1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "AMDGPUSubtarget.h" 28 #include "SIDefines.h" 29 #include "SIInstrInfo.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIRegisterInfo.h" 32 #include "Utils/AMDGPUBaseInfo.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/PostOrderIterator.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <cstring> 56 #include <memory> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "si-insert-waitcnts" 63 64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 65 "Force emit s_waitcnt expcnt(0) instrs"); 66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 67 "Force emit s_waitcnt lgkmcnt(0) instrs"); 68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 69 "Force emit s_waitcnt vmcnt(0) instrs"); 70 71 static cl::opt<bool> ForceEmitZeroFlag( 72 "amdgpu-waitcnt-forcezero", 73 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 74 cl::init(false), cl::Hidden); 75 76 namespace { 77 78 template <typename EnumT> 79 class enum_iterator 80 : public iterator_facade_base<enum_iterator<EnumT>, 81 std::forward_iterator_tag, const EnumT> { 82 EnumT Value; 83 public: 84 enum_iterator() = default; 85 enum_iterator(EnumT Value) : Value(Value) {} 86 87 enum_iterator &operator++() { 88 Value = static_cast<EnumT>(Value + 1); 89 return *this; 90 } 91 92 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 93 94 EnumT operator*() const { return Value; } 95 }; 96 97 // Class of object that encapsulates latest instruction counter score 98 // associated with the operand. Used for determining whether 99 // s_waitcnt instruction needs to be emited. 100 101 #define CNT_MASK(t) (1u << (t)) 102 103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 104 105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 106 return make_range(enum_iterator<InstCounterType>(VM_CNT), 107 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 108 } 109 110 using RegInterval = std::pair<signed, signed>; 111 112 struct { 113 uint32_t VmcntMax; 114 uint32_t ExpcntMax; 115 uint32_t LgkmcntMax; 116 uint32_t VscntMax; 117 int32_t NumVGPRsMax; 118 int32_t NumSGPRsMax; 119 } HardwareLimits; 120 121 struct { 122 unsigned VGPR0; 123 unsigned VGPRL; 124 unsigned SGPR0; 125 unsigned SGPRL; 126 } RegisterEncoding; 127 128 enum WaitEventType { 129 VMEM_ACCESS, // vector-memory read & write 130 VMEM_READ_ACCESS, // vector-memory read 131 VMEM_WRITE_ACCESS,// vector-memory write 132 LDS_ACCESS, // lds read & write 133 GDS_ACCESS, // gds read & write 134 SQ_MESSAGE, // send message 135 SMEM_ACCESS, // scalar-memory read & write 136 EXP_GPR_LOCK, // export holding on its data src 137 GDS_GPR_LOCK, // GDS holding on its data and addr src 138 EXP_POS_ACCESS, // write to export position 139 EXP_PARAM_ACCESS, // write to export parameter 140 VMW_GPR_LOCK, // vector-memory write holding on its data src 141 NUM_WAIT_EVENTS, 142 }; 143 144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { 145 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 146 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 147 (1 << SQ_MESSAGE), 148 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 149 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 150 (1 << VMEM_WRITE_ACCESS) 151 }; 152 153 // The mapping is: 154 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 155 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 156 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 157 // We reserve a fixed number of VGPR slots in the scoring tables for 158 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 159 enum RegisterMapping { 160 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 161 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 162 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 163 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 164 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 165 }; 166 167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 168 switch (T) { 169 case VM_CNT: 170 Wait.VmCnt = std::min(Wait.VmCnt, Count); 171 break; 172 case EXP_CNT: 173 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 174 break; 175 case LGKM_CNT: 176 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 177 break; 178 case VS_CNT: 179 Wait.VsCnt = std::min(Wait.VsCnt, Count); 180 break; 181 default: 182 llvm_unreachable("bad InstCounterType"); 183 } 184 } 185 186 // This objects maintains the current score brackets of each wait counter, and 187 // a per-register scoreboard for each wait counter. 188 // 189 // We also maintain the latest score for every event type that can change the 190 // waitcnt in order to know if there are multiple types of events within 191 // the brackets. When multiple types of event happen in the bracket, 192 // wait count may get decreased out of order, therefore we need to put in 193 // "s_waitcnt 0" before use. 194 class WaitcntBrackets { 195 public: 196 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { 197 for (auto T : inst_counter_types()) 198 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 199 } 200 201 static uint32_t getWaitCountMax(InstCounterType T) { 202 switch (T) { 203 case VM_CNT: 204 return HardwareLimits.VmcntMax; 205 case LGKM_CNT: 206 return HardwareLimits.LgkmcntMax; 207 case EXP_CNT: 208 return HardwareLimits.ExpcntMax; 209 case VS_CNT: 210 return HardwareLimits.VscntMax; 211 default: 212 break; 213 } 214 return 0; 215 } 216 217 uint32_t getScoreLB(InstCounterType T) const { 218 assert(T < NUM_INST_CNTS); 219 if (T >= NUM_INST_CNTS) 220 return 0; 221 return ScoreLBs[T]; 222 } 223 224 uint32_t getScoreUB(InstCounterType T) const { 225 assert(T < NUM_INST_CNTS); 226 if (T >= NUM_INST_CNTS) 227 return 0; 228 return ScoreUBs[T]; 229 } 230 231 // Mapping from event to counter. 232 InstCounterType eventCounter(WaitEventType E) { 233 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 234 return VM_CNT; 235 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 236 return LGKM_CNT; 237 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 238 return VS_CNT; 239 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 240 return EXP_CNT; 241 } 242 243 uint32_t getRegScore(int GprNo, InstCounterType T) { 244 if (GprNo < NUM_ALL_VGPRS) { 245 return VgprScores[T][GprNo]; 246 } 247 assert(T == LGKM_CNT); 248 return SgprScores[GprNo - NUM_ALL_VGPRS]; 249 } 250 251 void clear() { 252 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 253 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 254 PendingEvents = 0; 255 memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents)); 256 for (auto T : inst_counter_types()) 257 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 258 memset(SgprScores, 0, sizeof(SgprScores)); 259 } 260 261 bool merge(const WaitcntBrackets &Other); 262 263 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 264 const MachineRegisterInfo *MRI, 265 const SIRegisterInfo *TRI, unsigned OpNo, 266 bool Def) const; 267 268 int32_t getMaxVGPR() const { return VgprUB; } 269 int32_t getMaxSGPR() const { return SgprUB; } 270 271 bool counterOutOfOrder(InstCounterType T) const; 272 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 273 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 274 void determineWait(InstCounterType T, uint32_t ScoreToWait, 275 AMDGPU::Waitcnt &Wait) const; 276 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 277 void applyWaitcnt(InstCounterType T, unsigned Count); 278 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 279 const MachineRegisterInfo *MRI, WaitEventType E, 280 MachineInstr &MI); 281 282 bool hasPending() const { return PendingEvents != 0; } 283 bool hasPendingEvent(WaitEventType E) const { 284 return PendingEvents & (1 << E); 285 } 286 287 bool hasPendingFlat() const { 288 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 289 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 290 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 291 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 292 } 293 294 void setPendingFlat() { 295 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 296 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 297 } 298 299 void print(raw_ostream &); 300 void dump() { print(dbgs()); } 301 302 private: 303 struct MergeInfo { 304 uint32_t OldLB; 305 uint32_t OtherLB; 306 uint32_t MyShift; 307 uint32_t OtherShift; 308 }; 309 static bool mergeScore(const MergeInfo &M, uint32_t &Score, 310 uint32_t OtherScore); 311 312 void setScoreLB(InstCounterType T, uint32_t Val) { 313 assert(T < NUM_INST_CNTS); 314 if (T >= NUM_INST_CNTS) 315 return; 316 ScoreLBs[T] = Val; 317 } 318 319 void setScoreUB(InstCounterType T, uint32_t Val) { 320 assert(T < NUM_INST_CNTS); 321 if (T >= NUM_INST_CNTS) 322 return; 323 ScoreUBs[T] = Val; 324 if (T == EXP_CNT) { 325 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 326 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 327 ScoreLBs[T] = UB; 328 } 329 } 330 331 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { 332 if (GprNo < NUM_ALL_VGPRS) { 333 if (GprNo > VgprUB) { 334 VgprUB = GprNo; 335 } 336 VgprScores[T][GprNo] = Val; 337 } else { 338 assert(T == LGKM_CNT); 339 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 340 SgprUB = GprNo - NUM_ALL_VGPRS; 341 } 342 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 343 } 344 } 345 346 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 347 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 348 unsigned OpNo, uint32_t Val); 349 350 const GCNSubtarget *ST = nullptr; 351 uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; 352 uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; 353 uint32_t PendingEvents = 0; 354 bool MixedPendingEvents[NUM_INST_CNTS] = {false}; 355 // Remember the last flat memory operation. 356 uint32_t LastFlat[NUM_INST_CNTS] = {0}; 357 // wait_cnt scores for every vgpr. 358 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 359 int32_t VgprUB = 0; 360 int32_t SgprUB = 0; 361 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 362 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 363 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 364 }; 365 366 class SIInsertWaitcnts : public MachineFunctionPass { 367 private: 368 const GCNSubtarget *ST = nullptr; 369 const SIInstrInfo *TII = nullptr; 370 const SIRegisterInfo *TRI = nullptr; 371 const MachineRegisterInfo *MRI = nullptr; 372 AMDGPU::IsaVersion IV; 373 374 DenseSet<MachineInstr *> TrackedWaitcntSet; 375 376 struct BlockInfo { 377 MachineBasicBlock *MBB; 378 std::unique_ptr<WaitcntBrackets> Incoming; 379 bool Dirty = true; 380 381 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 382 }; 383 384 std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index 385 DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap; 386 387 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 388 // because of amdgpu-waitcnt-forcezero flag 389 bool ForceEmitZeroWaitcnts; 390 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 391 392 public: 393 static char ID; 394 395 SIInsertWaitcnts() : MachineFunctionPass(ID) { 396 (void)ForceExpCounter; 397 (void)ForceLgkmCounter; 398 (void)ForceVMCounter; 399 } 400 401 bool runOnMachineFunction(MachineFunction &MF) override; 402 403 StringRef getPassName() const override { 404 return "SI insert wait instructions"; 405 } 406 407 void getAnalysisUsage(AnalysisUsage &AU) const override { 408 AU.setPreservesCFG(); 409 MachineFunctionPass::getAnalysisUsage(AU); 410 } 411 412 bool isForceEmitWaitcnt() const { 413 for (auto T : inst_counter_types()) 414 if (ForceEmitWaitcnt[T]) 415 return true; 416 return false; 417 } 418 419 void setForceEmitWaitcnt() { 420 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 421 // For debug builds, get the debug counter info and adjust if need be 422 #ifndef NDEBUG 423 if (DebugCounter::isCounterSet(ForceExpCounter) && 424 DebugCounter::shouldExecute(ForceExpCounter)) { 425 ForceEmitWaitcnt[EXP_CNT] = true; 426 } else { 427 ForceEmitWaitcnt[EXP_CNT] = false; 428 } 429 430 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 431 DebugCounter::shouldExecute(ForceLgkmCounter)) { 432 ForceEmitWaitcnt[LGKM_CNT] = true; 433 } else { 434 ForceEmitWaitcnt[LGKM_CNT] = false; 435 } 436 437 if (DebugCounter::isCounterSet(ForceVMCounter) && 438 DebugCounter::shouldExecute(ForceVMCounter)) { 439 ForceEmitWaitcnt[VM_CNT] = true; 440 } else { 441 ForceEmitWaitcnt[VM_CNT] = false; 442 } 443 #endif // NDEBUG 444 } 445 446 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 447 bool generateWaitcntInstBefore(MachineInstr &MI, 448 WaitcntBrackets &ScoreBrackets, 449 MachineInstr *OldWaitcntInstr); 450 void updateEventWaitcntAfter(MachineInstr &Inst, 451 WaitcntBrackets *ScoreBrackets); 452 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 453 WaitcntBrackets &ScoreBrackets); 454 }; 455 456 } // end anonymous namespace 457 458 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 459 const SIInstrInfo *TII, 460 const MachineRegisterInfo *MRI, 461 const SIRegisterInfo *TRI, 462 unsigned OpNo, bool Def) const { 463 const MachineOperand &Op = MI->getOperand(OpNo); 464 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 465 (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg())) 466 return {-1, -1}; 467 468 // A use via a PW operand does not need a waitcnt. 469 // A partial write is not a WAW. 470 assert(!Op.getSubReg() || !Op.isUndef()); 471 472 RegInterval Result; 473 const MachineRegisterInfo &MRIA = *MRI; 474 475 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 476 477 if (TRI->isVGPR(MRIA, Op.getReg())) { 478 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 479 Result.first = Reg - RegisterEncoding.VGPR0; 480 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 481 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 482 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 483 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 484 assert(Result.first >= NUM_ALL_VGPRS && 485 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 486 } 487 // TODO: Handle TTMP 488 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 489 else 490 return {-1, -1}; 491 492 const MachineInstr &MIA = *MI; 493 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 494 unsigned Size = TRI->getRegSizeInBits(*RC); 495 Result.second = Result.first + (Size / 32); 496 497 return Result; 498 } 499 500 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 501 const SIInstrInfo *TII, 502 const SIRegisterInfo *TRI, 503 const MachineRegisterInfo *MRI, unsigned OpNo, 504 uint32_t Val) { 505 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 506 LLVM_DEBUG({ 507 const MachineOperand &Opnd = MI->getOperand(OpNo); 508 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 509 }); 510 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 511 setRegScore(RegNo, EXP_CNT, Val); 512 } 513 } 514 515 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 516 const SIRegisterInfo *TRI, 517 const MachineRegisterInfo *MRI, 518 WaitEventType E, MachineInstr &Inst) { 519 const MachineRegisterInfo &MRIA = *MRI; 520 InstCounterType T = eventCounter(E); 521 uint32_t CurrScore = getScoreUB(T) + 1; 522 if (CurrScore == 0) 523 report_fatal_error("InsertWaitcnt score wraparound"); 524 // PendingEvents and ScoreUB need to be update regardless if this event 525 // changes the score of a register or not. 526 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 527 if (!hasPendingEvent(E)) { 528 if (PendingEvents & WaitEventMaskForInst[T]) 529 MixedPendingEvents[T] = true; 530 PendingEvents |= 1 << E; 531 } 532 setScoreUB(T, CurrScore); 533 534 if (T == EXP_CNT) { 535 // Put score on the source vgprs. If this is a store, just use those 536 // specific register(s). 537 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 538 int AddrOpIdx = 539 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 540 // All GDS operations must protect their address register (same as 541 // export.) 542 if (AddrOpIdx != -1) { 543 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 544 } 545 546 if (Inst.mayStore()) { 547 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 548 AMDGPU::OpName::data0) != -1) { 549 setExpScore( 550 &Inst, TII, TRI, MRI, 551 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 552 CurrScore); 553 } 554 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 555 AMDGPU::OpName::data1) != -1) { 556 setExpScore(&Inst, TII, TRI, MRI, 557 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 558 AMDGPU::OpName::data1), 559 CurrScore); 560 } 561 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 562 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 563 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 564 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 565 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 566 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 567 Inst.getOpcode() != AMDGPU::DS_APPEND && 568 Inst.getOpcode() != AMDGPU::DS_CONSUME && 569 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 570 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 571 const MachineOperand &Op = Inst.getOperand(I); 572 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 573 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 574 } 575 } 576 } 577 } else if (TII->isFLAT(Inst)) { 578 if (Inst.mayStore()) { 579 setExpScore( 580 &Inst, TII, TRI, MRI, 581 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 582 CurrScore); 583 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 584 setExpScore( 585 &Inst, TII, TRI, MRI, 586 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 587 CurrScore); 588 } 589 } else if (TII->isMIMG(Inst)) { 590 if (Inst.mayStore()) { 591 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 592 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 593 setExpScore( 594 &Inst, TII, TRI, MRI, 595 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 596 CurrScore); 597 } 598 } else if (TII->isMTBUF(Inst)) { 599 if (Inst.mayStore()) { 600 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 601 } 602 } else if (TII->isMUBUF(Inst)) { 603 if (Inst.mayStore()) { 604 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 605 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 606 setExpScore( 607 &Inst, TII, TRI, MRI, 608 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 609 CurrScore); 610 } 611 } else { 612 if (TII->isEXP(Inst)) { 613 // For export the destination registers are really temps that 614 // can be used as the actual source after export patching, so 615 // we need to treat them like sources and set the EXP_CNT 616 // score. 617 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 618 MachineOperand &DefMO = Inst.getOperand(I); 619 if (DefMO.isReg() && DefMO.isDef() && 620 TRI->isVGPR(MRIA, DefMO.getReg())) { 621 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 622 CurrScore); 623 } 624 } 625 } 626 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 627 MachineOperand &MO = Inst.getOperand(I); 628 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 629 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 630 } 631 } 632 } 633 #if 0 // TODO: check if this is handled by MUBUF code above. 634 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 635 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 636 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 637 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 638 unsigned OpNo;//TODO: find the OpNo for this operand; 639 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 640 for (signed RegNo = Interval.first; RegNo < Interval.second; 641 ++RegNo) { 642 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 643 } 644 #endif 645 } else { 646 // Match the score to the destination registers. 647 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 648 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 649 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 650 continue; 651 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 652 setRegScore(RegNo, T, CurrScore); 653 } 654 } 655 if (TII->isDS(Inst) && Inst.mayStore()) { 656 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 657 } 658 } 659 } 660 661 void WaitcntBrackets::print(raw_ostream &OS) { 662 OS << '\n'; 663 for (auto T : inst_counter_types()) { 664 uint32_t LB = getScoreLB(T); 665 uint32_t UB = getScoreUB(T); 666 667 switch (T) { 668 case VM_CNT: 669 OS << " VM_CNT(" << UB - LB << "): "; 670 break; 671 case LGKM_CNT: 672 OS << " LGKM_CNT(" << UB - LB << "): "; 673 break; 674 case EXP_CNT: 675 OS << " EXP_CNT(" << UB - LB << "): "; 676 break; 677 case VS_CNT: 678 OS << " VS_CNT(" << UB - LB << "): "; 679 break; 680 default: 681 OS << " UNKNOWN(" << UB - LB << "): "; 682 break; 683 } 684 685 if (LB < UB) { 686 // Print vgpr scores. 687 for (int J = 0; J <= getMaxVGPR(); J++) { 688 uint32_t RegScore = getRegScore(J, T); 689 if (RegScore <= LB) 690 continue; 691 uint32_t RelScore = RegScore - LB - 1; 692 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 693 OS << RelScore << ":v" << J << " "; 694 } else { 695 OS << RelScore << ":ds "; 696 } 697 } 698 // Also need to print sgpr scores for lgkm_cnt. 699 if (T == LGKM_CNT) { 700 for (int J = 0; J <= getMaxSGPR(); J++) { 701 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 702 if (RegScore <= LB) 703 continue; 704 uint32_t RelScore = RegScore - LB - 1; 705 OS << RelScore << ":s" << J << " "; 706 } 707 } 708 } 709 OS << '\n'; 710 } 711 OS << '\n'; 712 } 713 714 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 715 /// whether a waitcnt instruction is needed at all. 716 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 717 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 718 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 719 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) | 720 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 721 } 722 723 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 724 unsigned &Count) const { 725 const uint32_t LB = getScoreLB(T); 726 const uint32_t UB = getScoreUB(T); 727 if (Count < UB && UB - Count > LB) 728 return true; 729 730 Count = ~0u; 731 return false; 732 } 733 734 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, 735 AMDGPU::Waitcnt &Wait) const { 736 // If the score of src_operand falls within the bracket, we need an 737 // s_waitcnt instruction. 738 const uint32_t LB = getScoreLB(T); 739 const uint32_t UB = getScoreUB(T); 740 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 741 if ((T == VM_CNT || T == LGKM_CNT) && 742 hasPendingFlat() && 743 !ST->hasFlatLgkmVMemCountInOrder()) { 744 // If there is a pending FLAT operation, and this is a VMem or LGKM 745 // waitcnt and the target can report early completion, then we need 746 // to force a waitcnt 0. 747 addWait(Wait, T, 0); 748 } else if (counterOutOfOrder(T)) { 749 // Counter can get decremented out-of-order when there 750 // are multiple types event in the bracket. Also emit an s_wait counter 751 // with a conservative value of 0 for the counter. 752 addWait(Wait, T, 0); 753 } else { 754 // If a counter has been maxed out avoid overflow by waiting for 755 // MAX(CounterType) - 1 instead. 756 uint32_t NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 757 addWait(Wait, T, NeededWait); 758 } 759 } 760 } 761 762 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 763 applyWaitcnt(VM_CNT, Wait.VmCnt); 764 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 765 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 766 applyWaitcnt(VS_CNT, Wait.VsCnt); 767 } 768 769 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 770 const uint32_t UB = getScoreUB(T); 771 if (Count >= UB) 772 return; 773 if (Count != 0) { 774 if (counterOutOfOrder(T)) 775 return; 776 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 777 } else { 778 setScoreLB(T, UB); 779 MixedPendingEvents[T] = false; 780 PendingEvents &= ~WaitEventMaskForInst[T]; 781 } 782 } 783 784 // Where there are multiple types of event in the bracket of a counter, 785 // the decrement may go out of order. 786 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 787 // Scalar memory read always can go out of order. 788 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 789 return true; 790 return MixedPendingEvents[T]; 791 } 792 793 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 794 false) 795 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 796 false) 797 798 char SIInsertWaitcnts::ID = 0; 799 800 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 801 802 FunctionPass *llvm::createSIInsertWaitcntsPass() { 803 return new SIInsertWaitcnts(); 804 } 805 806 static bool readsVCCZ(const MachineInstr &MI) { 807 unsigned Opc = MI.getOpcode(); 808 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 809 !MI.getOperand(1).isUndef(); 810 } 811 812 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 813 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 814 // Currently all conventions wait, but this may not always be the case. 815 // 816 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 817 // senses to omit the wait and do it in the caller. 818 return true; 819 } 820 821 /// \returns true if the callee is expected to wait for any outstanding waits 822 /// before returning. 823 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 824 return true; 825 } 826 827 /// Generate s_waitcnt instruction to be placed before cur_Inst. 828 /// Instructions of a given type are returned in order, 829 /// but instructions of different types can complete out of order. 830 /// We rely on this in-order completion 831 /// and simply assign a score to the memory access instructions. 832 /// We keep track of the active "score bracket" to determine 833 /// if an access of a memory read requires an s_waitcnt 834 /// and if so what the value of each counter is. 835 /// The "score bracket" is bound by the lower bound and upper bound 836 /// scores (*_score_LB and *_score_ub respectively). 837 bool SIInsertWaitcnts::generateWaitcntInstBefore( 838 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 839 MachineInstr *OldWaitcntInstr) { 840 setForceEmitWaitcnt(); 841 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 842 843 if (MI.isDebugInstr()) 844 return false; 845 846 AMDGPU::Waitcnt Wait; 847 848 // See if this instruction has a forced S_WAITCNT VM. 849 // TODO: Handle other cases of NeedsWaitcntVmBefore() 850 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 851 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 852 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 853 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 854 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 855 Wait.VmCnt = 0; 856 } 857 858 // All waits must be resolved at call return. 859 // NOTE: this could be improved with knowledge of all call sites or 860 // with knowledge of the called routines. 861 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 862 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 863 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 864 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 865 } 866 // Resolve vm waits before gs-done. 867 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 868 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 869 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 870 AMDGPU::SendMsg::ID_GS_DONE)) { 871 Wait.VmCnt = 0; 872 } 873 #if 0 // TODO: the following blocks of logic when we have fence. 874 else if (MI.getOpcode() == SC_FENCE) { 875 const unsigned int group_size = 876 context->shader_info->GetMaxThreadGroupSize(); 877 // group_size == 0 means thread group size is unknown at compile time 878 const bool group_is_multi_wave = 879 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 880 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 881 882 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 883 SCRegType src_type = Inst->GetSrcType(i); 884 switch (src_type) { 885 case SCMEM_LDS: 886 if (group_is_multi_wave || 887 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 888 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 889 ScoreBrackets->getScoreUB(LGKM_CNT)); 890 // LDS may have to wait for VM_CNT after buffer load to LDS 891 if (target_info->HasBufferLoadToLDS()) { 892 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 893 ScoreBrackets->getScoreUB(VM_CNT)); 894 } 895 } 896 break; 897 898 case SCMEM_GDS: 899 if (group_is_multi_wave || fence_is_global) { 900 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 901 ScoreBrackets->getScoreUB(EXP_CNT)); 902 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 903 ScoreBrackets->getScoreUB(LGKM_CNT)); 904 } 905 break; 906 907 case SCMEM_UAV: 908 case SCMEM_TFBUF: 909 case SCMEM_RING: 910 case SCMEM_SCATTER: 911 if (group_is_multi_wave || fence_is_global) { 912 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 913 ScoreBrackets->getScoreUB(EXP_CNT)); 914 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 915 ScoreBrackets->getScoreUB(VM_CNT)); 916 } 917 break; 918 919 case SCMEM_SCRATCH: 920 default: 921 break; 922 } 923 } 924 } 925 #endif 926 927 // Export & GDS instructions do not read the EXEC mask until after the export 928 // is granted (which can occur well after the instruction is issued). 929 // The shader program must flush all EXP operations on the export-count 930 // before overwriting the EXEC mask. 931 else { 932 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 933 // Export and GDS are tracked individually, either may trigger a waitcnt 934 // for EXEC. 935 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 936 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 937 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 938 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 939 Wait.ExpCnt = 0; 940 } 941 } 942 943 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 944 // The function is going to insert a wait on everything in its prolog. 945 // This still needs to be careful if the call target is a load (e.g. a GOT 946 // load). We also need to check WAW depenancy with saved PC. 947 Wait = AMDGPU::Waitcnt(); 948 949 int CallAddrOpIdx = 950 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 951 RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval( 952 &MI, TII, MRI, TRI, CallAddrOpIdx, false); 953 954 for (signed RegNo = CallAddrOpInterval.first; 955 RegNo < CallAddrOpInterval.second; ++RegNo) 956 ScoreBrackets.determineWait( 957 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 958 959 int RtnAddrOpIdx = 960 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 961 if (RtnAddrOpIdx != -1) { 962 RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval( 963 &MI, TII, MRI, TRI, RtnAddrOpIdx, false); 964 965 for (signed RegNo = RtnAddrOpInterval.first; 966 RegNo < RtnAddrOpInterval.second; ++RegNo) 967 ScoreBrackets.determineWait( 968 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 969 } 970 971 } else { 972 // FIXME: Should not be relying on memoperands. 973 // Look at the source operands of every instruction to see if 974 // any of them results from a previous memory operation that affects 975 // its current usage. If so, an s_waitcnt instruction needs to be 976 // emitted. 977 // If the source operand was defined by a load, add the s_waitcnt 978 // instruction. 979 for (const MachineMemOperand *Memop : MI.memoperands()) { 980 unsigned AS = Memop->getAddrSpace(); 981 if (AS != AMDGPUAS::LOCAL_ADDRESS) 982 continue; 983 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 984 // VM_CNT is only relevant to vgpr or LDS. 985 ScoreBrackets.determineWait( 986 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 987 } 988 989 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 990 const MachineOperand &Op = MI.getOperand(I); 991 const MachineRegisterInfo &MRIA = *MRI; 992 RegInterval Interval = 993 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); 994 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 995 if (TRI->isVGPR(MRIA, Op.getReg())) { 996 // VM_CNT is only relevant to vgpr or LDS. 997 ScoreBrackets.determineWait( 998 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 999 } 1000 ScoreBrackets.determineWait( 1001 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1002 } 1003 } 1004 // End of for loop that looks at all source operands to decide vm_wait_cnt 1005 // and lgk_wait_cnt. 1006 1007 // Two cases are handled for destination operands: 1008 // 1) If the destination operand was defined by a load, add the s_waitcnt 1009 // instruction to guarantee the right WAW order. 1010 // 2) If a destination operand that was used by a recent export/store ins, 1011 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1012 if (MI.mayStore()) { 1013 // FIXME: Should not be relying on memoperands. 1014 for (const MachineMemOperand *Memop : MI.memoperands()) { 1015 unsigned AS = Memop->getAddrSpace(); 1016 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1017 continue; 1018 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1019 ScoreBrackets.determineWait( 1020 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1021 ScoreBrackets.determineWait( 1022 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1023 } 1024 } 1025 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1026 MachineOperand &Def = MI.getOperand(I); 1027 const MachineRegisterInfo &MRIA = *MRI; 1028 RegInterval Interval = 1029 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); 1030 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1031 if (TRI->isVGPR(MRIA, Def.getReg())) { 1032 ScoreBrackets.determineWait( 1033 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1034 ScoreBrackets.determineWait( 1035 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1036 } 1037 ScoreBrackets.determineWait( 1038 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1039 } 1040 } // End of for loop that looks at all dest operands. 1041 } 1042 } 1043 1044 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1045 // occurs before the instruction. Doing it here prevents any additional 1046 // S_WAITCNTs from being emitted if the instruction was marked as 1047 // requiring a WAITCNT beforehand. 1048 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1049 !ST->hasAutoWaitcntBeforeBarrier()) { 1050 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 1051 } 1052 1053 // TODO: Remove this work-around, enable the assert for Bug 457939 1054 // after fixing the scheduler. Also, the Shader Compiler code is 1055 // independent of target. 1056 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1057 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1058 ScoreBrackets.getScoreUB(LGKM_CNT) && 1059 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1060 Wait.LgkmCnt = 0; 1061 } 1062 } 1063 1064 // Early-out if no wait is indicated. 1065 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1066 bool Modified = false; 1067 if (OldWaitcntInstr) { 1068 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1069 &*II != &MI; II = NextI, ++NextI) { 1070 if (II->isDebugInstr()) 1071 continue; 1072 1073 if (TrackedWaitcntSet.count(&*II)) { 1074 TrackedWaitcntSet.erase(&*II); 1075 II->eraseFromParent(); 1076 Modified = true; 1077 } else if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1078 int64_t Imm = II->getOperand(0).getImm(); 1079 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1080 } else { 1081 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1082 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1083 ScoreBrackets.applyWaitcnt( 1084 AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm())); 1085 } 1086 } 1087 } 1088 return Modified; 1089 } 1090 1091 if (ForceEmitZeroWaitcnts) 1092 Wait = AMDGPU::Waitcnt::allZero(IV); 1093 1094 if (ForceEmitWaitcnt[VM_CNT]) 1095 Wait.VmCnt = 0; 1096 if (ForceEmitWaitcnt[EXP_CNT]) 1097 Wait.ExpCnt = 0; 1098 if (ForceEmitWaitcnt[LGKM_CNT]) 1099 Wait.LgkmCnt = 0; 1100 if (ForceEmitWaitcnt[VS_CNT]) 1101 Wait.VsCnt = 0; 1102 1103 ScoreBrackets.applyWaitcnt(Wait); 1104 1105 AMDGPU::Waitcnt OldWait; 1106 bool Modified = false; 1107 1108 if (OldWaitcntInstr) { 1109 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1110 &*II != &MI; II = NextI, NextI++) { 1111 if (II->isDebugInstr()) 1112 continue; 1113 1114 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1115 unsigned IEnc = II->getOperand(0).getImm(); 1116 AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc); 1117 OldWait = OldWait.combined(IWait); 1118 if (!TrackedWaitcntSet.count(&*II)) 1119 Wait = Wait.combined(IWait); 1120 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 1121 if (IEnc != NewEnc) { 1122 II->getOperand(0).setImm(NewEnc); 1123 Modified = true; 1124 } 1125 Wait.VmCnt = ~0u; 1126 Wait.LgkmCnt = ~0u; 1127 Wait.ExpCnt = ~0u; 1128 } else { 1129 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1130 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1131 1132 unsigned ICnt = II->getOperand(1).getImm(); 1133 OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt); 1134 if (!TrackedWaitcntSet.count(&*II)) 1135 Wait.VsCnt = std::min(Wait.VsCnt, ICnt); 1136 if (Wait.VsCnt != ICnt) { 1137 II->getOperand(1).setImm(Wait.VsCnt); 1138 Modified = true; 1139 } 1140 Wait.VsCnt = ~0u; 1141 } 1142 1143 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1144 << "Old Instr: " << MI << '\n' 1145 << "New Instr: " << *II << '\n'); 1146 1147 if (!Wait.hasWait()) 1148 return Modified; 1149 } 1150 } 1151 1152 if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) { 1153 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1154 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1155 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1156 .addImm(Enc); 1157 TrackedWaitcntSet.insert(SWaitInst); 1158 Modified = true; 1159 1160 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1161 << "Old Instr: " << MI << '\n' 1162 << "New Instr: " << *SWaitInst << '\n'); 1163 } 1164 1165 if (Wait.VsCnt != ~0u) { 1166 assert(ST->hasVscnt()); 1167 1168 auto SWaitInst = 1169 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1170 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1171 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1172 .addImm(Wait.VsCnt); 1173 TrackedWaitcntSet.insert(SWaitInst); 1174 Modified = true; 1175 1176 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1177 << "Old Instr: " << MI << '\n' 1178 << "New Instr: " << *SWaitInst << '\n'); 1179 } 1180 1181 return Modified; 1182 } 1183 1184 // This is a flat memory operation. Check to see if it has memory 1185 // tokens for both LDS and Memory, and if so mark it as a flat. 1186 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1187 if (MI.memoperands_empty()) 1188 return true; 1189 1190 for (const MachineMemOperand *Memop : MI.memoperands()) { 1191 unsigned AS = Memop->getAddrSpace(); 1192 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1193 return true; 1194 } 1195 1196 return false; 1197 } 1198 1199 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1200 WaitcntBrackets *ScoreBrackets) { 1201 // Now look at the instruction opcode. If it is a memory access 1202 // instruction, update the upper-bound of the appropriate counter's 1203 // bracket and the destination operand scores. 1204 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1205 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1206 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1207 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1208 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1209 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1210 } else { 1211 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1212 } 1213 } else if (TII->isFLAT(Inst)) { 1214 assert(Inst.mayLoad() || Inst.mayStore()); 1215 1216 if (TII->usesVM_CNT(Inst)) { 1217 if (!ST->hasVscnt()) 1218 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1219 else if (Inst.mayLoad() && 1220 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) 1221 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1222 else 1223 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1224 } 1225 1226 if (TII->usesLGKM_CNT(Inst)) { 1227 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1228 1229 // This is a flat memory operation, so note it - it will require 1230 // that both the VM and LGKM be flushed to zero if it is pending when 1231 // a VM or LGKM dependency occurs. 1232 if (mayAccessLDSThroughFlat(Inst)) 1233 ScoreBrackets->setPendingFlat(); 1234 } 1235 } else if (SIInstrInfo::isVMEM(Inst) && 1236 // TODO: get a better carve out. 1237 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1238 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1239 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && 1240 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && 1241 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { 1242 if (!ST->hasVscnt()) 1243 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1244 else if ((Inst.mayLoad() && 1245 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) || 1246 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1247 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1248 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1249 else if (Inst.mayStore()) 1250 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1251 1252 if (ST->vmemWriteNeedsExpWaitcnt() && 1253 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1254 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1255 } 1256 } else if (TII->isSMRD(Inst)) { 1257 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1258 } else if (Inst.isCall()) { 1259 if (callWaitsOnFunctionReturn(Inst)) { 1260 // Act as a wait on everything 1261 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV)); 1262 } else { 1263 // May need to way wait for anything. 1264 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1265 } 1266 } else { 1267 switch (Inst.getOpcode()) { 1268 case AMDGPU::S_SENDMSG: 1269 case AMDGPU::S_SENDMSGHALT: 1270 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1271 break; 1272 case AMDGPU::EXP: 1273 case AMDGPU::EXP_DONE: { 1274 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1275 if (Imm >= 32 && Imm <= 63) 1276 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1277 else if (Imm >= 12 && Imm <= 15) 1278 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1279 else 1280 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1281 break; 1282 } 1283 case AMDGPU::S_MEMTIME: 1284 case AMDGPU::S_MEMREALTIME: 1285 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1286 break; 1287 default: 1288 break; 1289 } 1290 } 1291 } 1292 1293 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, 1294 uint32_t OtherScore) { 1295 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1296 uint32_t OtherShifted = 1297 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1298 Score = std::max(MyShifted, OtherShifted); 1299 return OtherShifted > MyShifted; 1300 } 1301 1302 /// Merge the pending events and associater score brackets of \p Other into 1303 /// this brackets status. 1304 /// 1305 /// Returns whether the merge resulted in a change that requires tighter waits 1306 /// (i.e. the merged brackets strictly dominate the original brackets). 1307 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1308 bool StrictDom = false; 1309 1310 for (auto T : inst_counter_types()) { 1311 // Merge event flags for this counter 1312 const bool OldOutOfOrder = counterOutOfOrder(T); 1313 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1314 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1315 if (OtherEvents & ~OldEvents) 1316 StrictDom = true; 1317 if (Other.MixedPendingEvents[T] || 1318 (OldEvents && OtherEvents && OldEvents != OtherEvents)) 1319 MixedPendingEvents[T] = true; 1320 PendingEvents |= OtherEvents; 1321 1322 // Merge scores for this counter 1323 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; 1324 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1325 MergeInfo M; 1326 M.OldLB = ScoreLBs[T]; 1327 M.OtherLB = Other.ScoreLBs[T]; 1328 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; 1329 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; 1330 1331 const uint32_t NewUB = ScoreUBs[T] + M.MyShift; 1332 if (NewUB < ScoreUBs[T]) 1333 report_fatal_error("waitcnt score overflow"); 1334 ScoreUBs[T] = NewUB; 1335 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); 1336 1337 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1338 1339 bool RegStrictDom = false; 1340 for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E; 1341 J++) { 1342 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1343 } 1344 1345 if (T == LGKM_CNT) { 1346 for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1; 1347 J != E; J++) { 1348 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1349 } 1350 } 1351 1352 if (RegStrictDom && !OldOutOfOrder) 1353 StrictDom = true; 1354 } 1355 1356 VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR()); 1357 SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR()); 1358 1359 return StrictDom; 1360 } 1361 1362 // Generate s_waitcnt instructions where needed. 1363 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1364 MachineBasicBlock &Block, 1365 WaitcntBrackets &ScoreBrackets) { 1366 bool Modified = false; 1367 1368 LLVM_DEBUG({ 1369 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1370 ScoreBrackets.dump(); 1371 }); 1372 1373 // Walk over the instructions. 1374 MachineInstr *OldWaitcntInstr = nullptr; 1375 1376 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1377 E = Block.instr_end(); 1378 Iter != E;) { 1379 MachineInstr &Inst = *Iter; 1380 1381 // Track pre-existing waitcnts from earlier iterations. 1382 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1383 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1384 Inst.getOperand(0).isReg() && 1385 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1386 if (!OldWaitcntInstr) 1387 OldWaitcntInstr = &Inst; 1388 ++Iter; 1389 continue; 1390 } 1391 1392 bool VCCZBugWorkAround = false; 1393 if (readsVCCZ(Inst)) { 1394 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1395 ScoreBrackets.getScoreUB(LGKM_CNT) && 1396 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1397 if (ST->hasReadVCCZBug()) 1398 VCCZBugWorkAround = true; 1399 } 1400 } 1401 1402 // Generate an s_waitcnt instruction to be placed before 1403 // cur_Inst, if needed. 1404 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1405 OldWaitcntInstr = nullptr; 1406 1407 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1408 1409 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1410 // If this instruction generates a S_SETVSKIP because it is an 1411 // indexed resource, and we are on Tahiti, then it will also force 1412 // an S_WAITCNT vmcnt(0) 1413 if (RequireCheckResourceType(Inst, context)) { 1414 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1415 ScoreBrackets->setScoreLB(VM_CNT, 1416 ScoreBrackets->getScoreUB(VM_CNT)); 1417 } 1418 #endif 1419 1420 LLVM_DEBUG({ 1421 Inst.print(dbgs()); 1422 ScoreBrackets.dump(); 1423 }); 1424 1425 // TODO: Remove this work-around after fixing the scheduler and enable the 1426 // assert above. 1427 if (VCCZBugWorkAround) { 1428 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1429 // bit is updated, so we can restore the bit by reading the value of 1430 // vcc and then writing it back to the register. 1431 BuildMI(Block, Inst, Inst.getDebugLoc(), 1432 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1433 TRI->getVCC()) 1434 .addReg(TRI->getVCC()); 1435 Modified = true; 1436 } 1437 1438 ++Iter; 1439 } 1440 1441 return Modified; 1442 } 1443 1444 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1445 ST = &MF.getSubtarget<GCNSubtarget>(); 1446 TII = ST->getInstrInfo(); 1447 TRI = &TII->getRegisterInfo(); 1448 MRI = &MF.getRegInfo(); 1449 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1450 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1451 1452 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1453 for (auto T : inst_counter_types()) 1454 ForceEmitWaitcnt[T] = false; 1455 1456 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1457 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1458 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1459 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1460 1461 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1462 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1463 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1464 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1465 1466 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1467 RegisterEncoding.VGPRL = 1468 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1469 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1470 RegisterEncoding.SGPRL = 1471 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1472 1473 TrackedWaitcntSet.clear(); 1474 RpotIdxMap.clear(); 1475 BlockInfos.clear(); 1476 1477 // Keep iterating over the blocks in reverse post order, inserting and 1478 // updating s_waitcnt where needed, until a fix point is reached. 1479 for (MachineBasicBlock *MBB : 1480 ReversePostOrderTraversal<MachineFunction *>(&MF)) { 1481 RpotIdxMap[MBB] = BlockInfos.size(); 1482 BlockInfos.emplace_back(MBB); 1483 } 1484 1485 std::unique_ptr<WaitcntBrackets> Brackets; 1486 bool Modified = false; 1487 bool Repeat; 1488 do { 1489 Repeat = false; 1490 1491 for (BlockInfo &BI : BlockInfos) { 1492 if (!BI.Dirty) 1493 continue; 1494 1495 unsigned Idx = std::distance(&*BlockInfos.begin(), &BI); 1496 1497 if (BI.Incoming) { 1498 if (!Brackets) 1499 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1500 else 1501 *Brackets = *BI.Incoming; 1502 } else { 1503 if (!Brackets) 1504 Brackets = std::make_unique<WaitcntBrackets>(ST); 1505 else 1506 Brackets->clear(); 1507 } 1508 1509 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1510 BI.Dirty = false; 1511 1512 if (Brackets->hasPending()) { 1513 BlockInfo *MoveBracketsToSucc = nullptr; 1514 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1515 unsigned SuccIdx = RpotIdxMap[Succ]; 1516 BlockInfo &SuccBI = BlockInfos[SuccIdx]; 1517 if (!SuccBI.Incoming) { 1518 SuccBI.Dirty = true; 1519 if (SuccIdx <= Idx) 1520 Repeat = true; 1521 if (!MoveBracketsToSucc) { 1522 MoveBracketsToSucc = &SuccBI; 1523 } else { 1524 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1525 } 1526 } else if (SuccBI.Incoming->merge(*Brackets)) { 1527 SuccBI.Dirty = true; 1528 if (SuccIdx <= Idx) 1529 Repeat = true; 1530 } 1531 } 1532 if (MoveBracketsToSucc) 1533 MoveBracketsToSucc->Incoming = std::move(Brackets); 1534 } 1535 } 1536 } while (Repeat); 1537 1538 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1539 1540 bool HaveScalarStores = false; 1541 1542 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1543 ++BI) { 1544 MachineBasicBlock &MBB = *BI; 1545 1546 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1547 ++I) { 1548 if (!HaveScalarStores && TII->isScalarStore(*I)) 1549 HaveScalarStores = true; 1550 1551 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1552 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1553 EndPgmBlocks.push_back(&MBB); 1554 } 1555 } 1556 1557 if (HaveScalarStores) { 1558 // If scalar writes are used, the cache must be flushed or else the next 1559 // wave to reuse the same scratch memory can be clobbered. 1560 // 1561 // Insert s_dcache_wb at wave termination points if there were any scalar 1562 // stores, and only if the cache hasn't already been flushed. This could be 1563 // improved by looking across blocks for flushes in postdominating blocks 1564 // from the stores but an explicitly requested flush is probably very rare. 1565 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1566 bool SeenDCacheWB = false; 1567 1568 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1569 ++I) { 1570 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1571 SeenDCacheWB = true; 1572 else if (TII->isScalarStore(*I)) 1573 SeenDCacheWB = false; 1574 1575 // FIXME: It would be better to insert this before a waitcnt if any. 1576 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1577 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1578 !SeenDCacheWB) { 1579 Modified = true; 1580 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1581 } 1582 } 1583 } 1584 } 1585 1586 if (!MFI->isEntryFunction()) { 1587 // Wait for any outstanding memory operations that the input registers may 1588 // depend on. We can't track them and it's better to the wait after the 1589 // costly call sequence. 1590 1591 // TODO: Could insert earlier and schedule more liberally with operations 1592 // that only use caller preserved registers. 1593 MachineBasicBlock &EntryBB = MF.front(); 1594 if (ST->hasVscnt()) 1595 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), 1596 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1597 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1598 .addImm(0); 1599 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1600 .addImm(0); 1601 1602 Modified = true; 1603 } 1604 1605 return Modified; 1606 } 1607