSet.insert(SWaitInst);
1174     Modified = true;
1175 
1176     LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1177                       << "Old Instr: " << MI << '\n'
1178                       << "New Instr: " << *SWaitInst << '\n');
1179   }
1180 
1181   return Modified;
1182 }
1183 
1184 // This is a flat memory operation. Check to see if it has memory
1185 // tokens for both LDS and Memory, and if so mark it as a flat.
1186 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1187   if (MI.memoperands_empty())
1188     return true;
1189 
1190   for (const MachineMemOperand *Memop : MI.memoperands()) {
1191     unsigned AS = Memop->getAddrSpace();
1192     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1193       return true;
1194   }
1195 
1196   return false;
1197 }
1198 
1199 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1200                                                WaitcntBrackets *ScoreBrackets) {
1201   // Now look at the instruction opcode. If it is a memory access
1202   // instruction, update the upper-bound of the appropriate counter's
1203   // bracket and the destination operand scores.
1204   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1205   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1206     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1207         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1208       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1209       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1210     } else {
1211       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1212     }
1213   } else if (TII->isFLAT(Inst)) {
1214     assert(Inst.mayLoad() || Inst.mayStore());
1215 
1216     if (TII->usesVM_CNT(Inst)) {
1217       if (!ST->hasVscnt())
1218         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1219       else if (Inst.mayLoad() &&
1220                AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
1221         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1222       else
1223         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1224     }
1225 
1226     if (TII->usesLGKM_CNT(Inst)) {
1227       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1228 
1229       // This is a flat memory operation, so note it - it will require
1230       // that both the VM and LGKM be flushed to zero if it is pending when
1231       // a VM or LGKM dependency occurs.
1232       if (mayAccessLDSThroughFlat(Inst))
1233         ScoreBrackets->setPendingFlat();
1234     }
1235   } else if (SIInstrInfo::isVMEM(Inst) &&
1236              // TODO: get a better carve out.
1237              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1238              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1239              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
1240              Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
1241              Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
1242     if (!ST->hasVscnt())
1243       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1244     else if ((Inst.mayLoad() &&
1245               AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
1246              /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1247              (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1248       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1249     else if (Inst.mayStore())
1250       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1251 
1252     if (ST->vmemWriteNeedsExpWaitcnt() &&
1253         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
1254       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1255     }
1256   } else if (TII->isSMRD(Inst)) {
1257     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1258   } else if (Inst.isCall()) {
1259     if (callWaitsOnFunctionReturn(Inst)) {
1260       // Act as a wait on everything
1261       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV));
1262     } else {
1263       // May need to way wait for anything.
1264       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1265     }
1266   } else {
1267     switch (Inst.getOpcode()) {
1268     case AMDGPU::S_SENDMSG:
1269     case AMDGPU::S_SENDMSGHALT:
1270       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1271       break;
1272     case AMDGPU::EXP:
1273     case AMDGPU::EXP_DONE: {
1274       int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1275       if (Imm >= 32 && Imm <= 63)
1276         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1277       else if (Imm >= 12 && Imm <= 15)
1278         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1279       else
1280         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1281       break;
1282     }
1283     case AMDGPU::S_MEMTIME:
1284     case AMDGPU::S_MEMREALTIME:
1285       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1286       break;
1287     default:
1288       break;
1289     }
1290   }
1291 }
1292 
1293 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score,
1294                                  uint32_t OtherScore) {
1295   uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1296   uint32_t OtherShifted =
1297       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1298   Score = std::max(MyShifted, OtherShifted);
1299   return OtherShifted > MyShifted;
1300 }
1301 
1302 /// Merge the pending events and associater score brackets of \p Other into
1303 /// this brackets status.
1304 ///
1305 /// Returns whether the merge resulted in a change that requires tighter waits
1306 /// (i.e. the merged brackets strictly dominate the original brackets).
1307 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1308   bool StrictDom = false;
1309 
1310   for (auto T : inst_counter_types()) {
1311     // Merge event flags for this counter
1312     const bool OldOutOfOrder = counterOutOfOrder(T);
1313     const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T];
1314     const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1315     if (OtherEvents & ~OldEvents)
1316       StrictDom = true;
1317     if (Other.MixedPendingEvents[T] ||
1318         (OldEvents && OtherEvents && OldEvents != OtherEvents))
1319       MixedPendingEvents[T] = true;
1320     PendingEvents |= OtherEvents;
1321 
1322     // Merge scores for this counter
1323     const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T];
1324     const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1325     MergeInfo M;
1326     M.OldLB = ScoreLBs[T];
1327     M.OtherLB = Other.ScoreLBs[T];
1328     M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0;
1329     M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift;
1330 
1331     const uint32_t NewUB = ScoreUBs[T] + M.MyShift;
1332     if (NewUB < ScoreUBs[T])
1333       report_fatal_error("waitcnt score overflow");
1334     ScoreUBs[T] = NewUB;
1335     ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift);
1336 
1337     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1338 
1339     bool RegStrictDom = false;
1340     for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E;
1341          J++) {
1342       RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1343     }
1344 
1345     if (T == LGKM_CNT) {
1346       for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1;
1347            J != E; J++) {
1348         RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1349       }
1350     }
1351 
1352     if (RegStrictDom && !OldOutOfOrder)
1353       StrictDom = true;
1354   }
1355 
1356   VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR());
1357   SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR());
1358 
1359   return StrictDom;
1360 }
1361 
1362 // Generate s_waitcnt instructions where needed.
1363 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1364                                             MachineBasicBlock &Block,
1365                                             WaitcntBrackets &ScoreBrackets) {
1366   bool Modified = false;
1367 
1368   LLVM_DEBUG({
1369     dbgs() << "*** Block" << Block.getNumber() << " ***";
1370     ScoreBrackets.dump();
1371   });
1372 
1373   // Walk over the instructions.
1374   MachineInstr *OldWaitcntInstr = nullptr;
1375 
1376   for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1377                                          E = Block.instr_end();
1378        Iter != E;) {
1379     MachineInstr &Inst = *Iter;
1380 
1381     // Track pre-existing waitcnts from earlier iterations.
1382     if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1383         (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1384          Inst.getOperand(0).isReg() &&
1385          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1386       if (!OldWaitcntInstr)
1387         OldWaitcntInstr = &Inst;
1388       ++Iter;
1389       continue;
1390     }
1391 
1392     bool VCCZBugWorkAround = false;
1393     if (readsVCCZ(Inst)) {
1394       if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1395               ScoreBrackets.getScoreUB(LGKM_CNT) &&
1396           ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1397         if (ST->hasReadVCCZBug())
1398           VCCZBugWorkAround = true;
1399       }
1400     }
1401 
1402     // Generate an s_waitcnt instruction to be placed before
1403     // cur_Inst, if needed.
1404     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1405     OldWaitcntInstr = nullptr;
1406 
1407     updateEventWaitcntAfter(Inst, &ScoreBrackets);
1408 
1409 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1410     // If this instruction generates a S_SETVSKIP because it is an
1411     // indexed resource, and we are on Tahiti, then it will also force
1412     // an S_WAITCNT vmcnt(0)
1413     if (RequireCheckResourceType(Inst, context)) {
1414       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1415       ScoreBrackets->setScoreLB(VM_CNT,
1416       ScoreBrackets->getScoreUB(VM_CNT));
1417     }
1418 #endif
1419 
1420     LLVM_DEBUG({
1421       Inst.print(dbgs());
1422       ScoreBrackets.dump();
1423     });
1424 
1425     // TODO: Remove this work-around after fixing the scheduler and enable the
1426     // assert above.
1427     if (VCCZBugWorkAround) {
1428       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1429       // bit is updated, so we can restore the bit by reading the value of
1430       // vcc and then writing it back to the register.
1431       BuildMI(Block, Inst, Inst.getDebugLoc(),
1432               TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1433               TRI->getVCC())
1434           .addReg(TRI->getVCC());
1435       Modified = true;
1436     }
1437 
1438     ++Iter;
1439   }
1440 
1441   return Modified;
1442 }
1443 
1444 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1445   ST = &MF.getSubtarget<GCNSubtarget>();
1446   TII = ST->getInstrInfo();
1447   TRI = &TII->getRegisterInfo();
1448   MRI = &MF.getRegInfo();
1449   IV = AMDGPU::getIsaVersion(ST->getCPU());
1450   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1451 
1452   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1453   for (auto T : inst_counter_types())
1454     ForceEmitWaitcnt[T] = false;
1455 
1456   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1457   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1458   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1459   HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1460 
1461   HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
1462   HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
1463   assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1464   assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1465 
1466   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1467   RegisterEncoding.VGPRL =
1468       RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
1469   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1470   RegisterEncoding.SGPRL =
1471       RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
1472 
1473   TrackedWaitcntSet.clear();
1474   RpotIdxMap.clear();
1475   BlockInfos.clear();
1476 
1477   // Keep iterating over the blocks in reverse post order, inserting and
1478   // updating s_waitcnt where needed, until a fix point is reached.
1479   for (MachineBasicBlock *MBB :
1480        ReversePostOrderTraversal<MachineFunction *>(&MF)) {
1481     RpotIdxMap[MBB] = BlockInfos.size();
1482     BlockInfos.emplace_back(MBB);
1483   }
1484 
1485   std::unique_ptr<WaitcntBrackets> Brackets;
1486   bool Modified = false;
1487   bool Repeat;
1488   do {
1489     Repeat = false;
1490 
1491     for (BlockInfo &BI : BlockInfos) {
1492       if (!BI.Dirty)
1493         continue;
1494 
1495       unsigned Idx = std::distance(&*BlockInfos.begin(), &BI);
1496 
1497       if (BI.Incoming) {
1498         if (!Brackets)
1499           Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1500         else
1501           *Brackets = *BI.Incoming;
1502       } else {
1503         if (!Brackets)
1504           Brackets = std::make_unique<WaitcntBrackets>(ST);
1505         else
1506           Brackets->clear();
1507       }
1508 
1509       Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1510       BI.Dirty = false;
1511 
1512       if (Brackets->hasPending()) {
1513         BlockInfo *MoveBracketsToSucc = nullptr;
1514         for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1515           unsigned SuccIdx = RpotIdxMap[Succ];
1516           BlockInfo &SuccBI = BlockInfos[SuccIdx];
1517           if (!SuccBI.Incoming) {
1518             SuccBI.Dirty = true;
1519             if (SuccIdx <= Idx)
1520               Repeat = true;
1521             if (!MoveBracketsToSucc) {
1522               MoveBracketsToSucc = &SuccBI;
1523             } else {
1524               SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1525             }
1526           } else if (SuccBI.Incoming->merge(*Brackets)) {
1527             SuccBI.Dirty = true;
1528             if (SuccIdx <= Idx)
1529               Repeat = true;
1530           }
1531         }
1532         if (MoveBracketsToSucc)
1533           MoveBracketsToSucc->Incoming = std::move(Brackets);
1534       }
1535     }
1536   } while (Repeat);
1537 
1538   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1539 
1540   bool HaveScalarStores = false;
1541 
1542   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1543        ++BI) {
1544     MachineBasicBlock &MBB = *BI;
1545 
1546     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1547          ++I) {
1548       if (!HaveScalarStores && TII->isScalarStore(*I))
1549         HaveScalarStores = true;
1550 
1551       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1552           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1553         EndPgmBlocks.push_back(&MBB);
1554     }
1555   }
1556 
1557   if (HaveScalarStores) {
1558     // If scalar writes are used, the cache must be flushed or else the next
1559     // wave to reuse the same scratch memory can be clobbered.
1560     //
1561     // Insert s_dcache_wb at wave termination points if there were any scalar
1562     // stores, and only if the cache hasn't already been flushed. This could be
1563     // improved by looking across blocks for flushes in postdominating blocks
1564     // from the stores but an explicitly requested flush is probably very rare.
1565     for (MachineBasicBlock *MBB : EndPgmBlocks) {
1566       bool SeenDCacheWB = false;
1567 
1568       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1569            ++I) {
1570         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1571           SeenDCacheWB = true;
1572         else if (TII->isScalarStore(*I))
1573           SeenDCacheWB = false;
1574 
1575         // FIXME: It would be better to insert this before a waitcnt if any.
1576         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1577              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1578             !SeenDCacheWB) {
1579           Modified = true;
1580           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1581         }
1582       }
1583     }
1584   }
1585 
1586   if (!MFI->isEntryFunction()) {
1587     // Wait for any outstanding memory operations that the input registers may
1588     // depend on. We can't track them and it's better to the wait after the
1589     // costly call sequence.
1590 
1591     // TODO: Could insert earlier and schedule more liberally with operations
1592     // that only use caller preserved registers.
1593     MachineBasicBlock &EntryBB = MF.front();
1594     if (ST->hasVscnt())
1595       BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(),
1596               TII->get(AMDGPU::S_WAITCNT_VSCNT))
1597       .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1598       .addImm(0);
1599     BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1600       .addImm(0);
1601 
1602     Modified = true;
1603   }
1604 
1605   return Modified;
1606 }
1607