1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "AMDGPU.h"
27 #include "AMDGPUSubtarget.h"
28 #include "SIDefines.h"
29 #include "SIInstrInfo.h"
30 #include "SIMachineFunctionInfo.h"
31 #include "SIRegisterInfo.h"
32 #include "Utils/AMDGPUBaseInfo.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/DebugCounter.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <cstring>
56 #include <memory>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "si-insert-waitcnts"
63 
64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
65               "Force emit s_waitcnt expcnt(0) instrs");
66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
67               "Force emit s_waitcnt lgkmcnt(0) instrs");
68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
69               "Force emit s_waitcnt vmcnt(0) instrs");
70 
71 static cl::opt<bool> ForceEmitZeroFlag(
72   "amdgpu-waitcnt-forcezero",
73   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
74   cl::init(false), cl::Hidden);
75 
76 namespace {
77 
78 template <typename EnumT>
79 class enum_iterator
80     : public iterator_facade_base<enum_iterator<EnumT>,
81                                   std::forward_iterator_tag, const EnumT> {
82   EnumT Value;
83 public:
84   enum_iterator() = default;
85   enum_iterator(EnumT Value) : Value(Value) {}
86 
87   enum_iterator &operator++() {
88     Value = static_cast<EnumT>(Value + 1);
89     return *this;
90   }
91 
92   bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
93 
94   EnumT operator*() const { return Value; }
95 };
96 
97 // Class of object that encapsulates latest instruction counter score
98 // associated with the operand.  Used for determining whether
99 // s_waitcnt instruction needs to be emited.
100 
101 #define CNT_MASK(t) (1u << (t))
102 
103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
104 
105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
106   return make_range(enum_iterator<InstCounterType>(VM_CNT),
107                     enum_iterator<InstCounterType>(NUM_INST_CNTS));
108 }
109 
110 using RegInterval = std::pair<signed, signed>;
111 
112 struct {
113   uint32_t VmcntMax;
114   uint32_t ExpcntMax;
115   uint32_t LgkmcntMax;
116   uint32_t VscntMax;
117   int32_t NumVGPRsMax;
118   int32_t NumSGPRsMax;
119 } HardwareLimits;
120 
121 struct {
122   unsigned VGPR0;
123   unsigned VGPRL;
124   unsigned SGPR0;
125   unsigned SGPRL;
126 } RegisterEncoding;
127 
128 enum WaitEventType {
129   VMEM_ACCESS,      // vector-memory read & write
130   VMEM_READ_ACCESS, // vector-memory read
131   VMEM_WRITE_ACCESS,// vector-memory write
132   LDS_ACCESS,       // lds read & write
133   GDS_ACCESS,       // gds read & write
134   SQ_MESSAGE,       // send message
135   SMEM_ACCESS,      // scalar-memory read & write
136   EXP_GPR_LOCK,     // export holding on its data src
137   GDS_GPR_LOCK,     // GDS holding on its data and addr src
138   EXP_POS_ACCESS,   // write to export position
139   EXP_PARAM_ACCESS, // write to export parameter
140   VMW_GPR_LOCK,     // vector-memory write holding on its data src
141   NUM_WAIT_EVENTS,
142 };
143 
144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = {
145   (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
146   (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
147       (1 << SQ_MESSAGE),
148   (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
149       (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
150   (1 << VMEM_WRITE_ACCESS)
151 };
152 
153 // The mapping is:
154 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
155 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
156 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
157 // We reserve a fixed number of VGPR slots in the scoring tables for
158 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
159 enum RegisterMapping {
160   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
161   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
162   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
163   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
164   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
165 };
166 
167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
168   switch (T) {
169   case VM_CNT:
170     Wait.VmCnt = std::min(Wait.VmCnt, Count);
171     break;
172   case EXP_CNT:
173     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
174     break;
175   case LGKM_CNT:
176     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
177     break;
178   case VS_CNT:
179     Wait.VsCnt = std::min(Wait.VsCnt, Count);
180     break;
181   default:
182     llvm_unreachable("bad InstCounterType");
183   }
184 }
185 
186 // This objects maintains the current score brackets of each wait counter, and
187 // a per-register scoreboard for each wait counter.
188 //
189 // We also maintain the latest score for every event type that can change the
190 // waitcnt in order to know if there are multiple types of events within
191 // the brackets. When multiple types of event happen in the bracket,
192 // wait count may get decreased out of order, therefore we need to put in
193 // "s_waitcnt 0" before use.
194 class WaitcntBrackets {
195 public:
196   WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {
197     for (auto T : inst_counter_types())
198       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
199   }
200 
201   static uint32_t getWaitCountMax(InstCounterType T) {
202     switch (T) {
203     case VM_CNT:
204       return HardwareLimits.VmcntMax;
205     case LGKM_CNT:
206       return HardwareLimits.LgkmcntMax;
207     case EXP_CNT:
208       return HardwareLimits.ExpcntMax;
209     case VS_CNT:
210       return HardwareLimits.VscntMax;
211     default:
212       break;
213     }
214     return 0;
215   }
216 
217   uint32_t getScoreLB(InstCounterType T) const {
218     assert(T < NUM_INST_CNTS);
219     if (T >= NUM_INST_CNTS)
220       return 0;
221     return ScoreLBs[T];
222   }
223 
224   uint32_t getScoreUB(InstCounterType T) const {
225     assert(T < NUM_INST_CNTS);
226     if (T >= NUM_INST_CNTS)
227       return 0;
228     return ScoreUBs[T];
229   }
230 
231   // Mapping from event to counter.
232   InstCounterType eventCounter(WaitEventType E) {
233     if (WaitEventMaskForInst[VM_CNT] & (1 << E))
234       return VM_CNT;
235     if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
236       return LGKM_CNT;
237     if (WaitEventMaskForInst[VS_CNT] & (1 << E))
238       return VS_CNT;
239     assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
240     return EXP_CNT;
241   }
242 
243   uint32_t getRegScore(int GprNo, InstCounterType T) {
244     if (GprNo < NUM_ALL_VGPRS) {
245       return VgprScores[T][GprNo];
246     }
247     assert(T == LGKM_CNT);
248     return SgprScores[GprNo - NUM_ALL_VGPRS];
249   }
250 
251   void clear() {
252     memset(ScoreLBs, 0, sizeof(ScoreLBs));
253     memset(ScoreUBs, 0, sizeof(ScoreUBs));
254     PendingEvents = 0;
255     memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents));
256     for (auto T : inst_counter_types())
257       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
258     memset(SgprScores, 0, sizeof(SgprScores));
259   }
260 
261   bool merge(const WaitcntBrackets &Other);
262 
263   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
264                              const MachineRegisterInfo *MRI,
265                              const SIRegisterInfo *TRI, unsigned OpNo,
266                              bool Def) const;
267 
268   int32_t getMaxVGPR() const { return VgprUB; }
269   int32_t getMaxSGPR() const { return SgprUB; }
270 
271   bool counterOutOfOrder(InstCounterType T) const;
272   bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
273   bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
274   void determineWait(InstCounterType T, uint32_t ScoreToWait,
275                      AMDGPU::Waitcnt &Wait) const;
276   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
277   void applyWaitcnt(InstCounterType T, unsigned Count);
278   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
279                      const MachineRegisterInfo *MRI, WaitEventType E,
280                      MachineInstr &MI);
281 
282   bool hasPending() const { return PendingEvents != 0; }
283   bool hasPendingEvent(WaitEventType E) const {
284     return PendingEvents & (1 << E);
285   }
286 
287   bool hasPendingFlat() const {
288     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
289              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
290             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
291              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
292   }
293 
294   void setPendingFlat() {
295     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
296     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
297   }
298 
299   void print(raw_ostream &);
300   void dump() { print(dbgs()); }
301 
302 private:
303   struct MergeInfo {
304     uint32_t OldLB;
305     uint32_t OtherLB;
306     uint32_t MyShift;
307     uint32_t OtherShift;
308   };
309   static bool mergeScore(const MergeInfo &M, uint32_t &Score,
310                          uint32_t OtherScore);
311 
312   void setScoreLB(InstCounterType T, uint32_t Val) {
313     assert(T < NUM_INST_CNTS);
314     if (T >= NUM_INST_CNTS)
315       return;
316     ScoreLBs[T] = Val;
317   }
318 
319   void setScoreUB(InstCounterType T, uint32_t Val) {
320     assert(T < NUM_INST_CNTS);
321     if (T >= NUM_INST_CNTS)
322       return;
323     ScoreUBs[T] = Val;
324     if (T == EXP_CNT) {
325       uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
326       if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
327         ScoreLBs[T] = UB;
328     }
329   }
330 
331   void setRegScore(int GprNo, InstCounterType T, uint32_t Val) {
332     if (GprNo < NUM_ALL_VGPRS) {
333       if (GprNo > VgprUB) {
334         VgprUB = GprNo;
335       }
336       VgprScores[T][GprNo] = Val;
337     } else {
338       assert(T == LGKM_CNT);
339       if (GprNo - NUM_ALL_VGPRS > SgprUB) {
340         SgprUB = GprNo - NUM_ALL_VGPRS;
341       }
342       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
343     }
344   }
345 
346   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
347                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
348                    unsigned OpNo, uint32_t Val);
349 
350   const GCNSubtarget *ST = nullptr;
351   uint32_t ScoreLBs[NUM_INST_CNTS] = {0};
352   uint32_t ScoreUBs[NUM_INST_CNTS] = {0};
353   uint32_t PendingEvents = 0;
354   bool MixedPendingEvents[NUM_INST_CNTS] = {false};
355   // Remember the last flat memory operation.
356   uint32_t LastFlat[NUM_INST_CNTS] = {0};
357   // wait_cnt scores for every vgpr.
358   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
359   int32_t VgprUB = 0;
360   int32_t SgprUB = 0;
361   uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
362   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
363   uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
364 };
365 
366 class SIInsertWaitcnts : public MachineFunctionPass {
367 private:
368   const GCNSubtarget *ST = nullptr;
369   const SIInstrInfo *TII = nullptr;
370   const SIRegisterInfo *TRI = nullptr;
371   const MachineRegisterInfo *MRI = nullptr;
372   AMDGPU::IsaVersion IV;
373 
374   DenseSet<MachineInstr *> TrackedWaitcntSet;
375 
376   struct BlockInfo {
377     MachineBasicBlock *MBB;
378     std::unique_ptr<WaitcntBrackets> Incoming;
379     bool Dirty = true;
380 
381     explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
382   };
383 
384   std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index
385   DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap;
386 
387   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
388   // because of amdgpu-waitcnt-forcezero flag
389   bool ForceEmitZeroWaitcnts;
390   bool ForceEmitWaitcnt[NUM_INST_CNTS];
391 
392 public:
393   static char ID;
394 
395   SIInsertWaitcnts() : MachineFunctionPass(ID) {
396     (void)ForceExpCounter;
397     (void)ForceLgkmCounter;
398     (void)ForceVMCounter;
399   }
400 
401   bool runOnMachineFunction(MachineFunction &MF) override;
402 
403   StringRef getPassName() const override {
404     return "SI insert wait instructions";
405   }
406 
407   void getAnalysisUsage(AnalysisUsage &AU) const override {
408     AU.setPreservesCFG();
409     MachineFunctionPass::getAnalysisUsage(AU);
410   }
411 
412   bool isForceEmitWaitcnt() const {
413     for (auto T : inst_counter_types())
414       if (ForceEmitWaitcnt[T])
415         return true;
416     return false;
417   }
418 
419   void setForceEmitWaitcnt() {
420 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
421 // For debug builds, get the debug counter info and adjust if need be
422 #ifndef NDEBUG
423     if (DebugCounter::isCounterSet(ForceExpCounter) &&
424         DebugCounter::shouldExecute(ForceExpCounter)) {
425       ForceEmitWaitcnt[EXP_CNT] = true;
426     } else {
427       ForceEmitWaitcnt[EXP_CNT] = false;
428     }
429 
430     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
431          DebugCounter::shouldExecute(ForceLgkmCounter)) {
432       ForceEmitWaitcnt[LGKM_CNT] = true;
433     } else {
434       ForceEmitWaitcnt[LGKM_CNT] = false;
435     }
436 
437     if (DebugCounter::isCounterSet(ForceVMCounter) &&
438         DebugCounter::shouldExecute(ForceVMCounter)) {
439       ForceEmitWaitcnt[VM_CNT] = true;
440     } else {
441       ForceEmitWaitcnt[VM_CNT] = false;
442     }
443 #endif // NDEBUG
444   }
445 
446   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
447   bool generateWaitcntInstBefore(MachineInstr &MI,
448                                  WaitcntBrackets &ScoreBrackets,
449                                  MachineInstr *OldWaitcntInstr);
450   void updateEventWaitcntAfter(MachineInstr &Inst,
451                                WaitcntBrackets *ScoreBrackets);
452   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
453                             WaitcntBrackets &ScoreBrackets);
454 };
455 
456 } // end anonymous namespace
457 
458 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
459                                             const SIInstrInfo *TII,
460                                             const MachineRegisterInfo *MRI,
461                                             const SIRegisterInfo *TRI,
462                                             unsigned OpNo, bool Def) const {
463   const MachineOperand &Op = MI->getOperand(OpNo);
464   if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
465       (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg()))
466     return {-1, -1};
467 
468   // A use via a PW operand does not need a waitcnt.
469   // A partial write is not a WAW.
470   assert(!Op.getSubReg() || !Op.isUndef());
471 
472   RegInterval Result;
473   const MachineRegisterInfo &MRIA = *MRI;
474 
475   unsigned Reg = TRI->getEncodingValue(Op.getReg());
476 
477   if (TRI->isVGPR(MRIA, Op.getReg())) {
478     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
479     Result.first = Reg - RegisterEncoding.VGPR0;
480     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
481   } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
482     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
483     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
484     assert(Result.first >= NUM_ALL_VGPRS &&
485            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
486   }
487   // TODO: Handle TTMP
488   // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
489   else
490     return {-1, -1};
491 
492   const MachineInstr &MIA = *MI;
493   const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
494   unsigned Size = TRI->getRegSizeInBits(*RC);
495   Result.second = Result.first + (Size / 32);
496 
497   return Result;
498 }
499 
500 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
501                                   const SIInstrInfo *TII,
502                                   const SIRegisterInfo *TRI,
503                                   const MachineRegisterInfo *MRI, unsigned OpNo,
504                                   uint32_t Val) {
505   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
506   LLVM_DEBUG({
507     const MachineOperand &Opnd = MI->getOperand(OpNo);
508     assert(TRI->isVGPR(*MRI, Opnd.getReg()));
509   });
510   for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
511     setRegScore(RegNo, EXP_CNT, Val);
512   }
513 }
514 
515 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
516                                     const SIRegisterInfo *TRI,
517                                     const MachineRegisterInfo *MRI,
518                                     WaitEventType E, MachineInstr &Inst) {
519   const MachineRegisterInfo &MRIA = *MRI;
520   InstCounterType T = eventCounter(E);
521   uint32_t CurrScore = getScoreUB(T) + 1;
522   if (CurrScore == 0)
523     report_fatal_error("InsertWaitcnt score wraparound");
524   // PendingEvents and ScoreUB need to be update regardless if this event
525   // changes the score of a register or not.
526   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
527   if (!hasPendingEvent(E)) {
528     if (PendingEvents & WaitEventMaskForInst[T])
529       MixedPendingEvents[T] = true;
530     PendingEvents |= 1 << E;
531   }
532   setScoreUB(T, CurrScore);
533 
534   if (T == EXP_CNT) {
535     // Put score on the source vgprs. If this is a store, just use those
536     // specific register(s).
537     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
538       int AddrOpIdx =
539           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
540       // All GDS operations must protect their address register (same as
541       // export.)
542       if (AddrOpIdx != -1) {
543         setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
544       }
545 
546       if (Inst.mayStore()) {
547         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
548                                        AMDGPU::OpName::data0) != -1) {
549           setExpScore(
550               &Inst, TII, TRI, MRI,
551               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
552               CurrScore);
553         }
554         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
555                                        AMDGPU::OpName::data1) != -1) {
556           setExpScore(&Inst, TII, TRI, MRI,
557                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
558                                                  AMDGPU::OpName::data1),
559                       CurrScore);
560         }
561       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
562                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
563                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
564                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
565                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
566                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
567                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
568                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
569                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
570         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
571           const MachineOperand &Op = Inst.getOperand(I);
572           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
573             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
574           }
575         }
576       }
577     } else if (TII->isFLAT(Inst)) {
578       if (Inst.mayStore()) {
579         setExpScore(
580             &Inst, TII, TRI, MRI,
581             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
582             CurrScore);
583       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
584         setExpScore(
585             &Inst, TII, TRI, MRI,
586             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
587             CurrScore);
588       }
589     } else if (TII->isMIMG(Inst)) {
590       if (Inst.mayStore()) {
591         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
592       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
593         setExpScore(
594             &Inst, TII, TRI, MRI,
595             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
596             CurrScore);
597       }
598     } else if (TII->isMTBUF(Inst)) {
599       if (Inst.mayStore()) {
600         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
601       }
602     } else if (TII->isMUBUF(Inst)) {
603       if (Inst.mayStore()) {
604         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
605       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
606         setExpScore(
607             &Inst, TII, TRI, MRI,
608             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
609             CurrScore);
610       }
611     } else {
612       if (TII->isEXP(Inst)) {
613         // For export the destination registers are really temps that
614         // can be used as the actual source after export patching, so
615         // we need to treat them like sources and set the EXP_CNT
616         // score.
617         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
618           MachineOperand &DefMO = Inst.getOperand(I);
619           if (DefMO.isReg() && DefMO.isDef() &&
620               TRI->isVGPR(MRIA, DefMO.getReg())) {
621             setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
622                         CurrScore);
623           }
624         }
625       }
626       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
627         MachineOperand &MO = Inst.getOperand(I);
628         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
629           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
630         }
631       }
632     }
633 #if 0 // TODO: check if this is handled by MUBUF code above.
634   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
635        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
636        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
637     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
638     unsigned OpNo;//TODO: find the OpNo for this operand;
639     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
640     for (signed RegNo = Interval.first; RegNo < Interval.second;
641     ++RegNo) {
642       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
643     }
644 #endif
645   } else {
646     // Match the score to the destination registers.
647     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
648       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
649       if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
650         continue;
651       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
652         setRegScore(RegNo, T, CurrScore);
653       }
654     }
655     if (TII->isDS(Inst) && Inst.mayStore()) {
656       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
657     }
658   }
659 }
660 
661 void WaitcntBrackets::print(raw_ostream &OS) {
662   OS << '\n';
663   for (auto T : inst_counter_types()) {
664     uint32_t LB = getScoreLB(T);
665     uint32_t UB = getScoreUB(T);
666 
667     switch (T) {
668     case VM_CNT:
669       OS << "    VM_CNT(" << UB - LB << "): ";
670       break;
671     case LGKM_CNT:
672       OS << "    LGKM_CNT(" << UB - LB << "): ";
673       break;
674     case EXP_CNT:
675       OS << "    EXP_CNT(" << UB - LB << "): ";
676       break;
677     case VS_CNT:
678       OS << "    VS_CNT(" << UB - LB << "): ";
679       break;
680     default:
681       OS << "    UNKNOWN(" << UB - LB << "): ";
682       break;
683     }
684 
685     if (LB < UB) {
686       // Print vgpr scores.
687       for (int J = 0; J <= getMaxVGPR(); J++) {
688         uint32_t RegScore = getRegScore(J, T);
689         if (RegScore <= LB)
690           continue;
691         uint32_t RelScore = RegScore - LB - 1;
692         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
693           OS << RelScore << ":v" << J << " ";
694         } else {
695           OS << RelScore << ":ds ";
696         }
697       }
698       // Also need to print sgpr scores for lgkm_cnt.
699       if (T == LGKM_CNT) {
700         for (int J = 0; J <= getMaxSGPR(); J++) {
701           uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
702           if (RegScore <= LB)
703             continue;
704           uint32_t RelScore = RegScore - LB - 1;
705           OS << RelScore << ":s" << J << " ";
706         }
707       }
708     }
709     OS << '\n';
710   }
711   OS << '\n';
712 }
713 
714 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
715 /// whether a waitcnt instruction is needed at all.
716 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
717   return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
718          simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
719          simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
720          simplifyWaitcnt(VS_CNT, Wait.VsCnt);
721 }
722 
723 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
724                                       unsigned &Count) const {
725   const uint32_t LB = getScoreLB(T);
726   const uint32_t UB = getScoreUB(T);
727   if (Count < UB && UB - Count > LB)
728     return true;
729 
730   Count = ~0u;
731   return false;
732 }
733 
734 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait,
735                                     AMDGPU::Waitcnt &Wait) const {
736   // If the score of src_operand falls within the bracket, we need an
737   // s_waitcnt instruction.
738   const uint32_t LB = getScoreLB(T);
739   const uint32_t UB = getScoreUB(T);
740   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
741     if ((T == VM_CNT || T == LGKM_CNT) &&
742         hasPendingFlat() &&
743         !ST->hasFlatLgkmVMemCountInOrder()) {
744       // If there is a pending FLAT operation, and this is a VMem or LGKM
745       // waitcnt and the target can report early completion, then we need
746       // to force a waitcnt 0.
747       addWait(Wait, T, 0);
748     } else if (counterOutOfOrder(T)) {
749       // Counter can get decremented out-of-order when there
750       // are multiple types event in the bracket. Also emit an s_wait counter
751       // with a conservative value of 0 for the counter.
752       addWait(Wait, T, 0);
753     } else {
754       addWait(Wait, T, UB - ScoreToWait);
755     }
756   }
757 }
758 
759 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
760   applyWaitcnt(VM_CNT, Wait.VmCnt);
761   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
762   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
763   applyWaitcnt(VS_CNT, Wait.VsCnt);
764 }
765 
766 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
767   const uint32_t UB = getScoreUB(T);
768   if (Count >= UB)
769     return;
770   if (Count != 0) {
771     if (counterOutOfOrder(T))
772       return;
773     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
774   } else {
775     setScoreLB(T, UB);
776     MixedPendingEvents[T] = false;
777     PendingEvents &= ~WaitEventMaskForInst[T];
778   }
779 }
780 
781 // Where there are multiple types of event in the bracket of a counter,
782 // the decrement may go out of order.
783 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
784   // Scalar memory read always can go out of order.
785   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
786     return true;
787   return MixedPendingEvents[T];
788 }
789 
790 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
791                       false)
792 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
793                     false)
794 
795 char SIInsertWaitcnts::ID = 0;
796 
797 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
798 
799 FunctionPass *llvm::createSIInsertWaitcntsPass() {
800   return new SIInsertWaitcnts();
801 }
802 
803 static bool readsVCCZ(const MachineInstr &MI) {
804   unsigned Opc = MI.getOpcode();
805   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
806          !MI.getOperand(1).isUndef();
807 }
808 
809 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
810 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
811   // Currently all conventions wait, but this may not always be the case.
812   //
813   // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
814   // senses to omit the wait and do it in the caller.
815   return true;
816 }
817 
818 /// \returns true if the callee is expected to wait for any outstanding waits
819 /// before returning.
820 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
821   return true;
822 }
823 
824 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
825 ///  Instructions of a given type are returned in order,
826 ///  but instructions of different types can complete out of order.
827 ///  We rely on this in-order completion
828 ///  and simply assign a score to the memory access instructions.
829 ///  We keep track of the active "score bracket" to determine
830 ///  if an access of a memory read requires an s_waitcnt
831 ///  and if so what the value of each counter is.
832 ///  The "score bracket" is bound by the lower bound and upper bound
833 ///  scores (*_score_LB and *_score_ub respectively).
834 bool SIInsertWaitcnts::generateWaitcntInstBefore(
835     MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
836     MachineInstr *OldWaitcntInstr) {
837   setForceEmitWaitcnt();
838   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
839 
840   if (MI.isDebugInstr())
841     return false;
842 
843   AMDGPU::Waitcnt Wait;
844 
845   // See if this instruction has a forced S_WAITCNT VM.
846   // TODO: Handle other cases of NeedsWaitcntVmBefore()
847   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
848       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
849       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
850       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
851       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
852     Wait.VmCnt = 0;
853   }
854 
855   // All waits must be resolved at call return.
856   // NOTE: this could be improved with knowledge of all call sites or
857   //   with knowledge of the called routines.
858   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
859       MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
860       (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
861     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
862   }
863   // Resolve vm waits before gs-done.
864   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
865             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
866            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
867             AMDGPU::SendMsg::ID_GS_DONE)) {
868     Wait.VmCnt = 0;
869   }
870 #if 0 // TODO: the following blocks of logic when we have fence.
871   else if (MI.getOpcode() == SC_FENCE) {
872     const unsigned int group_size =
873       context->shader_info->GetMaxThreadGroupSize();
874     // group_size == 0 means thread group size is unknown at compile time
875     const bool group_is_multi_wave =
876       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
877     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
878 
879     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
880       SCRegType src_type = Inst->GetSrcType(i);
881       switch (src_type) {
882         case SCMEM_LDS:
883           if (group_is_multi_wave ||
884             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
885             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
886                                ScoreBrackets->getScoreUB(LGKM_CNT));
887             // LDS may have to wait for VM_CNT after buffer load to LDS
888             if (target_info->HasBufferLoadToLDS()) {
889               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
890                                  ScoreBrackets->getScoreUB(VM_CNT));
891             }
892           }
893           break;
894 
895         case SCMEM_GDS:
896           if (group_is_multi_wave || fence_is_global) {
897             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
898               ScoreBrackets->getScoreUB(EXP_CNT));
899             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
900               ScoreBrackets->getScoreUB(LGKM_CNT));
901           }
902           break;
903 
904         case SCMEM_UAV:
905         case SCMEM_TFBUF:
906         case SCMEM_RING:
907         case SCMEM_SCATTER:
908           if (group_is_multi_wave || fence_is_global) {
909             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
910               ScoreBrackets->getScoreUB(EXP_CNT));
911             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
912               ScoreBrackets->getScoreUB(VM_CNT));
913           }
914           break;
915 
916         case SCMEM_SCRATCH:
917         default:
918           break;
919       }
920     }
921   }
922 #endif
923 
924   // Export & GDS instructions do not read the EXEC mask until after the export
925   // is granted (which can occur well after the instruction is issued).
926   // The shader program must flush all EXP operations on the export-count
927   // before overwriting the EXEC mask.
928   else {
929     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
930       // Export and GDS are tracked individually, either may trigger a waitcnt
931       // for EXEC.
932       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
933           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
934           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
935           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
936         Wait.ExpCnt = 0;
937       }
938     }
939 
940     if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
941       // The function is going to insert a wait on everything in its prolog.
942       // This still needs to be careful if the call target is a load (e.g. a GOT
943       // load). We also need to check WAW depenancy with saved PC.
944       Wait = AMDGPU::Waitcnt();
945 
946       int CallAddrOpIdx =
947           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
948       RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval(
949           &MI, TII, MRI, TRI, CallAddrOpIdx, false);
950 
951       for (signed RegNo = CallAddrOpInterval.first;
952            RegNo < CallAddrOpInterval.second; ++RegNo)
953         ScoreBrackets.determineWait(
954             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
955 
956       int RtnAddrOpIdx =
957             AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
958       if (RtnAddrOpIdx != -1) {
959         RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval(
960             &MI, TII, MRI, TRI, RtnAddrOpIdx, false);
961 
962         for (signed RegNo = RtnAddrOpInterval.first;
963              RegNo < RtnAddrOpInterval.second; ++RegNo)
964           ScoreBrackets.determineWait(
965               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
966       }
967 
968     } else {
969       // FIXME: Should not be relying on memoperands.
970       // Look at the source operands of every instruction to see if
971       // any of them results from a previous memory operation that affects
972       // its current usage. If so, an s_waitcnt instruction needs to be
973       // emitted.
974       // If the source operand was defined by a load, add the s_waitcnt
975       // instruction.
976       for (const MachineMemOperand *Memop : MI.memoperands()) {
977         unsigned AS = Memop->getAddrSpace();
978         if (AS != AMDGPUAS::LOCAL_ADDRESS)
979           continue;
980         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
981         // VM_CNT is only relevant to vgpr or LDS.
982         ScoreBrackets.determineWait(
983             VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
984       }
985 
986       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
987         const MachineOperand &Op = MI.getOperand(I);
988         const MachineRegisterInfo &MRIA = *MRI;
989         RegInterval Interval =
990             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false);
991         for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
992           if (TRI->isVGPR(MRIA, Op.getReg())) {
993             // VM_CNT is only relevant to vgpr or LDS.
994             ScoreBrackets.determineWait(
995                 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
996           }
997           ScoreBrackets.determineWait(
998               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
999         }
1000       }
1001       // End of for loop that looks at all source operands to decide vm_wait_cnt
1002       // and lgk_wait_cnt.
1003 
1004       // Two cases are handled for destination operands:
1005       // 1) If the destination operand was defined by a load, add the s_waitcnt
1006       // instruction to guarantee the right WAW order.
1007       // 2) If a destination operand that was used by a recent export/store ins,
1008       // add s_waitcnt on exp_cnt to guarantee the WAR order.
1009       if (MI.mayStore()) {
1010         // FIXME: Should not be relying on memoperands.
1011         for (const MachineMemOperand *Memop : MI.memoperands()) {
1012           unsigned AS = Memop->getAddrSpace();
1013           if (AS != AMDGPUAS::LOCAL_ADDRESS)
1014             continue;
1015           unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1016           ScoreBrackets.determineWait(
1017               VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1018           ScoreBrackets.determineWait(
1019               EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1020         }
1021       }
1022       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1023         MachineOperand &Def = MI.getOperand(I);
1024         const MachineRegisterInfo &MRIA = *MRI;
1025         RegInterval Interval =
1026             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true);
1027         for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1028           if (TRI->isVGPR(MRIA, Def.getReg())) {
1029             ScoreBrackets.determineWait(
1030                 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1031             ScoreBrackets.determineWait(
1032                 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1033           }
1034           ScoreBrackets.determineWait(
1035               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1036         }
1037       } // End of for loop that looks at all dest operands.
1038     }
1039   }
1040 
1041   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1042   // occurs before the instruction. Doing it here prevents any additional
1043   // S_WAITCNTs from being emitted if the instruction was marked as
1044   // requiring a WAITCNT beforehand.
1045   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1046       !ST->hasAutoWaitcntBeforeBarrier()) {
1047     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
1048   }
1049 
1050   // TODO: Remove this work-around, enable the assert for Bug 457939
1051   //       after fixing the scheduler. Also, the Shader Compiler code is
1052   //       independent of target.
1053   if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1054     if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1055             ScoreBrackets.getScoreUB(LGKM_CNT) &&
1056         ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1057       Wait.LgkmCnt = 0;
1058     }
1059   }
1060 
1061   // Early-out if no wait is indicated.
1062   if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
1063     bool Modified = false;
1064     if (OldWaitcntInstr) {
1065       for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1066            &*II != &MI; II = NextI, ++NextI) {
1067         if (II->isDebugInstr())
1068           continue;
1069 
1070         if (TrackedWaitcntSet.count(&*II)) {
1071           TrackedWaitcntSet.erase(&*II);
1072           II->eraseFromParent();
1073           Modified = true;
1074         } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1075           int64_t Imm = II->getOperand(0).getImm();
1076           ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
1077         } else {
1078           assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1079           assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1080           ScoreBrackets.applyWaitcnt(
1081               AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm()));
1082         }
1083       }
1084     }
1085     return Modified;
1086   }
1087 
1088   if (ForceEmitZeroWaitcnts)
1089     Wait = AMDGPU::Waitcnt::allZero(IV);
1090 
1091   if (ForceEmitWaitcnt[VM_CNT])
1092     Wait.VmCnt = 0;
1093   if (ForceEmitWaitcnt[EXP_CNT])
1094     Wait.ExpCnt = 0;
1095   if (ForceEmitWaitcnt[LGKM_CNT])
1096     Wait.LgkmCnt = 0;
1097   if (ForceEmitWaitcnt[VS_CNT])
1098     Wait.VsCnt = 0;
1099 
1100   ScoreBrackets.applyWaitcnt(Wait);
1101 
1102   AMDGPU::Waitcnt OldWait;
1103   bool Modified = false;
1104 
1105   if (OldWaitcntInstr) {
1106     for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1107          &*II != &MI; II = NextI, NextI++) {
1108       if (II->isDebugInstr())
1109         continue;
1110 
1111       if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1112         unsigned IEnc = II->getOperand(0).getImm();
1113         AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
1114         OldWait = OldWait.combined(IWait);
1115         if (!TrackedWaitcntSet.count(&*II))
1116           Wait = Wait.combined(IWait);
1117         unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
1118         if (IEnc != NewEnc) {
1119           II->getOperand(0).setImm(NewEnc);
1120           Modified = true;
1121         }
1122         Wait.VmCnt = ~0u;
1123         Wait.LgkmCnt = ~0u;
1124         Wait.ExpCnt = ~0u;
1125       } else {
1126         assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1127         assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1128 
1129         unsigned ICnt = II->getOperand(1).getImm();
1130         OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
1131         if (!TrackedWaitcntSet.count(&*II))
1132           Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
1133         if (Wait.VsCnt != ICnt) {
1134           II->getOperand(1).setImm(Wait.VsCnt);
1135           Modified = true;
1136         }
1137         Wait.VsCnt = ~0u;
1138       }
1139 
1140       LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n"
1141                         << "Old Instr: " << MI << '\n'
1142                         << "New Instr: " << *II << '\n');
1143 
1144       if (!Wait.hasWait())
1145         return Modified;
1146     }
1147   }
1148 
1149   if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
1150     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1151     auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1152                              MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1153                          .addImm(Enc);
1154     TrackedWaitcntSet.insert(SWaitInst);
1155     Modified = true;
1156 
1157     LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n"
1158                       << "Old Instr: " << MI << '\n'
1159                       << "New Instr: " << *SWaitInst << '\n');
1160   }
1161 
1162   if (Wait.VsCnt != ~0u) {
1163     assert(ST->hasVscnt());
1164 
1165     auto SWaitInst =
1166         BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1167                 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1168             .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1169             .addImm(Wait.VsCnt);
1170     TrackedWaitcntSet.insert(SWaitInst);
1171     Modified = true;
1172 
1173     LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n"
1174                       << "Old Instr: " << MI << '\n'
1175                       << "New Instr: " << *SWaitInst << '\n');
1176   }
1177 
1178   return Modified;
1179 }
1180 
1181 // This is a flat memory operation. Check to see if it has memory
1182 // tokens for both LDS and Memory, and if so mark it as a flat.
1183 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1184   if (MI.memoperands_empty())
1185     return true;
1186 
1187   for (const MachineMemOperand *Memop : MI.memoperands()) {
1188     unsigned AS = Memop->getAddrSpace();
1189     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1190       return true;
1191   }
1192 
1193   return false;
1194 }
1195 
1196 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1197                                                WaitcntBrackets *ScoreBrackets) {
1198   // Now look at the instruction opcode. If it is a memory access
1199   // instruction, update the upper-bound of the appropriate counter's
1200   // bracket and the destination operand scores.
1201   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1202   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1203     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1204         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1205       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1206       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1207     } else {
1208       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1209     }
1210   } else if (TII->isFLAT(Inst)) {
1211     assert(Inst.mayLoad() || Inst.mayStore());
1212 
1213     if (TII->usesVM_CNT(Inst)) {
1214       if (!ST->hasVscnt())
1215         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1216       else if (Inst.mayLoad() &&
1217                AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
1218         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1219       else
1220         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1221     }
1222 
1223     if (TII->usesLGKM_CNT(Inst)) {
1224       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1225 
1226       // This is a flat memory operation, so note it - it will require
1227       // that both the VM and LGKM be flushed to zero if it is pending when
1228       // a VM or LGKM dependency occurs.
1229       if (mayAccessLDSThroughFlat(Inst))
1230         ScoreBrackets->setPendingFlat();
1231     }
1232   } else if (SIInstrInfo::isVMEM(Inst) &&
1233              // TODO: get a better carve out.
1234              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1235              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1236              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
1237              Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
1238              Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
1239     if (!ST->hasVscnt())
1240       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1241     else if ((Inst.mayLoad() &&
1242               AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
1243              /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1244              (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1245       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1246     else if (Inst.mayStore())
1247       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1248 
1249     if (ST->vmemWriteNeedsExpWaitcnt() &&
1250         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
1251       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1252     }
1253   } else if (TII->isSMRD(Inst)) {
1254     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1255   } else if (Inst.isCall()) {
1256     if (callWaitsOnFunctionReturn(Inst)) {
1257       // Act as a wait on everything
1258       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV));
1259     } else {
1260       // May need to way wait for anything.
1261       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1262     }
1263   } else {
1264     switch (Inst.getOpcode()) {
1265     case AMDGPU::S_SENDMSG:
1266     case AMDGPU::S_SENDMSGHALT:
1267       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1268       break;
1269     case AMDGPU::EXP:
1270     case AMDGPU::EXP_DONE: {
1271       int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1272       if (Imm >= 32 && Imm <= 63)
1273         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1274       else if (Imm >= 12 && Imm <= 15)
1275         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1276       else
1277         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1278       break;
1279     }
1280     case AMDGPU::S_MEMTIME:
1281     case AMDGPU::S_MEMREALTIME:
1282       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1283       break;
1284     default:
1285       break;
1286     }
1287   }
1288 }
1289 
1290 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score,
1291                                  uint32_t OtherScore) {
1292   uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1293   uint32_t OtherShifted =
1294       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1295   Score = std::max(MyShifted, OtherShifted);
1296   return OtherShifted > MyShifted;
1297 }
1298 
1299 /// Merge the pending events and associater score brackets of \p Other into
1300 /// this brackets status.
1301 ///
1302 /// Returns whether the merge resulted in a change that requires tighter waits
1303 /// (i.e. the merged brackets strictly dominate the original brackets).
1304 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1305   bool StrictDom = false;
1306 
1307   for (auto T : inst_counter_types()) {
1308     // Merge event flags for this counter
1309     const bool OldOutOfOrder = counterOutOfOrder(T);
1310     const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T];
1311     const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1312     if (OtherEvents & ~OldEvents)
1313       StrictDom = true;
1314     if (Other.MixedPendingEvents[T] ||
1315         (OldEvents && OtherEvents && OldEvents != OtherEvents))
1316       MixedPendingEvents[T] = true;
1317     PendingEvents |= OtherEvents;
1318 
1319     // Merge scores for this counter
1320     const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T];
1321     const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1322     MergeInfo M;
1323     M.OldLB = ScoreLBs[T];
1324     M.OtherLB = Other.ScoreLBs[T];
1325     M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0;
1326     M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift;
1327 
1328     const uint32_t NewUB = ScoreUBs[T] + M.MyShift;
1329     if (NewUB < ScoreUBs[T])
1330       report_fatal_error("waitcnt score overflow");
1331     ScoreUBs[T] = NewUB;
1332     ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift);
1333 
1334     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1335 
1336     bool RegStrictDom = false;
1337     for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E;
1338          J++) {
1339       RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1340     }
1341 
1342     if (T == LGKM_CNT) {
1343       for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1;
1344            J != E; J++) {
1345         RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1346       }
1347     }
1348 
1349     if (RegStrictDom && !OldOutOfOrder)
1350       StrictDom = true;
1351   }
1352 
1353   VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR());
1354   SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR());
1355 
1356   return StrictDom;
1357 }
1358 
1359 // Generate s_waitcnt instructions where needed.
1360 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1361                                             MachineBasicBlock &Block,
1362                                             WaitcntBrackets &ScoreBrackets) {
1363   bool Modified = false;
1364 
1365   LLVM_DEBUG({
1366     dbgs() << "*** Block" << Block.getNumber() << " ***";
1367     ScoreBrackets.dump();
1368   });
1369 
1370   // Walk over the instructions.
1371   MachineInstr *OldWaitcntInstr = nullptr;
1372 
1373   for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1374                                          E = Block.instr_end();
1375        Iter != E;) {
1376     MachineInstr &Inst = *Iter;
1377 
1378     // Track pre-existing waitcnts from earlier iterations.
1379     if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1380         (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1381          Inst.getOperand(0).isReg() &&
1382          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1383       if (!OldWaitcntInstr)
1384         OldWaitcntInstr = &Inst;
1385       ++Iter;
1386       continue;
1387     }
1388 
1389     bool VCCZBugWorkAround = false;
1390     if (readsVCCZ(Inst)) {
1391       if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1392               ScoreBrackets.getScoreUB(LGKM_CNT) &&
1393           ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1394         if (ST->hasReadVCCZBug())
1395           VCCZBugWorkAround = true;
1396       }
1397     }
1398 
1399     // Generate an s_waitcnt instruction to be placed before
1400     // cur_Inst, if needed.
1401     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1402     OldWaitcntInstr = nullptr;
1403 
1404     updateEventWaitcntAfter(Inst, &ScoreBrackets);
1405 
1406 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1407     // If this instruction generates a S_SETVSKIP because it is an
1408     // indexed resource, and we are on Tahiti, then it will also force
1409     // an S_WAITCNT vmcnt(0)
1410     if (RequireCheckResourceType(Inst, context)) {
1411       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1412       ScoreBrackets->setScoreLB(VM_CNT,
1413       ScoreBrackets->getScoreUB(VM_CNT));
1414     }
1415 #endif
1416 
1417     LLVM_DEBUG({
1418       Inst.print(dbgs());
1419       ScoreBrackets.dump();
1420     });
1421 
1422     // TODO: Remove this work-around after fixing the scheduler and enable the
1423     // assert above.
1424     if (VCCZBugWorkAround) {
1425       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1426       // bit is updated, so we can restore the bit by reading the value of
1427       // vcc and then writing it back to the register.
1428       BuildMI(Block, Inst, Inst.getDebugLoc(),
1429               TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1430               TRI->getVCC())
1431           .addReg(TRI->getVCC());
1432       Modified = true;
1433     }
1434 
1435     ++Iter;
1436   }
1437 
1438   return Modified;
1439 }
1440 
1441 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1442   ST = &MF.getSubtarget<GCNSubtarget>();
1443   TII = ST->getInstrInfo();
1444   TRI = &TII->getRegisterInfo();
1445   MRI = &MF.getRegInfo();
1446   IV = AMDGPU::getIsaVersion(ST->getCPU());
1447   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1448 
1449   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1450   for (auto T : inst_counter_types())
1451     ForceEmitWaitcnt[T] = false;
1452 
1453   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1454   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1455   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1456   HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1457 
1458   HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
1459   HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
1460   assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1461   assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1462 
1463   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1464   RegisterEncoding.VGPRL =
1465       RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
1466   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1467   RegisterEncoding.SGPRL =
1468       RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
1469 
1470   TrackedWaitcntSet.clear();
1471   RpotIdxMap.clear();
1472   BlockInfos.clear();
1473 
1474   // Keep iterating over the blocks in reverse post order, inserting and
1475   // updating s_waitcnt where needed, until a fix point is reached.
1476   for (MachineBasicBlock *MBB :
1477        ReversePostOrderTraversal<MachineFunction *>(&MF)) {
1478     RpotIdxMap[MBB] = BlockInfos.size();
1479     BlockInfos.emplace_back(MBB);
1480   }
1481 
1482   std::unique_ptr<WaitcntBrackets> Brackets;
1483   bool Modified = false;
1484   bool Repeat;
1485   do {
1486     Repeat = false;
1487 
1488     for (BlockInfo &BI : BlockInfos) {
1489       if (!BI.Dirty)
1490         continue;
1491 
1492       unsigned Idx = std::distance(&*BlockInfos.begin(), &BI);
1493 
1494       if (BI.Incoming) {
1495         if (!Brackets)
1496           Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1497         else
1498           *Brackets = *BI.Incoming;
1499       } else {
1500         if (!Brackets)
1501           Brackets = std::make_unique<WaitcntBrackets>(ST);
1502         else
1503           Brackets->clear();
1504       }
1505 
1506       Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1507       BI.Dirty = false;
1508 
1509       if (Brackets->hasPending()) {
1510         BlockInfo *MoveBracketsToSucc = nullptr;
1511         for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1512           unsigned SuccIdx = RpotIdxMap[Succ];
1513           BlockInfo &SuccBI = BlockInfos[SuccIdx];
1514           if (!SuccBI.Incoming) {
1515             SuccBI.Dirty = true;
1516             if (SuccIdx <= Idx)
1517               Repeat = true;
1518             if (!MoveBracketsToSucc) {
1519               MoveBracketsToSucc = &SuccBI;
1520             } else {
1521               SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1522             }
1523           } else if (SuccBI.Incoming->merge(*Brackets)) {
1524             SuccBI.Dirty = true;
1525             if (SuccIdx <= Idx)
1526               Repeat = true;
1527           }
1528         }
1529         if (MoveBracketsToSucc)
1530           MoveBracketsToSucc->Incoming = std::move(Brackets);
1531       }
1532     }
1533   } while (Repeat);
1534 
1535   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1536 
1537   bool HaveScalarStores = false;
1538 
1539   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1540        ++BI) {
1541     MachineBasicBlock &MBB = *BI;
1542 
1543     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1544          ++I) {
1545       if (!HaveScalarStores && TII->isScalarStore(*I))
1546         HaveScalarStores = true;
1547 
1548       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1549           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1550         EndPgmBlocks.push_back(&MBB);
1551     }
1552   }
1553 
1554   if (HaveScalarStores) {
1555     // If scalar writes are used, the cache must be flushed or else the next
1556     // wave to reuse the same scratch memory can be clobbered.
1557     //
1558     // Insert s_dcache_wb at wave termination points if there were any scalar
1559     // stores, and only if the cache hasn't already been flushed. This could be
1560     // improved by looking across blocks for flushes in postdominating blocks
1561     // from the stores but an explicitly requested flush is probably very rare.
1562     for (MachineBasicBlock *MBB : EndPgmBlocks) {
1563       bool SeenDCacheWB = false;
1564 
1565       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1566            ++I) {
1567         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1568           SeenDCacheWB = true;
1569         else if (TII->isScalarStore(*I))
1570           SeenDCacheWB = false;
1571 
1572         // FIXME: It would be better to insert this before a waitcnt if any.
1573         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1574              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1575             !SeenDCacheWB) {
1576           Modified = true;
1577           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1578         }
1579       }
1580     }
1581   }
1582 
1583   if (!MFI->isEntryFunction()) {
1584     // Wait for any outstanding memory operations that the input registers may
1585     // depend on. We can't track them and it's better to the wait after the
1586     // costly call sequence.
1587 
1588     // TODO: Could insert earlier and schedule more liberally with operations
1589     // that only use caller preserved registers.
1590     MachineBasicBlock &EntryBB = MF.front();
1591     if (ST->hasVscnt())
1592       BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(),
1593               TII->get(AMDGPU::S_WAITCNT_VSCNT))
1594       .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1595       .addImm(0);
1596     BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1597       .addImm(0);
1598 
1599     Modified = true;
1600   }
1601 
1602   return Modified;
1603 }
1604