1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "GCNSubtarget.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "llvm/ADT/MapVector.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/CodeGen/MachinePostDominators.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/TargetParser.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "si-insert-waitcnts" 39 40 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 41 "Force emit s_waitcnt expcnt(0) instrs"); 42 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 43 "Force emit s_waitcnt lgkmcnt(0) instrs"); 44 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 45 "Force emit s_waitcnt vmcnt(0) instrs"); 46 47 static cl::opt<bool> ForceEmitZeroFlag( 48 "amdgpu-waitcnt-forcezero", 49 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 50 cl::init(false), cl::Hidden); 51 52 namespace { 53 54 template <typename EnumT> 55 class enum_iterator 56 : public iterator_facade_base<enum_iterator<EnumT>, 57 std::forward_iterator_tag, const EnumT> { 58 EnumT Value; 59 public: 60 enum_iterator() = default; 61 enum_iterator(EnumT Value) : Value(Value) {} 62 63 enum_iterator &operator++() { 64 Value = static_cast<EnumT>(Value + 1); 65 return *this; 66 } 67 68 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 69 70 EnumT operator*() const { return Value; } 71 }; 72 73 // Class of object that encapsulates latest instruction counter score 74 // associated with the operand. Used for determining whether 75 // s_waitcnt instruction needs to be emited. 76 77 #define CNT_MASK(t) (1u << (t)) 78 79 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 80 81 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 82 return make_range(enum_iterator<InstCounterType>(VM_CNT), 83 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 84 } 85 86 using RegInterval = std::pair<int, int>; 87 88 struct { 89 unsigned VmcntMax; 90 unsigned ExpcntMax; 91 unsigned LgkmcntMax; 92 unsigned VscntMax; 93 } HardwareLimits; 94 95 struct { 96 unsigned VGPR0; 97 unsigned VGPRL; 98 unsigned SGPR0; 99 unsigned SGPRL; 100 } RegisterEncoding; 101 102 enum WaitEventType { 103 VMEM_ACCESS, // vector-memory read & write 104 VMEM_READ_ACCESS, // vector-memory read 105 VMEM_WRITE_ACCESS,// vector-memory write 106 LDS_ACCESS, // lds read & write 107 GDS_ACCESS, // gds read & write 108 SQ_MESSAGE, // send message 109 SMEM_ACCESS, // scalar-memory read & write 110 EXP_GPR_LOCK, // export holding on its data src 111 GDS_GPR_LOCK, // GDS holding on its data and addr src 112 EXP_POS_ACCESS, // write to export position 113 EXP_PARAM_ACCESS, // write to export parameter 114 VMW_GPR_LOCK, // vector-memory write holding on its data src 115 NUM_WAIT_EVENTS, 116 }; 117 118 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = { 119 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 120 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 121 (1 << SQ_MESSAGE), 122 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 123 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 124 (1 << VMEM_WRITE_ACCESS) 125 }; 126 127 // The mapping is: 128 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 129 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 130 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 131 // We reserve a fixed number of VGPR slots in the scoring tables for 132 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 133 enum RegisterMapping { 134 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. 135 AGPR_OFFSET = 226, // Maximum programmable ArchVGPRs across all targets. 136 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 137 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 138 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 139 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 140 }; 141 142 // Enumerate different types of result-returning VMEM operations. Although 143 // s_waitcnt orders them all with a single vmcnt counter, in the absence of 144 // s_waitcnt only instructions of the same VmemType are guaranteed to write 145 // their results in order -- so there is no need to insert an s_waitcnt between 146 // two instructions of the same type that write the same vgpr. 147 enum VmemType { 148 // BUF instructions and MIMG instructions without a sampler. 149 VMEM_NOSAMPLER, 150 // MIMG instructions with a sampler. 151 VMEM_SAMPLER, 152 }; 153 154 VmemType getVmemType(const MachineInstr &Inst) { 155 assert(SIInstrInfo::isVMEM(Inst)); 156 if (!SIInstrInfo::isMIMG(Inst)) 157 return VMEM_NOSAMPLER; 158 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); 159 return AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler 160 ? VMEM_SAMPLER 161 : VMEM_NOSAMPLER; 162 } 163 164 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 165 switch (T) { 166 case VM_CNT: 167 Wait.VmCnt = std::min(Wait.VmCnt, Count); 168 break; 169 case EXP_CNT: 170 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 171 break; 172 case LGKM_CNT: 173 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 174 break; 175 case VS_CNT: 176 Wait.VsCnt = std::min(Wait.VsCnt, Count); 177 break; 178 default: 179 llvm_unreachable("bad InstCounterType"); 180 } 181 } 182 183 // This objects maintains the current score brackets of each wait counter, and 184 // a per-register scoreboard for each wait counter. 185 // 186 // We also maintain the latest score for every event type that can change the 187 // waitcnt in order to know if there are multiple types of events within 188 // the brackets. When multiple types of event happen in the bracket, 189 // wait count may get decreased out of order, therefore we need to put in 190 // "s_waitcnt 0" before use. 191 class WaitcntBrackets { 192 public: 193 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {} 194 195 static unsigned getWaitCountMax(InstCounterType T) { 196 switch (T) { 197 case VM_CNT: 198 return HardwareLimits.VmcntMax; 199 case LGKM_CNT: 200 return HardwareLimits.LgkmcntMax; 201 case EXP_CNT: 202 return HardwareLimits.ExpcntMax; 203 case VS_CNT: 204 return HardwareLimits.VscntMax; 205 default: 206 break; 207 } 208 return 0; 209 } 210 211 unsigned getScoreLB(InstCounterType T) const { 212 assert(T < NUM_INST_CNTS); 213 return ScoreLBs[T]; 214 } 215 216 unsigned getScoreUB(InstCounterType T) const { 217 assert(T < NUM_INST_CNTS); 218 return ScoreUBs[T]; 219 } 220 221 // Mapping from event to counter. 222 InstCounterType eventCounter(WaitEventType E) { 223 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 224 return VM_CNT; 225 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 226 return LGKM_CNT; 227 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 228 return VS_CNT; 229 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 230 return EXP_CNT; 231 } 232 233 unsigned getRegScore(int GprNo, InstCounterType T) { 234 if (GprNo < NUM_ALL_VGPRS) { 235 return VgprScores[T][GprNo]; 236 } 237 assert(T == LGKM_CNT); 238 return SgprScores[GprNo - NUM_ALL_VGPRS]; 239 } 240 241 bool merge(const WaitcntBrackets &Other); 242 243 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 244 const MachineRegisterInfo *MRI, 245 const SIRegisterInfo *TRI, unsigned OpNo) const; 246 247 bool counterOutOfOrder(InstCounterType T) const; 248 void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 249 void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 250 void determineWait(InstCounterType T, unsigned ScoreToWait, 251 AMDGPU::Waitcnt &Wait) const; 252 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 253 void applyWaitcnt(InstCounterType T, unsigned Count); 254 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 255 const MachineRegisterInfo *MRI, WaitEventType E, 256 MachineInstr &MI); 257 258 bool hasPending() const { return PendingEvents != 0; } 259 bool hasPendingEvent(WaitEventType E) const { 260 return PendingEvents & (1 << E); 261 } 262 263 bool hasMixedPendingEvents(InstCounterType T) const { 264 unsigned Events = PendingEvents & WaitEventMaskForInst[T]; 265 // Return true if more than one bit is set in Events. 266 return Events & (Events - 1); 267 } 268 269 bool hasPendingFlat() const { 270 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 271 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 272 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 273 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 274 } 275 276 void setPendingFlat() { 277 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 278 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 279 } 280 281 // Return true if there might be pending writes to the specified vgpr by VMEM 282 // instructions with types different from V. 283 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { 284 assert(GprNo < NUM_ALL_VGPRS); 285 return VgprVmemTypes[GprNo] & ~(1 << V); 286 } 287 288 void clearVgprVmemTypes(int GprNo) { 289 assert(GprNo < NUM_ALL_VGPRS); 290 VgprVmemTypes[GprNo] = 0; 291 } 292 293 void print(raw_ostream &); 294 void dump() { print(dbgs()); } 295 296 private: 297 struct MergeInfo { 298 unsigned OldLB; 299 unsigned OtherLB; 300 unsigned MyShift; 301 unsigned OtherShift; 302 }; 303 static bool mergeScore(const MergeInfo &M, unsigned &Score, 304 unsigned OtherScore); 305 306 void setScoreLB(InstCounterType T, unsigned Val) { 307 assert(T < NUM_INST_CNTS); 308 ScoreLBs[T] = Val; 309 } 310 311 void setScoreUB(InstCounterType T, unsigned Val) { 312 assert(T < NUM_INST_CNTS); 313 ScoreUBs[T] = Val; 314 if (T == EXP_CNT) { 315 unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 316 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 317 ScoreLBs[T] = UB; 318 } 319 } 320 321 void setRegScore(int GprNo, InstCounterType T, unsigned Val) { 322 if (GprNo < NUM_ALL_VGPRS) { 323 VgprUB = std::max(VgprUB, GprNo); 324 VgprScores[T][GprNo] = Val; 325 } else { 326 assert(T == LGKM_CNT); 327 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 328 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 329 } 330 } 331 332 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 333 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 334 unsigned OpNo, unsigned Val); 335 336 const GCNSubtarget *ST = nullptr; 337 unsigned ScoreLBs[NUM_INST_CNTS] = {0}; 338 unsigned ScoreUBs[NUM_INST_CNTS] = {0}; 339 unsigned PendingEvents = 0; 340 // Remember the last flat memory operation. 341 unsigned LastFlat[NUM_INST_CNTS] = {0}; 342 // wait_cnt scores for every vgpr. 343 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 344 int VgprUB = -1; 345 int SgprUB = -1; 346 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 347 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 348 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 349 // Bitmask of the VmemTypes of VMEM instructions that might have a pending 350 // write to each vgpr. 351 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; 352 }; 353 354 class SIInsertWaitcnts : public MachineFunctionPass { 355 private: 356 const GCNSubtarget *ST = nullptr; 357 const SIInstrInfo *TII = nullptr; 358 const SIRegisterInfo *TRI = nullptr; 359 const MachineRegisterInfo *MRI = nullptr; 360 AMDGPU::IsaVersion IV; 361 362 DenseSet<MachineInstr *> TrackedWaitcntSet; 363 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 364 MachinePostDominatorTree *PDT; 365 366 struct BlockInfo { 367 MachineBasicBlock *MBB; 368 std::unique_ptr<WaitcntBrackets> Incoming; 369 bool Dirty = true; 370 371 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 372 }; 373 374 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 375 376 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 377 // because of amdgpu-waitcnt-forcezero flag 378 bool ForceEmitZeroWaitcnts; 379 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 380 381 public: 382 static char ID; 383 384 SIInsertWaitcnts() : MachineFunctionPass(ID) { 385 (void)ForceExpCounter; 386 (void)ForceLgkmCounter; 387 (void)ForceVMCounter; 388 } 389 390 bool runOnMachineFunction(MachineFunction &MF) override; 391 392 StringRef getPassName() const override { 393 return "SI insert wait instructions"; 394 } 395 396 void getAnalysisUsage(AnalysisUsage &AU) const override { 397 AU.setPreservesCFG(); 398 AU.addRequired<MachinePostDominatorTree>(); 399 MachineFunctionPass::getAnalysisUsage(AU); 400 } 401 402 bool isForceEmitWaitcnt() const { 403 for (auto T : inst_counter_types()) 404 if (ForceEmitWaitcnt[T]) 405 return true; 406 return false; 407 } 408 409 void setForceEmitWaitcnt() { 410 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 411 // For debug builds, get the debug counter info and adjust if need be 412 #ifndef NDEBUG 413 if (DebugCounter::isCounterSet(ForceExpCounter) && 414 DebugCounter::shouldExecute(ForceExpCounter)) { 415 ForceEmitWaitcnt[EXP_CNT] = true; 416 } else { 417 ForceEmitWaitcnt[EXP_CNT] = false; 418 } 419 420 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 421 DebugCounter::shouldExecute(ForceLgkmCounter)) { 422 ForceEmitWaitcnt[LGKM_CNT] = true; 423 } else { 424 ForceEmitWaitcnt[LGKM_CNT] = false; 425 } 426 427 if (DebugCounter::isCounterSet(ForceVMCounter) && 428 DebugCounter::shouldExecute(ForceVMCounter)) { 429 ForceEmitWaitcnt[VM_CNT] = true; 430 } else { 431 ForceEmitWaitcnt[VM_CNT] = false; 432 } 433 #endif // NDEBUG 434 } 435 436 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; 437 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 438 bool generateWaitcntInstBefore(MachineInstr &MI, 439 WaitcntBrackets &ScoreBrackets, 440 MachineInstr *OldWaitcntInstr); 441 void updateEventWaitcntAfter(MachineInstr &Inst, 442 WaitcntBrackets *ScoreBrackets); 443 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 444 WaitcntBrackets &ScoreBrackets); 445 bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 446 MachineInstr &OldWaitcntInstr, 447 AMDGPU::Waitcnt &Wait, const MachineInstr *MI); 448 }; 449 450 } // end anonymous namespace 451 452 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 453 const SIInstrInfo *TII, 454 const MachineRegisterInfo *MRI, 455 const SIRegisterInfo *TRI, 456 unsigned OpNo) const { 457 const MachineOperand &Op = MI->getOperand(OpNo); 458 if (!TRI->isInAllocatableClass(Op.getReg())) 459 return {-1, -1}; 460 461 // A use via a PW operand does not need a waitcnt. 462 // A partial write is not a WAW. 463 assert(!Op.getSubReg() || !Op.isUndef()); 464 465 RegInterval Result; 466 467 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)); 468 469 if (TRI->isVectorRegister(*MRI, Op.getReg())) { 470 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 471 Result.first = Reg - RegisterEncoding.VGPR0; 472 if (TRI->isAGPR(*MRI, Op.getReg())) 473 Result.first += AGPR_OFFSET; 474 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 475 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 476 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 477 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 478 assert(Result.first >= NUM_ALL_VGPRS && 479 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 480 } 481 // TODO: Handle TTMP 482 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 483 else 484 return {-1, -1}; 485 486 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo); 487 unsigned Size = TRI->getRegSizeInBits(*RC); 488 Result.second = Result.first + ((Size + 16) / 32); 489 490 return Result; 491 } 492 493 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 494 const SIInstrInfo *TII, 495 const SIRegisterInfo *TRI, 496 const MachineRegisterInfo *MRI, unsigned OpNo, 497 unsigned Val) { 498 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo); 499 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); 500 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 501 setRegScore(RegNo, EXP_CNT, Val); 502 } 503 } 504 505 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 506 const SIRegisterInfo *TRI, 507 const MachineRegisterInfo *MRI, 508 WaitEventType E, MachineInstr &Inst) { 509 InstCounterType T = eventCounter(E); 510 unsigned CurrScore = getScoreUB(T) + 1; 511 if (CurrScore == 0) 512 report_fatal_error("InsertWaitcnt score wraparound"); 513 // PendingEvents and ScoreUB need to be update regardless if this event 514 // changes the score of a register or not. 515 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 516 PendingEvents |= 1 << E; 517 setScoreUB(T, CurrScore); 518 519 if (T == EXP_CNT) { 520 // Put score on the source vgprs. If this is a store, just use those 521 // specific register(s). 522 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 523 int AddrOpIdx = 524 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 525 // All GDS operations must protect their address register (same as 526 // export.) 527 if (AddrOpIdx != -1) { 528 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 529 } 530 531 if (Inst.mayStore()) { 532 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 533 AMDGPU::OpName::data0) != -1) { 534 setExpScore( 535 &Inst, TII, TRI, MRI, 536 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 537 CurrScore); 538 } 539 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 540 AMDGPU::OpName::data1) != -1) { 541 setExpScore(&Inst, TII, TRI, MRI, 542 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 543 AMDGPU::OpName::data1), 544 CurrScore); 545 } 546 } else if (SIInstrInfo::isAtomicRet(Inst) && 547 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 548 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 549 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 550 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 551 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 552 Inst.getOpcode() != AMDGPU::DS_APPEND && 553 Inst.getOpcode() != AMDGPU::DS_CONSUME && 554 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 555 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 556 const MachineOperand &Op = Inst.getOperand(I); 557 if (Op.isReg() && !Op.isDef() && 558 TRI->isVectorRegister(*MRI, Op.getReg())) { 559 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 560 } 561 } 562 } 563 } else if (TII->isFLAT(Inst)) { 564 if (Inst.mayStore()) { 565 setExpScore( 566 &Inst, TII, TRI, MRI, 567 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 568 CurrScore); 569 } else if (SIInstrInfo::isAtomicRet(Inst)) { 570 setExpScore( 571 &Inst, TII, TRI, MRI, 572 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 573 CurrScore); 574 } 575 } else if (TII->isMIMG(Inst)) { 576 if (Inst.mayStore()) { 577 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 578 } else if (SIInstrInfo::isAtomicRet(Inst)) { 579 setExpScore( 580 &Inst, TII, TRI, MRI, 581 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 582 CurrScore); 583 } 584 } else if (TII->isMTBUF(Inst)) { 585 if (Inst.mayStore()) { 586 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 587 } 588 } else if (TII->isMUBUF(Inst)) { 589 if (Inst.mayStore()) { 590 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 591 } else if (SIInstrInfo::isAtomicRet(Inst)) { 592 setExpScore( 593 &Inst, TII, TRI, MRI, 594 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 595 CurrScore); 596 } 597 } else { 598 if (TII->isEXP(Inst)) { 599 // For export the destination registers are really temps that 600 // can be used as the actual source after export patching, so 601 // we need to treat them like sources and set the EXP_CNT 602 // score. 603 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 604 MachineOperand &DefMO = Inst.getOperand(I); 605 if (DefMO.isReg() && DefMO.isDef() && 606 TRI->isVGPR(*MRI, DefMO.getReg())) { 607 setRegScore( 608 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), 609 EXP_CNT, CurrScore); 610 } 611 } 612 } 613 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 614 MachineOperand &MO = Inst.getOperand(I); 615 if (MO.isReg() && !MO.isDef() && 616 TRI->isVectorRegister(*MRI, MO.getReg())) { 617 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 618 } 619 } 620 } 621 #if 0 // TODO: check if this is handled by MUBUF code above. 622 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 623 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 624 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 625 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 626 unsigned OpNo;//TODO: find the OpNo for this operand; 627 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo); 628 for (int RegNo = Interval.first; RegNo < Interval.second; 629 ++RegNo) { 630 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 631 } 632 #endif 633 } else { 634 // Match the score to the destination registers. 635 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 636 auto &Op = Inst.getOperand(I); 637 if (!Op.isReg() || !Op.isDef()) 638 continue; 639 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I); 640 if (T == VM_CNT) { 641 if (Interval.first >= NUM_ALL_VGPRS) 642 continue; 643 if (SIInstrInfo::isVMEM(Inst)) { 644 VmemType V = getVmemType(Inst); 645 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) 646 VgprVmemTypes[RegNo] |= 1 << V; 647 } 648 } 649 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 650 setRegScore(RegNo, T, CurrScore); 651 } 652 } 653 if (TII->isDS(Inst) && Inst.mayStore()) { 654 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 655 } 656 } 657 } 658 659 void WaitcntBrackets::print(raw_ostream &OS) { 660 OS << '\n'; 661 for (auto T : inst_counter_types()) { 662 unsigned LB = getScoreLB(T); 663 unsigned UB = getScoreUB(T); 664 665 switch (T) { 666 case VM_CNT: 667 OS << " VM_CNT(" << UB - LB << "): "; 668 break; 669 case LGKM_CNT: 670 OS << " LGKM_CNT(" << UB - LB << "): "; 671 break; 672 case EXP_CNT: 673 OS << " EXP_CNT(" << UB - LB << "): "; 674 break; 675 case VS_CNT: 676 OS << " VS_CNT(" << UB - LB << "): "; 677 break; 678 default: 679 OS << " UNKNOWN(" << UB - LB << "): "; 680 break; 681 } 682 683 if (LB < UB) { 684 // Print vgpr scores. 685 for (int J = 0; J <= VgprUB; J++) { 686 unsigned RegScore = getRegScore(J, T); 687 if (RegScore <= LB) 688 continue; 689 unsigned RelScore = RegScore - LB - 1; 690 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 691 OS << RelScore << ":v" << J << " "; 692 } else { 693 OS << RelScore << ":ds "; 694 } 695 } 696 // Also need to print sgpr scores for lgkm_cnt. 697 if (T == LGKM_CNT) { 698 for (int J = 0; J <= SgprUB; J++) { 699 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 700 if (RegScore <= LB) 701 continue; 702 unsigned RelScore = RegScore - LB - 1; 703 OS << RelScore << ":s" << J << " "; 704 } 705 } 706 } 707 OS << '\n'; 708 } 709 OS << '\n'; 710 } 711 712 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 713 /// whether a waitcnt instruction is needed at all. 714 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 715 simplifyWaitcnt(VM_CNT, Wait.VmCnt); 716 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt); 717 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 718 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 719 } 720 721 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 722 unsigned &Count) const { 723 const unsigned LB = getScoreLB(T); 724 const unsigned UB = getScoreUB(T); 725 726 // The number of outstanding events for this type, T, can be calculated 727 // as (UB - LB). If the current Count is greater than or equal to the number 728 // of outstanding events, then the wait for this counter is redundant. 729 if (Count >= UB - LB) 730 Count = ~0u; 731 } 732 733 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait, 734 AMDGPU::Waitcnt &Wait) const { 735 // If the score of src_operand falls within the bracket, we need an 736 // s_waitcnt instruction. 737 const unsigned LB = getScoreLB(T); 738 const unsigned UB = getScoreUB(T); 739 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 740 if ((T == VM_CNT || T == LGKM_CNT) && 741 hasPendingFlat() && 742 !ST->hasFlatLgkmVMemCountInOrder()) { 743 // If there is a pending FLAT operation, and this is a VMem or LGKM 744 // waitcnt and the target can report early completion, then we need 745 // to force a waitcnt 0. 746 addWait(Wait, T, 0); 747 } else if (counterOutOfOrder(T)) { 748 // Counter can get decremented out-of-order when there 749 // are multiple types event in the bracket. Also emit an s_wait counter 750 // with a conservative value of 0 for the counter. 751 addWait(Wait, T, 0); 752 } else { 753 // If a counter has been maxed out avoid overflow by waiting for 754 // MAX(CounterType) - 1 instead. 755 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 756 addWait(Wait, T, NeededWait); 757 } 758 } 759 } 760 761 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 762 applyWaitcnt(VM_CNT, Wait.VmCnt); 763 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 764 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 765 applyWaitcnt(VS_CNT, Wait.VsCnt); 766 } 767 768 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 769 const unsigned UB = getScoreUB(T); 770 if (Count >= UB) 771 return; 772 if (Count != 0) { 773 if (counterOutOfOrder(T)) 774 return; 775 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 776 } else { 777 setScoreLB(T, UB); 778 PendingEvents &= ~WaitEventMaskForInst[T]; 779 } 780 } 781 782 // Where there are multiple types of event in the bracket of a counter, 783 // the decrement may go out of order. 784 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 785 // Scalar memory read always can go out of order. 786 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 787 return true; 788 return hasMixedPendingEvents(T); 789 } 790 791 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 792 false) 793 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 794 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 795 false) 796 797 char SIInsertWaitcnts::ID = 0; 798 799 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 800 801 FunctionPass *llvm::createSIInsertWaitcntsPass() { 802 return new SIInsertWaitcnts(); 803 } 804 805 /// Combine consecutive waitcnt instructions that precede \p MI and follow 806 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added 807 /// by previous passes. Currently this pass conservatively assumes that these 808 /// preexisting waitcnt are required for correctness. 809 bool SIInsertWaitcnts::applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 810 MachineInstr &OldWaitcntInstr, 811 AMDGPU::Waitcnt &Wait, 812 const MachineInstr *MI) { 813 bool Modified = false; 814 MachineInstr *WaitcntInstr = nullptr; 815 MachineInstr *WaitcntVsCntInstr = nullptr; 816 for (auto II = OldWaitcntInstr.getIterator(), NextI = std::next(II); 817 &*II != MI; II = NextI, ++NextI) { 818 if (II->isMetaInstruction()) 819 continue; 820 821 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 822 // Conservatively update required wait if this waitcnt was added in an 823 // earlier pass. In this case it will not exist in the tracked waitcnt 824 // set. 825 if (!TrackedWaitcntSet.count(&*II)) { 826 unsigned IEnc = II->getOperand(0).getImm(); 827 AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc); 828 Wait = Wait.combined(OldWait); 829 } 830 831 // Merge consecutive waitcnt of the same type by erasing multiples. 832 if (!WaitcntInstr) { 833 WaitcntInstr = &*II; 834 } else { 835 II->eraseFromParent(); 836 Modified = true; 837 } 838 839 } else { 840 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 841 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 842 if (!TrackedWaitcntSet.count(&*II)) { 843 unsigned OldVSCnt = 844 TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm(); 845 Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt); 846 } 847 848 if (!WaitcntVsCntInstr) { 849 WaitcntVsCntInstr = &*II; 850 } else { 851 II->eraseFromParent(); 852 Modified = true; 853 } 854 } 855 } 856 857 // Updated encoding of merged waitcnt with the required wait. 858 if (WaitcntInstr) { 859 if (Wait.hasWaitExceptVsCnt()) { 860 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 861 unsigned OldEnc = WaitcntInstr->getOperand(0).getImm(); 862 if (OldEnc != NewEnc) { 863 WaitcntInstr->getOperand(0).setImm(NewEnc); 864 Modified = true; 865 } 866 ScoreBrackets.applyWaitcnt(Wait); 867 Wait.VmCnt = ~0u; 868 Wait.LgkmCnt = ~0u; 869 Wait.ExpCnt = ~0u; 870 871 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 872 << "Old Instr: " << MI << "New Instr: " << *WaitcntInstr 873 << '\n'); 874 } else { 875 WaitcntInstr->eraseFromParent(); 876 Modified = true; 877 } 878 } 879 880 if (WaitcntVsCntInstr) { 881 if (Wait.hasWaitVsCnt()) { 882 assert(ST->hasVscnt()); 883 unsigned OldVSCnt = 884 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16) 885 ->getImm(); 886 if (Wait.VsCnt != OldVSCnt) { 887 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16) 888 ->setImm(Wait.VsCnt); 889 Modified = true; 890 } 891 ScoreBrackets.applyWaitcnt(Wait); 892 Wait.VsCnt = ~0u; 893 894 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 895 << "Old Instr: " << MI 896 << "New Instr: " << *WaitcntVsCntInstr << '\n'); 897 } else { 898 WaitcntVsCntInstr->eraseFromParent(); 899 Modified = true; 900 } 901 } 902 903 return Modified; 904 } 905 906 static bool readsVCCZ(const MachineInstr &MI) { 907 unsigned Opc = MI.getOpcode(); 908 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 909 !MI.getOperand(1).isUndef(); 910 } 911 912 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 913 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 914 // Currently all conventions wait, but this may not always be the case. 915 // 916 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 917 // senses to omit the wait and do it in the caller. 918 return true; 919 } 920 921 /// \returns true if the callee is expected to wait for any outstanding waits 922 /// before returning. 923 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 924 return true; 925 } 926 927 /// Generate s_waitcnt instruction to be placed before cur_Inst. 928 /// Instructions of a given type are returned in order, 929 /// but instructions of different types can complete out of order. 930 /// We rely on this in-order completion 931 /// and simply assign a score to the memory access instructions. 932 /// We keep track of the active "score bracket" to determine 933 /// if an access of a memory read requires an s_waitcnt 934 /// and if so what the value of each counter is. 935 /// The "score bracket" is bound by the lower bound and upper bound 936 /// scores (*_score_LB and *_score_ub respectively). 937 bool SIInsertWaitcnts::generateWaitcntInstBefore( 938 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 939 MachineInstr *OldWaitcntInstr) { 940 setForceEmitWaitcnt(); 941 942 if (MI.isMetaInstruction()) 943 return false; 944 945 AMDGPU::Waitcnt Wait; 946 bool Modified = false; 947 948 // See if this instruction has a forced S_WAITCNT VM. 949 // TODO: Handle other cases of NeedsWaitcntVmBefore() 950 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 951 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 952 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 953 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 954 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 955 Wait.VmCnt = 0; 956 } 957 958 // All waits must be resolved at call return. 959 // NOTE: this could be improved with knowledge of all call sites or 960 // with knowledge of the called routines. 961 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 962 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 963 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 964 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 965 } 966 // Resolve vm waits before gs-done. 967 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 968 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 969 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 970 AMDGPU::SendMsg::ID_GS_DONE)) { 971 Wait.VmCnt = 0; 972 } 973 #if 0 // TODO: the following blocks of logic when we have fence. 974 else if (MI.getOpcode() == SC_FENCE) { 975 const unsigned int group_size = 976 context->shader_info->GetMaxThreadGroupSize(); 977 // group_size == 0 means thread group size is unknown at compile time 978 const bool group_is_multi_wave = 979 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 980 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 981 982 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 983 SCRegType src_type = Inst->GetSrcType(i); 984 switch (src_type) { 985 case SCMEM_LDS: 986 if (group_is_multi_wave || 987 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 988 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 989 ScoreBrackets->getScoreUB(LGKM_CNT)); 990 // LDS may have to wait for VM_CNT after buffer load to LDS 991 if (target_info->HasBufferLoadToLDS()) { 992 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 993 ScoreBrackets->getScoreUB(VM_CNT)); 994 } 995 } 996 break; 997 998 case SCMEM_GDS: 999 if (group_is_multi_wave || fence_is_global) { 1000 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1001 ScoreBrackets->getScoreUB(EXP_CNT)); 1002 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 1003 ScoreBrackets->getScoreUB(LGKM_CNT)); 1004 } 1005 break; 1006 1007 case SCMEM_UAV: 1008 case SCMEM_TFBUF: 1009 case SCMEM_RING: 1010 case SCMEM_SCATTER: 1011 if (group_is_multi_wave || fence_is_global) { 1012 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1013 ScoreBrackets->getScoreUB(EXP_CNT)); 1014 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 1015 ScoreBrackets->getScoreUB(VM_CNT)); 1016 } 1017 break; 1018 1019 case SCMEM_SCRATCH: 1020 default: 1021 break; 1022 } 1023 } 1024 } 1025 #endif 1026 1027 // Export & GDS instructions do not read the EXEC mask until after the export 1028 // is granted (which can occur well after the instruction is issued). 1029 // The shader program must flush all EXP operations on the export-count 1030 // before overwriting the EXEC mask. 1031 else { 1032 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1033 // Export and GDS are tracked individually, either may trigger a waitcnt 1034 // for EXEC. 1035 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 1036 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 1037 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 1038 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 1039 Wait.ExpCnt = 0; 1040 } 1041 } 1042 1043 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 1044 // The function is going to insert a wait on everything in its prolog. 1045 // This still needs to be careful if the call target is a load (e.g. a GOT 1046 // load). We also need to check WAW depenancy with saved PC. 1047 Wait = AMDGPU::Waitcnt(); 1048 1049 int CallAddrOpIdx = 1050 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 1051 1052 if (MI.getOperand(CallAddrOpIdx).isReg()) { 1053 RegInterval CallAddrOpInterval = 1054 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx); 1055 1056 for (int RegNo = CallAddrOpInterval.first; 1057 RegNo < CallAddrOpInterval.second; ++RegNo) 1058 ScoreBrackets.determineWait( 1059 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1060 1061 int RtnAddrOpIdx = 1062 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 1063 if (RtnAddrOpIdx != -1) { 1064 RegInterval RtnAddrOpInterval = 1065 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx); 1066 1067 for (int RegNo = RtnAddrOpInterval.first; 1068 RegNo < RtnAddrOpInterval.second; ++RegNo) 1069 ScoreBrackets.determineWait( 1070 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1071 } 1072 } 1073 } else { 1074 // FIXME: Should not be relying on memoperands. 1075 // Look at the source operands of every instruction to see if 1076 // any of them results from a previous memory operation that affects 1077 // its current usage. If so, an s_waitcnt instruction needs to be 1078 // emitted. 1079 // If the source operand was defined by a load, add the s_waitcnt 1080 // instruction. 1081 // 1082 // Two cases are handled for destination operands: 1083 // 1) If the destination operand was defined by a load, add the s_waitcnt 1084 // instruction to guarantee the right WAW order. 1085 // 2) If a destination operand that was used by a recent export/store ins, 1086 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1087 for (const MachineMemOperand *Memop : MI.memoperands()) { 1088 const Value *Ptr = Memop->getValue(); 1089 if (Memop->isStore() && SLoadAddresses.count(Ptr)) { 1090 addWait(Wait, LGKM_CNT, 0); 1091 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) 1092 SLoadAddresses.erase(Ptr); 1093 } 1094 unsigned AS = Memop->getAddrSpace(); 1095 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1096 continue; 1097 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1098 // VM_CNT is only relevant to vgpr or LDS. 1099 ScoreBrackets.determineWait( 1100 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1101 if (Memop->isStore()) { 1102 ScoreBrackets.determineWait( 1103 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1104 } 1105 } 1106 1107 // Loop over use and def operands. 1108 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1109 MachineOperand &Op = MI.getOperand(I); 1110 if (!Op.isReg()) 1111 continue; 1112 RegInterval Interval = 1113 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I); 1114 1115 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); 1116 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1117 if (IsVGPR) { 1118 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the 1119 // previous write and this write are the same type of VMEM 1120 // instruction, in which case they're guaranteed to write their 1121 // results in order anyway. 1122 if (Op.isUse() || !SIInstrInfo::isVMEM(MI) || 1123 ScoreBrackets.hasOtherPendingVmemTypes(RegNo, 1124 getVmemType(MI))) { 1125 ScoreBrackets.determineWait( 1126 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1127 ScoreBrackets.clearVgprVmemTypes(RegNo); 1128 } 1129 if (Op.isDef()) { 1130 ScoreBrackets.determineWait( 1131 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1132 } 1133 } 1134 ScoreBrackets.determineWait( 1135 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1136 } 1137 } 1138 } 1139 } 1140 1141 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1142 // occurs before the instruction. Doing it here prevents any additional 1143 // S_WAITCNTs from being emitted if the instruction was marked as 1144 // requiring a WAITCNT beforehand. 1145 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1146 !ST->hasAutoWaitcntBeforeBarrier()) { 1147 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1148 } 1149 1150 // TODO: Remove this work-around, enable the assert for Bug 457939 1151 // after fixing the scheduler. Also, the Shader Compiler code is 1152 // independent of target. 1153 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1154 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1155 ScoreBrackets.getScoreUB(LGKM_CNT) && 1156 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1157 Wait.LgkmCnt = 0; 1158 } 1159 } 1160 1161 // Verify that the wait is actually needed. 1162 ScoreBrackets.simplifyWaitcnt(Wait); 1163 1164 if (ForceEmitZeroWaitcnts) 1165 Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt()); 1166 1167 if (ForceEmitWaitcnt[VM_CNT]) 1168 Wait.VmCnt = 0; 1169 if (ForceEmitWaitcnt[EXP_CNT]) 1170 Wait.ExpCnt = 0; 1171 if (ForceEmitWaitcnt[LGKM_CNT]) 1172 Wait.LgkmCnt = 0; 1173 if (ForceEmitWaitcnt[VS_CNT]) 1174 Wait.VsCnt = 0; 1175 1176 if (OldWaitcntInstr) { 1177 // Try to merge the required wait with preexisting waitcnt instructions. 1178 // Also erase redundant waitcnt. 1179 Modified = 1180 applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, &MI); 1181 } else { 1182 // Update waitcnt brackets after determining the required wait. 1183 ScoreBrackets.applyWaitcnt(Wait); 1184 } 1185 1186 // Build new waitcnt instructions unless no wait is needed or the old waitcnt 1187 // instruction was modified to handle the required wait. 1188 if (Wait.hasWaitExceptVsCnt()) { 1189 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1190 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1191 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1192 .addImm(Enc); 1193 TrackedWaitcntSet.insert(SWaitInst); 1194 Modified = true; 1195 1196 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1197 << "Old Instr: " << MI 1198 << "New Instr: " << *SWaitInst << '\n'); 1199 } 1200 1201 if (Wait.hasWaitVsCnt()) { 1202 assert(ST->hasVscnt()); 1203 1204 auto SWaitInst = 1205 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1206 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1207 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1208 .addImm(Wait.VsCnt); 1209 TrackedWaitcntSet.insert(SWaitInst); 1210 Modified = true; 1211 1212 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1213 << "Old Instr: " << MI 1214 << "New Instr: " << *SWaitInst << '\n'); 1215 } 1216 1217 return Modified; 1218 } 1219 1220 // This is a flat memory operation. Check to see if it has memory tokens other 1221 // than LDS. Other address spaces supported by flat memory operations involve 1222 // global memory. 1223 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { 1224 assert(TII->isFLAT(MI)); 1225 1226 // All flat instructions use the VMEM counter. 1227 assert(TII->usesVM_CNT(MI)); 1228 1229 // If there are no memory operands then conservatively assume the flat 1230 // operation may access VMEM. 1231 if (MI.memoperands_empty()) 1232 return true; 1233 1234 // See if any memory operand specifies an address space that involves VMEM. 1235 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces 1236 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION 1237 // (GDS) address space is not supported by flat operations. Therefore, simply 1238 // return true unless only the LDS address space is found. 1239 for (const MachineMemOperand *Memop : MI.memoperands()) { 1240 unsigned AS = Memop->getAddrSpace(); 1241 assert(AS != AMDGPUAS::REGION_ADDRESS); 1242 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1243 return true; 1244 } 1245 1246 return false; 1247 } 1248 1249 // This is a flat memory operation. Check to see if it has memory tokens for 1250 // either LDS or FLAT. 1251 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1252 assert(TII->isFLAT(MI)); 1253 1254 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. 1255 if (!TII->usesLGKM_CNT(MI)) 1256 return false; 1257 1258 // If in tgsplit mode then there can be no use of LDS. 1259 if (ST->isTgSplitEnabled()) 1260 return false; 1261 1262 // If there are no memory operands then conservatively assume the flat 1263 // operation may access LDS. 1264 if (MI.memoperands_empty()) 1265 return true; 1266 1267 // See if any memory operand specifies an address space that involves LDS. 1268 for (const MachineMemOperand *Memop : MI.memoperands()) { 1269 unsigned AS = Memop->getAddrSpace(); 1270 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1271 return true; 1272 } 1273 1274 return false; 1275 } 1276 1277 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1278 WaitcntBrackets *ScoreBrackets) { 1279 // Now look at the instruction opcode. If it is a memory access 1280 // instruction, update the upper-bound of the appropriate counter's 1281 // bracket and the destination operand scores. 1282 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1283 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1284 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1285 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1286 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1287 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1288 } else { 1289 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1290 } 1291 } else if (TII->isFLAT(Inst)) { 1292 assert(Inst.mayLoadOrStore()); 1293 1294 int FlatASCount = 0; 1295 1296 if (mayAccessVMEMThroughFlat(Inst)) { 1297 ++FlatASCount; 1298 if (!ST->hasVscnt()) 1299 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1300 else if (Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) 1301 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1302 else 1303 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1304 } 1305 1306 if (mayAccessLDSThroughFlat(Inst)) { 1307 ++FlatASCount; 1308 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1309 } 1310 1311 // A Flat memory operation must access at least one address space. 1312 assert(FlatASCount); 1313 1314 // This is a flat memory operation that access both VMEM and LDS, so note it 1315 // - it will require that both the VM and LGKM be flushed to zero if it is 1316 // pending when a VM or LGKM dependency occurs. 1317 if (FlatASCount > 1) 1318 ScoreBrackets->setPendingFlat(); 1319 } else if (SIInstrInfo::isVMEM(Inst) && 1320 // TODO: get a better carve out. 1321 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1322 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1323 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && 1324 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && 1325 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { 1326 if (!ST->hasVscnt()) 1327 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1328 else if ((Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) || 1329 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1330 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1331 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1332 else if (Inst.mayStore()) 1333 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1334 1335 if (ST->vmemWriteNeedsExpWaitcnt() && 1336 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { 1337 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1338 } 1339 } else if (TII->isSMRD(Inst)) { 1340 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1341 } else if (Inst.isCall()) { 1342 if (callWaitsOnFunctionReturn(Inst)) { 1343 // Act as a wait on everything 1344 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1345 } else { 1346 // May need to way wait for anything. 1347 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1348 } 1349 } else if (SIInstrInfo::isEXP(Inst)) { 1350 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1351 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) 1352 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1353 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) 1354 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1355 else 1356 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1357 } else { 1358 switch (Inst.getOpcode()) { 1359 case AMDGPU::S_SENDMSG: 1360 case AMDGPU::S_SENDMSGHALT: 1361 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1362 break; 1363 case AMDGPU::S_MEMTIME: 1364 case AMDGPU::S_MEMREALTIME: 1365 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1366 break; 1367 } 1368 } 1369 } 1370 1371 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, 1372 unsigned OtherScore) { 1373 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1374 unsigned OtherShifted = 1375 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1376 Score = std::max(MyShifted, OtherShifted); 1377 return OtherShifted > MyShifted; 1378 } 1379 1380 /// Merge the pending events and associater score brackets of \p Other into 1381 /// this brackets status. 1382 /// 1383 /// Returns whether the merge resulted in a change that requires tighter waits 1384 /// (i.e. the merged brackets strictly dominate the original brackets). 1385 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1386 bool StrictDom = false; 1387 1388 VgprUB = std::max(VgprUB, Other.VgprUB); 1389 SgprUB = std::max(SgprUB, Other.SgprUB); 1390 1391 for (auto T : inst_counter_types()) { 1392 // Merge event flags for this counter 1393 const bool OldOutOfOrder = counterOutOfOrder(T); 1394 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1395 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1396 if (OtherEvents & ~OldEvents) 1397 StrictDom = true; 1398 PendingEvents |= OtherEvents; 1399 1400 // Merge scores for this counter 1401 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; 1402 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1403 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); 1404 if (NewUB < ScoreLBs[T]) 1405 report_fatal_error("waitcnt score overflow"); 1406 1407 MergeInfo M; 1408 M.OldLB = ScoreLBs[T]; 1409 M.OtherLB = Other.ScoreLBs[T]; 1410 M.MyShift = NewUB - ScoreUBs[T]; 1411 M.OtherShift = NewUB - Other.ScoreUBs[T]; 1412 1413 ScoreUBs[T] = NewUB; 1414 1415 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1416 1417 bool RegStrictDom = false; 1418 for (int J = 0; J <= VgprUB; J++) { 1419 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1420 } 1421 1422 if (T == VM_CNT) { 1423 for (int J = 0; J <= VgprUB; J++) { 1424 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; 1425 RegStrictDom |= NewVmemTypes != VgprVmemTypes[J]; 1426 VgprVmemTypes[J] = NewVmemTypes; 1427 } 1428 } 1429 1430 if (T == LGKM_CNT) { 1431 for (int J = 0; J <= SgprUB; J++) { 1432 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1433 } 1434 } 1435 1436 if (RegStrictDom && !OldOutOfOrder) 1437 StrictDom = true; 1438 } 1439 1440 return StrictDom; 1441 } 1442 1443 // Generate s_waitcnt instructions where needed. 1444 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1445 MachineBasicBlock &Block, 1446 WaitcntBrackets &ScoreBrackets) { 1447 bool Modified = false; 1448 1449 LLVM_DEBUG({ 1450 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1451 ScoreBrackets.dump(); 1452 }); 1453 1454 // Track the correctness of vccz through this basic block. There are two 1455 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and 1456 // ST->partialVCCWritesUpdateVCCZ(). 1457 bool VCCZCorrect = true; 1458 if (ST->hasReadVCCZBug()) { 1459 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1460 // to vcc and then issued an smem load. 1461 VCCZCorrect = false; 1462 } else if (!ST->partialVCCWritesUpdateVCCZ()) { 1463 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1464 // to vcc_lo or vcc_hi. 1465 VCCZCorrect = false; 1466 } 1467 1468 // Walk over the instructions. 1469 MachineInstr *OldWaitcntInstr = nullptr; 1470 1471 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1472 E = Block.instr_end(); 1473 Iter != E;) { 1474 MachineInstr &Inst = *Iter; 1475 1476 // Track pre-existing waitcnts that were added in earlier iterations or by 1477 // the memory legalizer. 1478 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1479 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1480 Inst.getOperand(0).isReg() && 1481 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1482 if (!OldWaitcntInstr) 1483 OldWaitcntInstr = &Inst; 1484 ++Iter; 1485 continue; 1486 } 1487 1488 // Generate an s_waitcnt instruction to be placed before Inst, if needed. 1489 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1490 OldWaitcntInstr = nullptr; 1491 1492 // Restore vccz if it's not known to be correct already. 1493 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); 1494 1495 // Don't examine operands unless we need to track vccz correctness. 1496 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { 1497 if (Inst.definesRegister(AMDGPU::VCC_LO) || 1498 Inst.definesRegister(AMDGPU::VCC_HI)) { 1499 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 1500 if (!ST->partialVCCWritesUpdateVCCZ()) 1501 VCCZCorrect = false; 1502 } else if (Inst.definesRegister(AMDGPU::VCC)) { 1503 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 1504 // vccz bit, so when we detect that an instruction may read from a 1505 // corrupt vccz bit, we need to: 1506 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 1507 // operations to complete. 1508 // 2. Restore the correct value of vccz by writing the current value 1509 // of vcc back to vcc. 1510 if (ST->hasReadVCCZBug() && 1511 ScoreBrackets.getScoreLB(LGKM_CNT) < 1512 ScoreBrackets.getScoreUB(LGKM_CNT) && 1513 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1514 // Writes to vcc while there's an outstanding smem read may get 1515 // clobbered as soon as any read completes. 1516 VCCZCorrect = false; 1517 } else { 1518 // Writes to vcc will fix any incorrect value in vccz. 1519 VCCZCorrect = true; 1520 } 1521 } 1522 } 1523 1524 if (TII->isSMRD(Inst)) { 1525 for (const MachineMemOperand *Memop : Inst.memoperands()) { 1526 const Value *Ptr = Memop->getValue(); 1527 SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent())); 1528 } 1529 if (ST->hasReadVCCZBug()) { 1530 // This smem read could complete and clobber vccz at any time. 1531 VCCZCorrect = false; 1532 } 1533 } 1534 1535 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1536 1537 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1538 // If this instruction generates a S_SETVSKIP because it is an 1539 // indexed resource, and we are on Tahiti, then it will also force 1540 // an S_WAITCNT vmcnt(0) 1541 if (RequireCheckResourceType(Inst, context)) { 1542 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1543 ScoreBrackets->setScoreLB(VM_CNT, 1544 ScoreBrackets->getScoreUB(VM_CNT)); 1545 } 1546 #endif 1547 1548 LLVM_DEBUG({ 1549 Inst.print(dbgs()); 1550 ScoreBrackets.dump(); 1551 }); 1552 1553 // TODO: Remove this work-around after fixing the scheduler and enable the 1554 // assert above. 1555 if (RestoreVCCZ) { 1556 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1557 // bit is updated, so we can restore the bit by reading the value of 1558 // vcc and then writing it back to the register. 1559 BuildMI(Block, Inst, Inst.getDebugLoc(), 1560 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1561 TRI->getVCC()) 1562 .addReg(TRI->getVCC()); 1563 VCCZCorrect = true; 1564 Modified = true; 1565 } 1566 1567 ++Iter; 1568 } 1569 1570 return Modified; 1571 } 1572 1573 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1574 ST = &MF.getSubtarget<GCNSubtarget>(); 1575 TII = ST->getInstrInfo(); 1576 TRI = &TII->getRegisterInfo(); 1577 MRI = &MF.getRegInfo(); 1578 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1579 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1580 PDT = &getAnalysis<MachinePostDominatorTree>(); 1581 1582 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1583 for (auto T : inst_counter_types()) 1584 ForceEmitWaitcnt[T] = false; 1585 1586 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1587 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1588 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1589 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1590 1591 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 1592 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 1593 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1594 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1595 1596 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1597 RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1; 1598 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1599 RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1; 1600 1601 TrackedWaitcntSet.clear(); 1602 BlockInfos.clear(); 1603 bool Modified = false; 1604 1605 if (!MFI->isEntryFunction()) { 1606 // Wait for any outstanding memory operations that the input registers may 1607 // depend on. We can't track them and it's better to do the wait after the 1608 // costly call sequence. 1609 1610 // TODO: Could insert earlier and schedule more liberally with operations 1611 // that only use caller preserved registers. 1612 MachineBasicBlock &EntryBB = MF.front(); 1613 MachineBasicBlock::iterator I = EntryBB.begin(); 1614 for (MachineBasicBlock::iterator E = EntryBB.end(); 1615 I != E && (I->isPHI() || I->isMetaInstruction()); ++I) 1616 ; 1617 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); 1618 if (ST->hasVscnt()) 1619 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1620 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1621 .addImm(0); 1622 1623 Modified = true; 1624 } 1625 1626 // Keep iterating over the blocks in reverse post order, inserting and 1627 // updating s_waitcnt where needed, until a fix point is reached. 1628 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 1629 BlockInfos.insert({MBB, BlockInfo(MBB)}); 1630 1631 std::unique_ptr<WaitcntBrackets> Brackets; 1632 bool Repeat; 1633 do { 1634 Repeat = false; 1635 1636 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 1637 ++BII) { 1638 BlockInfo &BI = BII->second; 1639 if (!BI.Dirty) 1640 continue; 1641 1642 if (BI.Incoming) { 1643 if (!Brackets) 1644 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1645 else 1646 *Brackets = *BI.Incoming; 1647 } else { 1648 if (!Brackets) 1649 Brackets = std::make_unique<WaitcntBrackets>(ST); 1650 else 1651 *Brackets = WaitcntBrackets(ST); 1652 } 1653 1654 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1655 BI.Dirty = false; 1656 1657 if (Brackets->hasPending()) { 1658 BlockInfo *MoveBracketsToSucc = nullptr; 1659 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1660 auto SuccBII = BlockInfos.find(Succ); 1661 BlockInfo &SuccBI = SuccBII->second; 1662 if (!SuccBI.Incoming) { 1663 SuccBI.Dirty = true; 1664 if (SuccBII <= BII) 1665 Repeat = true; 1666 if (!MoveBracketsToSucc) { 1667 MoveBracketsToSucc = &SuccBI; 1668 } else { 1669 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1670 } 1671 } else if (SuccBI.Incoming->merge(*Brackets)) { 1672 SuccBI.Dirty = true; 1673 if (SuccBII <= BII) 1674 Repeat = true; 1675 } 1676 } 1677 if (MoveBracketsToSucc) 1678 MoveBracketsToSucc->Incoming = std::move(Brackets); 1679 } 1680 } 1681 } while (Repeat); 1682 1683 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1684 1685 bool HaveScalarStores = false; 1686 1687 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1688 ++BI) { 1689 MachineBasicBlock &MBB = *BI; 1690 1691 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1692 ++I) { 1693 if (!HaveScalarStores && TII->isScalarStore(*I)) 1694 HaveScalarStores = true; 1695 1696 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1697 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1698 EndPgmBlocks.push_back(&MBB); 1699 } 1700 } 1701 1702 if (HaveScalarStores) { 1703 // If scalar writes are used, the cache must be flushed or else the next 1704 // wave to reuse the same scratch memory can be clobbered. 1705 // 1706 // Insert s_dcache_wb at wave termination points if there were any scalar 1707 // stores, and only if the cache hasn't already been flushed. This could be 1708 // improved by looking across blocks for flushes in postdominating blocks 1709 // from the stores but an explicitly requested flush is probably very rare. 1710 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1711 bool SeenDCacheWB = false; 1712 1713 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1714 ++I) { 1715 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1716 SeenDCacheWB = true; 1717 else if (TII->isScalarStore(*I)) 1718 SeenDCacheWB = false; 1719 1720 // FIXME: It would be better to insert this before a waitcnt if any. 1721 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1722 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1723 !SeenDCacheWB) { 1724 Modified = true; 1725 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1726 } 1727 } 1728 } 1729 } 1730 1731 return Modified; 1732 } 1733