1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "AMDGPUSubtarget.h" 28 #include "SIDefines.h" 29 #include "SIInstrInfo.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIRegisterInfo.h" 32 #include "Utils/AMDGPUBaseInfo.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/PostOrderIterator.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <cstring> 56 #include <memory> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "si-insert-waitcnts" 63 64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 65 "Force emit s_waitcnt expcnt(0) instrs"); 66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 67 "Force emit s_waitcnt lgkmcnt(0) instrs"); 68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 69 "Force emit s_waitcnt vmcnt(0) instrs"); 70 71 static cl::opt<bool> ForceEmitZeroFlag( 72 "amdgpu-waitcnt-forcezero", 73 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 74 cl::init(false), cl::Hidden); 75 76 namespace { 77 78 template <typename EnumT> 79 class enum_iterator 80 : public iterator_facade_base<enum_iterator<EnumT>, 81 std::forward_iterator_tag, const EnumT> { 82 EnumT Value; 83 public: 84 enum_iterator() = default; 85 enum_iterator(EnumT Value) : Value(Value) {} 86 87 enum_iterator &operator++() { 88 Value = static_cast<EnumT>(Value + 1); 89 return *this; 90 } 91 92 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 93 94 EnumT operator*() const { return Value; } 95 }; 96 97 // Class of object that encapsulates latest instruction counter score 98 // associated with the operand. Used for determining whether 99 // s_waitcnt instruction needs to be emited. 100 101 #define CNT_MASK(t) (1u << (t)) 102 103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 104 105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 106 return make_range(enum_iterator<InstCounterType>(VM_CNT), 107 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 108 } 109 110 using RegInterval = std::pair<signed, signed>; 111 112 struct { 113 uint32_t VmcntMax; 114 uint32_t ExpcntMax; 115 uint32_t LgkmcntMax; 116 uint32_t VscntMax; 117 int32_t NumVGPRsMax; 118 int32_t NumSGPRsMax; 119 } HardwareLimits; 120 121 struct { 122 unsigned VGPR0; 123 unsigned VGPRL; 124 unsigned SGPR0; 125 unsigned SGPRL; 126 } RegisterEncoding; 127 128 enum WaitEventType { 129 VMEM_ACCESS, // vector-memory read & write 130 VMEM_READ_ACCESS, // vector-memory read 131 VMEM_WRITE_ACCESS,// vector-memory write 132 LDS_ACCESS, // lds read & write 133 GDS_ACCESS, // gds read & write 134 SQ_MESSAGE, // send message 135 SMEM_ACCESS, // scalar-memory read & write 136 EXP_GPR_LOCK, // export holding on its data src 137 GDS_GPR_LOCK, // GDS holding on its data and addr src 138 EXP_POS_ACCESS, // write to export position 139 EXP_PARAM_ACCESS, // write to export parameter 140 VMW_GPR_LOCK, // vector-memory write holding on its data src 141 NUM_WAIT_EVENTS, 142 }; 143 144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { 145 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 146 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 147 (1 << SQ_MESSAGE), 148 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 149 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 150 (1 << VMEM_WRITE_ACCESS) 151 }; 152 153 // The mapping is: 154 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 155 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 156 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 157 // We reserve a fixed number of VGPR slots in the scoring tables for 158 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 159 enum RegisterMapping { 160 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 161 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 162 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 163 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 164 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 165 }; 166 167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 168 switch (T) { 169 case VM_CNT: 170 Wait.VmCnt = std::min(Wait.VmCnt, Count); 171 break; 172 case EXP_CNT: 173 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 174 break; 175 case LGKM_CNT: 176 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 177 break; 178 case VS_CNT: 179 Wait.VsCnt = std::min(Wait.VsCnt, Count); 180 break; 181 default: 182 llvm_unreachable("bad InstCounterType"); 183 } 184 } 185 186 // This objects maintains the current score brackets of each wait counter, and 187 // a per-register scoreboard for each wait counter. 188 // 189 // We also maintain the latest score for every event type that can change the 190 // waitcnt in order to know if there are multiple types of events within 191 // the brackets. When multiple types of event happen in the bracket, 192 // wait count may get decreased out of order, therefore we need to put in 193 // "s_waitcnt 0" before use. 194 class WaitcntBrackets { 195 public: 196 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { 197 for (auto T : inst_counter_types()) 198 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 199 } 200 201 static uint32_t getWaitCountMax(InstCounterType T) { 202 switch (T) { 203 case VM_CNT: 204 return HardwareLimits.VmcntMax; 205 case LGKM_CNT: 206 return HardwareLimits.LgkmcntMax; 207 case EXP_CNT: 208 return HardwareLimits.ExpcntMax; 209 case VS_CNT: 210 return HardwareLimits.VscntMax; 211 default: 212 break; 213 } 214 return 0; 215 } 216 217 uint32_t getScoreLB(InstCounterType T) const { 218 assert(T < NUM_INST_CNTS); 219 if (T >= NUM_INST_CNTS) 220 return 0; 221 return ScoreLBs[T]; 222 } 223 224 uint32_t getScoreUB(InstCounterType T) const { 225 assert(T < NUM_INST_CNTS); 226 if (T >= NUM_INST_CNTS) 227 return 0; 228 return ScoreUBs[T]; 229 } 230 231 // Mapping from event to counter. 232 InstCounterType eventCounter(WaitEventType E) { 233 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 234 return VM_CNT; 235 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 236 return LGKM_CNT; 237 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 238 return VS_CNT; 239 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 240 return EXP_CNT; 241 } 242 243 uint32_t getRegScore(int GprNo, InstCounterType T) { 244 if (GprNo < NUM_ALL_VGPRS) { 245 return VgprScores[T][GprNo]; 246 } 247 assert(T == LGKM_CNT); 248 return SgprScores[GprNo - NUM_ALL_VGPRS]; 249 } 250 251 void clear() { 252 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 253 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 254 PendingEvents = 0; 255 memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents)); 256 for (auto T : inst_counter_types()) 257 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 258 memset(SgprScores, 0, sizeof(SgprScores)); 259 } 260 261 bool merge(const WaitcntBrackets &Other); 262 263 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 264 const MachineRegisterInfo *MRI, 265 const SIRegisterInfo *TRI, unsigned OpNo, 266 bool Def) const; 267 268 int32_t getMaxVGPR() const { return VgprUB; } 269 int32_t getMaxSGPR() const { return SgprUB; } 270 271 bool counterOutOfOrder(InstCounterType T) const; 272 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 273 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 274 void determineWait(InstCounterType T, uint32_t ScoreToWait, 275 AMDGPU::Waitcnt &Wait) const; 276 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 277 void applyWaitcnt(InstCounterType T, unsigned Count); 278 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 279 const MachineRegisterInfo *MRI, WaitEventType E, 280 MachineInstr &MI); 281 282 bool hasPending() const { return PendingEvents != 0; } 283 bool hasPendingEvent(WaitEventType E) const { 284 return PendingEvents & (1 << E); 285 } 286 287 bool hasPendingFlat() const { 288 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 289 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 290 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 291 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 292 } 293 294 void setPendingFlat() { 295 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 296 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 297 } 298 299 void print(raw_ostream &); 300 void dump() { print(dbgs()); } 301 302 private: 303 struct MergeInfo { 304 uint32_t OldLB; 305 uint32_t OtherLB; 306 uint32_t MyShift; 307 uint32_t OtherShift; 308 }; 309 static bool mergeScore(const MergeInfo &M, uint32_t &Score, 310 uint32_t OtherScore); 311 312 void setScoreLB(InstCounterType T, uint32_t Val) { 313 assert(T < NUM_INST_CNTS); 314 if (T >= NUM_INST_CNTS) 315 return; 316 ScoreLBs[T] = Val; 317 } 318 319 void setScoreUB(InstCounterType T, uint32_t Val) { 320 assert(T < NUM_INST_CNTS); 321 if (T >= NUM_INST_CNTS) 322 return; 323 ScoreUBs[T] = Val; 324 if (T == EXP_CNT) { 325 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 326 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 327 ScoreLBs[T] = UB; 328 } 329 } 330 331 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { 332 if (GprNo < NUM_ALL_VGPRS) { 333 if (GprNo > VgprUB) { 334 VgprUB = GprNo; 335 } 336 VgprScores[T][GprNo] = Val; 337 } else { 338 assert(T == LGKM_CNT); 339 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 340 SgprUB = GprNo - NUM_ALL_VGPRS; 341 } 342 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 343 } 344 } 345 346 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 347 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 348 unsigned OpNo, uint32_t Val); 349 350 const GCNSubtarget *ST = nullptr; 351 uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; 352 uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; 353 uint32_t PendingEvents = 0; 354 bool MixedPendingEvents[NUM_INST_CNTS] = {false}; 355 // Remember the last flat memory operation. 356 uint32_t LastFlat[NUM_INST_CNTS] = {0}; 357 // wait_cnt scores for every vgpr. 358 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 359 int32_t VgprUB = 0; 360 int32_t SgprUB = 0; 361 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 362 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 363 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 364 }; 365 366 class SIInsertWaitcnts : public MachineFunctionPass { 367 private: 368 const GCNSubtarget *ST = nullptr; 369 const SIInstrInfo *TII = nullptr; 370 const SIRegisterInfo *TRI = nullptr; 371 const MachineRegisterInfo *MRI = nullptr; 372 AMDGPU::IsaVersion IV; 373 374 DenseSet<MachineInstr *> TrackedWaitcntSet; 375 376 struct BlockInfo { 377 MachineBasicBlock *MBB; 378 std::unique_ptr<WaitcntBrackets> Incoming; 379 bool Dirty = true; 380 381 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 382 }; 383 384 std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index 385 DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap; 386 387 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 388 // because of amdgpu-waitcnt-forcezero flag 389 bool ForceEmitZeroWaitcnts; 390 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 391 392 public: 393 static char ID; 394 395 SIInsertWaitcnts() : MachineFunctionPass(ID) { 396 (void)ForceExpCounter; 397 (void)ForceLgkmCounter; 398 (void)ForceVMCounter; 399 } 400 401 bool runOnMachineFunction(MachineFunction &MF) override; 402 403 StringRef getPassName() const override { 404 return "SI insert wait instructions"; 405 } 406 407 void getAnalysisUsage(AnalysisUsage &AU) const override { 408 AU.setPreservesCFG(); 409 MachineFunctionPass::getAnalysisUsage(AU); 410 } 411 412 bool isForceEmitWaitcnt() const { 413 for (auto T : inst_counter_types()) 414 if (ForceEmitWaitcnt[T]) 415 return true; 416 return false; 417 } 418 419 void setForceEmitWaitcnt() { 420 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 421 // For debug builds, get the debug counter info and adjust if need be 422 #ifndef NDEBUG 423 if (DebugCounter::isCounterSet(ForceExpCounter) && 424 DebugCounter::shouldExecute(ForceExpCounter)) { 425 ForceEmitWaitcnt[EXP_CNT] = true; 426 } else { 427 ForceEmitWaitcnt[EXP_CNT] = false; 428 } 429 430 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 431 DebugCounter::shouldExecute(ForceLgkmCounter)) { 432 ForceEmitWaitcnt[LGKM_CNT] = true; 433 } else { 434 ForceEmitWaitcnt[LGKM_CNT] = false; 435 } 436 437 if (DebugCounter::isCounterSet(ForceVMCounter) && 438 DebugCounter::shouldExecute(ForceVMCounter)) { 439 ForceEmitWaitcnt[VM_CNT] = true; 440 } else { 441 ForceEmitWaitcnt[VM_CNT] = false; 442 } 443 #endif // NDEBUG 444 } 445 446 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 447 bool generateWaitcntInstBefore(MachineInstr &MI, 448 WaitcntBrackets &ScoreBrackets, 449 MachineInstr *OldWaitcntInstr); 450 void updateEventWaitcntAfter(MachineInstr &Inst, 451 WaitcntBrackets *ScoreBrackets); 452 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 453 WaitcntBrackets &ScoreBrackets); 454 }; 455 456 } // end anonymous namespace 457 458 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 459 const SIInstrInfo *TII, 460 const MachineRegisterInfo *MRI, 461 const SIRegisterInfo *TRI, 462 unsigned OpNo, bool Def) const { 463 const MachineOperand &Op = MI->getOperand(OpNo); 464 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 465 (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg())) 466 return {-1, -1}; 467 468 // A use via a PW operand does not need a waitcnt. 469 // A partial write is not a WAW. 470 assert(!Op.getSubReg() || !Op.isUndef()); 471 472 RegInterval Result; 473 const MachineRegisterInfo &MRIA = *MRI; 474 475 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 476 477 if (TRI->isVGPR(MRIA, Op.getReg())) { 478 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 479 Result.first = Reg - RegisterEncoding.VGPR0; 480 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 481 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 482 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 483 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 484 assert(Result.first >= NUM_ALL_VGPRS && 485 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 486 } 487 // TODO: Handle TTMP 488 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 489 else 490 return {-1, -1}; 491 492 const MachineInstr &MIA = *MI; 493 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 494 unsigned Size = TRI->getRegSizeInBits(*RC); 495 Result.second = Result.first + (Size / 32); 496 497 return Result; 498 } 499 500 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 501 const SIInstrInfo *TII, 502 const SIRegisterInfo *TRI, 503 const MachineRegisterInfo *MRI, unsigned OpNo, 504 uint32_t Val) { 505 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 506 LLVM_DEBUG({ 507 const MachineOperand &Opnd = MI->getOperand(OpNo); 508 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 509 }); 510 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 511 setRegScore(RegNo, EXP_CNT, Val); 512 } 513 } 514 515 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 516 const SIRegisterInfo *TRI, 517 const MachineRegisterInfo *MRI, 518 WaitEventType E, MachineInstr &Inst) { 519 const MachineRegisterInfo &MRIA = *MRI; 520 InstCounterType T = eventCounter(E); 521 uint32_t CurrScore = getScoreUB(T) + 1; 522 if (CurrScore == 0) 523 report_fatal_error("InsertWaitcnt score wraparound"); 524 // PendingEvents and ScoreUB need to be update regardless if this event 525 // changes the score of a register or not. 526 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 527 if (!hasPendingEvent(E)) { 528 if (PendingEvents & WaitEventMaskForInst[T]) 529 MixedPendingEvents[T] = true; 530 PendingEvents |= 1 << E; 531 } 532 setScoreUB(T, CurrScore); 533 534 if (T == EXP_CNT) { 535 // Put score on the source vgprs. If this is a store, just use those 536 // specific register(s). 537 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 538 int AddrOpIdx = 539 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 540 // All GDS operations must protect their address register (same as 541 // export.) 542 if (AddrOpIdx != -1) { 543 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 544 } 545 546 if (Inst.mayStore()) { 547 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 548 AMDGPU::OpName::data0) != -1) { 549 setExpScore( 550 &Inst, TII, TRI, MRI, 551 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 552 CurrScore); 553 } 554 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 555 AMDGPU::OpName::data1) != -1) { 556 setExpScore(&Inst, TII, TRI, MRI, 557 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 558 AMDGPU::OpName::data1), 559 CurrScore); 560 } 561 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 562 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 563 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 564 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 565 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 566 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 567 Inst.getOpcode() != AMDGPU::DS_APPEND && 568 Inst.getOpcode() != AMDGPU::DS_CONSUME && 569 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 570 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 571 const MachineOperand &Op = Inst.getOperand(I); 572 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 573 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 574 } 575 } 576 } 577 } else if (TII->isFLAT(Inst)) { 578 if (Inst.mayStore()) { 579 setExpScore( 580 &Inst, TII, TRI, MRI, 581 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 582 CurrScore); 583 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 584 setExpScore( 585 &Inst, TII, TRI, MRI, 586 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 587 CurrScore); 588 } 589 } else if (TII->isMIMG(Inst)) { 590 if (Inst.mayStore()) { 591 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 592 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 593 setExpScore( 594 &Inst, TII, TRI, MRI, 595 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 596 CurrScore); 597 } 598 } else if (TII->isMTBUF(Inst)) { 599 if (Inst.mayStore()) { 600 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 601 } 602 } else if (TII->isMUBUF(Inst)) { 603 if (Inst.mayStore()) { 604 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 605 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 606 setExpScore( 607 &Inst, TII, TRI, MRI, 608 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 609 CurrScore); 610 } 611 } else { 612 if (TII->isEXP(Inst)) { 613 // For export the destination registers are really temps that 614 // can be used as the actual source after export patching, so 615 // we need to treat them like sources and set the EXP_CNT 616 // score. 617 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 618 MachineOperand &DefMO = Inst.getOperand(I); 619 if (DefMO.isReg() && DefMO.isDef() && 620 TRI->isVGPR(MRIA, DefMO.getReg())) { 621 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 622 CurrScore); 623 } 624 } 625 } 626 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 627 MachineOperand &MO = Inst.getOperand(I); 628 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 629 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 630 } 631 } 632 } 633 #if 0 // TODO: check if this is handled by MUBUF code above. 634 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 635 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 636 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 637 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 638 unsigned OpNo;//TODO: find the OpNo for this operand; 639 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 640 for (signed RegNo = Interval.first; RegNo < Interval.second; 641 ++RegNo) { 642 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 643 } 644 #endif 645 } else { 646 // Match the score to the destination registers. 647 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 648 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 649 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 650 continue; 651 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 652 setRegScore(RegNo, T, CurrScore); 653 } 654 } 655 if (TII->isDS(Inst) && Inst.mayStore()) { 656 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 657 } 658 } 659 } 660 661 void WaitcntBrackets::print(raw_ostream &OS) { 662 OS << '\n'; 663 for (auto T : inst_counter_types()) { 664 uint32_t LB = getScoreLB(T); 665 uint32_t UB = getScoreUB(T); 666 667 switch (T) { 668 case VM_CNT: 669 OS << " VM_CNT(" << UB - LB << "): "; 670 break; 671 case LGKM_CNT: 672 OS << " LGKM_CNT(" << UB - LB << "): "; 673 break; 674 case EXP_CNT: 675 OS << " EXP_CNT(" << UB - LB << "): "; 676 break; 677 case VS_CNT: 678 OS << " VS_CNT(" << UB - LB << "): "; 679 break; 680 default: 681 OS << " UNKNOWN(" << UB - LB << "): "; 682 break; 683 } 684 685 if (LB < UB) { 686 // Print vgpr scores. 687 for (int J = 0; J <= getMaxVGPR(); J++) { 688 uint32_t RegScore = getRegScore(J, T); 689 if (RegScore <= LB) 690 continue; 691 uint32_t RelScore = RegScore - LB - 1; 692 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 693 OS << RelScore << ":v" << J << " "; 694 } else { 695 OS << RelScore << ":ds "; 696 } 697 } 698 // Also need to print sgpr scores for lgkm_cnt. 699 if (T == LGKM_CNT) { 700 for (int J = 0; J <= getMaxSGPR(); J++) { 701 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 702 if (RegScore <= LB) 703 continue; 704 uint32_t RelScore = RegScore - LB - 1; 705 OS << RelScore << ":s" << J << " "; 706 } 707 } 708 } 709 OS << '\n'; 710 } 711 OS << '\n'; 712 } 713 714 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 715 /// whether a waitcnt instruction is needed at all. 716 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 717 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 718 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 719 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) | 720 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 721 } 722 723 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 724 unsigned &Count) const { 725 const uint32_t LB = getScoreLB(T); 726 const uint32_t UB = getScoreUB(T); 727 if (Count < UB && UB - Count > LB) 728 return true; 729 730 Count = ~0u; 731 return false; 732 } 733 734 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, 735 AMDGPU::Waitcnt &Wait) const { 736 // If the score of src_operand falls within the bracket, we need an 737 // s_waitcnt instruction. 738 const uint32_t LB = getScoreLB(T); 739 const uint32_t UB = getScoreUB(T); 740 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 741 if ((T == VM_CNT || T == LGKM_CNT) && 742 hasPendingFlat() && 743 !ST->hasFlatLgkmVMemCountInOrder()) { 744 // If there is a pending FLAT operation, and this is a VMem or LGKM 745 // waitcnt and the target can report early completion, then we need 746 // to force a waitcnt 0. 747 addWait(Wait, T, 0); 748 } else if (counterOutOfOrder(T)) { 749 // Counter can get decremented out-of-order when there 750 // are multiple types event in the bracket. Also emit an s_wait counter 751 // with a conservative value of 0 for the counter. 752 addWait(Wait, T, 0); 753 } else { 754 addWait(Wait, T, UB - ScoreToWait); 755 } 756 } 757 } 758 759 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 760 applyWaitcnt(VM_CNT, Wait.VmCnt); 761 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 762 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 763 applyWaitcnt(VS_CNT, Wait.VsCnt); 764 } 765 766 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 767 const uint32_t UB = getScoreUB(T); 768 if (Count >= UB) 769 return; 770 if (Count != 0) { 771 if (counterOutOfOrder(T)) 772 return; 773 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 774 } else { 775 setScoreLB(T, UB); 776 MixedPendingEvents[T] = false; 777 PendingEvents &= ~WaitEventMaskForInst[T]; 778 } 779 } 780 781 // Where there are multiple types of event in the bracket of a counter, 782 // the decrement may go out of order. 783 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 784 // Scalar memory read always can go out of order. 785 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 786 return true; 787 return MixedPendingEvents[T]; 788 } 789 790 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 791 false) 792 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 793 false) 794 795 char SIInsertWaitcnts::ID = 0; 796 797 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 798 799 FunctionPass *llvm::createSIInsertWaitcntsPass() { 800 return new SIInsertWaitcnts(); 801 } 802 803 static bool readsVCCZ(const MachineInstr &MI) { 804 unsigned Opc = MI.getOpcode(); 805 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 806 !MI.getOperand(1).isUndef(); 807 } 808 809 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 810 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 811 // Currently all conventions wait, but this may not always be the case. 812 // 813 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 814 // senses to omit the wait and do it in the caller. 815 return true; 816 } 817 818 /// \returns true if the callee is expected to wait for any outstanding waits 819 /// before returning. 820 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 821 return true; 822 } 823 824 /// Generate s_waitcnt instruction to be placed before cur_Inst. 825 /// Instructions of a given type are returned in order, 826 /// but instructions of different types can complete out of order. 827 /// We rely on this in-order completion 828 /// and simply assign a score to the memory access instructions. 829 /// We keep track of the active "score bracket" to determine 830 /// if an access of a memory read requires an s_waitcnt 831 /// and if so what the value of each counter is. 832 /// The "score bracket" is bound by the lower bound and upper bound 833 /// scores (*_score_LB and *_score_ub respectively). 834 bool SIInsertWaitcnts::generateWaitcntInstBefore( 835 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 836 MachineInstr *OldWaitcntInstr) { 837 setForceEmitWaitcnt(); 838 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 839 840 if (MI.isDebugInstr()) 841 return false; 842 843 AMDGPU::Waitcnt Wait; 844 845 // See if this instruction has a forced S_WAITCNT VM. 846 // TODO: Handle other cases of NeedsWaitcntVmBefore() 847 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 848 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 849 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 850 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 851 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 852 Wait.VmCnt = 0; 853 } 854 855 // All waits must be resolved at call return. 856 // NOTE: this could be improved with knowledge of all call sites or 857 // with knowledge of the called routines. 858 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 859 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 860 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 861 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 862 } 863 // Resolve vm waits before gs-done. 864 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 865 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 866 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 867 AMDGPU::SendMsg::ID_GS_DONE)) { 868 Wait.VmCnt = 0; 869 } 870 #if 0 // TODO: the following blocks of logic when we have fence. 871 else if (MI.getOpcode() == SC_FENCE) { 872 const unsigned int group_size = 873 context->shader_info->GetMaxThreadGroupSize(); 874 // group_size == 0 means thread group size is unknown at compile time 875 const bool group_is_multi_wave = 876 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 877 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 878 879 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 880 SCRegType src_type = Inst->GetSrcType(i); 881 switch (src_type) { 882 case SCMEM_LDS: 883 if (group_is_multi_wave || 884 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 885 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 886 ScoreBrackets->getScoreUB(LGKM_CNT)); 887 // LDS may have to wait for VM_CNT after buffer load to LDS 888 if (target_info->HasBufferLoadToLDS()) { 889 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 890 ScoreBrackets->getScoreUB(VM_CNT)); 891 } 892 } 893 break; 894 895 case SCMEM_GDS: 896 if (group_is_multi_wave || fence_is_global) { 897 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 898 ScoreBrackets->getScoreUB(EXP_CNT)); 899 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 900 ScoreBrackets->getScoreUB(LGKM_CNT)); 901 } 902 break; 903 904 case SCMEM_UAV: 905 case SCMEM_TFBUF: 906 case SCMEM_RING: 907 case SCMEM_SCATTER: 908 if (group_is_multi_wave || fence_is_global) { 909 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 910 ScoreBrackets->getScoreUB(EXP_CNT)); 911 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 912 ScoreBrackets->getScoreUB(VM_CNT)); 913 } 914 break; 915 916 case SCMEM_SCRATCH: 917 default: 918 break; 919 } 920 } 921 } 922 #endif 923 924 // Export & GDS instructions do not read the EXEC mask until after the export 925 // is granted (which can occur well after the instruction is issued). 926 // The shader program must flush all EXP operations on the export-count 927 // before overwriting the EXEC mask. 928 else { 929 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 930 // Export and GDS are tracked individually, either may trigger a waitcnt 931 // for EXEC. 932 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 933 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 934 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 935 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 936 Wait.ExpCnt = 0; 937 } 938 } 939 940 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 941 // The function is going to insert a wait on everything in its prolog. 942 // This still needs to be careful if the call target is a load (e.g. a GOT 943 // load). We also need to check WAW depenancy with saved PC. 944 Wait = AMDGPU::Waitcnt(); 945 946 int CallAddrOpIdx = 947 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 948 RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval( 949 &MI, TII, MRI, TRI, CallAddrOpIdx, false); 950 951 for (signed RegNo = CallAddrOpInterval.first; 952 RegNo < CallAddrOpInterval.second; ++RegNo) 953 ScoreBrackets.determineWait( 954 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 955 956 int RtnAddrOpIdx = 957 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 958 if (RtnAddrOpIdx != -1) { 959 RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval( 960 &MI, TII, MRI, TRI, RtnAddrOpIdx, false); 961 962 for (signed RegNo = RtnAddrOpInterval.first; 963 RegNo < RtnAddrOpInterval.second; ++RegNo) 964 ScoreBrackets.determineWait( 965 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 966 } 967 968 } else { 969 // FIXME: Should not be relying on memoperands. 970 // Look at the source operands of every instruction to see if 971 // any of them results from a previous memory operation that affects 972 // its current usage. If so, an s_waitcnt instruction needs to be 973 // emitted. 974 // If the source operand was defined by a load, add the s_waitcnt 975 // instruction. 976 for (const MachineMemOperand *Memop : MI.memoperands()) { 977 unsigned AS = Memop->getAddrSpace(); 978 if (AS != AMDGPUAS::LOCAL_ADDRESS) 979 continue; 980 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 981 // VM_CNT is only relevant to vgpr or LDS. 982 ScoreBrackets.determineWait( 983 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 984 } 985 986 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 987 const MachineOperand &Op = MI.getOperand(I); 988 const MachineRegisterInfo &MRIA = *MRI; 989 RegInterval Interval = 990 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); 991 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 992 if (TRI->isVGPR(MRIA, Op.getReg())) { 993 // VM_CNT is only relevant to vgpr or LDS. 994 ScoreBrackets.determineWait( 995 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 996 } 997 ScoreBrackets.determineWait( 998 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 999 } 1000 } 1001 // End of for loop that looks at all source operands to decide vm_wait_cnt 1002 // and lgk_wait_cnt. 1003 1004 // Two cases are handled for destination operands: 1005 // 1) If the destination operand was defined by a load, add the s_waitcnt 1006 // instruction to guarantee the right WAW order. 1007 // 2) If a destination operand that was used by a recent export/store ins, 1008 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1009 if (MI.mayStore()) { 1010 // FIXME: Should not be relying on memoperands. 1011 for (const MachineMemOperand *Memop : MI.memoperands()) { 1012 unsigned AS = Memop->getAddrSpace(); 1013 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1014 continue; 1015 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1016 ScoreBrackets.determineWait( 1017 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1018 ScoreBrackets.determineWait( 1019 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1020 } 1021 } 1022 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1023 MachineOperand &Def = MI.getOperand(I); 1024 const MachineRegisterInfo &MRIA = *MRI; 1025 RegInterval Interval = 1026 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); 1027 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1028 if (TRI->isVGPR(MRIA, Def.getReg())) { 1029 ScoreBrackets.determineWait( 1030 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1031 ScoreBrackets.determineWait( 1032 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1033 } 1034 ScoreBrackets.determineWait( 1035 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1036 } 1037 } // End of for loop that looks at all dest operands. 1038 } 1039 } 1040 1041 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1042 // occurs before the instruction. Doing it here prevents any additional 1043 // S_WAITCNTs from being emitted if the instruction was marked as 1044 // requiring a WAITCNT beforehand. 1045 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1046 !ST->hasAutoWaitcntBeforeBarrier()) { 1047 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV)); 1048 } 1049 1050 // TODO: Remove this work-around, enable the assert for Bug 457939 1051 // after fixing the scheduler. Also, the Shader Compiler code is 1052 // independent of target. 1053 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1054 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1055 ScoreBrackets.getScoreUB(LGKM_CNT) && 1056 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1057 Wait.LgkmCnt = 0; 1058 } 1059 } 1060 1061 // Early-out if no wait is indicated. 1062 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1063 bool Modified = false; 1064 if (OldWaitcntInstr) { 1065 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1066 &*II != &MI; II = NextI, ++NextI) { 1067 if (II->isDebugInstr()) 1068 continue; 1069 1070 if (TrackedWaitcntSet.count(&*II)) { 1071 TrackedWaitcntSet.erase(&*II); 1072 II->eraseFromParent(); 1073 Modified = true; 1074 } else if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1075 int64_t Imm = II->getOperand(0).getImm(); 1076 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1077 } else { 1078 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1079 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1080 ScoreBrackets.applyWaitcnt( 1081 AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm())); 1082 } 1083 } 1084 } 1085 return Modified; 1086 } 1087 1088 if (ForceEmitZeroWaitcnts) 1089 Wait = AMDGPU::Waitcnt::allZero(IV); 1090 1091 if (ForceEmitWaitcnt[VM_CNT]) 1092 Wait.VmCnt = 0; 1093 if (ForceEmitWaitcnt[EXP_CNT]) 1094 Wait.ExpCnt = 0; 1095 if (ForceEmitWaitcnt[LGKM_CNT]) 1096 Wait.LgkmCnt = 0; 1097 if (ForceEmitWaitcnt[VS_CNT]) 1098 Wait.VsCnt = 0; 1099 1100 ScoreBrackets.applyWaitcnt(Wait); 1101 1102 AMDGPU::Waitcnt OldWait; 1103 bool Modified = false; 1104 1105 if (OldWaitcntInstr) { 1106 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1107 &*II != &MI; II = NextI, NextI++) { 1108 if (II->isDebugInstr()) 1109 continue; 1110 1111 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1112 unsigned IEnc = II->getOperand(0).getImm(); 1113 AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc); 1114 OldWait = OldWait.combined(IWait); 1115 if (!TrackedWaitcntSet.count(&*II)) 1116 Wait = Wait.combined(IWait); 1117 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 1118 if (IEnc != NewEnc) { 1119 II->getOperand(0).setImm(NewEnc); 1120 Modified = true; 1121 } 1122 Wait.VmCnt = ~0u; 1123 Wait.LgkmCnt = ~0u; 1124 Wait.ExpCnt = ~0u; 1125 } else { 1126 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1127 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1128 1129 unsigned ICnt = II->getOperand(1).getImm(); 1130 OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt); 1131 if (!TrackedWaitcntSet.count(&*II)) 1132 Wait.VsCnt = std::min(Wait.VsCnt, ICnt); 1133 if (Wait.VsCnt != ICnt) { 1134 II->getOperand(1).setImm(Wait.VsCnt); 1135 Modified = true; 1136 } 1137 Wait.VsCnt = ~0u; 1138 } 1139 1140 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1141 << "Old Instr: " << MI << '\n' 1142 << "New Instr: " << *II << '\n'); 1143 1144 if (!Wait.hasWait()) 1145 return Modified; 1146 } 1147 } 1148 1149 if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) { 1150 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1151 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1152 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1153 .addImm(Enc); 1154 TrackedWaitcntSet.insert(SWaitInst); 1155 Modified = true; 1156 1157 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1158 << "Old Instr: " << MI << '\n' 1159 << "New Instr: " << *SWaitInst << '\n'); 1160 } 1161 1162 if (Wait.VsCnt != ~0u) { 1163 assert(ST->hasVscnt()); 1164 1165 auto SWaitInst = 1166 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1167 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1168 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1169 .addImm(Wait.VsCnt); 1170 TrackedWaitcntSet.insert(SWaitInst); 1171 Modified = true; 1172 1173 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1174 << "Old Instr: " << MI << '\n' 1175 << "New Instr: " << *SWaitInst << '\n'); 1176 } 1177 1178 return Modified; 1179 } 1180 1181 // This is a flat memory operation. Check to see if it has memory 1182 // tokens for both LDS and Memory, and if so mark it as a flat. 1183 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1184 if (MI.memoperands_empty()) 1185 return true; 1186 1187 for (const MachineMemOperand *Memop : MI.memoperands()) { 1188 unsigned AS = Memop->getAddrSpace(); 1189 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1190 return true; 1191 } 1192 1193 return false; 1194 } 1195 1196 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1197 WaitcntBrackets *ScoreBrackets) { 1198 // Now look at the instruction opcode. If it is a memory access 1199 // instruction, update the upper-bound of the appropriate counter's 1200 // bracket and the destination operand scores. 1201 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1202 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1203 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1204 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1205 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1206 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1207 } else { 1208 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1209 } 1210 } else if (TII->isFLAT(Inst)) { 1211 assert(Inst.mayLoad() || Inst.mayStore()); 1212 1213 if (TII->usesVM_CNT(Inst)) { 1214 if (!ST->hasVscnt()) 1215 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1216 else if (Inst.mayLoad() && 1217 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) 1218 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1219 else 1220 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1221 } 1222 1223 if (TII->usesLGKM_CNT(Inst)) { 1224 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1225 1226 // This is a flat memory operation, so note it - it will require 1227 // that both the VM and LGKM be flushed to zero if it is pending when 1228 // a VM or LGKM dependency occurs. 1229 if (mayAccessLDSThroughFlat(Inst)) 1230 ScoreBrackets->setPendingFlat(); 1231 } 1232 } else if (SIInstrInfo::isVMEM(Inst) && 1233 // TODO: get a better carve out. 1234 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1235 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1236 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && 1237 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && 1238 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { 1239 if (!ST->hasVscnt()) 1240 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1241 else if ((Inst.mayLoad() && 1242 AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) || 1243 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1244 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1245 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1246 else if (Inst.mayStore()) 1247 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1248 1249 if (ST->vmemWriteNeedsExpWaitcnt() && 1250 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1251 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1252 } 1253 } else if (TII->isSMRD(Inst)) { 1254 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1255 } else if (Inst.isCall()) { 1256 if (callWaitsOnFunctionReturn(Inst)) { 1257 // Act as a wait on everything 1258 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV)); 1259 } else { 1260 // May need to way wait for anything. 1261 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1262 } 1263 } else { 1264 switch (Inst.getOpcode()) { 1265 case AMDGPU::S_SENDMSG: 1266 case AMDGPU::S_SENDMSGHALT: 1267 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1268 break; 1269 case AMDGPU::EXP: 1270 case AMDGPU::EXP_DONE: { 1271 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1272 if (Imm >= 32 && Imm <= 63) 1273 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1274 else if (Imm >= 12 && Imm <= 15) 1275 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1276 else 1277 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1278 break; 1279 } 1280 case AMDGPU::S_MEMTIME: 1281 case AMDGPU::S_MEMREALTIME: 1282 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1283 break; 1284 default: 1285 break; 1286 } 1287 } 1288 } 1289 1290 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, 1291 uint32_t OtherScore) { 1292 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1293 uint32_t OtherShifted = 1294 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1295 Score = std::max(MyShifted, OtherShifted); 1296 return OtherShifted > MyShifted; 1297 } 1298 1299 /// Merge the pending events and associater score brackets of \p Other into 1300 /// this brackets status. 1301 /// 1302 /// Returns whether the merge resulted in a change that requires tighter waits 1303 /// (i.e. the merged brackets strictly dominate the original brackets). 1304 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1305 bool StrictDom = false; 1306 1307 for (auto T : inst_counter_types()) { 1308 // Merge event flags for this counter 1309 const bool OldOutOfOrder = counterOutOfOrder(T); 1310 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1311 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1312 if (OtherEvents & ~OldEvents) 1313 StrictDom = true; 1314 if (Other.MixedPendingEvents[T] || 1315 (OldEvents && OtherEvents && OldEvents != OtherEvents)) 1316 MixedPendingEvents[T] = true; 1317 PendingEvents |= OtherEvents; 1318 1319 // Merge scores for this counter 1320 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; 1321 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1322 MergeInfo M; 1323 M.OldLB = ScoreLBs[T]; 1324 M.OtherLB = Other.ScoreLBs[T]; 1325 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; 1326 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; 1327 1328 const uint32_t NewUB = ScoreUBs[T] + M.MyShift; 1329 if (NewUB < ScoreUBs[T]) 1330 report_fatal_error("waitcnt score overflow"); 1331 ScoreUBs[T] = NewUB; 1332 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); 1333 1334 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1335 1336 bool RegStrictDom = false; 1337 for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E; 1338 J++) { 1339 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1340 } 1341 1342 if (T == LGKM_CNT) { 1343 for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1; 1344 J != E; J++) { 1345 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1346 } 1347 } 1348 1349 if (RegStrictDom && !OldOutOfOrder) 1350 StrictDom = true; 1351 } 1352 1353 VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR()); 1354 SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR()); 1355 1356 return StrictDom; 1357 } 1358 1359 // Generate s_waitcnt instructions where needed. 1360 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1361 MachineBasicBlock &Block, 1362 WaitcntBrackets &ScoreBrackets) { 1363 bool Modified = false; 1364 1365 LLVM_DEBUG({ 1366 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1367 ScoreBrackets.dump(); 1368 }); 1369 1370 // Walk over the instructions. 1371 MachineInstr *OldWaitcntInstr = nullptr; 1372 1373 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1374 E = Block.instr_end(); 1375 Iter != E;) { 1376 MachineInstr &Inst = *Iter; 1377 1378 // Track pre-existing waitcnts from earlier iterations. 1379 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1380 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1381 Inst.getOperand(0).isReg() && 1382 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1383 if (!OldWaitcntInstr) 1384 OldWaitcntInstr = &Inst; 1385 ++Iter; 1386 continue; 1387 } 1388 1389 bool VCCZBugWorkAround = false; 1390 if (readsVCCZ(Inst)) { 1391 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1392 ScoreBrackets.getScoreUB(LGKM_CNT) && 1393 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1394 if (ST->hasReadVCCZBug()) 1395 VCCZBugWorkAround = true; 1396 } 1397 } 1398 1399 // Generate an s_waitcnt instruction to be placed before 1400 // cur_Inst, if needed. 1401 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1402 OldWaitcntInstr = nullptr; 1403 1404 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1405 1406 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1407 // If this instruction generates a S_SETVSKIP because it is an 1408 // indexed resource, and we are on Tahiti, then it will also force 1409 // an S_WAITCNT vmcnt(0) 1410 if (RequireCheckResourceType(Inst, context)) { 1411 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1412 ScoreBrackets->setScoreLB(VM_CNT, 1413 ScoreBrackets->getScoreUB(VM_CNT)); 1414 } 1415 #endif 1416 1417 LLVM_DEBUG({ 1418 Inst.print(dbgs()); 1419 ScoreBrackets.dump(); 1420 }); 1421 1422 // TODO: Remove this work-around after fixing the scheduler and enable the 1423 // assert above. 1424 if (VCCZBugWorkAround) { 1425 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1426 // bit is updated, so we can restore the bit by reading the value of 1427 // vcc and then writing it back to the register. 1428 BuildMI(Block, Inst, Inst.getDebugLoc(), 1429 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1430 TRI->getVCC()) 1431 .addReg(TRI->getVCC()); 1432 Modified = true; 1433 } 1434 1435 ++Iter; 1436 } 1437 1438 return Modified; 1439 } 1440 1441 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1442 ST = &MF.getSubtarget<GCNSubtarget>(); 1443 TII = ST->getInstrInfo(); 1444 TRI = &TII->getRegisterInfo(); 1445 MRI = &MF.getRegInfo(); 1446 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1447 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1448 1449 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1450 for (auto T : inst_counter_types()) 1451 ForceEmitWaitcnt[T] = false; 1452 1453 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1454 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1455 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1456 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1457 1458 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1459 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1460 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1461 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1462 1463 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1464 RegisterEncoding.VGPRL = 1465 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1466 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1467 RegisterEncoding.SGPRL = 1468 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1469 1470 TrackedWaitcntSet.clear(); 1471 RpotIdxMap.clear(); 1472 BlockInfos.clear(); 1473 1474 // Keep iterating over the blocks in reverse post order, inserting and 1475 // updating s_waitcnt where needed, until a fix point is reached. 1476 for (MachineBasicBlock *MBB : 1477 ReversePostOrderTraversal<MachineFunction *>(&MF)) { 1478 RpotIdxMap[MBB] = BlockInfos.size(); 1479 BlockInfos.emplace_back(MBB); 1480 } 1481 1482 std::unique_ptr<WaitcntBrackets> Brackets; 1483 bool Modified = false; 1484 bool Repeat; 1485 do { 1486 Repeat = false; 1487 1488 for (BlockInfo &BI : BlockInfos) { 1489 if (!BI.Dirty) 1490 continue; 1491 1492 unsigned Idx = std::distance(&*BlockInfos.begin(), &BI); 1493 1494 if (BI.Incoming) { 1495 if (!Brackets) 1496 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1497 else 1498 *Brackets = *BI.Incoming; 1499 } else { 1500 if (!Brackets) 1501 Brackets = std::make_unique<WaitcntBrackets>(ST); 1502 else 1503 Brackets->clear(); 1504 } 1505 1506 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1507 BI.Dirty = false; 1508 1509 if (Brackets->hasPending()) { 1510 BlockInfo *MoveBracketsToSucc = nullptr; 1511 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1512 unsigned SuccIdx = RpotIdxMap[Succ]; 1513 BlockInfo &SuccBI = BlockInfos[SuccIdx]; 1514 if (!SuccBI.Incoming) { 1515 SuccBI.Dirty = true; 1516 if (SuccIdx <= Idx) 1517 Repeat = true; 1518 if (!MoveBracketsToSucc) { 1519 MoveBracketsToSucc = &SuccBI; 1520 } else { 1521 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1522 } 1523 } else if (SuccBI.Incoming->merge(*Brackets)) { 1524 SuccBI.Dirty = true; 1525 if (SuccIdx <= Idx) 1526 Repeat = true; 1527 } 1528 } 1529 if (MoveBracketsToSucc) 1530 MoveBracketsToSucc->Incoming = std::move(Brackets); 1531 } 1532 } 1533 } while (Repeat); 1534 1535 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1536 1537 bool HaveScalarStores = false; 1538 1539 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1540 ++BI) { 1541 MachineBasicBlock &MBB = *BI; 1542 1543 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1544 ++I) { 1545 if (!HaveScalarStores && TII->isScalarStore(*I)) 1546 HaveScalarStores = true; 1547 1548 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1549 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1550 EndPgmBlocks.push_back(&MBB); 1551 } 1552 } 1553 1554 if (HaveScalarStores) { 1555 // If scalar writes are used, the cache must be flushed or else the next 1556 // wave to reuse the same scratch memory can be clobbered. 1557 // 1558 // Insert s_dcache_wb at wave termination points if there were any scalar 1559 // stores, and only if the cache hasn't already been flushed. This could be 1560 // improved by looking across blocks for flushes in postdominating blocks 1561 // from the stores but an explicitly requested flush is probably very rare. 1562 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1563 bool SeenDCacheWB = false; 1564 1565 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1566 ++I) { 1567 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1568 SeenDCacheWB = true; 1569 else if (TII->isScalarStore(*I)) 1570 SeenDCacheWB = false; 1571 1572 // FIXME: It would be better to insert this before a waitcnt if any. 1573 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1574 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1575 !SeenDCacheWB) { 1576 Modified = true; 1577 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1578 } 1579 } 1580 } 1581 } 1582 1583 if (!MFI->isEntryFunction()) { 1584 // Wait for any outstanding memory operations that the input registers may 1585 // depend on. We can't track them and it's better to the wait after the 1586 // costly call sequence. 1587 1588 // TODO: Could insert earlier and schedule more liberally with operations 1589 // that only use caller preserved registers. 1590 MachineBasicBlock &EntryBB = MF.front(); 1591 if (ST->hasVscnt()) 1592 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), 1593 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1594 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1595 .addImm(0); 1596 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1597 .addImm(0); 1598 1599 Modified = true; 1600 } 1601 1602 return Modified; 1603 } 1604