1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "GCNSubtarget.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "llvm/ADT/MapVector.h" 31 #include "llvm/ADT/PostOrderIterator.h" 32 #include "llvm/CodeGen/MachinePostDominators.h" 33 #include "llvm/InitializePasses.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/TargetParser.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "si-insert-waitcnts" 39 40 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 41 "Force emit s_waitcnt expcnt(0) instrs"); 42 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 43 "Force emit s_waitcnt lgkmcnt(0) instrs"); 44 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 45 "Force emit s_waitcnt vmcnt(0) instrs"); 46 47 static cl::opt<bool> ForceEmitZeroFlag( 48 "amdgpu-waitcnt-forcezero", 49 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 50 cl::init(false), cl::Hidden); 51 52 namespace { 53 54 template <typename EnumT> 55 class enum_iterator 56 : public iterator_facade_base<enum_iterator<EnumT>, 57 std::forward_iterator_tag, const EnumT> { 58 EnumT Value; 59 public: 60 enum_iterator() = default; 61 enum_iterator(EnumT Value) : Value(Value) {} 62 63 enum_iterator &operator++() { 64 Value = static_cast<EnumT>(Value + 1); 65 return *this; 66 } 67 68 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 69 70 EnumT operator*() const { return Value; } 71 }; 72 73 // Class of object that encapsulates latest instruction counter score 74 // associated with the operand. Used for determining whether 75 // s_waitcnt instruction needs to be emited. 76 77 #define CNT_MASK(t) (1u << (t)) 78 79 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 80 81 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 82 return make_range(enum_iterator<InstCounterType>(VM_CNT), 83 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 84 } 85 86 using RegInterval = std::pair<int, int>; 87 88 struct { 89 unsigned VmcntMax; 90 unsigned ExpcntMax; 91 unsigned LgkmcntMax; 92 unsigned VscntMax; 93 } HardwareLimits; 94 95 struct { 96 unsigned VGPR0; 97 unsigned VGPRL; 98 unsigned SGPR0; 99 unsigned SGPRL; 100 } RegisterEncoding; 101 102 enum WaitEventType { 103 VMEM_ACCESS, // vector-memory read & write 104 VMEM_READ_ACCESS, // vector-memory read 105 VMEM_WRITE_ACCESS,// vector-memory write 106 LDS_ACCESS, // lds read & write 107 GDS_ACCESS, // gds read & write 108 SQ_MESSAGE, // send message 109 SMEM_ACCESS, // scalar-memory read & write 110 EXP_GPR_LOCK, // export holding on its data src 111 GDS_GPR_LOCK, // GDS holding on its data and addr src 112 EXP_POS_ACCESS, // write to export position 113 EXP_PARAM_ACCESS, // write to export parameter 114 VMW_GPR_LOCK, // vector-memory write holding on its data src 115 NUM_WAIT_EVENTS, 116 }; 117 118 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = { 119 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 120 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 121 (1 << SQ_MESSAGE), 122 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 123 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 124 (1 << VMEM_WRITE_ACCESS) 125 }; 126 127 // The mapping is: 128 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 129 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 130 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 131 // We reserve a fixed number of VGPR slots in the scoring tables for 132 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 133 enum RegisterMapping { 134 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. 135 AGPR_OFFSET = 226, // Maximum programmable ArchVGPRs across all targets. 136 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 137 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 138 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 139 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 140 }; 141 142 // Enumerate different types of result-returning VMEM operations. Although 143 // s_waitcnt orders them all with a single vmcnt counter, in the absence of 144 // s_waitcnt only instructions of the same VmemType are guaranteed to write 145 // their results in order -- so there is no need to insert an s_waitcnt between 146 // two instructions of the same type that write the same vgpr. 147 enum VmemType { 148 // BUF instructions and MIMG instructions without a sampler. 149 VMEM_NOSAMPLER, 150 // MIMG instructions with a sampler. 151 VMEM_SAMPLER, 152 }; 153 154 VmemType getVmemType(const MachineInstr &Inst) { 155 assert(SIInstrInfo::isVMEM(Inst)); 156 if (!SIInstrInfo::isMIMG(Inst)) 157 return VMEM_NOSAMPLER; 158 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); 159 return AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler 160 ? VMEM_SAMPLER 161 : VMEM_NOSAMPLER; 162 } 163 164 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 165 switch (T) { 166 case VM_CNT: 167 Wait.VmCnt = std::min(Wait.VmCnt, Count); 168 break; 169 case EXP_CNT: 170 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 171 break; 172 case LGKM_CNT: 173 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 174 break; 175 case VS_CNT: 176 Wait.VsCnt = std::min(Wait.VsCnt, Count); 177 break; 178 default: 179 llvm_unreachable("bad InstCounterType"); 180 } 181 } 182 183 // This objects maintains the current score brackets of each wait counter, and 184 // a per-register scoreboard for each wait counter. 185 // 186 // We also maintain the latest score for every event type that can change the 187 // waitcnt in order to know if there are multiple types of events within 188 // the brackets. When multiple types of event happen in the bracket, 189 // wait count may get decreased out of order, therefore we need to put in 190 // "s_waitcnt 0" before use. 191 class WaitcntBrackets { 192 public: 193 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {} 194 195 static unsigned getWaitCountMax(InstCounterType T) { 196 switch (T) { 197 case VM_CNT: 198 return HardwareLimits.VmcntMax; 199 case LGKM_CNT: 200 return HardwareLimits.LgkmcntMax; 201 case EXP_CNT: 202 return HardwareLimits.ExpcntMax; 203 case VS_CNT: 204 return HardwareLimits.VscntMax; 205 default: 206 break; 207 } 208 return 0; 209 } 210 211 unsigned getScoreLB(InstCounterType T) const { 212 assert(T < NUM_INST_CNTS); 213 return ScoreLBs[T]; 214 } 215 216 unsigned getScoreUB(InstCounterType T) const { 217 assert(T < NUM_INST_CNTS); 218 return ScoreUBs[T]; 219 } 220 221 // Mapping from event to counter. 222 InstCounterType eventCounter(WaitEventType E) { 223 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 224 return VM_CNT; 225 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 226 return LGKM_CNT; 227 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 228 return VS_CNT; 229 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 230 return EXP_CNT; 231 } 232 233 unsigned getRegScore(int GprNo, InstCounterType T) { 234 if (GprNo < NUM_ALL_VGPRS) { 235 return VgprScores[T][GprNo]; 236 } 237 assert(T == LGKM_CNT); 238 return SgprScores[GprNo - NUM_ALL_VGPRS]; 239 } 240 241 bool merge(const WaitcntBrackets &Other); 242 243 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 244 const MachineRegisterInfo *MRI, 245 const SIRegisterInfo *TRI, unsigned OpNo) const; 246 247 bool counterOutOfOrder(InstCounterType T) const; 248 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 249 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 250 void determineWait(InstCounterType T, unsigned ScoreToWait, 251 AMDGPU::Waitcnt &Wait) const; 252 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 253 void applyWaitcnt(InstCounterType T, unsigned Count); 254 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 255 const MachineRegisterInfo *MRI, WaitEventType E, 256 MachineInstr &MI); 257 258 bool hasPending() const { return PendingEvents != 0; } 259 bool hasPendingEvent(WaitEventType E) const { 260 return PendingEvents & (1 << E); 261 } 262 263 bool hasMixedPendingEvents(InstCounterType T) const { 264 unsigned Events = PendingEvents & WaitEventMaskForInst[T]; 265 // Return true if more than one bit is set in Events. 266 return Events & (Events - 1); 267 } 268 269 bool hasPendingFlat() const { 270 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 271 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 272 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 273 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 274 } 275 276 void setPendingFlat() { 277 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 278 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 279 } 280 281 // Return true if there might be pending writes to the specified vgpr by VMEM 282 // instructions with types different from V. 283 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { 284 assert(GprNo < NUM_ALL_VGPRS); 285 return VgprVmemTypes[GprNo] & ~(1 << V); 286 } 287 288 void clearVgprVmemTypes(int GprNo) { 289 assert(GprNo < NUM_ALL_VGPRS); 290 VgprVmemTypes[GprNo] = 0; 291 } 292 293 void print(raw_ostream &); 294 void dump() { print(dbgs()); } 295 296 private: 297 struct MergeInfo { 298 unsigned OldLB; 299 unsigned OtherLB; 300 unsigned MyShift; 301 unsigned OtherShift; 302 }; 303 static bool mergeScore(const MergeInfo &M, unsigned &Score, 304 unsigned OtherScore); 305 306 void setScoreLB(InstCounterType T, unsigned Val) { 307 assert(T < NUM_INST_CNTS); 308 ScoreLBs[T] = Val; 309 } 310 311 void setScoreUB(InstCounterType T, unsigned Val) { 312 assert(T < NUM_INST_CNTS); 313 ScoreUBs[T] = Val; 314 if (T == EXP_CNT) { 315 unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 316 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 317 ScoreLBs[T] = UB; 318 } 319 } 320 321 void setRegScore(int GprNo, InstCounterType T, unsigned Val) { 322 if (GprNo < NUM_ALL_VGPRS) { 323 VgprUB = std::max(VgprUB, GprNo); 324 VgprScores[T][GprNo] = Val; 325 } else { 326 assert(T == LGKM_CNT); 327 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 328 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 329 } 330 } 331 332 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 333 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 334 unsigned OpNo, unsigned Val); 335 336 const GCNSubtarget *ST = nullptr; 337 unsigned ScoreLBs[NUM_INST_CNTS] = {0}; 338 unsigned ScoreUBs[NUM_INST_CNTS] = {0}; 339 unsigned PendingEvents = 0; 340 // Remember the last flat memory operation. 341 unsigned LastFlat[NUM_INST_CNTS] = {0}; 342 // wait_cnt scores for every vgpr. 343 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 344 int VgprUB = -1; 345 int SgprUB = -1; 346 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 347 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 348 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 349 // Bitmask of the VmemTypes of VMEM instructions that might have a pending 350 // write to each vgpr. 351 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; 352 }; 353 354 class SIInsertWaitcnts : public MachineFunctionPass { 355 private: 356 const GCNSubtarget *ST = nullptr; 357 const SIInstrInfo *TII = nullptr; 358 const SIRegisterInfo *TRI = nullptr; 359 const MachineRegisterInfo *MRI = nullptr; 360 AMDGPU::IsaVersion IV; 361 362 DenseSet<MachineInstr *> TrackedWaitcntSet; 363 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 364 MachinePostDominatorTree *PDT; 365 366 struct BlockInfo { 367 MachineBasicBlock *MBB; 368 std::unique_ptr<WaitcntBrackets> Incoming; 369 bool Dirty = true; 370 371 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 372 }; 373 374 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 375 376 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 377 // because of amdgpu-waitcnt-forcezero flag 378 bool ForceEmitZeroWaitcnts; 379 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 380 381 public: 382 static char ID; 383 384 SIInsertWaitcnts() : MachineFunctionPass(ID) { 385 (void)ForceExpCounter; 386 (void)ForceLgkmCounter; 387 (void)ForceVMCounter; 388 } 389 390 bool runOnMachineFunction(MachineFunction &MF) override; 391 392 StringRef getPassName() const override { 393 return "SI insert wait instructions"; 394 } 395 396 void getAnalysisUsage(AnalysisUsage &AU) const override { 397 AU.setPreservesCFG(); 398 AU.addRequired<MachinePostDominatorTree>(); 399 MachineFunctionPass::getAnalysisUsage(AU); 400 } 401 402 bool isForceEmitWaitcnt() const { 403 for (auto T : inst_counter_types()) 404 if (ForceEmitWaitcnt[T]) 405 return true; 406 return false; 407 } 408 409 void setForceEmitWaitcnt() { 410 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 411 // For debug builds, get the debug counter info and adjust if need be 412 #ifndef NDEBUG 413 if (DebugCounter::isCounterSet(ForceExpCounter) && 414 DebugCounter::shouldExecute(ForceExpCounter)) { 415 ForceEmitWaitcnt[EXP_CNT] = true; 416 } else { 417 ForceEmitWaitcnt[EXP_CNT] = false; 418 } 419 420 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 421 DebugCounter::shouldExecute(ForceLgkmCounter)) { 422 ForceEmitWaitcnt[LGKM_CNT] = true; 423 } else { 424 ForceEmitWaitcnt[LGKM_CNT] = false; 425 } 426 427 if (DebugCounter::isCounterSet(ForceVMCounter) && 428 DebugCounter::shouldExecute(ForceVMCounter)) { 429 ForceEmitWaitcnt[VM_CNT] = true; 430 } else { 431 ForceEmitWaitcnt[VM_CNT] = false; 432 } 433 #endif // NDEBUG 434 } 435 436 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; 437 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 438 bool generateWaitcntInstBefore(MachineInstr &MI, 439 WaitcntBrackets &ScoreBrackets, 440 MachineInstr *OldWaitcntInstr); 441 void updateEventWaitcntAfter(MachineInstr &Inst, 442 WaitcntBrackets *ScoreBrackets); 443 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 444 WaitcntBrackets &ScoreBrackets); 445 }; 446 447 } // end anonymous namespace 448 449 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 450 const SIInstrInfo *TII, 451 const MachineRegisterInfo *MRI, 452 const SIRegisterInfo *TRI, 453 unsigned OpNo) const { 454 const MachineOperand &Op = MI->getOperand(OpNo); 455 if (!TRI->isInAllocatableClass(Op.getReg())) 456 return {-1, -1}; 457 458 // A use via a PW operand does not need a waitcnt. 459 // A partial write is not a WAW. 460 assert(!Op.getSubReg() || !Op.isUndef()); 461 462 RegInterval Result; 463 464 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)); 465 466 if (TRI->isVectorRegister(*MRI, Op.getReg())) { 467 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 468 Result.first = Reg - RegisterEncoding.VGPR0; 469 if (TRI->isAGPR(*MRI, Op.getReg())) 470 Result.first += AGPR_OFFSET; 471 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 472 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 473 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 474 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 475 assert(Result.first >= NUM_ALL_VGPRS && 476 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 477 } 478 // TODO: Handle TTMP 479 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 480 else 481 return {-1, -1}; 482 483 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo); 484 unsigned Size = TRI->getRegSizeInBits(*RC); 485 Result.second = Result.first + ((Size + 16) / 32); 486 487 return Result; 488 } 489 490 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 491 const SIInstrInfo *TII, 492 const SIRegisterInfo *TRI, 493 const MachineRegisterInfo *MRI, unsigned OpNo, 494 unsigned Val) { 495 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo); 496 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); 497 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 498 setRegScore(RegNo, EXP_CNT, Val); 499 } 500 } 501 502 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 503 const SIRegisterInfo *TRI, 504 const MachineRegisterInfo *MRI, 505 WaitEventType E, MachineInstr &Inst) { 506 InstCounterType T = eventCounter(E); 507 unsigned CurrScore = getScoreUB(T) + 1; 508 if (CurrScore == 0) 509 report_fatal_error("InsertWaitcnt score wraparound"); 510 // PendingEvents and ScoreUB need to be update regardless if this event 511 // changes the score of a register or not. 512 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 513 PendingEvents |= 1 << E; 514 setScoreUB(T, CurrScore); 515 516 if (T == EXP_CNT) { 517 // Put score on the source vgprs. If this is a store, just use those 518 // specific register(s). 519 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 520 int AddrOpIdx = 521 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 522 // All GDS operations must protect their address register (same as 523 // export.) 524 if (AddrOpIdx != -1) { 525 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 526 } 527 528 if (Inst.mayStore()) { 529 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 530 AMDGPU::OpName::data0) != -1) { 531 setExpScore( 532 &Inst, TII, TRI, MRI, 533 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 534 CurrScore); 535 } 536 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 537 AMDGPU::OpName::data1) != -1) { 538 setExpScore(&Inst, TII, TRI, MRI, 539 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 540 AMDGPU::OpName::data1), 541 CurrScore); 542 } 543 } else if (SIInstrInfo::isAtomicRet(Inst) && 544 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 545 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 546 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 547 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 548 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 549 Inst.getOpcode() != AMDGPU::DS_APPEND && 550 Inst.getOpcode() != AMDGPU::DS_CONSUME && 551 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 552 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 553 const MachineOperand &Op = Inst.getOperand(I); 554 if (Op.isReg() && !Op.isDef() && 555 TRI->isVectorRegister(*MRI, Op.getReg())) { 556 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 557 } 558 } 559 } 560 } else if (TII->isFLAT(Inst)) { 561 if (Inst.mayStore()) { 562 setExpScore( 563 &Inst, TII, TRI, MRI, 564 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 565 CurrScore); 566 } else if (SIInstrInfo::isAtomicRet(Inst)) { 567 setExpScore( 568 &Inst, TII, TRI, MRI, 569 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 570 CurrScore); 571 } 572 } else if (TII->isMIMG(Inst)) { 573 if (Inst.mayStore()) { 574 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 575 } else if (SIInstrInfo::isAtomicRet(Inst)) { 576 setExpScore( 577 &Inst, TII, TRI, MRI, 578 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 579 CurrScore); 580 } 581 } else if (TII->isMTBUF(Inst)) { 582 if (Inst.mayStore()) { 583 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 584 } 585 } else if (TII->isMUBUF(Inst)) { 586 if (Inst.mayStore()) { 587 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 588 } else if (SIInstrInfo::isAtomicRet(Inst)) { 589 setExpScore( 590 &Inst, TII, TRI, MRI, 591 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 592 CurrScore); 593 } 594 } else { 595 if (TII->isEXP(Inst)) { 596 // For export the destination registers are really temps that 597 // can be used as the actual source after export patching, so 598 // we need to treat them like sources and set the EXP_CNT 599 // score. 600 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 601 MachineOperand &DefMO = Inst.getOperand(I); 602 if (DefMO.isReg() && DefMO.isDef() && 603 TRI->isVGPR(*MRI, DefMO.getReg())) { 604 setRegScore( 605 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), 606 EXP_CNT, CurrScore); 607 } 608 } 609 } 610 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 611 MachineOperand &MO = Inst.getOperand(I); 612 if (MO.isReg() && !MO.isDef() && 613 TRI->isVectorRegister(*MRI, MO.getReg())) { 614 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 615 } 616 } 617 } 618 #if 0 // TODO: check if this is handled by MUBUF code above. 619 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 620 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 621 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 622 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 623 unsigned OpNo;//TODO: find the OpNo for this operand; 624 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo); 625 for (int RegNo = Interval.first; RegNo < Interval.second; 626 ++RegNo) { 627 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 628 } 629 #endif 630 } else { 631 // Match the score to the destination registers. 632 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 633 auto &Op = Inst.getOperand(I); 634 if (!Op.isReg() || !Op.isDef()) 635 continue; 636 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I); 637 if (T == VM_CNT) { 638 if (Interval.first >= NUM_ALL_VGPRS) 639 continue; 640 if (SIInstrInfo::isVMEM(Inst)) { 641 VmemType V = getVmemType(Inst); 642 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) 643 VgprVmemTypes[RegNo] |= 1 << V; 644 } 645 } 646 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 647 setRegScore(RegNo, T, CurrScore); 648 } 649 } 650 if (TII->isDS(Inst) && Inst.mayStore()) { 651 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 652 } 653 } 654 } 655 656 void WaitcntBrackets::print(raw_ostream &OS) { 657 OS << '\n'; 658 for (auto T : inst_counter_types()) { 659 unsigned LB = getScoreLB(T); 660 unsigned UB = getScoreUB(T); 661 662 switch (T) { 663 case VM_CNT: 664 OS << " VM_CNT(" << UB - LB << "): "; 665 break; 666 case LGKM_CNT: 667 OS << " LGKM_CNT(" << UB - LB << "): "; 668 break; 669 case EXP_CNT: 670 OS << " EXP_CNT(" << UB - LB << "): "; 671 break; 672 case VS_CNT: 673 OS << " VS_CNT(" << UB - LB << "): "; 674 break; 675 default: 676 OS << " UNKNOWN(" << UB - LB << "): "; 677 break; 678 } 679 680 if (LB < UB) { 681 // Print vgpr scores. 682 for (int J = 0; J <= VgprUB; J++) { 683 unsigned RegScore = getRegScore(J, T); 684 if (RegScore <= LB) 685 continue; 686 unsigned RelScore = RegScore - LB - 1; 687 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 688 OS << RelScore << ":v" << J << " "; 689 } else { 690 OS << RelScore << ":ds "; 691 } 692 } 693 // Also need to print sgpr scores for lgkm_cnt. 694 if (T == LGKM_CNT) { 695 for (int J = 0; J <= SgprUB; J++) { 696 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 697 if (RegScore <= LB) 698 continue; 699 unsigned RelScore = RegScore - LB - 1; 700 OS << RelScore << ":s" << J << " "; 701 } 702 } 703 } 704 OS << '\n'; 705 } 706 OS << '\n'; 707 } 708 709 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 710 /// whether a waitcnt instruction is needed at all. 711 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 712 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 713 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 714 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) | 715 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 716 } 717 718 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 719 unsigned &Count) const { 720 const unsigned LB = getScoreLB(T); 721 const unsigned UB = getScoreUB(T); 722 if (Count < UB && UB - Count > LB) 723 return true; 724 725 Count = ~0u; 726 return false; 727 } 728 729 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait, 730 AMDGPU::Waitcnt &Wait) const { 731 // If the score of src_operand falls within the bracket, we need an 732 // s_waitcnt instruction. 733 const unsigned LB = getScoreLB(T); 734 const unsigned UB = getScoreUB(T); 735 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 736 if ((T == VM_CNT || T == LGKM_CNT) && 737 hasPendingFlat() && 738 !ST->hasFlatLgkmVMemCountInOrder()) { 739 // If there is a pending FLAT operation, and this is a VMem or LGKM 740 // waitcnt and the target can report early completion, then we need 741 // to force a waitcnt 0. 742 addWait(Wait, T, 0); 743 } else if (counterOutOfOrder(T)) { 744 // Counter can get decremented out-of-order when there 745 // are multiple types event in the bracket. Also emit an s_wait counter 746 // with a conservative value of 0 for the counter. 747 addWait(Wait, T, 0); 748 } else { 749 // If a counter has been maxed out avoid overflow by waiting for 750 // MAX(CounterType) - 1 instead. 751 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 752 addWait(Wait, T, NeededWait); 753 } 754 } 755 } 756 757 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 758 applyWaitcnt(VM_CNT, Wait.VmCnt); 759 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 760 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 761 applyWaitcnt(VS_CNT, Wait.VsCnt); 762 } 763 764 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 765 const unsigned UB = getScoreUB(T); 766 if (Count >= UB) 767 return; 768 if (Count != 0) { 769 if (counterOutOfOrder(T)) 770 return; 771 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 772 } else { 773 setScoreLB(T, UB); 774 PendingEvents &= ~WaitEventMaskForInst[T]; 775 } 776 } 777 778 // Where there are multiple types of event in the bracket of a counter, 779 // the decrement may go out of order. 780 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 781 // Scalar memory read always can go out of order. 782 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 783 return true; 784 return hasMixedPendingEvents(T); 785 } 786 787 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 788 false) 789 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 790 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 791 false) 792 793 char SIInsertWaitcnts::ID = 0; 794 795 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 796 797 FunctionPass *llvm::createSIInsertWaitcntsPass() { 798 return new SIInsertWaitcnts(); 799 } 800 801 static bool readsVCCZ(const MachineInstr &MI) { 802 unsigned Opc = MI.getOpcode(); 803 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 804 !MI.getOperand(1).isUndef(); 805 } 806 807 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 808 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 809 // Currently all conventions wait, but this may not always be the case. 810 // 811 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 812 // senses to omit the wait and do it in the caller. 813 return true; 814 } 815 816 /// \returns true if the callee is expected to wait for any outstanding waits 817 /// before returning. 818 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 819 return true; 820 } 821 822 /// Generate s_waitcnt instruction to be placed before cur_Inst. 823 /// Instructions of a given type are returned in order, 824 /// but instructions of different types can complete out of order. 825 /// We rely on this in-order completion 826 /// and simply assign a score to the memory access instructions. 827 /// We keep track of the active "score bracket" to determine 828 /// if an access of a memory read requires an s_waitcnt 829 /// and if so what the value of each counter is. 830 /// The "score bracket" is bound by the lower bound and upper bound 831 /// scores (*_score_LB and *_score_ub respectively). 832 bool SIInsertWaitcnts::generateWaitcntInstBefore( 833 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 834 MachineInstr *OldWaitcntInstr) { 835 setForceEmitWaitcnt(); 836 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 837 838 if (MI.isMetaInstruction()) 839 return false; 840 841 AMDGPU::Waitcnt Wait; 842 843 // See if this instruction has a forced S_WAITCNT VM. 844 // TODO: Handle other cases of NeedsWaitcntVmBefore() 845 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 846 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 847 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 848 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 849 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 850 Wait.VmCnt = 0; 851 } 852 853 // All waits must be resolved at call return. 854 // NOTE: this could be improved with knowledge of all call sites or 855 // with knowledge of the called routines. 856 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 857 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 858 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 859 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 860 } 861 // Resolve vm waits before gs-done. 862 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 863 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 864 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 865 AMDGPU::SendMsg::ID_GS_DONE)) { 866 Wait.VmCnt = 0; 867 } 868 #if 0 // TODO: the following blocks of logic when we have fence. 869 else if (MI.getOpcode() == SC_FENCE) { 870 const unsigned int group_size = 871 context->shader_info->GetMaxThreadGroupSize(); 872 // group_size == 0 means thread group size is unknown at compile time 873 const bool group_is_multi_wave = 874 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 875 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 876 877 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 878 SCRegType src_type = Inst->GetSrcType(i); 879 switch (src_type) { 880 case SCMEM_LDS: 881 if (group_is_multi_wave || 882 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 883 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 884 ScoreBrackets->getScoreUB(LGKM_CNT)); 885 // LDS may have to wait for VM_CNT after buffer load to LDS 886 if (target_info->HasBufferLoadToLDS()) { 887 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 888 ScoreBrackets->getScoreUB(VM_CNT)); 889 } 890 } 891 break; 892 893 case SCMEM_GDS: 894 if (group_is_multi_wave || fence_is_global) { 895 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 896 ScoreBrackets->getScoreUB(EXP_CNT)); 897 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 898 ScoreBrackets->getScoreUB(LGKM_CNT)); 899 } 900 break; 901 902 case SCMEM_UAV: 903 case SCMEM_TFBUF: 904 case SCMEM_RING: 905 case SCMEM_SCATTER: 906 if (group_is_multi_wave || fence_is_global) { 907 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 908 ScoreBrackets->getScoreUB(EXP_CNT)); 909 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 910 ScoreBrackets->getScoreUB(VM_CNT)); 911 } 912 break; 913 914 case SCMEM_SCRATCH: 915 default: 916 break; 917 } 918 } 919 } 920 #endif 921 922 // Export & GDS instructions do not read the EXEC mask until after the export 923 // is granted (which can occur well after the instruction is issued). 924 // The shader program must flush all EXP operations on the export-count 925 // before overwriting the EXEC mask. 926 else { 927 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 928 // Export and GDS are tracked individually, either may trigger a waitcnt 929 // for EXEC. 930 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 931 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 932 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 933 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 934 Wait.ExpCnt = 0; 935 } 936 } 937 938 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 939 // The function is going to insert a wait on everything in its prolog. 940 // This still needs to be careful if the call target is a load (e.g. a GOT 941 // load). We also need to check WAW depenancy with saved PC. 942 Wait = AMDGPU::Waitcnt(); 943 944 int CallAddrOpIdx = 945 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 946 947 if (MI.getOperand(CallAddrOpIdx).isReg()) { 948 RegInterval CallAddrOpInterval = 949 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx); 950 951 for (int RegNo = CallAddrOpInterval.first; 952 RegNo < CallAddrOpInterval.second; ++RegNo) 953 ScoreBrackets.determineWait( 954 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 955 956 int RtnAddrOpIdx = 957 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 958 if (RtnAddrOpIdx != -1) { 959 RegInterval RtnAddrOpInterval = 960 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx); 961 962 for (int RegNo = RtnAddrOpInterval.first; 963 RegNo < RtnAddrOpInterval.second; ++RegNo) 964 ScoreBrackets.determineWait( 965 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 966 } 967 } 968 } else { 969 // FIXME: Should not be relying on memoperands. 970 // Look at the source operands of every instruction to see if 971 // any of them results from a previous memory operation that affects 972 // its current usage. If so, an s_waitcnt instruction needs to be 973 // emitted. 974 // If the source operand was defined by a load, add the s_waitcnt 975 // instruction. 976 // 977 // Two cases are handled for destination operands: 978 // 1) If the destination operand was defined by a load, add the s_waitcnt 979 // instruction to guarantee the right WAW order. 980 // 2) If a destination operand that was used by a recent export/store ins, 981 // add s_waitcnt on exp_cnt to guarantee the WAR order. 982 for (const MachineMemOperand *Memop : MI.memoperands()) { 983 const Value *Ptr = Memop->getValue(); 984 if (Memop->isStore() && SLoadAddresses.count(Ptr)) { 985 addWait(Wait, LGKM_CNT, 0); 986 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) 987 SLoadAddresses.erase(Ptr); 988 } 989 unsigned AS = Memop->getAddrSpace(); 990 if (AS != AMDGPUAS::LOCAL_ADDRESS) 991 continue; 992 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 993 // VM_CNT is only relevant to vgpr or LDS. 994 ScoreBrackets.determineWait( 995 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 996 if (Memop->isStore()) { 997 ScoreBrackets.determineWait( 998 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 999 } 1000 } 1001 1002 // Loop over use and def operands. 1003 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1004 MachineOperand &Op = MI.getOperand(I); 1005 if (!Op.isReg()) 1006 continue; 1007 RegInterval Interval = 1008 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I); 1009 1010 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); 1011 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1012 if (IsVGPR) { 1013 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the 1014 // previous write and this write are the same type of VMEM 1015 // instruction, in which case they're guaranteed to write their 1016 // results in order anyway. 1017 if (Op.isUse() || !SIInstrInfo::isVMEM(MI) || 1018 ScoreBrackets.hasOtherPendingVmemTypes(RegNo, 1019 getVmemType(MI))) { 1020 ScoreBrackets.determineWait( 1021 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1022 ScoreBrackets.clearVgprVmemTypes(RegNo); 1023 } 1024 if (Op.isDef()) { 1025 ScoreBrackets.determineWait( 1026 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1027 } 1028 } 1029 ScoreBrackets.determineWait( 1030 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1031 } 1032 } 1033 } 1034 } 1035 1036 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1037 // occurs before the instruction. Doing it here prevents any additional 1038 // S_WAITCNTs from being emitted if the instruction was marked as 1039 // requiring a WAITCNT beforehand. 1040 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1041 !ST->hasAutoWaitcntBeforeBarrier()) { 1042 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1043 } 1044 1045 // TODO: Remove this work-around, enable the assert for Bug 457939 1046 // after fixing the scheduler. Also, the Shader Compiler code is 1047 // independent of target. 1048 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1049 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1050 ScoreBrackets.getScoreUB(LGKM_CNT) && 1051 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1052 Wait.LgkmCnt = 0; 1053 } 1054 } 1055 1056 // Early-out if no wait is indicated. 1057 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1058 bool Modified = false; 1059 if (OldWaitcntInstr) { 1060 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1061 &*II != &MI; II = NextI, ++NextI) { 1062 if (II->isDebugInstr()) 1063 continue; 1064 1065 if (TrackedWaitcntSet.count(&*II)) { 1066 TrackedWaitcntSet.erase(&*II); 1067 II->eraseFromParent(); 1068 Modified = true; 1069 } else if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1070 int64_t Imm = II->getOperand(0).getImm(); 1071 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1072 } else { 1073 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1074 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1075 auto W = TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm(); 1076 ScoreBrackets.applyWaitcnt(AMDGPU::Waitcnt(~0u, ~0u, ~0u, W)); 1077 } 1078 } 1079 } 1080 return Modified; 1081 } 1082 1083 if (ForceEmitZeroWaitcnts) 1084 Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt()); 1085 1086 if (ForceEmitWaitcnt[VM_CNT]) 1087 Wait.VmCnt = 0; 1088 if (ForceEmitWaitcnt[EXP_CNT]) 1089 Wait.ExpCnt = 0; 1090 if (ForceEmitWaitcnt[LGKM_CNT]) 1091 Wait.LgkmCnt = 0; 1092 if (ForceEmitWaitcnt[VS_CNT]) 1093 Wait.VsCnt = 0; 1094 1095 ScoreBrackets.applyWaitcnt(Wait); 1096 1097 AMDGPU::Waitcnt OldWait; 1098 bool Modified = false; 1099 1100 if (OldWaitcntInstr) { 1101 for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II); 1102 &*II != &MI; II = NextI, NextI++) { 1103 if (II->isDebugInstr()) 1104 continue; 1105 1106 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 1107 unsigned IEnc = II->getOperand(0).getImm(); 1108 AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc); 1109 OldWait = OldWait.combined(IWait); 1110 if (!TrackedWaitcntSet.count(&*II)) 1111 Wait = Wait.combined(IWait); 1112 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 1113 if (IEnc != NewEnc) { 1114 II->getOperand(0).setImm(NewEnc); 1115 Modified = true; 1116 } 1117 Wait.VmCnt = ~0u; 1118 Wait.LgkmCnt = ~0u; 1119 Wait.ExpCnt = ~0u; 1120 } else { 1121 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 1122 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 1123 1124 unsigned ICnt = TII->getNamedOperand(*II, AMDGPU::OpName::simm16) 1125 ->getImm(); 1126 OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt); 1127 if (!TrackedWaitcntSet.count(&*II)) 1128 Wait.VsCnt = std::min(Wait.VsCnt, ICnt); 1129 if (Wait.VsCnt != ICnt) { 1130 TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->setImm(Wait.VsCnt); 1131 Modified = true; 1132 } 1133 Wait.VsCnt = ~0u; 1134 } 1135 1136 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1137 << "Old Instr: " << MI 1138 << "New Instr: " << *II << '\n'); 1139 1140 if (!Wait.hasWait()) 1141 return Modified; 1142 } 1143 } 1144 1145 if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) { 1146 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1147 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1148 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1149 .addImm(Enc); 1150 TrackedWaitcntSet.insert(SWaitInst); 1151 Modified = true; 1152 1153 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1154 << "Old Instr: " << MI 1155 << "New Instr: " << *SWaitInst << '\n'); 1156 } 1157 1158 if (Wait.VsCnt != ~0u) { 1159 assert(ST->hasVscnt()); 1160 1161 auto SWaitInst = 1162 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1163 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1164 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1165 .addImm(Wait.VsCnt); 1166 TrackedWaitcntSet.insert(SWaitInst); 1167 Modified = true; 1168 1169 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1170 << "Old Instr: " << MI 1171 << "New Instr: " << *SWaitInst << '\n'); 1172 } 1173 1174 return Modified; 1175 } 1176 1177 // This is a flat memory operation. Check to see if it has memory tokens other 1178 // than LDS. Other address spaces supported by flat memory operations involve 1179 // global memory. 1180 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { 1181 assert(TII->isFLAT(MI)); 1182 1183 // All flat instructions use the VMEM counter. 1184 assert(TII->usesVM_CNT(MI)); 1185 1186 // If there are no memory operands then conservatively assume the flat 1187 // operation may access VMEM. 1188 if (MI.memoperands_empty()) 1189 return true; 1190 1191 // See if any memory operand specifies an address space that involves VMEM. 1192 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces 1193 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION 1194 // (GDS) address space is not supported by flat operations. Therefore, simply 1195 // return true unless only the LDS address space is found. 1196 for (const MachineMemOperand *Memop : MI.memoperands()) { 1197 unsigned AS = Memop->getAddrSpace(); 1198 assert(AS != AMDGPUAS::REGION_ADDRESS); 1199 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1200 return true; 1201 } 1202 1203 return false; 1204 } 1205 1206 // This is a flat memory operation. Check to see if it has memory tokens for 1207 // either LDS or FLAT. 1208 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1209 assert(TII->isFLAT(MI)); 1210 1211 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. 1212 if (!TII->usesLGKM_CNT(MI)) 1213 return false; 1214 1215 // If in tgsplit mode then there can be no use of LDS. 1216 if (ST->isTgSplitEnabled()) 1217 return false; 1218 1219 // If there are no memory operands then conservatively assume the flat 1220 // operation may access LDS. 1221 if (MI.memoperands_empty()) 1222 return true; 1223 1224 // See if any memory operand specifies an address space that involves LDS. 1225 for (const MachineMemOperand *Memop : MI.memoperands()) { 1226 unsigned AS = Memop->getAddrSpace(); 1227 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1228 return true; 1229 } 1230 1231 return false; 1232 } 1233 1234 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1235 WaitcntBrackets *ScoreBrackets) { 1236 // Now look at the instruction opcode. If it is a memory access 1237 // instruction, update the upper-bound of the appropriate counter's 1238 // bracket and the destination operand scores. 1239 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1240 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1241 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1242 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1243 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1244 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1245 } else { 1246 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1247 } 1248 } else if (TII->isFLAT(Inst)) { 1249 assert(Inst.mayLoadOrStore()); 1250 1251 int FlatASCount = 0; 1252 1253 if (mayAccessVMEMThroughFlat(Inst)) { 1254 ++FlatASCount; 1255 if (!ST->hasVscnt()) 1256 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1257 else if (Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) 1258 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1259 else 1260 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1261 } 1262 1263 if (mayAccessLDSThroughFlat(Inst)) { 1264 ++FlatASCount; 1265 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1266 } 1267 1268 // A Flat memory operation must access at least one address space. 1269 assert(FlatASCount); 1270 1271 // This is a flat memory operation that access both VMEM and LDS, so note it 1272 // - it will require that both the VM and LGKM be flushed to zero if it is 1273 // pending when a VM or LGKM dependency occurs. 1274 if (FlatASCount > 1) 1275 ScoreBrackets->setPendingFlat(); 1276 } else if (SIInstrInfo::isVMEM(Inst) && 1277 // TODO: get a better carve out. 1278 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1279 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1280 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL && 1281 Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV && 1282 Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) { 1283 if (!ST->hasVscnt()) 1284 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1285 else if ((Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) || 1286 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1287 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1288 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1289 else if (Inst.mayStore()) 1290 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1291 1292 if (ST->vmemWriteNeedsExpWaitcnt() && 1293 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { 1294 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1295 } 1296 } else if (TII->isSMRD(Inst)) { 1297 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1298 } else if (Inst.isCall()) { 1299 if (callWaitsOnFunctionReturn(Inst)) { 1300 // Act as a wait on everything 1301 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1302 } else { 1303 // May need to way wait for anything. 1304 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1305 } 1306 } else if (SIInstrInfo::isEXP(Inst)) { 1307 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1308 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) 1309 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1310 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) 1311 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1312 else 1313 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1314 } else { 1315 switch (Inst.getOpcode()) { 1316 case AMDGPU::S_SENDMSG: 1317 case AMDGPU::S_SENDMSGHALT: 1318 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1319 break; 1320 case AMDGPU::S_MEMTIME: 1321 case AMDGPU::S_MEMREALTIME: 1322 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1323 break; 1324 } 1325 } 1326 } 1327 1328 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, 1329 unsigned OtherScore) { 1330 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1331 unsigned OtherShifted = 1332 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1333 Score = std::max(MyShifted, OtherShifted); 1334 return OtherShifted > MyShifted; 1335 } 1336 1337 /// Merge the pending events and associater score brackets of \p Other into 1338 /// this brackets status. 1339 /// 1340 /// Returns whether the merge resulted in a change that requires tighter waits 1341 /// (i.e. the merged brackets strictly dominate the original brackets). 1342 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1343 bool StrictDom = false; 1344 1345 VgprUB = std::max(VgprUB, Other.VgprUB); 1346 SgprUB = std::max(SgprUB, Other.SgprUB); 1347 1348 for (auto T : inst_counter_types()) { 1349 // Merge event flags for this counter 1350 const bool OldOutOfOrder = counterOutOfOrder(T); 1351 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1352 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1353 if (OtherEvents & ~OldEvents) 1354 StrictDom = true; 1355 PendingEvents |= OtherEvents; 1356 1357 // Merge scores for this counter 1358 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; 1359 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1360 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); 1361 if (NewUB < ScoreLBs[T]) 1362 report_fatal_error("waitcnt score overflow"); 1363 1364 MergeInfo M; 1365 M.OldLB = ScoreLBs[T]; 1366 M.OtherLB = Other.ScoreLBs[T]; 1367 M.MyShift = NewUB - ScoreUBs[T]; 1368 M.OtherShift = NewUB - Other.ScoreUBs[T]; 1369 1370 ScoreUBs[T] = NewUB; 1371 1372 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1373 1374 bool RegStrictDom = false; 1375 for (int J = 0; J <= VgprUB; J++) { 1376 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1377 } 1378 1379 if (T == VM_CNT) { 1380 for (int J = 0; J <= VgprUB; J++) { 1381 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; 1382 RegStrictDom |= NewVmemTypes != VgprVmemTypes[J]; 1383 VgprVmemTypes[J] = NewVmemTypes; 1384 } 1385 } 1386 1387 if (T == LGKM_CNT) { 1388 for (int J = 0; J <= SgprUB; J++) { 1389 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1390 } 1391 } 1392 1393 if (RegStrictDom && !OldOutOfOrder) 1394 StrictDom = true; 1395 } 1396 1397 return StrictDom; 1398 } 1399 1400 // Generate s_waitcnt instructions where needed. 1401 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1402 MachineBasicBlock &Block, 1403 WaitcntBrackets &ScoreBrackets) { 1404 bool Modified = false; 1405 1406 LLVM_DEBUG({ 1407 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1408 ScoreBrackets.dump(); 1409 }); 1410 1411 // Track the correctness of vccz through this basic block. There are two 1412 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and 1413 // ST->partialVCCWritesUpdateVCCZ(). 1414 bool VCCZCorrect = true; 1415 if (ST->hasReadVCCZBug()) { 1416 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1417 // to vcc and then issued an smem load. 1418 VCCZCorrect = false; 1419 } else if (!ST->partialVCCWritesUpdateVCCZ()) { 1420 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1421 // to vcc_lo or vcc_hi. 1422 VCCZCorrect = false; 1423 } 1424 1425 // Walk over the instructions. 1426 MachineInstr *OldWaitcntInstr = nullptr; 1427 1428 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1429 E = Block.instr_end(); 1430 Iter != E;) { 1431 MachineInstr &Inst = *Iter; 1432 1433 // Track pre-existing waitcnts from earlier iterations. 1434 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1435 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1436 Inst.getOperand(0).isReg() && 1437 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1438 if (!OldWaitcntInstr) 1439 OldWaitcntInstr = &Inst; 1440 ++Iter; 1441 continue; 1442 } 1443 1444 // Generate an s_waitcnt instruction to be placed before Inst, if needed. 1445 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1446 OldWaitcntInstr = nullptr; 1447 1448 // Restore vccz if it's not known to be correct already. 1449 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); 1450 1451 // Don't examine operands unless we need to track vccz correctness. 1452 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { 1453 if (Inst.definesRegister(AMDGPU::VCC_LO) || 1454 Inst.definesRegister(AMDGPU::VCC_HI)) { 1455 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 1456 if (!ST->partialVCCWritesUpdateVCCZ()) 1457 VCCZCorrect = false; 1458 } else if (Inst.definesRegister(AMDGPU::VCC)) { 1459 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 1460 // vccz bit, so when we detect that an instruction may read from a 1461 // corrupt vccz bit, we need to: 1462 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 1463 // operations to complete. 1464 // 2. Restore the correct value of vccz by writing the current value 1465 // of vcc back to vcc. 1466 if (ST->hasReadVCCZBug() && 1467 ScoreBrackets.getScoreLB(LGKM_CNT) < 1468 ScoreBrackets.getScoreUB(LGKM_CNT) && 1469 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1470 // Writes to vcc while there's an outstanding smem read may get 1471 // clobbered as soon as any read completes. 1472 VCCZCorrect = false; 1473 } else { 1474 // Writes to vcc will fix any incorrect value in vccz. 1475 VCCZCorrect = true; 1476 } 1477 } 1478 } 1479 1480 if (TII->isSMRD(Inst)) { 1481 for (const MachineMemOperand *Memop : Inst.memoperands()) { 1482 const Value *Ptr = Memop->getValue(); 1483 SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent())); 1484 } 1485 if (ST->hasReadVCCZBug()) { 1486 // This smem read could complete and clobber vccz at any time. 1487 VCCZCorrect = false; 1488 } 1489 } 1490 1491 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1492 1493 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1494 // If this instruction generates a S_SETVSKIP because it is an 1495 // indexed resource, and we are on Tahiti, then it will also force 1496 // an S_WAITCNT vmcnt(0) 1497 if (RequireCheckResourceType(Inst, context)) { 1498 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1499 ScoreBrackets->setScoreLB(VM_CNT, 1500 ScoreBrackets->getScoreUB(VM_CNT)); 1501 } 1502 #endif 1503 1504 LLVM_DEBUG({ 1505 Inst.print(dbgs()); 1506 ScoreBrackets.dump(); 1507 }); 1508 1509 // TODO: Remove this work-around after fixing the scheduler and enable the 1510 // assert above. 1511 if (RestoreVCCZ) { 1512 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1513 // bit is updated, so we can restore the bit by reading the value of 1514 // vcc and then writing it back to the register. 1515 BuildMI(Block, Inst, Inst.getDebugLoc(), 1516 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1517 TRI->getVCC()) 1518 .addReg(TRI->getVCC()); 1519 VCCZCorrect = true; 1520 Modified = true; 1521 } 1522 1523 ++Iter; 1524 } 1525 1526 return Modified; 1527 } 1528 1529 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1530 ST = &MF.getSubtarget<GCNSubtarget>(); 1531 TII = ST->getInstrInfo(); 1532 TRI = &TII->getRegisterInfo(); 1533 MRI = &MF.getRegInfo(); 1534 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1535 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1536 PDT = &getAnalysis<MachinePostDominatorTree>(); 1537 1538 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1539 for (auto T : inst_counter_types()) 1540 ForceEmitWaitcnt[T] = false; 1541 1542 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1543 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1544 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1545 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0; 1546 1547 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 1548 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 1549 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1550 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1551 1552 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1553 RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1; 1554 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1555 RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1; 1556 1557 TrackedWaitcntSet.clear(); 1558 BlockInfos.clear(); 1559 1560 // Keep iterating over the blocks in reverse post order, inserting and 1561 // updating s_waitcnt where needed, until a fix point is reached. 1562 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 1563 BlockInfos.insert({MBB, BlockInfo(MBB)}); 1564 1565 std::unique_ptr<WaitcntBrackets> Brackets; 1566 bool Modified = false; 1567 bool Repeat; 1568 do { 1569 Repeat = false; 1570 1571 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 1572 ++BII) { 1573 BlockInfo &BI = BII->second; 1574 if (!BI.Dirty) 1575 continue; 1576 1577 if (BI.Incoming) { 1578 if (!Brackets) 1579 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1580 else 1581 *Brackets = *BI.Incoming; 1582 } else { 1583 if (!Brackets) 1584 Brackets = std::make_unique<WaitcntBrackets>(ST); 1585 else 1586 *Brackets = WaitcntBrackets(ST); 1587 } 1588 1589 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1590 BI.Dirty = false; 1591 1592 if (Brackets->hasPending()) { 1593 BlockInfo *MoveBracketsToSucc = nullptr; 1594 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1595 auto SuccBII = BlockInfos.find(Succ); 1596 BlockInfo &SuccBI = SuccBII->second; 1597 if (!SuccBI.Incoming) { 1598 SuccBI.Dirty = true; 1599 if (SuccBII <= BII) 1600 Repeat = true; 1601 if (!MoveBracketsToSucc) { 1602 MoveBracketsToSucc = &SuccBI; 1603 } else { 1604 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1605 } 1606 } else if (SuccBI.Incoming->merge(*Brackets)) { 1607 SuccBI.Dirty = true; 1608 if (SuccBII <= BII) 1609 Repeat = true; 1610 } 1611 } 1612 if (MoveBracketsToSucc) 1613 MoveBracketsToSucc->Incoming = std::move(Brackets); 1614 } 1615 } 1616 } while (Repeat); 1617 1618 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1619 1620 bool HaveScalarStores = false; 1621 1622 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1623 ++BI) { 1624 MachineBasicBlock &MBB = *BI; 1625 1626 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1627 ++I) { 1628 if (!HaveScalarStores && TII->isScalarStore(*I)) 1629 HaveScalarStores = true; 1630 1631 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1632 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1633 EndPgmBlocks.push_back(&MBB); 1634 } 1635 } 1636 1637 if (HaveScalarStores) { 1638 // If scalar writes are used, the cache must be flushed or else the next 1639 // wave to reuse the same scratch memory can be clobbered. 1640 // 1641 // Insert s_dcache_wb at wave termination points if there were any scalar 1642 // stores, and only if the cache hasn't already been flushed. This could be 1643 // improved by looking across blocks for flushes in postdominating blocks 1644 // from the stores but an explicitly requested flush is probably very rare. 1645 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1646 bool SeenDCacheWB = false; 1647 1648 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1649 ++I) { 1650 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1651 SeenDCacheWB = true; 1652 else if (TII->isScalarStore(*I)) 1653 SeenDCacheWB = false; 1654 1655 // FIXME: It would be better to insert this before a waitcnt if any. 1656 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1657 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1658 !SeenDCacheWB) { 1659 Modified = true; 1660 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1661 } 1662 } 1663 } 1664 } 1665 1666 if (!MFI->isEntryFunction()) { 1667 // Wait for any outstanding memory operations that the input registers may 1668 // depend on. We can't track them and it's better to the wait after the 1669 // costly call sequence. 1670 1671 // TODO: Could insert earlier and schedule more liberally with operations 1672 // that only use caller preserved registers. 1673 MachineBasicBlock &EntryBB = MF.front(); 1674 MachineBasicBlock::iterator I = EntryBB.begin(); 1675 for (MachineBasicBlock::iterator E = EntryBB.end(); 1676 I != E && (I->isPHI() || I->isMetaInstruction()); ++I) 1677 ; 1678 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); 1679 if (ST->hasVscnt()) 1680 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1681 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1682 .addImm(0); 1683 1684 Modified = true; 1685 } 1686 1687 return Modified; 1688 } 1689