1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Insert wait instructions for memory reads and writes. 12 /// 13 /// Memory reads and writes are issued asynchronously, so we need to insert 14 /// S_WAITCNT instructions when we want to access any of their results or 15 /// overwrite any register that's used asynchronously. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "AMDGPU.h" 20 #include "AMDGPUSubtarget.h" 21 #include "SIDefines.h" 22 #include "SIInstrInfo.h" 23 #include "SIMachineFunctionInfo.h" 24 #include "SIRegisterInfo.h" 25 #include "Utils/AMDGPUBaseInfo.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineLoopInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/DebugCounter.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstdint> 49 #include <cstring> 50 #include <memory> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "si-insert-waitcnts" 57 58 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 59 "Force emit s_waitcnt expcnt(0) instrs"); 60 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 61 "Force emit s_waitcnt lgkmcnt(0) instrs"); 62 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 63 "Force emit s_waitcnt vmcnt(0) instrs"); 64 65 static cl::opt<unsigned> ForceEmitZeroFlag( 66 "amdgpu-waitcnt-forcezero", 67 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 68 cl::init(0), cl::Hidden); 69 70 namespace { 71 72 // Class of object that encapsulates latest instruction counter score 73 // associated with the operand. Used for determining whether 74 // s_waitcnt instruction needs to be emited. 75 76 #define CNT_MASK(t) (1u << (t)) 77 78 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS }; 79 80 using RegInterval = std::pair<signed, signed>; 81 82 struct { 83 int32_t VmcntMax; 84 int32_t ExpcntMax; 85 int32_t LgkmcntMax; 86 int32_t NumVGPRsMax; 87 int32_t NumSGPRsMax; 88 } HardwareLimits; 89 90 struct { 91 unsigned VGPR0; 92 unsigned VGPRL; 93 unsigned SGPR0; 94 unsigned SGPRL; 95 } RegisterEncoding; 96 97 enum WaitEventType { 98 VMEM_ACCESS, // vector-memory read & write 99 LDS_ACCESS, // lds read & write 100 GDS_ACCESS, // gds read & write 101 SQ_MESSAGE, // send message 102 SMEM_ACCESS, // scalar-memory read & write 103 EXP_GPR_LOCK, // export holding on its data src 104 GDS_GPR_LOCK, // GDS holding on its data and addr src 105 EXP_POS_ACCESS, // write to export position 106 EXP_PARAM_ACCESS, // write to export parameter 107 VMW_GPR_LOCK, // vector-memory write holding on its data src 108 NUM_WAIT_EVENTS, 109 }; 110 111 // The mapping is: 112 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 113 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 114 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 115 // We reserve a fixed number of VGPR slots in the scoring tables for 116 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 117 enum RegisterMapping { 118 SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets. 119 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 120 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 121 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses. 122 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 123 }; 124 125 #define ForAllWaitEventType(w) \ 126 for (enum WaitEventType w = (enum WaitEventType)0; \ 127 (w) < (enum WaitEventType)NUM_WAIT_EVENTS; \ 128 (w) = (enum WaitEventType)((w) + 1)) 129 130 // This is a per-basic-block object that maintains current score brackets 131 // of each wait counter, and a per-register scoreboard for each wait counter. 132 // We also maintain the latest score for every event type that can change the 133 // waitcnt in order to know if there are multiple types of events within 134 // the brackets. When multiple types of event happen in the bracket, 135 // wait count may get decreased out of order, therefore we need to put in 136 // "s_waitcnt 0" before use. 137 class BlockWaitcntBrackets { 138 public: 139 BlockWaitcntBrackets(const SISubtarget *SubTarget) : ST(SubTarget) { 140 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 141 T = (enum InstCounterType)(T + 1)) { 142 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 143 } 144 } 145 146 ~BlockWaitcntBrackets() = default; 147 148 static int32_t getWaitCountMax(InstCounterType T) { 149 switch (T) { 150 case VM_CNT: 151 return HardwareLimits.VmcntMax; 152 case LGKM_CNT: 153 return HardwareLimits.LgkmcntMax; 154 case EXP_CNT: 155 return HardwareLimits.ExpcntMax; 156 default: 157 break; 158 } 159 return 0; 160 } 161 162 void setScoreLB(InstCounterType T, int32_t Val) { 163 assert(T < NUM_INST_CNTS); 164 if (T >= NUM_INST_CNTS) 165 return; 166 ScoreLBs[T] = Val; 167 } 168 169 void setScoreUB(InstCounterType T, int32_t Val) { 170 assert(T < NUM_INST_CNTS); 171 if (T >= NUM_INST_CNTS) 172 return; 173 ScoreUBs[T] = Val; 174 if (T == EXP_CNT) { 175 int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT)); 176 if (ScoreLBs[T] < UB) 177 ScoreLBs[T] = UB; 178 } 179 } 180 181 int32_t getScoreLB(InstCounterType T) { 182 assert(T < NUM_INST_CNTS); 183 if (T >= NUM_INST_CNTS) 184 return 0; 185 return ScoreLBs[T]; 186 } 187 188 int32_t getScoreUB(InstCounterType T) { 189 assert(T < NUM_INST_CNTS); 190 if (T >= NUM_INST_CNTS) 191 return 0; 192 return ScoreUBs[T]; 193 } 194 195 // Mapping from event to counter. 196 InstCounterType eventCounter(WaitEventType E) { 197 switch (E) { 198 case VMEM_ACCESS: 199 return VM_CNT; 200 case LDS_ACCESS: 201 case GDS_ACCESS: 202 case SQ_MESSAGE: 203 case SMEM_ACCESS: 204 return LGKM_CNT; 205 case EXP_GPR_LOCK: 206 case GDS_GPR_LOCK: 207 case VMW_GPR_LOCK: 208 case EXP_POS_ACCESS: 209 case EXP_PARAM_ACCESS: 210 return EXP_CNT; 211 default: 212 llvm_unreachable("unhandled event type"); 213 } 214 return NUM_INST_CNTS; 215 } 216 217 void setRegScore(int GprNo, InstCounterType T, int32_t Val) { 218 if (GprNo < NUM_ALL_VGPRS) { 219 if (GprNo > VgprUB) { 220 VgprUB = GprNo; 221 } 222 VgprScores[T][GprNo] = Val; 223 } else { 224 assert(T == LGKM_CNT); 225 if (GprNo - NUM_ALL_VGPRS > SgprUB) { 226 SgprUB = GprNo - NUM_ALL_VGPRS; 227 } 228 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 229 } 230 } 231 232 int32_t getRegScore(int GprNo, InstCounterType T) { 233 if (GprNo < NUM_ALL_VGPRS) { 234 return VgprScores[T][GprNo]; 235 } 236 return SgprScores[GprNo - NUM_ALL_VGPRS]; 237 } 238 239 void clear() { 240 memset(ScoreLBs, 0, sizeof(ScoreLBs)); 241 memset(ScoreUBs, 0, sizeof(ScoreUBs)); 242 memset(EventUBs, 0, sizeof(EventUBs)); 243 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 244 T = (enum InstCounterType)(T + 1)) { 245 memset(VgprScores[T], 0, sizeof(VgprScores[T])); 246 } 247 memset(SgprScores, 0, sizeof(SgprScores)); 248 } 249 250 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 251 const MachineRegisterInfo *MRI, 252 const SIRegisterInfo *TRI, unsigned OpNo, 253 bool Def) const; 254 255 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 256 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 257 unsigned OpNo, int32_t Val); 258 259 void setWaitAtBeginning() { WaitAtBeginning = true; } 260 void clearWaitAtBeginning() { WaitAtBeginning = false; } 261 bool getWaitAtBeginning() const { return WaitAtBeginning; } 262 void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; } 263 int32_t getMaxVGPR() const { return VgprUB; } 264 int32_t getMaxSGPR() const { return SgprUB; } 265 266 int32_t getEventUB(enum WaitEventType W) const { 267 assert(W < NUM_WAIT_EVENTS); 268 return EventUBs[W]; 269 } 270 271 bool counterOutOfOrder(InstCounterType T); 272 unsigned int updateByWait(InstCounterType T, int ScoreToWait); 273 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 274 const MachineRegisterInfo *MRI, WaitEventType E, 275 MachineInstr &MI); 276 277 bool hasPendingSMEM() const { 278 return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 279 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]); 280 } 281 282 bool hasPendingFlat() const { 283 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 284 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 285 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 286 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 287 } 288 289 void setPendingFlat() { 290 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 291 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 292 } 293 294 int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; } 295 296 void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; } 297 298 bool getRevisitLoop() const { return RevisitLoop; } 299 void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; } 300 301 void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; } 302 int32_t getPostOrder() const { return PostOrder; } 303 304 void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; } 305 void clearWaitcnt() { Waitcnt = nullptr; } 306 MachineInstr *getWaitcnt() const { return Waitcnt; } 307 308 bool mixedExpTypes() const { return MixedExpTypes; } 309 void setMixedExpTypes(bool MixedExpTypesIn) { 310 MixedExpTypes = MixedExpTypesIn; 311 } 312 313 void print(raw_ostream &); 314 void dump() { print(dbgs()); } 315 316 private: 317 const SISubtarget *ST = nullptr; 318 bool WaitAtBeginning = false; 319 bool RevisitLoop = false; 320 bool MixedExpTypes = false; 321 int32_t PostOrder = 0; 322 MachineInstr *Waitcnt = nullptr; 323 int32_t ScoreLBs[NUM_INST_CNTS] = {0}; 324 int32_t ScoreUBs[NUM_INST_CNTS] = {0}; 325 int32_t EventUBs[NUM_WAIT_EVENTS] = {0}; 326 // Remember the last flat memory operation. 327 int32_t LastFlat[NUM_INST_CNTS] = {0}; 328 // wait_cnt scores for every vgpr. 329 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 330 int32_t VgprUB = 0; 331 int32_t SgprUB = 0; 332 int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS]; 333 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 334 int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 335 }; 336 337 // This is a per-loop-region object that records waitcnt status at the end of 338 // loop footer from the previous iteration. We also maintain an iteration 339 // count to track the number of times the loop has been visited. When it 340 // doesn't converge naturally, we force convergence by inserting s_waitcnt 0 341 // at the end of the loop footer. 342 class LoopWaitcntData { 343 public: 344 LoopWaitcntData() = default; 345 ~LoopWaitcntData() = default; 346 347 void incIterCnt() { IterCnt++; } 348 void resetIterCnt() { IterCnt = 0; } 349 unsigned getIterCnt() { return IterCnt; } 350 351 void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; } 352 MachineInstr *getWaitcnt() const { return LfWaitcnt; } 353 354 void print() { LLVM_DEBUG(dbgs() << " iteration " << IterCnt << '\n';); } 355 356 private: 357 // s_waitcnt added at the end of loop footer to stablize wait scores 358 // at the end of the loop footer. 359 MachineInstr *LfWaitcnt = nullptr; 360 // Number of iterations the loop has been visited, not including the initial 361 // walk over. 362 int32_t IterCnt = 0; 363 }; 364 365 class SIInsertWaitcnts : public MachineFunctionPass { 366 private: 367 const SISubtarget *ST = nullptr; 368 const SIInstrInfo *TII = nullptr; 369 const SIRegisterInfo *TRI = nullptr; 370 const MachineRegisterInfo *MRI = nullptr; 371 const MachineLoopInfo *MLI = nullptr; 372 AMDGPU::IsaInfo::IsaVersion IV; 373 AMDGPUAS AMDGPUASI; 374 375 DenseSet<MachineBasicBlock *> BlockVisitedSet; 376 DenseSet<MachineInstr *> TrackedWaitcntSet; 377 DenseSet<MachineInstr *> VCCZBugHandledSet; 378 379 DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>> 380 BlockWaitcntBracketsMap; 381 382 std::vector<MachineBasicBlock *> BlockWaitcntProcessedSet; 383 384 DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap; 385 386 std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets; 387 388 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 389 // because of amdgpu-waitcnt-forcezero flag 390 bool ForceEmitZeroWaitcnts; 391 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 392 393 public: 394 static char ID; 395 396 SIInsertWaitcnts() : MachineFunctionPass(ID) {} 397 398 bool runOnMachineFunction(MachineFunction &MF) override; 399 400 StringRef getPassName() const override { 401 return "SI insert wait instructions"; 402 } 403 404 void getAnalysisUsage(AnalysisUsage &AU) const override { 405 AU.setPreservesCFG(); 406 AU.addRequired<MachineLoopInfo>(); 407 MachineFunctionPass::getAnalysisUsage(AU); 408 } 409 410 void addKillWaitBracket(BlockWaitcntBrackets *Bracket) { 411 // The waitcnt information is copied because it changes as the block is 412 // traversed. 413 KillWaitBrackets.push_back( 414 llvm::make_unique<BlockWaitcntBrackets>(*Bracket)); 415 } 416 417 bool isForceEmitWaitcnt() const { 418 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 419 T = (enum InstCounterType)(T + 1)) 420 if (ForceEmitWaitcnt[T]) 421 return true; 422 return false; 423 } 424 425 void setForceEmitWaitcnt() { 426 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 427 // For debug builds, get the debug counter info and adjust if need be 428 #ifndef NDEBUG 429 if (DebugCounter::isCounterSet(ForceExpCounter) && 430 DebugCounter::shouldExecute(ForceExpCounter)) { 431 ForceEmitWaitcnt[EXP_CNT] = true; 432 } else { 433 ForceEmitWaitcnt[EXP_CNT] = false; 434 } 435 436 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 437 DebugCounter::shouldExecute(ForceLgkmCounter)) { 438 ForceEmitWaitcnt[LGKM_CNT] = true; 439 } else { 440 ForceEmitWaitcnt[LGKM_CNT] = false; 441 } 442 443 if (DebugCounter::isCounterSet(ForceVMCounter) && 444 DebugCounter::shouldExecute(ForceVMCounter)) { 445 ForceEmitWaitcnt[VM_CNT] = true; 446 } else { 447 ForceEmitWaitcnt[VM_CNT] = false; 448 } 449 #endif // NDEBUG 450 } 451 452 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 453 void generateWaitcntInstBefore(MachineInstr &MI, 454 BlockWaitcntBrackets *ScoreBrackets); 455 void updateEventWaitcntAfter(MachineInstr &Inst, 456 BlockWaitcntBrackets *ScoreBrackets); 457 void mergeInputScoreBrackets(MachineBasicBlock &Block); 458 bool isLoopBottom(const MachineLoop *Loop, const MachineBasicBlock *Block); 459 unsigned countNumBottomBlocks(const MachineLoop *Loop); 460 void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block); 461 void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst); 462 bool isWaitcntStronger(unsigned LHS, unsigned RHS); 463 unsigned combineWaitcnt(unsigned LHS, unsigned RHS); 464 }; 465 466 } // end anonymous namespace 467 468 RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI, 469 const SIInstrInfo *TII, 470 const MachineRegisterInfo *MRI, 471 const SIRegisterInfo *TRI, 472 unsigned OpNo, 473 bool Def) const { 474 const MachineOperand &Op = MI->getOperand(OpNo); 475 if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) || 476 (Def && !Op.isDef())) 477 return {-1, -1}; 478 479 // A use via a PW operand does not need a waitcnt. 480 // A partial write is not a WAW. 481 assert(!Op.getSubReg() || !Op.isUndef()); 482 483 RegInterval Result; 484 const MachineRegisterInfo &MRIA = *MRI; 485 486 unsigned Reg = TRI->getEncodingValue(Op.getReg()); 487 488 if (TRI->isVGPR(MRIA, Op.getReg())) { 489 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL); 490 Result.first = Reg - RegisterEncoding.VGPR0; 491 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 492 } else if (TRI->isSGPRReg(MRIA, Op.getReg())) { 493 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 494 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS; 495 assert(Result.first >= NUM_ALL_VGPRS && 496 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 497 } 498 // TODO: Handle TTMP 499 // else if (TRI->isTTMP(MRIA, Reg.getReg())) ... 500 else 501 return {-1, -1}; 502 503 const MachineInstr &MIA = *MI; 504 const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo); 505 unsigned Size = TRI->getRegSizeInBits(*RC); 506 Result.second = Result.first + (Size / 32); 507 508 return Result; 509 } 510 511 void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI, 512 const SIInstrInfo *TII, 513 const SIRegisterInfo *TRI, 514 const MachineRegisterInfo *MRI, 515 unsigned OpNo, int32_t Val) { 516 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false); 517 LLVM_DEBUG({ 518 const MachineOperand &Opnd = MI->getOperand(OpNo); 519 assert(TRI->isVGPR(*MRI, Opnd.getReg())); 520 }); 521 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 522 setRegScore(RegNo, EXP_CNT, Val); 523 } 524 } 525 526 void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 527 const SIRegisterInfo *TRI, 528 const MachineRegisterInfo *MRI, 529 WaitEventType E, MachineInstr &Inst) { 530 const MachineRegisterInfo &MRIA = *MRI; 531 InstCounterType T = eventCounter(E); 532 int32_t CurrScore = getScoreUB(T) + 1; 533 // EventUB and ScoreUB need to be update regardless if this event changes 534 // the score of a register or not. 535 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 536 EventUBs[E] = CurrScore; 537 setScoreUB(T, CurrScore); 538 539 if (T == EXP_CNT) { 540 // Check for mixed export types. If they are mixed, then a waitcnt exp(0) 541 // is required. 542 if (!MixedExpTypes) { 543 MixedExpTypes = counterOutOfOrder(EXP_CNT); 544 } 545 546 // Put score on the source vgprs. If this is a store, just use those 547 // specific register(s). 548 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 549 // All GDS operations must protect their address register (same as 550 // export.) 551 if (Inst.getOpcode() != AMDGPU::DS_APPEND && 552 Inst.getOpcode() != AMDGPU::DS_CONSUME) { 553 setExpScore( 554 &Inst, TII, TRI, MRI, 555 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr), 556 CurrScore); 557 } 558 if (Inst.mayStore()) { 559 setExpScore( 560 &Inst, TII, TRI, MRI, 561 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 562 CurrScore); 563 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 564 AMDGPU::OpName::data1) != -1) { 565 setExpScore(&Inst, TII, TRI, MRI, 566 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 567 AMDGPU::OpName::data1), 568 CurrScore); 569 } 570 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 && 571 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 572 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 573 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 574 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 575 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 576 Inst.getOpcode() != AMDGPU::DS_APPEND && 577 Inst.getOpcode() != AMDGPU::DS_CONSUME && 578 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 579 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 580 const MachineOperand &Op = Inst.getOperand(I); 581 if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) { 582 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 583 } 584 } 585 } 586 } else if (TII->isFLAT(Inst)) { 587 if (Inst.mayStore()) { 588 setExpScore( 589 &Inst, TII, TRI, MRI, 590 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 591 CurrScore); 592 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 593 setExpScore( 594 &Inst, TII, TRI, MRI, 595 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 596 CurrScore); 597 } 598 } else if (TII->isMIMG(Inst)) { 599 if (Inst.mayStore()) { 600 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 601 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 602 setExpScore( 603 &Inst, TII, TRI, MRI, 604 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 605 CurrScore); 606 } 607 } else if (TII->isMTBUF(Inst)) { 608 if (Inst.mayStore()) { 609 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 610 } 611 } else if (TII->isMUBUF(Inst)) { 612 if (Inst.mayStore()) { 613 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 614 } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) { 615 setExpScore( 616 &Inst, TII, TRI, MRI, 617 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 618 CurrScore); 619 } 620 } else { 621 if (TII->isEXP(Inst)) { 622 // For export the destination registers are really temps that 623 // can be used as the actual source after export patching, so 624 // we need to treat them like sources and set the EXP_CNT 625 // score. 626 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 627 MachineOperand &DefMO = Inst.getOperand(I); 628 if (DefMO.isReg() && DefMO.isDef() && 629 TRI->isVGPR(MRIA, DefMO.getReg())) { 630 setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT, 631 CurrScore); 632 } 633 } 634 } 635 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 636 MachineOperand &MO = Inst.getOperand(I); 637 if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) { 638 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 639 } 640 } 641 } 642 #if 0 // TODO: check if this is handled by MUBUF code above. 643 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 644 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 645 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 646 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 647 unsigned OpNo;//TODO: find the OpNo for this operand; 648 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false); 649 for (signed RegNo = Interval.first; RegNo < Interval.second; 650 ++RegNo) { 651 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 652 } 653 #endif 654 } else { 655 // Match the score to the destination registers. 656 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 657 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true); 658 if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS) 659 continue; 660 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 661 setRegScore(RegNo, T, CurrScore); 662 } 663 } 664 if (TII->isDS(Inst) && Inst.mayStore()) { 665 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 666 } 667 } 668 } 669 670 void BlockWaitcntBrackets::print(raw_ostream &OS) { 671 OS << '\n'; 672 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 673 T = (enum InstCounterType)(T + 1)) { 674 int LB = getScoreLB(T); 675 int UB = getScoreUB(T); 676 677 switch (T) { 678 case VM_CNT: 679 OS << " VM_CNT(" << UB - LB << "): "; 680 break; 681 case LGKM_CNT: 682 OS << " LGKM_CNT(" << UB - LB << "): "; 683 break; 684 case EXP_CNT: 685 OS << " EXP_CNT(" << UB - LB << "): "; 686 break; 687 default: 688 OS << " UNKNOWN(" << UB - LB << "): "; 689 break; 690 } 691 692 if (LB < UB) { 693 // Print vgpr scores. 694 for (int J = 0; J <= getMaxVGPR(); J++) { 695 int RegScore = getRegScore(J, T); 696 if (RegScore <= LB) 697 continue; 698 int RelScore = RegScore - LB - 1; 699 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 700 OS << RelScore << ":v" << J << " "; 701 } else { 702 OS << RelScore << ":ds "; 703 } 704 } 705 // Also need to print sgpr scores for lgkm_cnt. 706 if (T == LGKM_CNT) { 707 for (int J = 0; J <= getMaxSGPR(); J++) { 708 int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 709 if (RegScore <= LB) 710 continue; 711 int RelScore = RegScore - LB - 1; 712 OS << RelScore << ":s" << J << " "; 713 } 714 } 715 } 716 OS << '\n'; 717 } 718 OS << '\n'; 719 } 720 721 unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T, 722 int ScoreToWait) { 723 unsigned int NeedWait = 0; 724 if (ScoreToWait == -1) { 725 // The score to wait is unknown. This implies that it was not encountered 726 // during the path of the CFG walk done during the current traversal but 727 // may be seen on a different path. Emit an s_wait counter with a 728 // conservative value of 0 for the counter. 729 NeedWait = CNT_MASK(T); 730 setScoreLB(T, getScoreUB(T)); 731 return NeedWait; 732 } 733 734 // If the score of src_operand falls within the bracket, we need an 735 // s_waitcnt instruction. 736 const int32_t LB = getScoreLB(T); 737 const int32_t UB = getScoreUB(T); 738 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 739 if ((T == VM_CNT || T == LGKM_CNT) && 740 hasPendingFlat() && 741 !ST->hasFlatLgkmVMemCountInOrder()) { 742 // If there is a pending FLAT operation, and this is a VMem or LGKM 743 // waitcnt and the target can report early completion, then we need 744 // to force a waitcnt 0. 745 NeedWait = CNT_MASK(T); 746 setScoreLB(T, getScoreUB(T)); 747 } else if (counterOutOfOrder(T)) { 748 // Counter can get decremented out-of-order when there 749 // are multiple types event in the bracket. Also emit an s_wait counter 750 // with a conservative value of 0 for the counter. 751 NeedWait = CNT_MASK(T); 752 setScoreLB(T, getScoreUB(T)); 753 } else { 754 NeedWait = CNT_MASK(T); 755 setScoreLB(T, ScoreToWait); 756 } 757 } 758 759 return NeedWait; 760 } 761 762 // Where there are multiple types of event in the bracket of a counter, 763 // the decrement may go out of order. 764 bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) { 765 switch (T) { 766 case VM_CNT: 767 return false; 768 case LGKM_CNT: { 769 if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] && 770 EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) { 771 // Scalar memory read always can go out of order. 772 return true; 773 } 774 int NumEventTypes = 0; 775 if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] && 776 EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 777 NumEventTypes++; 778 } 779 if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] && 780 EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) { 781 NumEventTypes++; 782 } 783 if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] && 784 EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) { 785 NumEventTypes++; 786 } 787 if (NumEventTypes <= 1) { 788 return false; 789 } 790 break; 791 } 792 case EXP_CNT: { 793 // If there has been a mixture of export types, then a waitcnt exp(0) is 794 // required. 795 if (MixedExpTypes) 796 return true; 797 int NumEventTypes = 0; 798 if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] && 799 EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 800 NumEventTypes++; 801 } 802 if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] && 803 EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 804 NumEventTypes++; 805 } 806 if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] && 807 EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) { 808 NumEventTypes++; 809 } 810 if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] && 811 EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) { 812 NumEventTypes++; 813 } 814 815 if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] && 816 EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) { 817 NumEventTypes++; 818 } 819 820 if (NumEventTypes <= 1) { 821 return false; 822 } 823 break; 824 } 825 default: 826 break; 827 } 828 return true; 829 } 830 831 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 832 false) 833 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 834 false) 835 836 char SIInsertWaitcnts::ID = 0; 837 838 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 839 840 FunctionPass *llvm::createSIInsertWaitcntsPass() { 841 return new SIInsertWaitcnts(); 842 } 843 844 static bool readsVCCZ(const MachineInstr &MI) { 845 unsigned Opc = MI.getOpcode(); 846 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 847 !MI.getOperand(1).isUndef(); 848 } 849 850 /// Given wait count encodings checks if LHS is stronger than RHS. 851 bool SIInsertWaitcnts::isWaitcntStronger(unsigned LHS, unsigned RHS) { 852 if (AMDGPU::decodeVmcnt(IV, LHS) > AMDGPU::decodeVmcnt(IV, RHS)) 853 return false; 854 if (AMDGPU::decodeLgkmcnt(IV, LHS) > AMDGPU::decodeLgkmcnt(IV, RHS)) 855 return false; 856 if (AMDGPU::decodeExpcnt(IV, LHS) > AMDGPU::decodeExpcnt(IV, RHS)) 857 return false; 858 return true; 859 } 860 861 /// Given wait count encodings create a new encoding which is stronger 862 /// or equal to both. 863 unsigned SIInsertWaitcnts::combineWaitcnt(unsigned LHS, unsigned RHS) { 864 unsigned VmCnt = std::min(AMDGPU::decodeVmcnt(IV, LHS), 865 AMDGPU::decodeVmcnt(IV, RHS)); 866 unsigned LgkmCnt = std::min(AMDGPU::decodeLgkmcnt(IV, LHS), 867 AMDGPU::decodeLgkmcnt(IV, RHS)); 868 unsigned ExpCnt = std::min(AMDGPU::decodeExpcnt(IV, LHS), 869 AMDGPU::decodeExpcnt(IV, RHS)); 870 return AMDGPU::encodeWaitcnt(IV, VmCnt, ExpCnt, LgkmCnt); 871 } 872 873 /// Generate s_waitcnt instruction to be placed before cur_Inst. 874 /// Instructions of a given type are returned in order, 875 /// but instructions of different types can complete out of order. 876 /// We rely on this in-order completion 877 /// and simply assign a score to the memory access instructions. 878 /// We keep track of the active "score bracket" to determine 879 /// if an access of a memory read requires an s_waitcnt 880 /// and if so what the value of each counter is. 881 /// The "score bracket" is bound by the lower bound and upper bound 882 /// scores (*_score_LB and *_score_ub respectively). 883 void SIInsertWaitcnts::generateWaitcntInstBefore( 884 MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) { 885 // To emit, or not to emit - that's the question! 886 // Start with an assumption that there is no need to emit. 887 unsigned int EmitWaitcnt = 0; 888 889 // No need to wait before phi. If a phi-move exists, then the wait should 890 // has been inserted before the move. If a phi-move does not exist, then 891 // wait should be inserted before the real use. The same is true for 892 // sc-merge. It is not a coincident that all these cases correspond to the 893 // instructions that are skipped in the assembling loop. 894 bool NeedLineMapping = false; // TODO: Check on this. 895 896 // ForceEmitZeroWaitcnt: force a single s_waitcnt 0 due to hw bug 897 bool ForceEmitZeroWaitcnt = false; 898 899 setForceEmitWaitcnt(); 900 bool IsForceEmitWaitcnt = isForceEmitWaitcnt(); 901 902 if (MI.isDebugInstr() && 903 // TODO: any other opcode? 904 !NeedLineMapping) { 905 return; 906 } 907 908 // See if an s_waitcnt is forced at block entry, or is needed at 909 // program end. 910 if (ScoreBrackets->getWaitAtBeginning()) { 911 // Note that we have already cleared the state, so we don't need to update 912 // it. 913 ScoreBrackets->clearWaitAtBeginning(); 914 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 915 T = (enum InstCounterType)(T + 1)) { 916 EmitWaitcnt |= CNT_MASK(T); 917 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 918 } 919 } 920 921 // See if this instruction has a forced S_WAITCNT VM. 922 // TODO: Handle other cases of NeedsWaitcntVmBefore() 923 else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 924 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 925 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) { 926 EmitWaitcnt |= 927 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 928 } 929 930 // All waits must be resolved at call return. 931 // NOTE: this could be improved with knowledge of all call sites or 932 // with knowledge of the called routines. 933 if (MI.getOpcode() == AMDGPU::RETURN || 934 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 935 MI.getOpcode() == AMDGPU::S_SETPC_B64_return) { 936 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 937 T = (enum InstCounterType)(T + 1)) { 938 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 939 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 940 EmitWaitcnt |= CNT_MASK(T); 941 } 942 } 943 } 944 // Resolve vm waits before gs-done. 945 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 946 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 947 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 948 AMDGPU::SendMsg::ID_GS_DONE)) { 949 if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) { 950 ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 951 EmitWaitcnt |= CNT_MASK(VM_CNT); 952 } 953 } 954 #if 0 // TODO: the following blocks of logic when we have fence. 955 else if (MI.getOpcode() == SC_FENCE) { 956 const unsigned int group_size = 957 context->shader_info->GetMaxThreadGroupSize(); 958 // group_size == 0 means thread group size is unknown at compile time 959 const bool group_is_multi_wave = 960 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 961 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 962 963 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 964 SCRegType src_type = Inst->GetSrcType(i); 965 switch (src_type) { 966 case SCMEM_LDS: 967 if (group_is_multi_wave || 968 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 969 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 970 ScoreBrackets->getScoreUB(LGKM_CNT)); 971 // LDS may have to wait for VM_CNT after buffer load to LDS 972 if (target_info->HasBufferLoadToLDS()) { 973 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 974 ScoreBrackets->getScoreUB(VM_CNT)); 975 } 976 } 977 break; 978 979 case SCMEM_GDS: 980 if (group_is_multi_wave || fence_is_global) { 981 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 982 ScoreBrackets->getScoreUB(EXP_CNT)); 983 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 984 ScoreBrackets->getScoreUB(LGKM_CNT)); 985 } 986 break; 987 988 case SCMEM_UAV: 989 case SCMEM_TFBUF: 990 case SCMEM_RING: 991 case SCMEM_SCATTER: 992 if (group_is_multi_wave || fence_is_global) { 993 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 994 ScoreBrackets->getScoreUB(EXP_CNT)); 995 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 996 ScoreBrackets->getScoreUB(VM_CNT)); 997 } 998 break; 999 1000 case SCMEM_SCRATCH: 1001 default: 1002 break; 1003 } 1004 } 1005 } 1006 #endif 1007 1008 // Export & GDS instructions do not read the EXEC mask until after the export 1009 // is granted (which can occur well after the instruction is issued). 1010 // The shader program must flush all EXP operations on the export-count 1011 // before overwriting the EXEC mask. 1012 else { 1013 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1014 // Export and GDS are tracked individually, either may trigger a waitcnt 1015 // for EXEC. 1016 EmitWaitcnt |= ScoreBrackets->updateByWait( 1017 EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK)); 1018 EmitWaitcnt |= ScoreBrackets->updateByWait( 1019 EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS)); 1020 EmitWaitcnt |= ScoreBrackets->updateByWait( 1021 EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS)); 1022 EmitWaitcnt |= ScoreBrackets->updateByWait( 1023 EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK)); 1024 } 1025 1026 #if 0 // TODO: the following code to handle CALL. 1027 // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT. 1028 // However, there is a problem with EXP_CNT, because the call cannot 1029 // easily tell if a register is used in the function, and if it did, then 1030 // the referring instruction would have to have an S_WAITCNT, which is 1031 // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs 1032 // before the call. 1033 if (MI.getOpcode() == SC_CALL) { 1034 if (ScoreBrackets->getScoreUB(EXP_CNT) > 1035 ScoreBrackets->getScoreLB(EXP_CNT)) { 1036 ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1037 EmitWaitcnt |= CNT_MASK(EXP_CNT); 1038 } 1039 } 1040 #endif 1041 1042 // FIXME: Should not be relying on memoperands. 1043 // Look at the source operands of every instruction to see if 1044 // any of them results from a previous memory operation that affects 1045 // its current usage. If so, an s_waitcnt instruction needs to be 1046 // emitted. 1047 // If the source operand was defined by a load, add the s_waitcnt 1048 // instruction. 1049 for (const MachineMemOperand *Memop : MI.memoperands()) { 1050 unsigned AS = Memop->getAddrSpace(); 1051 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1052 continue; 1053 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1054 // VM_CNT is only relevant to vgpr or LDS. 1055 EmitWaitcnt |= ScoreBrackets->updateByWait( 1056 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1057 } 1058 1059 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1060 const MachineOperand &Op = MI.getOperand(I); 1061 const MachineRegisterInfo &MRIA = *MRI; 1062 RegInterval Interval = 1063 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false); 1064 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1065 if (TRI->isVGPR(MRIA, Op.getReg())) { 1066 // VM_CNT is only relevant to vgpr or LDS. 1067 EmitWaitcnt |= ScoreBrackets->updateByWait( 1068 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1069 } 1070 EmitWaitcnt |= ScoreBrackets->updateByWait( 1071 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1072 } 1073 } 1074 // End of for loop that looks at all source operands to decide vm_wait_cnt 1075 // and lgk_wait_cnt. 1076 1077 // Two cases are handled for destination operands: 1078 // 1) If the destination operand was defined by a load, add the s_waitcnt 1079 // instruction to guarantee the right WAW order. 1080 // 2) If a destination operand that was used by a recent export/store ins, 1081 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1082 if (MI.mayStore()) { 1083 // FIXME: Should not be relying on memoperands. 1084 for (const MachineMemOperand *Memop : MI.memoperands()) { 1085 unsigned AS = Memop->getAddrSpace(); 1086 if (AS != AMDGPUASI.LOCAL_ADDRESS) 1087 continue; 1088 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1089 EmitWaitcnt |= ScoreBrackets->updateByWait( 1090 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1091 EmitWaitcnt |= ScoreBrackets->updateByWait( 1092 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1093 } 1094 } 1095 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1096 MachineOperand &Def = MI.getOperand(I); 1097 const MachineRegisterInfo &MRIA = *MRI; 1098 RegInterval Interval = 1099 ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true); 1100 for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1101 if (TRI->isVGPR(MRIA, Def.getReg())) { 1102 EmitWaitcnt |= ScoreBrackets->updateByWait( 1103 VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT)); 1104 EmitWaitcnt |= ScoreBrackets->updateByWait( 1105 EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT)); 1106 } 1107 EmitWaitcnt |= ScoreBrackets->updateByWait( 1108 LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT)); 1109 } 1110 } // End of for loop that looks at all dest operands. 1111 } 1112 1113 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1114 // occurs before the instruction. Doing it here prevents any additional 1115 // S_WAITCNTs from being emitted if the instruction was marked as 1116 // requiring a WAITCNT beforehand. 1117 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1118 !ST->hasAutoWaitcntBeforeBarrier()) { 1119 EmitWaitcnt |= 1120 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1121 EmitWaitcnt |= ScoreBrackets->updateByWait( 1122 EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1123 EmitWaitcnt |= ScoreBrackets->updateByWait( 1124 LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT)); 1125 } 1126 1127 // TODO: Remove this work-around, enable the assert for Bug 457939 1128 // after fixing the scheduler. Also, the Shader Compiler code is 1129 // independent of target. 1130 if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) { 1131 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1132 ScoreBrackets->getScoreUB(LGKM_CNT) && 1133 ScoreBrackets->hasPendingSMEM()) { 1134 // Wait on everything, not just LGKM. vccz reads usually come from 1135 // terminators, and we always wait on everything at the end of the 1136 // block, so if we only wait on LGKM here, we might end up with 1137 // another s_waitcnt inserted right after this if there are non-LGKM 1138 // instructions still outstanding. 1139 // FIXME: this is too conservative / the comment is wrong. 1140 // We don't wait on everything at the end of the block and we combine 1141 // waitcnts so we should never have back-to-back waitcnts. 1142 ForceEmitZeroWaitcnt = true; 1143 EmitWaitcnt = true; 1144 } 1145 } 1146 1147 // Does this operand processing indicate s_wait counter update? 1148 if (EmitWaitcnt || IsForceEmitWaitcnt) { 1149 int CntVal[NUM_INST_CNTS]; 1150 1151 bool UseDefaultWaitcntStrategy = true; 1152 if (ForceEmitZeroWaitcnt || ForceEmitZeroWaitcnts) { 1153 // Force all waitcnts to 0. 1154 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1155 T = (enum InstCounterType)(T + 1)) { 1156 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1157 } 1158 CntVal[VM_CNT] = 0; 1159 CntVal[EXP_CNT] = 0; 1160 CntVal[LGKM_CNT] = 0; 1161 UseDefaultWaitcntStrategy = false; 1162 } 1163 1164 if (UseDefaultWaitcntStrategy) { 1165 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1166 T = (enum InstCounterType)(T + 1)) { 1167 if (EmitWaitcnt & CNT_MASK(T)) { 1168 int Delta = 1169 ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T); 1170 int MaxDelta = ScoreBrackets->getWaitCountMax(T); 1171 if (Delta >= MaxDelta) { 1172 Delta = -1; 1173 if (T != EXP_CNT) { 1174 ScoreBrackets->setScoreLB( 1175 T, ScoreBrackets->getScoreUB(T) - MaxDelta); 1176 } 1177 EmitWaitcnt &= ~CNT_MASK(T); 1178 } 1179 CntVal[T] = Delta; 1180 } else { 1181 // If we are not waiting for a particular counter then encode 1182 // it as -1 which means "don't care." 1183 CntVal[T] = -1; 1184 } 1185 } 1186 } 1187 1188 // If we are not waiting on any counter we can skip the wait altogether. 1189 if (EmitWaitcnt != 0 || IsForceEmitWaitcnt) { 1190 MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt(); 1191 int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm(); 1192 if (!OldWaitcnt || 1193 (AMDGPU::decodeVmcnt(IV, Imm) != 1194 (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) || 1195 (AMDGPU::decodeExpcnt(IV, Imm) != 1196 (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) || 1197 (AMDGPU::decodeLgkmcnt(IV, Imm) != 1198 (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) { 1199 MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent()); 1200 if (ContainingLoop) { 1201 MachineBasicBlock *TBB = ContainingLoop->getHeader(); 1202 BlockWaitcntBrackets *ScoreBracket = 1203 BlockWaitcntBracketsMap[TBB].get(); 1204 if (!ScoreBracket) { 1205 assert(!BlockVisitedSet.count(TBB)); 1206 BlockWaitcntBracketsMap[TBB] = 1207 llvm::make_unique<BlockWaitcntBrackets>(ST); 1208 ScoreBracket = BlockWaitcntBracketsMap[TBB].get(); 1209 } 1210 ScoreBracket->setRevisitLoop(true); 1211 LLVM_DEBUG(dbgs() 1212 << "set-revisit2: Block" 1213 << ContainingLoop->getHeader()->getNumber() << '\n';); 1214 } 1215 } 1216 1217 // Update an existing waitcount, or make a new one. 1218 unsigned Enc = AMDGPU::encodeWaitcnt(IV, 1219 ForceEmitWaitcnt[VM_CNT] ? 0 : CntVal[VM_CNT], 1220 ForceEmitWaitcnt[EXP_CNT] ? 0 : CntVal[EXP_CNT], 1221 ForceEmitWaitcnt[LGKM_CNT] ? 0 : CntVal[LGKM_CNT]); 1222 // We don't remove waitcnts that existed prior to the waitcnt 1223 // pass. Check if the waitcnt to-be-inserted can be avoided 1224 // or if the prev waitcnt can be updated. 1225 bool insertSWaitInst = true; 1226 for (MachineBasicBlock::iterator I = MI.getIterator(), 1227 B = MI.getParent()->begin(); 1228 insertSWaitInst && I != B; --I) { 1229 if (I == MI.getIterator()) 1230 continue; 1231 1232 switch (I->getOpcode()) { 1233 case AMDGPU::S_WAITCNT: 1234 if (isWaitcntStronger(I->getOperand(0).getImm(), Enc)) 1235 insertSWaitInst = false; 1236 else if (!OldWaitcnt) { 1237 OldWaitcnt = &*I; 1238 Enc = combineWaitcnt(I->getOperand(0).getImm(), Enc); 1239 } 1240 break; 1241 // TODO: skip over instructions which never require wait. 1242 } 1243 break; 1244 } 1245 if (insertSWaitInst) { 1246 if (OldWaitcnt && OldWaitcnt->getOpcode() == AMDGPU::S_WAITCNT) { 1247 if (ForceEmitZeroWaitcnts) 1248 LLVM_DEBUG( 1249 dbgs() 1250 << "Force emit s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)\n"); 1251 if (IsForceEmitWaitcnt) 1252 LLVM_DEBUG(dbgs() 1253 << "Force emit a s_waitcnt due to debug counter\n"); 1254 1255 OldWaitcnt->getOperand(0).setImm(Enc); 1256 if (!OldWaitcnt->getParent()) 1257 MI.getParent()->insert(MI, OldWaitcnt); 1258 1259 LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n" 1260 << "Old Instr: " << MI << '\n' 1261 << "New Instr: " << *OldWaitcnt << '\n'); 1262 } else { 1263 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1264 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1265 .addImm(Enc); 1266 TrackedWaitcntSet.insert(SWaitInst); 1267 1268 LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n" 1269 << "Old Instr: " << MI << '\n' 1270 << "New Instr: " << *SWaitInst << '\n'); 1271 } 1272 } 1273 1274 if (CntVal[EXP_CNT] == 0) { 1275 ScoreBrackets->setMixedExpTypes(false); 1276 } 1277 } 1278 } 1279 } 1280 1281 void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB, 1282 MachineInstr *Waitcnt) { 1283 if (MBB.empty()) { 1284 MBB.push_back(Waitcnt); 1285 return; 1286 } 1287 1288 MachineBasicBlock::iterator It = MBB.end(); 1289 MachineInstr *MI = &*(--It); 1290 if (MI->isBranch()) { 1291 MBB.insert(It, Waitcnt); 1292 } else { 1293 MBB.push_back(Waitcnt); 1294 } 1295 } 1296 1297 // This is a flat memory operation. Check to see if it has memory 1298 // tokens for both LDS and Memory, and if so mark it as a flat. 1299 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1300 if (MI.memoperands_empty()) 1301 return true; 1302 1303 for (const MachineMemOperand *Memop : MI.memoperands()) { 1304 unsigned AS = Memop->getAddrSpace(); 1305 if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS) 1306 return true; 1307 } 1308 1309 return false; 1310 } 1311 1312 void SIInsertWaitcnts::updateEventWaitcntAfter( 1313 MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) { 1314 // Now look at the instruction opcode. If it is a memory access 1315 // instruction, update the upper-bound of the appropriate counter's 1316 // bracket and the destination operand scores. 1317 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1318 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1319 if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1320 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1321 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1322 } else { 1323 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1324 } 1325 } else if (TII->isFLAT(Inst)) { 1326 assert(Inst.mayLoad() || Inst.mayStore()); 1327 1328 if (TII->usesVM_CNT(Inst)) 1329 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1330 1331 if (TII->usesLGKM_CNT(Inst)) { 1332 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1333 1334 // This is a flat memory operation, so note it - it will require 1335 // that both the VM and LGKM be flushed to zero if it is pending when 1336 // a VM or LGKM dependency occurs. 1337 if (mayAccessLDSThroughFlat(Inst)) 1338 ScoreBrackets->setPendingFlat(); 1339 } 1340 } else if (SIInstrInfo::isVMEM(Inst) && 1341 // TODO: get a better carve out. 1342 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 && 1343 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC && 1344 Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) { 1345 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1346 if (ST->vmemWriteNeedsExpWaitcnt() && 1347 (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) { 1348 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1349 } 1350 } else if (TII->isSMRD(Inst)) { 1351 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1352 } else { 1353 switch (Inst.getOpcode()) { 1354 case AMDGPU::S_SENDMSG: 1355 case AMDGPU::S_SENDMSGHALT: 1356 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1357 break; 1358 case AMDGPU::EXP: 1359 case AMDGPU::EXP_DONE: { 1360 int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1361 if (Imm >= 32 && Imm <= 63) 1362 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1363 else if (Imm >= 12 && Imm <= 15) 1364 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1365 else 1366 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1367 break; 1368 } 1369 case AMDGPU::S_MEMTIME: 1370 case AMDGPU::S_MEMREALTIME: 1371 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1372 break; 1373 default: 1374 break; 1375 } 1376 } 1377 } 1378 1379 // Merge the score brackets of the Block's predecessors; 1380 // this merged score bracket is used when adding waitcnts to the Block 1381 void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) { 1382 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1383 int32_t MaxPending[NUM_INST_CNTS] = {0}; 1384 int32_t MaxFlat[NUM_INST_CNTS] = {0}; 1385 bool MixedExpTypes = false; 1386 1387 // For single basic block loops, we need to retain the Block's 1388 // score bracket to have accurate Pred info. So, make a copy of Block's 1389 // score bracket, clear() it (which retains several important bits of info), 1390 // populate, and then replace en masse. For non-single basic block loops, 1391 // just clear Block's current score bracket and repopulate in-place. 1392 bool IsSelfPred; 1393 std::unique_ptr<BlockWaitcntBrackets> S; 1394 1395 IsSelfPred = (std::find(Block.pred_begin(), Block.pred_end(), &Block)) 1396 != Block.pred_end(); 1397 if (IsSelfPred) { 1398 S = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1399 ScoreBrackets = S.get(); 1400 } 1401 1402 ScoreBrackets->clear(); 1403 1404 // See if there are any uninitialized predecessors. If so, emit an 1405 // s_waitcnt 0 at the beginning of the block. 1406 for (MachineBasicBlock *Pred : Block.predecessors()) { 1407 BlockWaitcntBrackets *PredScoreBrackets = 1408 BlockWaitcntBracketsMap[Pred].get(); 1409 bool Visited = BlockVisitedSet.count(Pred); 1410 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1411 continue; 1412 } 1413 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1414 T = (enum InstCounterType)(T + 1)) { 1415 int span = 1416 PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T); 1417 MaxPending[T] = std::max(MaxPending[T], span); 1418 span = 1419 PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T); 1420 MaxFlat[T] = std::max(MaxFlat[T], span); 1421 } 1422 1423 MixedExpTypes |= PredScoreBrackets->mixedExpTypes(); 1424 } 1425 1426 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1427 // Also handle kills for exit block. 1428 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1429 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1430 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1431 T = (enum InstCounterType)(T + 1)) { 1432 int Span = KillWaitBrackets[I]->getScoreUB(T) - 1433 KillWaitBrackets[I]->getScoreLB(T); 1434 MaxPending[T] = std::max(MaxPending[T], Span); 1435 Span = KillWaitBrackets[I]->pendingFlat(T) - 1436 KillWaitBrackets[I]->getScoreLB(T); 1437 MaxFlat[T] = std::max(MaxFlat[T], Span); 1438 } 1439 1440 MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes(); 1441 } 1442 } 1443 1444 // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK. 1445 for (MachineBasicBlock *Pred : Block.predecessors()) { 1446 BlockWaitcntBrackets *PredScoreBrackets = 1447 BlockWaitcntBracketsMap[Pred].get(); 1448 bool Visited = BlockVisitedSet.count(Pred); 1449 if (!Visited || PredScoreBrackets->getWaitAtBeginning()) { 1450 continue; 1451 } 1452 1453 int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) - 1454 PredScoreBrackets->getScoreLB(EXP_CNT); 1455 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1456 int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) - 1457 PredScoreBrackets->getScoreLB(EXP_CNT); 1458 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1459 } 1460 1461 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1462 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1463 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1464 int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) - 1465 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1466 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan); 1467 int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) - 1468 KillWaitBrackets[I]->getScoreLB(EXP_CNT); 1469 MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan); 1470 } 1471 } 1472 1473 #if 0 1474 // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker. 1475 // TODO: how does LC distinguish between function entry and main entry? 1476 // If this is the entry to a function, force a wait. 1477 MachineBasicBlock &Entry = Block.getParent()->front(); 1478 if (Entry.getNumber() == Block.getNumber()) { 1479 ScoreBrackets->setWaitAtBeginning(); 1480 return; 1481 } 1482 #endif 1483 1484 // Now set the current Block's brackets to the largest ending bracket. 1485 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1486 T = (enum InstCounterType)(T + 1)) { 1487 ScoreBrackets->setScoreUB(T, MaxPending[T]); 1488 ScoreBrackets->setScoreLB(T, 0); 1489 ScoreBrackets->setLastFlat(T, MaxFlat[T]); 1490 } 1491 1492 ScoreBrackets->setMixedExpTypes(MixedExpTypes); 1493 1494 // Set the register scoreboard. 1495 for (MachineBasicBlock *Pred : Block.predecessors()) { 1496 if (!BlockVisitedSet.count(Pred)) { 1497 continue; 1498 } 1499 1500 BlockWaitcntBrackets *PredScoreBrackets = 1501 BlockWaitcntBracketsMap[Pred].get(); 1502 1503 // Now merge the gpr_reg_score information 1504 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1505 T = (enum InstCounterType)(T + 1)) { 1506 int PredLB = PredScoreBrackets->getScoreLB(T); 1507 int PredUB = PredScoreBrackets->getScoreUB(T); 1508 if (PredLB < PredUB) { 1509 int PredScale = MaxPending[T] - PredUB; 1510 // Merge vgpr scores. 1511 for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) { 1512 int PredRegScore = PredScoreBrackets->getRegScore(J, T); 1513 if (PredRegScore <= PredLB) 1514 continue; 1515 int NewRegScore = PredScale + PredRegScore; 1516 ScoreBrackets->setRegScore( 1517 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1518 } 1519 // Also need to merge sgpr scores for lgkm_cnt. 1520 if (T == LGKM_CNT) { 1521 for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) { 1522 int PredRegScore = 1523 PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1524 if (PredRegScore <= PredLB) 1525 continue; 1526 int NewRegScore = PredScale + PredRegScore; 1527 ScoreBrackets->setRegScore( 1528 J + NUM_ALL_VGPRS, LGKM_CNT, 1529 std::max( 1530 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1531 NewRegScore)); 1532 } 1533 } 1534 } 1535 } 1536 1537 // Also merge the WaitEvent information. 1538 ForAllWaitEventType(W) { 1539 enum InstCounterType T = PredScoreBrackets->eventCounter(W); 1540 int PredEventUB = PredScoreBrackets->getEventUB(W); 1541 if (PredEventUB > PredScoreBrackets->getScoreLB(T)) { 1542 int NewEventUB = 1543 MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T); 1544 if (NewEventUB > 0) { 1545 ScoreBrackets->setEventUB( 1546 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1547 } 1548 } 1549 } 1550 } 1551 1552 // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()? 1553 // Set the register scoreboard. 1554 if (Block.succ_empty() && !KillWaitBrackets.empty()) { 1555 for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) { 1556 // Now merge the gpr_reg_score information. 1557 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1558 T = (enum InstCounterType)(T + 1)) { 1559 int PredLB = KillWaitBrackets[I]->getScoreLB(T); 1560 int PredUB = KillWaitBrackets[I]->getScoreUB(T); 1561 if (PredLB < PredUB) { 1562 int PredScale = MaxPending[T] - PredUB; 1563 // Merge vgpr scores. 1564 for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) { 1565 int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T); 1566 if (PredRegScore <= PredLB) 1567 continue; 1568 int NewRegScore = PredScale + PredRegScore; 1569 ScoreBrackets->setRegScore( 1570 J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore)); 1571 } 1572 // Also need to merge sgpr scores for lgkm_cnt. 1573 if (T == LGKM_CNT) { 1574 for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) { 1575 int PredRegScore = 1576 KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 1577 if (PredRegScore <= PredLB) 1578 continue; 1579 int NewRegScore = PredScale + PredRegScore; 1580 ScoreBrackets->setRegScore( 1581 J + NUM_ALL_VGPRS, LGKM_CNT, 1582 std::max( 1583 ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT), 1584 NewRegScore)); 1585 } 1586 } 1587 } 1588 } 1589 1590 // Also merge the WaitEvent information. 1591 ForAllWaitEventType(W) { 1592 enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W); 1593 int PredEventUB = KillWaitBrackets[I]->getEventUB(W); 1594 if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) { 1595 int NewEventUB = 1596 MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T); 1597 if (NewEventUB > 0) { 1598 ScoreBrackets->setEventUB( 1599 W, std::max(ScoreBrackets->getEventUB(W), NewEventUB)); 1600 } 1601 } 1602 } 1603 } 1604 } 1605 1606 // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the 1607 // sequencing predecessors, because changes to EXEC require waitcnts due to 1608 // the delayed nature of these operations. 1609 for (MachineBasicBlock *Pred : Block.predecessors()) { 1610 if (!BlockVisitedSet.count(Pred)) { 1611 continue; 1612 } 1613 1614 BlockWaitcntBrackets *PredScoreBrackets = 1615 BlockWaitcntBracketsMap[Pred].get(); 1616 1617 int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK); 1618 if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1619 int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub - 1620 PredScoreBrackets->getScoreUB(EXP_CNT); 1621 if (new_gds_ub > 0) { 1622 ScoreBrackets->setEventUB( 1623 GDS_GPR_LOCK, 1624 std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub)); 1625 } 1626 } 1627 int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK); 1628 if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) { 1629 int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub - 1630 PredScoreBrackets->getScoreUB(EXP_CNT); 1631 if (new_exp_ub > 0) { 1632 ScoreBrackets->setEventUB( 1633 EXP_GPR_LOCK, 1634 std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub)); 1635 } 1636 } 1637 } 1638 1639 // if a single block loop, update the score brackets. Not needed for other 1640 // blocks, as we did this in-place 1641 if (IsSelfPred) { 1642 BlockWaitcntBracketsMap[&Block] = llvm::make_unique<BlockWaitcntBrackets>(*ScoreBrackets); 1643 } 1644 } 1645 1646 /// Return true if the given basic block is a "bottom" block of a loop. 1647 /// This works even if the loop is discontiguous. This also handles 1648 /// multiple back-edges for the same "header" block of a loop. 1649 bool SIInsertWaitcnts::isLoopBottom(const MachineLoop *Loop, 1650 const MachineBasicBlock *Block) { 1651 for (MachineBasicBlock *MBB : Loop->blocks()) { 1652 if (MBB == Block && MBB->isSuccessor(Loop->getHeader())) { 1653 return true; 1654 } 1655 } 1656 return false; 1657 } 1658 1659 /// Count the number of "bottom" basic blocks of a loop. 1660 unsigned SIInsertWaitcnts::countNumBottomBlocks(const MachineLoop *Loop) { 1661 unsigned Count = 0; 1662 for (MachineBasicBlock *MBB : Loop->blocks()) { 1663 if (MBB->isSuccessor(Loop->getHeader())) { 1664 Count++; 1665 } 1666 } 1667 return Count; 1668 } 1669 1670 // Generate s_waitcnt instructions where needed. 1671 void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1672 MachineBasicBlock &Block) { 1673 // Initialize the state information. 1674 mergeInputScoreBrackets(Block); 1675 1676 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get(); 1677 1678 LLVM_DEBUG({ 1679 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1680 ScoreBrackets->dump(); 1681 }); 1682 1683 // Walk over the instructions. 1684 for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end(); 1685 Iter != E;) { 1686 MachineInstr &Inst = *Iter; 1687 // Remove any previously existing waitcnts. 1688 if (Inst.getOpcode() == AMDGPU::S_WAITCNT) { 1689 // Leave pre-existing waitcnts, but note their existence via setWaitcnt. 1690 // Remove the waitcnt-pass-generated waitcnts; the pass will add them back 1691 // as needed. 1692 if (!TrackedWaitcntSet.count(&Inst)) 1693 ++Iter; 1694 else { 1695 ++Iter; 1696 Inst.removeFromParent(); 1697 } 1698 ScoreBrackets->setWaitcnt(&Inst); 1699 continue; 1700 } 1701 1702 // Kill instructions generate a conditional branch to the endmain block. 1703 // Merge the current waitcnt state into the endmain block information. 1704 // TODO: Are there other flavors of KILL instruction? 1705 if (Inst.getOpcode() == AMDGPU::KILL) { 1706 addKillWaitBracket(ScoreBrackets); 1707 } 1708 1709 bool VCCZBugWorkAround = false; 1710 if (readsVCCZ(Inst) && 1711 (!VCCZBugHandledSet.count(&Inst))) { 1712 if (ScoreBrackets->getScoreLB(LGKM_CNT) < 1713 ScoreBrackets->getScoreUB(LGKM_CNT) && 1714 ScoreBrackets->hasPendingSMEM()) { 1715 if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS) 1716 VCCZBugWorkAround = true; 1717 } 1718 } 1719 1720 // Generate an s_waitcnt instruction to be placed before 1721 // cur_Inst, if needed. 1722 generateWaitcntInstBefore(Inst, ScoreBrackets); 1723 1724 updateEventWaitcntAfter(Inst, ScoreBrackets); 1725 1726 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1727 // If this instruction generates a S_SETVSKIP because it is an 1728 // indexed resource, and we are on Tahiti, then it will also force 1729 // an S_WAITCNT vmcnt(0) 1730 if (RequireCheckResourceType(Inst, context)) { 1731 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1732 ScoreBrackets->setScoreLB(VM_CNT, 1733 ScoreBrackets->getScoreUB(VM_CNT)); 1734 } 1735 #endif 1736 1737 ScoreBrackets->clearWaitcnt(); 1738 1739 LLVM_DEBUG({ 1740 Inst.print(dbgs()); 1741 ScoreBrackets->dump(); 1742 }); 1743 1744 // Check to see if this is a GWS instruction. If so, and if this is CI or 1745 // VI, then the generated code sequence will include an S_WAITCNT 0. 1746 // TODO: Are these the only GWS instructions? 1747 if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT || 1748 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V || 1749 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR || 1750 Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P || 1751 Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) { 1752 // TODO: && context->target_info->GwsRequiresMemViolTest() ) { 1753 ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT)); 1754 ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT)); 1755 ScoreBrackets->updateByWait(LGKM_CNT, 1756 ScoreBrackets->getScoreUB(LGKM_CNT)); 1757 } 1758 1759 // TODO: Remove this work-around after fixing the scheduler and enable the 1760 // assert above. 1761 if (VCCZBugWorkAround) { 1762 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1763 // bit is updated, so we can restore the bit by reading the value of 1764 // vcc and then writing it back to the register. 1765 BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), 1766 AMDGPU::VCC) 1767 .addReg(AMDGPU::VCC); 1768 VCCZBugHandledSet.insert(&Inst); 1769 } 1770 1771 ++Iter; 1772 } 1773 1774 // Check if we need to force convergence at loop footer. 1775 MachineLoop *ContainingLoop = MLI->getLoopFor(&Block); 1776 if (ContainingLoop && isLoopBottom(ContainingLoop, &Block)) { 1777 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1778 WaitcntData->print(); 1779 LLVM_DEBUG(dbgs() << '\n';); 1780 1781 // The iterative waitcnt insertion algorithm aims for optimal waitcnt 1782 // placement, but doesn't guarantee convergence for a loop. Each 1783 // loop should take at most (n+1) iterations for it to converge naturally, 1784 // where n is the number of bottom blocks. If this threshold is reached and 1785 // the result hasn't converged, then we force convergence by inserting 1786 // a s_waitcnt at the end of loop footer. 1787 if (WaitcntData->getIterCnt() > (countNumBottomBlocks(ContainingLoop) + 1)) { 1788 // To ensure convergence, need to make wait events at loop footer be no 1789 // more than those from the previous iteration. 1790 // As a simplification, instead of tracking individual scores and 1791 // generating the precise wait count, just wait on 0. 1792 bool HasPending = false; 1793 MachineInstr *SWaitInst = WaitcntData->getWaitcnt(); 1794 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1795 T = (enum InstCounterType)(T + 1)) { 1796 if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) { 1797 ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T)); 1798 HasPending = true; 1799 break; 1800 } 1801 } 1802 1803 if (HasPending) { 1804 if (!SWaitInst) { 1805 SWaitInst = BuildMI(Block, Block.getFirstNonPHI(), 1806 DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1807 .addImm(0); 1808 TrackedWaitcntSet.insert(SWaitInst); 1809 #if 0 // TODO: Format the debug output 1810 OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context); 1811 OutputTransformAdd(SWaitInst, context); 1812 #endif 1813 } 1814 #if 0 // TODO: ?? 1815 _DEV( REPORTED_STATS->force_waitcnt_converge = 1; ) 1816 #endif 1817 } 1818 1819 if (SWaitInst) { 1820 LLVM_DEBUG({ 1821 SWaitInst->print(dbgs()); 1822 dbgs() << "\nAdjusted score board:"; 1823 ScoreBrackets->dump(); 1824 }); 1825 1826 // Add this waitcnt to the block. It is either newly created or 1827 // created in previous iterations and added back since block traversal 1828 // always removes waitcnts. 1829 insertWaitcntBeforeCF(Block, SWaitInst); 1830 WaitcntData->setWaitcnt(SWaitInst); 1831 } 1832 } 1833 } 1834 } 1835 1836 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1837 ST = &MF.getSubtarget<SISubtarget>(); 1838 TII = ST->getInstrInfo(); 1839 TRI = &TII->getRegisterInfo(); 1840 MRI = &MF.getRegInfo(); 1841 MLI = &getAnalysis<MachineLoopInfo>(); 1842 IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits()); 1843 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1844 AMDGPUASI = ST->getAMDGPUAS(); 1845 1846 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1847 for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS; 1848 T = (enum InstCounterType)(T + 1)) 1849 ForceEmitWaitcnt[T] = false; 1850 1851 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1852 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1853 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1854 1855 HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs(); 1856 HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs(); 1857 assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1858 assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1859 1860 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1861 RegisterEncoding.VGPRL = 1862 RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1; 1863 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1864 RegisterEncoding.SGPRL = 1865 RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1; 1866 1867 TrackedWaitcntSet.clear(); 1868 BlockVisitedSet.clear(); 1869 VCCZBugHandledSet.clear(); 1870 LoopWaitcntDataMap.clear(); 1871 1872 // Walk over the blocks in reverse post-dominator order, inserting 1873 // s_waitcnt where needed. 1874 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 1875 bool Modified = false; 1876 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1877 I = RPOT.begin(), 1878 E = RPOT.end(), J = RPOT.begin(); 1879 I != E;) { 1880 MachineBasicBlock &MBB = **I; 1881 1882 BlockVisitedSet.insert(&MBB); 1883 1884 BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1885 if (!ScoreBrackets) { 1886 BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>(ST); 1887 ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get(); 1888 } 1889 ScoreBrackets->setPostOrder(MBB.getNumber()); 1890 MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB); 1891 if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr) 1892 LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>(); 1893 1894 // If we are walking into the block from before the loop, then guarantee 1895 // at least 1 re-walk over the loop to propagate the information, even if 1896 // no S_WAITCNT instructions were generated. 1897 if (ContainingLoop && ContainingLoop->getHeader() == &MBB) { 1898 unsigned Count = countNumBottomBlocks(ContainingLoop); 1899 1900 // If the loop has multiple back-edges, and so more than one "bottom" 1901 // basic block, we have to guarantee a re-walk over every blocks. 1902 if ((std::count(BlockWaitcntProcessedSet.begin(), 1903 BlockWaitcntProcessedSet.end(), &MBB) < Count)) { 1904 BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true); 1905 LLVM_DEBUG(dbgs() << "set-revisit1: Block" 1906 << ContainingLoop->getHeader()->getNumber() << '\n';); 1907 } 1908 } 1909 1910 // Walk over the instructions. 1911 insertWaitcntInBlock(MF, MBB); 1912 1913 // Record that waitcnts have been processed at least once for this block. 1914 BlockWaitcntProcessedSet.push_back(&MBB); 1915 1916 // See if we want to revisit the loop. If a loop has multiple back-edges, 1917 // we shouldn't revisit the same "bottom" basic block. 1918 if (ContainingLoop && isLoopBottom(ContainingLoop, &MBB) && 1919 std::count(BlockWaitcntProcessedSet.begin(), 1920 BlockWaitcntProcessedSet.end(), &MBB) == 1) { 1921 MachineBasicBlock *EntryBB = ContainingLoop->getHeader(); 1922 BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get(); 1923 if (EntrySB && EntrySB->getRevisitLoop()) { 1924 EntrySB->setRevisitLoop(false); 1925 J = I; 1926 int32_t PostOrder = EntrySB->getPostOrder(); 1927 // TODO: Avoid this loop. Find another way to set I. 1928 for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator 1929 X = RPOT.begin(), 1930 Y = RPOT.end(); 1931 X != Y; ++X) { 1932 MachineBasicBlock &MBBX = **X; 1933 if (MBBX.getNumber() == PostOrder) { 1934 I = X; 1935 break; 1936 } 1937 } 1938 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1939 WaitcntData->incIterCnt(); 1940 LLVM_DEBUG(dbgs() << "revisit: Block" << EntryBB->getNumber() << '\n';); 1941 continue; 1942 } else { 1943 LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get(); 1944 // Loop converged, reset iteration count. If this loop gets revisited, 1945 // it must be from an outer loop, the counter will restart, this will 1946 // ensure we don't force convergence on such revisits. 1947 WaitcntData->resetIterCnt(); 1948 } 1949 } 1950 1951 J = I; 1952 ++I; 1953 } 1954 1955 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1956 1957 bool HaveScalarStores = false; 1958 1959 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; 1960 ++BI) { 1961 MachineBasicBlock &MBB = *BI; 1962 1963 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E; 1964 ++I) { 1965 if (!HaveScalarStores && TII->isScalarStore(*I)) 1966 HaveScalarStores = true; 1967 1968 if (I->getOpcode() == AMDGPU::S_ENDPGM || 1969 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1970 EndPgmBlocks.push_back(&MBB); 1971 } 1972 } 1973 1974 if (HaveScalarStores) { 1975 // If scalar writes are used, the cache must be flushed or else the next 1976 // wave to reuse the same scratch memory can be clobbered. 1977 // 1978 // Insert s_dcache_wb at wave termination points if there were any scalar 1979 // stores, and only if the cache hasn't already been flushed. This could be 1980 // improved by looking across blocks for flushes in postdominating blocks 1981 // from the stores but an explicitly requested flush is probably very rare. 1982 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1983 bool SeenDCacheWB = false; 1984 1985 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 1986 ++I) { 1987 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1988 SeenDCacheWB = true; 1989 else if (TII->isScalarStore(*I)) 1990 SeenDCacheWB = false; 1991 1992 // FIXME: It would be better to insert this before a waitcnt if any. 1993 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1994 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1995 !SeenDCacheWB) { 1996 Modified = true; 1997 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1998 } 1999 } 2000 } 2001 } 2002 2003 if (!MFI->isEntryFunction()) { 2004 // Wait for any outstanding memory operations that the input registers may 2005 // depend on. We can't track them and it's better to the wait after the 2006 // costly call sequence. 2007 2008 // TODO: Could insert earlier and schedule more liberally with operations 2009 // that only use caller preserved registers. 2010 MachineBasicBlock &EntryBB = MF.front(); 2011 BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 2012 .addImm(0); 2013 2014 Modified = true; 2015 } 2016 2017 return Modified; 2018 } 2019