1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "AMDGPUSubtarget.h" 28 #include "SIDefines.h" 29 #include "SIInstrInfo.h" 30 #include "SIMachineFunctionInfo.h" 31 #include "SIRegisterInfo.h" 32 #include "Utils/AMDGPUBaseInfo.h" 33 #include "llvm/ADT/DenseMap.h" 34 #include "llvm/ADT/DenseSet.h" 35 #include "llvm/ADT/PostOrderIterator.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <cstring> 56 #include <memory> 57 #include <utility> 58 #include <vector> 59 60 using namespace llvm; 61 62 #define DEBUG_TYPE "si-insert-waitcnts" 63 64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 65 "Force emit s_waitcnt expcnt(0) instrs"); 66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 67 "Force emit s_waitcnt lgkmcnt(0) instrs"); 68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 69 "Force emit s_waitcnt vmcnt(0) instrs"); 70 71 static cl::opt<unsigned> ForceEmitZeroFlag( 72 "amdgpu-waitcnt-forcezero", 73 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 74 cl::init(0), cl::Hidden); 75 76 namespace { 77 78 template <typename EnumT> 79 class enum_iterator 80 : public iterator_facade_base<enum_iterator<EnumT>, 81 std::forward_iterator_tag, const EnumT> { 82 EnumT Value; 83 public: 84 enum_iterator() = default; 85 enum_iterator(EnumT Value) : Value(Value) {} 86 87 enum_iterator &operator++() { 88 Value = static_cast<EnumT>(Value + 1); 89 return *this; 90 } 91 92 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; } 93 94 EnumT operator*() const { return Value; } 95 }; 96 97 // Class of object that encapsulates latest instruction counter score 98 // associated with the operand. Used for determining whether 99 // s_waitcnt instruction needs to be emited. 100 101 #define CNT_MASK(t) (1u << (t)) 102 103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 104 105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() { 106 return make_range(enum_iterator<InstCounterType>(VM_CNT), 107 enum_iterator<InstCounterType>(NUM_INST_CNTS)); 108 } 109 110 using RegInterval = std::pair<signed, signed>; 111 112 struct { 113 uint32_t VmcntMax; 114 uint32_t ExpcntMax; 115 uint32_t LgkmcntMax; 116 int32_t NumVGPRsMax; 117 int32_t NumSGPRsMax; 118 } HardwareLimits; 119 120 struct { 121 unsigned VGPR0; 122 unsigned VGPRL; 123 unsigned SGPR0; 124 unsigned SGPRL; 125 } RegisterEncoding; 126 127 enum WaitEventType { 128 VMEM_ACCESS, // vector-memory read & write 129 LDS_ACCESS, // lds read & write 130 GDS_ACCESS, // gds read & write 131 SQ_MESSAGE, // send message 132 SMEM_ACCESS, // scalar-memory read & write 133 EXP_GPR_LOCK, // export holding on its data src 134 GDS_GPR_LOCK, // GDS holding on its data and addr src 135 EXP_POS_ACCESS, // write to export position 136 EXP_PARAM_ACCESS, // write to export parameter 137 VMW_GPR_LOCK, // vector-memory write holding on its data src 138 NUM_WAIT_EVENTS, 139 }; 140 141 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = { 142 (1 << VMEM_ACCESS), 143 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 144 (1 << SQ_MESSAGE), 145 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 146 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 147 }; 148 149 // The mapping is: 150 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 151 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 152 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 153 // We reserve a fixed number of VGPR slots in the scoring tables for 154 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 155 enum RegisterMapping { 156 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 157 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 158 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 159 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 160 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 161 }; 162 163 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 164 switch (T) { 165 case VM_CNT: 166 Wait.VmCnt = std::min(Wait.VmCnt, Count); 167 break; 168 case EXP_CNT: 169 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 170 break; 171 case LGKM_CNT: 172 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 173 break; 174 default: 175 llvm_unreachable("bad InstCounterType"); 176 } 177 } 178 179 // This objects maintains the current score brackets of each wait counter, and 180 // a per-register scoreboard for each wait counter. 181 // 182 // We also maintain the latest score for every event type that can change the 183 // waitcnt in order to know if there are multiple types of events within 184 // the brackets. When multiple types of event happen in the bracket, 185 // wait count may get decreased out of order, therefore we need to put in 186 // "s_waitcnt 0" before use. 187 class WaitcntBrackets { 188 public: 189 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) { 190 for (auto T : inst_counter_types()) 191 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 192 } 193 194 static uint32_t getWaitCountMax(InstCounterType T) { 195 switch (T) { 196 case VM_CNT: 197 return HardwareLimits.VmcntMax; 198 case LGKM_CNT: 199 return HardwareLimits.LgkmcntMax; 200 case EXP_CNT: 201 return HardwareLimits.ExpcntMax; 202 default: 203 break; 204 } 205 return 0; 206 } 207 208 uint32_t getScoreLB(InstCounterType T) const { 209 assert(T < NUM_INST_CNTS); 210 if (T >= NUM_INST_CNTS) 211 return 0; 212 return ScoreLBs[T]; 213 } 214 215 uint32_t getScoreUB(InstCounterType T) const { 216 assert(T < NUM_INST_CNTS); 217 if (T >= NUM_INST_CNTS) 218 return 0; 219 return ScoreUBs[T]; 220 } 221 222 // Mapping from event to counter. 223 InstCounterType eventCounter(WaitEventType E) { 224 if (E == VMEM_ACCESS) 225 return VM_CNT; 226 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 227 return LGKM_CNT; 228 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 229 return EXP_CNT; 230 } 231 232 uint32_t getRegScore(int GprNo, InstCounterType T) { 233 if (GprNo < NUM_ALL_VGPRS) { 234 return VgprScores[T][GprNo]; 235 } 236 assert(T == LGKM_CNT); 237 return SgprScores[GprNo - NUM_ALL_VGPRS]; 238 } 239 240 void clear() { 241 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 242 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 243 PendingEvents = 0; 244 memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents)); 245 for (auto T : inst_counter_types()) 246 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 247 memset(SgprScores, 0, sizeof(SgprScores)); 248 } 249 250 bool merge(const WaitcntBrackets &Other); 251 252 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 253 const MachineRegisterInfo *MRI, 254 const SIRegisterInfo *TRI, unsigned OpNo, 255 bool Def) const; 256 257 int32_t getMaxVGPR() const { return VgprUB; } 258 int32_t getMaxSGPR() const { return SgprUB; } 259 260 bool counterOutOfOrder(InstCounterType T) const; 261 bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 262 bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 263 void determineWait(InstCounterType T, uint32_t ScoreToWait, 264 AMDGPU::Waitcnt &Wait) const; 265 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 266 void applyWaitcnt(InstCounterType T, unsigned Count); 267 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 268 const MachineRegisterInfo *MRI, WaitEventType E, 269 MachineInstr &MI); 270 271 bool hasPending() const { return PendingEvents != 0; } 272 bool hasPendingEvent(WaitEventType E) const { 273 return PendingEvents & (1 << E); 274 } 275 276 bool hasPendingFlat() const { 277 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 278 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 279 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 280 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 281 } 282 283 void setPendingFlat() { 284 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 285 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 286 } 287 288 void print(raw_ostream &); 289 void dump() { print(dbgs()); } 290 291 private: 292 struct MergeInfo { 293 uint32_t OldLB; 294 uint32_t OtherLB; 295 uint32_t MyShift; 296 uint32_t OtherShift; 297 }; 298 static bool mergeScore(const MergeInfo &M, uint32_t &Score, 299 uint32_t OtherScore); 300 301 void setScoreLB(InstCounterType T, uint32_t Val) { 302 assert(T < NUM_INST_CNTS); 303 if (T >= NUM_INST_CNTS) 304 return; 305 ScoreLBs[T] = Val; 306 } 307 308 void setScoreUB(InstCounterType T, uint32_t Val) { 309 assert(T < NUM_INST_CNTS); 310 if (T >= NUM_INST_CNTS) 311 return; 312 ScoreUBs[T] = Val; 313 if (T == EXP_CNT) { 314 uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 315 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 316 ScoreLBs[T] = UB; 317 } 318 } 319 320 void setRegScore(int GprNo, InstCounterType T, uint32_t Val) { 321 if (GprNo < NUM_ALL_VGPRS) { 322 if (GprNo > VgprUB) { 323 VgprUB = GprNo; 324 } 325 VgprScores[T][GprNo] = Val; 326 } else { 327 assert(T == LGKM_CNT); 328 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 329 SgprUB = GprNo - NUM_ALL_VGPRS; 330 } 331 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 332 } 333 } 334 335 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 336 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 337 unsigned OpNo, uint32_t Val); 338 339 const GCNSubtarget *ST = nullptr; 340 uint32_t ScoreLBs[NUM_INST_CNTS] = {0}; 341 uint32_t ScoreUBs[NUM_INST_CNTS] = {0}; 342 uint32_t PendingEvents = 0; 343 bool MixedPendingEvents[NUM_INST_CNTS] = {false}; 344 // Remember the last flat memory operation. 345 uint32_t LastFlat[NUM_INST_CNTS] = {0}; 346 // wait_cnt scores for every vgpr. 347 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 348 int32_t VgprUB = 0; 349 int32_t SgprUB = 0; 350 uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 351 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 352 uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 353 }; 354 355 class SIInsertWaitcnts : public MachineFunctionPass { 356 private: 357 const GCNSubtarget *ST = nullptr; 358 const SIInstrInfo *TII = nullptr; 359 const SIRegisterInfo *TRI = nullptr; 360 const MachineRegisterInfo *MRI = nullptr; 361 AMDGPU::IsaVersion IV; 362 363 DenseSet<MachineInstr *> TrackedWaitcntSet; 364 DenseSet<MachineInstr *> VCCZBugHandledSet; 365 366 struct BlockInfo { 367 MachineBasicBlock *MBB; 368 std::unique_ptr<WaitcntBrackets> Incoming; 369 bool Dirty = true; 370 371 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 372 }; 373 374 std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index 375 DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap; 376 377 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 378 // because of amdgpu-waitcnt-forcezero flag 379 bool ForceEmitZeroWaitcnts; 380 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 381 382 public: 383 static char ID; 384 385 SIInsertWaitcnts() : MachineFunctionPass(ID) { 386 (void)ForceExpCounter; 387 (void)ForceLgkmCounter; 388 (void)ForceVMCounter; 389 } 390 391 bool runOnMachineFunction(MachineFunction &MF) override; 392 393 StringRef getPassName() const override { 394 return "SI insert wait instructions"; 395 } 396 397 void getAnalysisUsage(AnalysisUsage &AU) const override { 398 AU.setPreservesCFG(); 399 MachineFunctionPass::getAnalysisUsage(AU); 400 } 401 402 bool isForceEmitWaitcnt() const { 403 for (auto T : inst_counter_types()) 404 if (ForceEmitWaitcnt[T]) 405 return true; 406 return false; 407 } 408 409 void setForceEmitWaitcnt() { 410 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 411 // For debug builds, get the debug counter info and adjust if need be 412 #ifndef NDEBUG 413 if (DebugCounter::isCounterSet(ForceExpCounter) && 414 DebugCounter::shouldExecute(ForceExpCounter)) { 415 ForceEmitWaitcnt[EXP_CNT] = true; 416 } else { 417 ForceEmitWaitcnt[EXP_CNT] = false; 418 } 419 420 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 421 DebugCounter::shouldExecute(ForceLgkmCounter)) { 422 ForceEmitWaitcnt[LGKM_CNT] = true; 423 } else { 424 ForceEmitWaitcnt[LGKM_CNT] = false; 425 } 426 427 if (DebugCounter::isCounterSet(ForceVMCounter) && 428 DebugCounter::shouldExecute(ForceVMCounter)) { 429 ForceEmitWaitcnt[VM_CNT] = true; 430 } else { 431 ForceEmitWaitcnt[VM_CNT] = false; 432 } 433 #endif // NDEBUG 434 } 435 436 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 437 bool generateWaitcntInstBefore(MachineInstr &MI, 438 WaitcntBrackets &ScoreBrackets, 439 MachineInstr *OldWaitcntInstr); 440 void updateEventWaitcntAfter(MachineInstr &Inst, 441 WaitcntBrackets *ScoreBrackets); 442 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 443 WaitcntBrackets &ScoreBrackets); 444 }; 445 446 } // end anonymous namespace 447 448 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 449 const SIInstrInfo *TII, 450 const MachineRegisterInfo *MRI, 451 const SIRegisterInfo *TRI, 452 unsigned OpNo, bool Def) const { 453 const MachineOperand &Op = MI->getOperand(OpNo); 454 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 455 (Def && !Op.isDef())) 456 return {-1, -1}; 457 458 // A use via a PW operand does not need a waitcnt. 459 // A partial write is not a WAW. 460 assert(!Op.getSubReg() || !Op.isUndef()); 461 462 RegInterval Result; 463 const MachineRegisterInfo &MRIA = *MRI; 464 465 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 466 467 if (TRI->isVGPR(MRIA, Op.getReg())) { 468 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 469 Result.first = Reg - RegisterEncoding.VGPR0; 470 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 471 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 472 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 473 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 474 assert(Result.first >= NUM_ALL_VGPRS && 475 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 476 } 477 // TODO: Handle TTMP 478 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 479 else 480 return {-1, -1}; 481 482 const MachineInstr &MIA = *MI; 483 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 484 unsigned Size = TRI->getRegSizeInBits(*RC); 485 Result.second = Result.first + (Size / 32); 486 487 return Result; 488 } 489 490 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 491 const SIInstrInfo *TII, 492 const SIRegisterInfo *TRI, 493 const MachineRegisterInfo *MRI, unsigned OpNo, 494 uint32_t Val) { 495 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 496 LLVM_DEBUG({ 497 const MachineOperand &Opnd = MI->getOperand(OpNo); 498 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 499 }); 500 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 501 setRegScore(RegNo, EXP_CNT, Val); 502 } 503 } 504 505 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 506 const SIRegisterInfo *TRI, 507 const MachineRegisterInfo *MRI, 508 WaitEventType E, MachineInstr &Inst) { 509 const MachineRegisterInfo &MRIA = *MRI; 510 InstCounterType T = eventCounter(E); 511 uint32_t CurrScore = getScoreUB(T) + 1; 512 if (CurrScore == 0) 513 report_fatal_error("InsertWaitcnt score wraparound"); 514 // PendingEvents and ScoreUB need to be update regardless if this event 515 // changes the score of a register or not. 516 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 517 if (!hasPendingEvent(E)) { 518 if (PendingEvents & WaitEventMaskForInst[T]) 519 MixedPendingEvents[T] = true; 520 PendingEvents |= 1 << E; 521 } 522 setScoreUB(T, CurrScore); 523 524 if (T == EXP_CNT) { 525 // Put score on the source vgprs. If this is a store, just use those 526 // specific register(s). 527 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 528 // All GDS operations must protect their address register (same as 529 // export.) 530 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 531 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 532 setExpScore( 533 &Inst, TII, TRI, MRI, 534 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 535 CurrScore); 536 } 537 if (Inst.mayStore()) { 538 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 539 AMDGPU::OpName::data0) != -1) { 540 setExpScore( 541 &Inst, TII, TRI, MRI, 542 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 543 CurrScore); 544 } 545 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 546 AMDGPU::OpName::data1) != -1) { 547 setExpScore(&Inst, TII, TRI, MRI, 548 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 549 AMDGPU::OpName::data1), 550 CurrScore); 551 } 552 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 553 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 554 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 555 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 556 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 557 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 558 Inst.getOpcode() != AMDGPU::DS_APPEND && 559 Inst.getOpcode() != AMDGPU::DS_CONSUME && 560 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 561 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 562 const MachineOperand &Op = Inst.getOperand(I); 563 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 564 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 565 } 566 } 567 } 568 } else if (TII->isFLAT(Inst)) { 569 if (Inst.mayStore()) { 570 setExpScore( 571 &Inst, TII, TRI, MRI, 572 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 573 CurrScore); 574 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 575 setExpScore( 576 &Inst, TII, TRI, MRI, 577 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 578 CurrScore); 579 } 580 } else if (TII->isMIMG(Inst)) { 581 if (Inst.mayStore()) { 582 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 583 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 584 setExpScore( 585 &Inst, TII, TRI, MRI, 586 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 587 CurrScore); 588 } 589 } else if (TII->isMTBUF(Inst)) { 590 if (Inst.mayStore()) { 591 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 592 } 593 } else if (TII->isMUBUF(Inst)) { 594 if (Inst.mayStore()) { 595 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 596 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 597 setExpScore( 598 &Inst, TII, TRI, MRI, 599 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 600 CurrScore); 601 } 602 } else { 603 if (TII->isEXP(Inst)) { 604 // For export the destination registers are really temps that 605 // can be used as the actual source after export patching, so 606 // we need to treat them like sources and set the EXP_CNT 607 // score. 608 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 609 MachineOperand &DefMO = Inst.getOperand(I); 610 if (DefMO.isReg() && DefMO.isDef() && 611 TRI->isVGPR(MRIA, DefMO.getReg())) { 612 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 613 CurrScore); 614 } 615 } 616 } 617 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 618 MachineOperand &MO = Inst.getOperand(I); 619 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 620 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 621 } 622 } 623 } 624 #if 0 // TODO: check if this is handled by MUBUF code above. 625 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 626 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 627 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 628 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 629 unsigned OpNo;//TODO: find the OpNo for this operand; 630 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 631 for (signed RegNo = Interval.first; RegNo < Interval.second; 632 ++RegNo) { 633 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 634 } 635 #endif 636 } else { 637 // Match the score to the destination registers. 638 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 639 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 640 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 641 continue; 642 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 643 setRegScore(RegNo, T, CurrScore); 644 } 645 } 646 if (TII->isDS(Inst) && Inst.mayStore()) { 647 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 648 } 649 } 650 } 651 652 void WaitcntBrackets::print(raw_ostream &OS) { 653 OS << '\n'; 654 for (auto T : inst_counter_types()) { 655 uint32_t LB = getScoreLB(T); 656 uint32_t UB = getScoreUB(T); 657 658 switch (T) { 659 case VM_CNT: 660 OS << " VM_CNT(" << UB - LB << "): "; 661 break; 662 case LGKM_CNT: 663 OS << " LGKM_CNT(" << UB - LB << "): "; 664 break; 665 case EXP_CNT: 666 OS << " EXP_CNT(" << UB - LB << "): "; 667 break; 668 default: 669 OS << " UNKNOWN(" << UB - LB << "): "; 670 break; 671 } 672 673 if (LB < UB) { 674 // Print vgpr scores. 675 for (int J = 0; J <= getMaxVGPR(); J++) { 676 uint32_t RegScore = getRegScore(J, T); 677 if (RegScore <= LB) 678 continue; 679 uint32_t RelScore = RegScore - LB - 1; 680 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 681 OS << RelScore << ":v" << J << " "; 682 } else { 683 OS << RelScore << ":ds "; 684 } 685 } 686 // Also need to print sgpr scores for lgkm_cnt. 687 if (T == LGKM_CNT) { 688 for (int J = 0; J <= getMaxSGPR(); J++) { 689 uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 690 if (RegScore <= LB) 691 continue; 692 uint32_t RelScore = RegScore - LB - 1; 693 OS << RelScore << ":s" << J << " "; 694 } 695 } 696 } 697 OS << '\n'; 698 } 699 OS << '\n'; 700 } 701 702 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 703 /// whether a waitcnt instruction is needed at all. 704 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 705 return simplifyWaitcnt(VM_CNT, Wait.VmCnt) | 706 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) | 707 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 708 } 709 710 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 711 unsigned &Count) const { 712 const uint32_t LB = getScoreLB(T); 713 const uint32_t UB = getScoreUB(T); 714 if (Count < UB && UB - Count > LB) 715 return true; 716 717 Count = ~0u; 718 return false; 719 } 720 721 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait, 722 AMDGPU::Waitcnt &Wait) const { 723 // If the score of src_operand falls within the bracket, we need an 724 // s_waitcnt instruction. 725 const uint32_t LB = getScoreLB(T); 726 const uint32_t UB = getScoreUB(T); 727 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 728 if ((T == VM_CNT || T == LGKM_CNT) && 729 hasPendingFlat() && 730 !ST->hasFlatLgkmVMemCountInOrder()) { 731 // If there is a pending FLAT operation, and this is a VMem or LGKM 732 // waitcnt and the target can report early completion, then we need 733 // to force a waitcnt 0. 734 addWait(Wait, T, 0); 735 } else if (counterOutOfOrder(T)) { 736 // Counter can get decremented out-of-order when there 737 // are multiple types event in the bracket. Also emit an s_wait counter 738 // with a conservative value of 0 for the counter. 739 addWait(Wait, T, 0); 740 } else { 741 addWait(Wait, T, UB - ScoreToWait); 742 } 743 } 744 } 745 746 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 747 applyWaitcnt(VM_CNT, Wait.VmCnt); 748 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 749 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 750 } 751 752 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 753 const uint32_t UB = getScoreUB(T); 754 if (Count >= UB) 755 return; 756 if (Count != 0) { 757 if (counterOutOfOrder(T)) 758 return; 759 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 760 } else { 761 setScoreLB(T, UB); 762 MixedPendingEvents[T] = false; 763 PendingEvents &= ~WaitEventMaskForInst[T]; 764 } 765 } 766 767 // Where there are multiple types of event in the bracket of a counter, 768 // the decrement may go out of order. 769 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 770 // Scalar memory read always can go out of order. 771 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 772 return true; 773 return MixedPendingEvents[T]; 774 } 775 776 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 777 false) 778 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 779 false) 780 781 char SIInsertWaitcnts::ID = 0; 782 783 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 784 785 FunctionPass *llvm::createSIInsertWaitcntsPass() { 786 return new SIInsertWaitcnts(); 787 } 788 789 static bool readsVCCZ(const MachineInstr &MI) { 790 unsigned Opc = MI.getOpcode(); 791 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 792 !MI.getOperand(1).isUndef(); 793 } 794 795 /// Generate s_waitcnt instruction to be placed before cur_Inst. 796 /// Instructions of a given type are returned in order, 797 /// but instructions of different types can complete out of order. 798 /// We rely on this in-order completion 799 /// and simply assign a score to the memory access instructions. 800 /// We keep track of the active "score bracket" to determine 801 /// if an access of a memory read requires an s_waitcnt 802 /// and if so what the value of each counter is. 803 /// The "score bracket" is bound by the lower bound and upper bound 804 /// scores (*_score_LB and *_score_ub respectively). 805 bool SIInsertWaitcnts::generateWaitcntInstBefore( 806 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 807 MachineInstr *OldWaitcntInstr) { 808 setForceEmitWaitcnt(); 809 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 810 811 if (MI.isDebugInstr()) 812 return false; 813 814 AMDGPU::Waitcnt Wait; 815 816 // See if this instruction has a forced S_WAITCNT VM. 817 // TODO: Handle other cases of NeedsWaitcntVmBefore() 818 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 819 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 820 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 821 Wait.VmCnt = 0; 822 } 823 824 // All waits must be resolved at call return. 825 // NOTE: this could be improved with knowledge of all call sites or 826 // with knowledge of the called routines. 827 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 828 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 829 Wait = AMDGPU::Waitcnt::allZero(); 830 } 831 // Resolve vm waits before gs-done. 832 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 833 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 834 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 835 AMDGPU::SendMsg::ID_GS_DONE)) { 836 Wait.VmCnt = 0; 837 } 838 #if 0 // TODO: the following blocks of logic when we have fence. 839 else if (MI.getOpcode() == SC_FENCE) { 840 const unsigned int group_size = 841 context->shader_info->GetMaxThreadGroupSize(); 842 // group_size == 0 means thread group size is unknown at compile time 843 const bool group_is_multi_wave = 844 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 845 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 846 847 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 848 SCRegType src_type = Inst->GetSrcType(i); 849 switch (src_type) { 850 case SCMEM_LDS: 851 if (group_is_multi_wave || 852 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 853 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 854 ScoreBrackets->getScoreUB(LGKM_CNT)); 855 // LDS may have to wait for VM_CNT after buffer load to LDS 856 if (target_info->HasBufferLoadToLDS()) { 857 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 858 ScoreBrackets->getScoreUB(VM_CNT)); 859 } 860 } 861 break; 862 863 case SCMEM_GDS: 864 if (group_is_multi_wave || fence_is_global) { 865 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 866 ScoreBrackets->getScoreUB(EXP_CNT)); 867 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 868 ScoreBrackets->getScoreUB(LGKM_CNT)); 869 } 870 break; 871 872 case SCMEM_UAV: 873 case SCMEM_TFBUF: 874 case SCMEM_RING: 875 case SCMEM_SCATTER: 876 if (group_is_multi_wave || fence_is_global) { 877 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 878 ScoreBrackets->getScoreUB(EXP_CNT)); 879 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 880 ScoreBrackets->getScoreUB(VM_CNT)); 881 } 882 break; 883 884 case SCMEM_SCRATCH: 885 default: 886 break; 887 } 888 } 889 } 890 #endif 891 892 // Export & GDS instructions do not read the EXEC mask until after the export 893 // is granted (which can occur well after the instruction is issued). 894 // The shader program must flush all EXP operations on the export-count 895 // before overwriting the EXEC mask. 896 else { 897 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 898 // Export and GDS are tracked individually, either may trigger a waitcnt 899 // for EXEC. 900 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 901 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 902 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 903 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 904 Wait.ExpCnt = 0; 905 } 906 } 907 908 #if 0 // TODO: the following code to handle CALL. 909 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 910 // However, there is a problem with EXP_CNT, because the call cannot 911 // easily tell if a register is used in the function, and if it did, then 912 // the referring instruction would have to have an S_WAITCNT, which is 913 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 914 // before the call. 915 if (MI.getOpcode() == SC_CALL) { 916 if (ScoreBrackets->getScoreUB(EXP_CNT) > 917 ScoreBrackets->getScoreLB(EXP_CNT)) { 918 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 919 EmitWaitcnt |= CNT_MASK(EXP_CNT); 920 } 921 } 922 #endif 923 924 // FIXME: Should not be relying on memoperands. 925 // Look at the source operands of every instruction to see if 926 // any of them results from a previous memory operation that affects 927 // its current usage. If so, an s_waitcnt instruction needs to be 928 // emitted. 929 // If the source operand was defined by a load, add the s_waitcnt 930 // instruction. 931 for (const MachineMemOperand *Memop : MI.memoperands()) { 932 unsigned AS = Memop->getAddrSpace(); 933 if (AS != AMDGPUAS::LOCAL_ADDRESS) 934 continue; 935 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 936 // VM_CNT is only relevant to vgpr or LDS. 937 ScoreBrackets.determineWait( 938 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 939 } 940 941 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 942 const MachineOperand &Op = MI.getOperand(I); 943 const MachineRegisterInfo &MRIA = *MRI; 944 RegInterval Interval = 945 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false); 946 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 947 if (TRI->isVGPR(MRIA, Op.getReg())) { 948 // VM_CNT is only relevant to vgpr or LDS. 949 ScoreBrackets.determineWait( 950 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 951 } 952 ScoreBrackets.determineWait( 953 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 954 } 955 } 956 // End of for loop that looks at all source operands to decide vm_wait_cnt 957 // and lgk_wait_cnt. 958 959 // Two cases are handled for destination operands: 960 // 1) If the destination operand was defined by a load, add the s_waitcnt 961 // instruction to guarantee the right WAW order. 962 // 2) If a destination operand that was used by a recent export/store ins, 963 // add s_waitcnt on exp_cnt to guarantee the WAR order. 964 if (MI.mayStore()) { 965 // FIXME: Should not be relying on memoperands. 966 for (const MachineMemOperand *Memop : MI.memoperands()) { 967 unsigned AS = Memop->getAddrSpace(); 968 if (AS != AMDGPUAS::LOCAL_ADDRESS) 969 continue; 970 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 971 ScoreBrackets.determineWait( 972 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 973 ScoreBrackets.determineWait( 974 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 975 } 976 } 977 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 978 MachineOperand &Def = MI.getOperand(I); 979 const MachineRegisterInfo &MRIA = *MRI; 980 RegInterval Interval = 981 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true); 982 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 983 if (TRI->isVGPR(MRIA, Def.getReg())) { 984 ScoreBrackets.determineWait( 985 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 986 ScoreBrackets.determineWait( 987 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 988 } 989 ScoreBrackets.determineWait( 990 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 991 } 992 } // End of for loop that looks at all dest operands. 993 } 994 995 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 996 // occurs before the instruction. Doing it here prevents any additional 997 // S_WAITCNTs from being emitted if the instruction was marked as 998 // requiring a WAITCNT beforehand. 999 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1000 !ST->hasAutoWaitcntBeforeBarrier()) { 1001 Wait = AMDGPU::Waitcnt::allZero(); 1002 } 1003 1004 // TODO: Remove this work-around, enable the assert for Bug 457939 1005 // after fixing the scheduler. Also, the Shader Compiler code is 1006 // independent of target. 1007 if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) { 1008 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1009 ScoreBrackets.getScoreUB(LGKM_CNT) && 1010 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1011 Wait.LgkmCnt = 0; 1012 } 1013 } 1014 1015 // Early-out if no wait is indicated. 1016 if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) { 1017 bool Modified = false; 1018 if (OldWaitcntInstr) { 1019 if (TrackedWaitcntSet.count(OldWaitcntInstr)) { 1020 TrackedWaitcntSet.erase(OldWaitcntInstr); 1021 OldWaitcntInstr->eraseFromParent(); 1022 Modified = true; 1023 } else { 1024 int64_t Imm = OldWaitcntInstr->getOperand(0).getImm(); 1025 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1026 } 1027 Modified = true; 1028 } 1029 return Modified; 1030 } 1031 1032 if (ForceEmitZeroWaitcnts) 1033 Wait = AMDGPU::Waitcnt::allZero(); 1034 1035 if (ForceEmitWaitcnt[VM_CNT]) 1036 Wait.VmCnt = 0; 1037 if (ForceEmitWaitcnt[EXP_CNT]) 1038 Wait.ExpCnt = 0; 1039 if (ForceEmitWaitcnt[LGKM_CNT]) 1040 Wait.LgkmCnt = 0; 1041 1042 ScoreBrackets.applyWaitcnt(Wait); 1043 1044 AMDGPU::Waitcnt OldWait; 1045 if (OldWaitcntInstr) { 1046 OldWait = 1047 AMDGPU::decodeWaitcnt(IV, OldWaitcntInstr->getOperand(0).getImm()); 1048 } 1049 if (OldWait.dominates(Wait)) 1050 return false; 1051 1052 if (OldWaitcntInstr && !TrackedWaitcntSet.count(OldWaitcntInstr)) 1053 Wait = Wait.combined(OldWait); 1054 1055 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1056 if (OldWaitcntInstr) { 1057 OldWaitcntInstr->getOperand(0).setImm(Enc); 1058 1059 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1060 << "Old Instr: " << MI << '\n' 1061 << "New Instr: " << *OldWaitcntInstr << '\n'); 1062 } else { 1063 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1064 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1065 .addImm(Enc); 1066 TrackedWaitcntSet.insert(SWaitInst); 1067 1068 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1069 << "Old Instr: " << MI << '\n' 1070 << "New Instr: " << *SWaitInst << '\n'); 1071 } 1072 1073 return true; 1074 } 1075 1076 // This is a flat memory operation. Check to see if it has memory 1077 // tokens for both LDS and Memory, and if so mark it as a flat. 1078 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1079 if (MI.memoperands_empty()) 1080 return true; 1081 1082 for (const MachineMemOperand *Memop : MI.memoperands()) { 1083 unsigned AS = Memop->getAddrSpace(); 1084 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1085 return true; 1086 } 1087 1088 return false; 1089 } 1090 1091 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1092 WaitcntBrackets *ScoreBrackets) { 1093 // Now look at the instruction opcode. If it is a memory access 1094 // instruction, update the upper-bound of the appropriate counter's 1095 // bracket and the destination operand scores. 1096 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1097 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1098 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1099 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1100 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1101 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1102 } else { 1103 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1104 } 1105 } else if (TII->isFLAT(Inst)) { 1106 assert(Inst.mayLoad() || Inst.mayStore()); 1107 1108 if (TII->usesVM_CNT(Inst)) 1109 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1110 1111 if (TII->usesLGKM_CNT(Inst)) { 1112 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1113 1114 // This is a flat memory operation, so note it - it will require 1115 // that both the VM and LGKM be flushed to zero if it is pending when 1116 // a VM or LGKM dependency occurs. 1117 if (mayAccessLDSThroughFlat(Inst)) 1118 ScoreBrackets->setPendingFlat(); 1119 } 1120 } else if (SIInstrInfo::isVMEM(Inst) && 1121 // TODO: get a better carve out. 1122 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1123 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1124 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1125 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1126 if (ST->vmemWriteNeedsExpWaitcnt() && 1127 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1128 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1129 } 1130 } else if (TII->isSMRD(Inst)) { 1131 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1132 } else { 1133 switch (Inst.getOpcode()) { 1134 case AMDGPU::S_SENDMSG: 1135 case AMDGPU::S_SENDMSGHALT: 1136 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1137 break; 1138 case AMDGPU::EXP: 1139 case AMDGPU::EXP_DONE: { 1140 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1141 if (Imm >= 32 && Imm <= 63) 1142 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1143 else if (Imm >= 12 && Imm <= 15) 1144 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1145 else 1146 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1147 break; 1148 } 1149 case AMDGPU::S_MEMTIME: 1150 case AMDGPU::S_MEMREALTIME: 1151 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1152 break; 1153 default: 1154 break; 1155 } 1156 } 1157 } 1158 1159 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score, 1160 uint32_t OtherScore) { 1161 uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1162 uint32_t OtherShifted = 1163 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1164 Score = std::max(MyShifted, OtherShifted); 1165 return OtherShifted > MyShifted; 1166 } 1167 1168 /// Merge the pending events and associater score brackets of \p Other into 1169 /// this brackets status. 1170 /// 1171 /// Returns whether the merge resulted in a change that requires tighter waits 1172 /// (i.e. the merged brackets strictly dominate the original brackets). 1173 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1174 bool StrictDom = false; 1175 1176 for (auto T : inst_counter_types()) { 1177 // Merge event flags for this counter 1178 const bool OldOutOfOrder = counterOutOfOrder(T); 1179 const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1180 const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1181 if (OtherEvents & ~OldEvents) 1182 StrictDom = true; 1183 if (Other.MixedPendingEvents[T] || 1184 (OldEvents && OtherEvents && OldEvents != OtherEvents)) 1185 MixedPendingEvents[T] = true; 1186 PendingEvents |= OtherEvents; 1187 1188 // Merge scores for this counter 1189 const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T]; 1190 const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1191 MergeInfo M; 1192 M.OldLB = ScoreLBs[T]; 1193 M.OtherLB = Other.ScoreLBs[T]; 1194 M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0; 1195 M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift; 1196 1197 const uint32_t NewUB = ScoreUBs[T] + M.MyShift; 1198 if (NewUB < ScoreUBs[T]) 1199 report_fatal_error("waitcnt score overflow"); 1200 ScoreUBs[T] = NewUB; 1201 ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift); 1202 1203 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1204 1205 bool RegStrictDom = false; 1206 for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E; 1207 J++) { 1208 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1209 } 1210 1211 if (T == LGKM_CNT) { 1212 for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1; 1213 J != E; J++) { 1214 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1215 } 1216 } 1217 1218 if (RegStrictDom && !OldOutOfOrder) 1219 StrictDom = true; 1220 } 1221 1222 VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR()); 1223 SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR()); 1224 1225 return StrictDom; 1226 } 1227 1228 // Generate s_waitcnt instructions where needed. 1229 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1230 MachineBasicBlock &Block, 1231 WaitcntBrackets &ScoreBrackets) { 1232 bool Modified = false; 1233 1234 LLVM_DEBUG({ 1235 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1236 ScoreBrackets.dump(); 1237 }); 1238 1239 // Walk over the instructions. 1240 MachineInstr *OldWaitcntInstr = nullptr; 1241 1242 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1243 Iter != E;) { 1244 MachineInstr &Inst = *Iter; 1245 1246 // Remove any previously existing waitcnts. 1247 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1248 if (OldWaitcntInstr) { 1249 if (TrackedWaitcntSet.count(OldWaitcntInstr)) { 1250 TrackedWaitcntSet.erase(OldWaitcntInstr); 1251 OldWaitcntInstr->eraseFromParent(); 1252 OldWaitcntInstr = nullptr; 1253 } else if (!TrackedWaitcntSet.count(&Inst)) { 1254 // Two successive s_waitcnt's, both of which are pre-existing and 1255 // are therefore preserved. 1256 int64_t Imm = OldWaitcntInstr->getOperand(0).getImm(); 1257 ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm)); 1258 } else { 1259 ++Iter; 1260 Inst.eraseFromParent(); 1261 Modified = true; 1262 continue; 1263 } 1264 } 1265 1266 OldWaitcntInstr = &Inst; 1267 ++Iter; 1268 continue; 1269 } 1270 1271 bool VCCZBugWorkAround = false; 1272 if (readsVCCZ(Inst) && 1273 (!VCCZBugHandledSet.count(&Inst))) { 1274 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1275 ScoreBrackets.getScoreUB(LGKM_CNT) && 1276 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1277 if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) 1278 VCCZBugWorkAround = true; 1279 } 1280 } 1281 1282 // Generate an s_waitcnt instruction to be placed before 1283 // cur_Inst, if needed. 1284 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1285 OldWaitcntInstr = nullptr; 1286 1287 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1288 1289 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1290 // If this instruction generates a S_SETVSKIP because it is an 1291 // indexed resource, and we are on Tahiti, then it will also force 1292 // an S_WAITCNT vmcnt(0) 1293 if (RequireCheckResourceType(Inst, context)) { 1294 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1295 ScoreBrackets->setScoreLB(VM_CNT, 1296 ScoreBrackets->getScoreUB(VM_CNT)); 1297 } 1298 #endif 1299 1300 LLVM_DEBUG({ 1301 Inst.print(dbgs()); 1302 ScoreBrackets.dump(); 1303 }); 1304 1305 // Check to see if this is a GWS instruction. If so, and if this is CI or 1306 // VI, then the generated code sequence will include an S_WAITCNT 0. 1307 // TODO: Are these the only GWS instructions? 1308 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1309 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1310 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1311 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1312 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1313 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1314 ScoreBrackets.applyWaitcnt(AMDGPU::Waitcnt::allZero()); 1315 } 1316 1317 // TODO: Remove this work-around after fixing the scheduler and enable the 1318 // assert above. 1319 if (VCCZBugWorkAround) { 1320 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1321 // bit is updated, so we can restore the bit by reading the value of 1322 // vcc and then writing it back to the register. 1323 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1324 AMDGPU::VCC) 1325 .addReg(AMDGPU::VCC); 1326 VCCZBugHandledSet.insert(&Inst); 1327 Modified = true; 1328 } 1329 1330 ++Iter; 1331 } 1332 1333 return Modified; 1334 } 1335 1336 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1337 ST = &MF.getSubtarget<GCNSubtarget>(); 1338 TII = ST->getInstrInfo(); 1339 TRI = &TII->getRegisterInfo(); 1340 MRI = &MF.getRegInfo(); 1341 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1342 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1343 1344 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1345 for (auto T : inst_counter_types()) 1346 ForceEmitWaitcnt[T] = false; 1347 1348 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1349 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1350 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1351 1352 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1353 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1354 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1355 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1356 1357 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1358 RegisterEncoding.VGPRL = 1359 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1360 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1361 RegisterEncoding.SGPRL = 1362 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1363 1364 TrackedWaitcntSet.clear(); 1365 VCCZBugHandledSet.clear(); 1366 RpotIdxMap.clear(); 1367 BlockInfos.clear(); 1368 1369 // Keep iterating over the blocks in reverse post order, inserting and 1370 // updating s_waitcnt where needed, until a fix point is reached. 1371 for (MachineBasicBlock *MBB : 1372 ReversePostOrderTraversal<MachineFunction *>(&MF)) { 1373 RpotIdxMap[MBB] = BlockInfos.size(); 1374 BlockInfos.emplace_back(MBB); 1375 } 1376 1377 std::unique_ptr<WaitcntBrackets> Brackets; 1378 bool Modified = false; 1379 bool Repeat; 1380 do { 1381 Repeat = false; 1382 1383 for (BlockInfo &BI : BlockInfos) { 1384 if (!BI.Dirty) 1385 continue; 1386 1387 unsigned Idx = std::distance(&*BlockInfos.begin(), &BI); 1388 1389 if (BI.Incoming) { 1390 if (!Brackets) 1391 Brackets = llvm::make_unique<WaitcntBrackets>(*BI.Incoming); 1392 else 1393 *Brackets = *BI.Incoming; 1394 } else { 1395 if (!Brackets) 1396 Brackets = llvm::make_unique<WaitcntBrackets>(ST); 1397 else 1398 Brackets->clear(); 1399 } 1400 1401 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1402 BI.Dirty = false; 1403 1404 if (Brackets->hasPending()) { 1405 BlockInfo *MoveBracketsToSucc = nullptr; 1406 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1407 unsigned SuccIdx = RpotIdxMap[Succ]; 1408 BlockInfo &SuccBI = BlockInfos[SuccIdx]; 1409 if (!SuccBI.Incoming) { 1410 SuccBI.Dirty = true; 1411 if (SuccIdx <= Idx) 1412 Repeat = true; 1413 if (!MoveBracketsToSucc) { 1414 MoveBracketsToSucc = &SuccBI; 1415 } else { 1416 SuccBI.Incoming = llvm::make_unique<WaitcntBrackets>(*Brackets); 1417 } 1418 } else if (SuccBI.Incoming->merge(*Brackets)) { 1419 SuccBI.Dirty = true; 1420 if (SuccIdx <= Idx) 1421 Repeat = true; 1422 } 1423 } 1424 if (MoveBracketsToSucc) 1425 MoveBracketsToSucc->Incoming = std::move(Brackets); 1426 } 1427 } 1428 } while (Repeat); 1429 1430 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1431 1432 bool HaveScalarStores = false; 1433 1434 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1435 ++BI) { 1436 MachineBasicBlock &MBB = *BI; 1437 1438 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1439 ++I) { 1440 if (!HaveScalarStores && TII->isScalarStore(*I)) 1441 HaveScalarStores = true; 1442 1443 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1444 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1445 EndPgmBlocks.push_back(&MBB); 1446 } 1447 } 1448 1449 if (HaveScalarStores) { 1450 // If scalar writes are used, the cache must be flushed or else the next 1451 // wave to reuse the same scratch memory can be clobbered. 1452 // 1453 // Insert s_dcache_wb at wave termination points if there were any scalar 1454 // stores, and only if the cache hasn't already been flushed. This could be 1455 // improved by looking across blocks for flushes in postdominating blocks 1456 // from the stores but an explicitly requested flush is probably very rare. 1457 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1458 bool SeenDCacheWB = false; 1459 1460 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1461 ++I) { 1462 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1463 SeenDCacheWB = true; 1464 else if (TII->isScalarStore(*I)) 1465 SeenDCacheWB = false; 1466 1467 // FIXME: It would be better to insert this before a waitcnt if any. 1468 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1469 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1470 !SeenDCacheWB) { 1471 Modified = true; 1472 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1473 } 1474 } 1475 } 1476 } 1477 1478 if (!MFI->isEntryFunction()) { 1479 // Wait for any outstanding memory operations that the input registers may 1480 // depend on. We can't track them and it's better to the wait after the 1481 // costly call sequence. 1482 1483 // TODO: Could insert earlier and schedule more liberally with operations 1484 // that only use caller preserved registers. 1485 MachineBasicBlock &EntryBB = MF.front(); 1486 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1487 .addImm(0); 1488 1489 Modified = true; 1490 } 1491 1492 return Modified; 1493 } 1494