1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Insert wait instructions for memory reads and writes. 11 /// 12 /// Memory reads and writes are issued asynchronously, so we need to insert 13 /// S_WAITCNT instructions when we want to access any of their results or 14 /// overwrite any register that's used asynchronously. 15 /// 16 /// TODO: This pass currently keeps one timeline per hardware counter. A more 17 /// finely-grained approach that keeps one timeline per event type could 18 /// sometimes get away with generating weaker s_waitcnt instructions. For 19 /// example, when both SMEM and LDS are in flight and we need to wait for 20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient, 21 /// but the pass will currently generate a conservative lgkmcnt(0) because 22 /// multiple event types are in flight. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "AMDGPU.h" 27 #include "GCNSubtarget.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "Utils/AMDGPUBaseInfo.h" 31 #include "llvm/ADT/MapVector.h" 32 #include "llvm/ADT/PostOrderIterator.h" 33 #include "llvm/ADT/Sequence.h" 34 #include "llvm/CodeGen/MachinePostDominators.h" 35 #include "llvm/InitializePasses.h" 36 #include "llvm/Support/DebugCounter.h" 37 #include "llvm/Support/TargetParser.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "si-insert-waitcnts" 41 42 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp", 43 "Force emit s_waitcnt expcnt(0) instrs"); 44 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm", 45 "Force emit s_waitcnt lgkmcnt(0) instrs"); 46 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm", 47 "Force emit s_waitcnt vmcnt(0) instrs"); 48 49 static cl::opt<bool> ForceEmitZeroFlag( 50 "amdgpu-waitcnt-forcezero", 51 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"), 52 cl::init(false), cl::Hidden); 53 54 namespace { 55 // Class of object that encapsulates latest instruction counter score 56 // associated with the operand. Used for determining whether 57 // s_waitcnt instruction needs to be emitted. 58 59 #define CNT_MASK(t) (1u << (t)) 60 61 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS }; 62 } // namespace 63 64 namespace llvm { 65 template <> struct enum_iteration_traits<InstCounterType> { 66 static constexpr bool is_iterable = true; 67 }; 68 } // namespace llvm 69 70 namespace { 71 auto inst_counter_types() { return enum_seq(VM_CNT, NUM_INST_CNTS); } 72 73 using RegInterval = std::pair<int, int>; 74 75 struct HardwareLimits { 76 unsigned VmcntMax; 77 unsigned ExpcntMax; 78 unsigned LgkmcntMax; 79 unsigned VscntMax; 80 }; 81 82 struct RegisterEncoding { 83 unsigned VGPR0; 84 unsigned VGPRL; 85 unsigned SGPR0; 86 unsigned SGPRL; 87 }; 88 89 enum WaitEventType { 90 VMEM_ACCESS, // vector-memory read & write 91 VMEM_READ_ACCESS, // vector-memory read 92 VMEM_WRITE_ACCESS,// vector-memory write 93 LDS_ACCESS, // lds read & write 94 GDS_ACCESS, // gds read & write 95 SQ_MESSAGE, // send message 96 SMEM_ACCESS, // scalar-memory read & write 97 EXP_GPR_LOCK, // export holding on its data src 98 GDS_GPR_LOCK, // GDS holding on its data and addr src 99 EXP_POS_ACCESS, // write to export position 100 EXP_PARAM_ACCESS, // write to export parameter 101 VMW_GPR_LOCK, // vector-memory write holding on its data src 102 NUM_WAIT_EVENTS, 103 }; 104 105 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = { 106 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS), 107 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) | 108 (1 << SQ_MESSAGE), 109 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) | 110 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS), 111 (1 << VMEM_WRITE_ACCESS) 112 }; 113 114 // The mapping is: 115 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs 116 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots 117 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs 118 // We reserve a fixed number of VGPR slots in the scoring tables for 119 // special tokens like SCMEM_LDS (needed for buffer load to LDS). 120 enum RegisterMapping { 121 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets. 122 AGPR_OFFSET = 256, // Maximum programmable ArchVGPRs across all targets. 123 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets. 124 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS. 125 EXTRA_VGPR_LDS = 0, // An artificial register to track LDS writes. 126 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts. 127 }; 128 129 // Enumerate different types of result-returning VMEM operations. Although 130 // s_waitcnt orders them all with a single vmcnt counter, in the absence of 131 // s_waitcnt only instructions of the same VmemType are guaranteed to write 132 // their results in order -- so there is no need to insert an s_waitcnt between 133 // two instructions of the same type that write the same vgpr. 134 enum VmemType { 135 // BUF instructions and MIMG instructions without a sampler. 136 VMEM_NOSAMPLER, 137 // MIMG instructions with a sampler. 138 VMEM_SAMPLER, 139 // BVH instructions 140 VMEM_BVH 141 }; 142 143 VmemType getVmemType(const MachineInstr &Inst) { 144 assert(SIInstrInfo::isVMEM(Inst)); 145 if (!SIInstrInfo::isMIMG(Inst)) 146 return VMEM_NOSAMPLER; 147 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode()); 148 const AMDGPU::MIMGBaseOpcodeInfo *BaseInfo = 149 AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode); 150 return BaseInfo->BVH ? VMEM_BVH 151 : BaseInfo->Sampler ? VMEM_SAMPLER : VMEM_NOSAMPLER; 152 } 153 154 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) { 155 switch (T) { 156 case VM_CNT: 157 Wait.VmCnt = std::min(Wait.VmCnt, Count); 158 break; 159 case EXP_CNT: 160 Wait.ExpCnt = std::min(Wait.ExpCnt, Count); 161 break; 162 case LGKM_CNT: 163 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count); 164 break; 165 case VS_CNT: 166 Wait.VsCnt = std::min(Wait.VsCnt, Count); 167 break; 168 default: 169 llvm_unreachable("bad InstCounterType"); 170 } 171 } 172 173 // This objects maintains the current score brackets of each wait counter, and 174 // a per-register scoreboard for each wait counter. 175 // 176 // We also maintain the latest score for every event type that can change the 177 // waitcnt in order to know if there are multiple types of events within 178 // the brackets. When multiple types of event happen in the bracket, 179 // wait count may get decreased out of order, therefore we need to put in 180 // "s_waitcnt 0" before use. 181 class WaitcntBrackets { 182 public: 183 WaitcntBrackets(const GCNSubtarget *SubTarget, HardwareLimits Limits, 184 RegisterEncoding Encoding) 185 : ST(SubTarget), Limits(Limits), Encoding(Encoding) {} 186 187 unsigned getWaitCountMax(InstCounterType T) const { 188 switch (T) { 189 case VM_CNT: 190 return Limits.VmcntMax; 191 case LGKM_CNT: 192 return Limits.LgkmcntMax; 193 case EXP_CNT: 194 return Limits.ExpcntMax; 195 case VS_CNT: 196 return Limits.VscntMax; 197 default: 198 break; 199 } 200 return 0; 201 } 202 203 unsigned getScoreLB(InstCounterType T) const { 204 assert(T < NUM_INST_CNTS); 205 return ScoreLBs[T]; 206 } 207 208 unsigned getScoreUB(InstCounterType T) const { 209 assert(T < NUM_INST_CNTS); 210 return ScoreUBs[T]; 211 } 212 213 // Mapping from event to counter. 214 InstCounterType eventCounter(WaitEventType E) { 215 if (WaitEventMaskForInst[VM_CNT] & (1 << E)) 216 return VM_CNT; 217 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E)) 218 return LGKM_CNT; 219 if (WaitEventMaskForInst[VS_CNT] & (1 << E)) 220 return VS_CNT; 221 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E)); 222 return EXP_CNT; 223 } 224 225 unsigned getRegScore(int GprNo, InstCounterType T) { 226 if (GprNo < NUM_ALL_VGPRS) { 227 return VgprScores[T][GprNo]; 228 } 229 assert(T == LGKM_CNT); 230 return SgprScores[GprNo - NUM_ALL_VGPRS]; 231 } 232 233 bool merge(const WaitcntBrackets &Other); 234 235 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII, 236 const MachineRegisterInfo *MRI, 237 const SIRegisterInfo *TRI, unsigned OpNo) const; 238 239 bool counterOutOfOrder(InstCounterType T) const; 240 void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const; 241 void simplifyWaitcnt(InstCounterType T, unsigned &Count) const; 242 void determineWait(InstCounterType T, unsigned ScoreToWait, 243 AMDGPU::Waitcnt &Wait) const; 244 void applyWaitcnt(const AMDGPU::Waitcnt &Wait); 245 void applyWaitcnt(InstCounterType T, unsigned Count); 246 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI, 247 const MachineRegisterInfo *MRI, WaitEventType E, 248 MachineInstr &MI); 249 250 bool hasPending() const { return PendingEvents != 0; } 251 bool hasPendingEvent(WaitEventType E) const { 252 return PendingEvents & (1 << E); 253 } 254 255 bool hasMixedPendingEvents(InstCounterType T) const { 256 unsigned Events = PendingEvents & WaitEventMaskForInst[T]; 257 // Return true if more than one bit is set in Events. 258 return Events & (Events - 1); 259 } 260 261 bool hasPendingFlat() const { 262 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] && 263 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) || 264 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] && 265 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT])); 266 } 267 268 void setPendingFlat() { 269 LastFlat[VM_CNT] = ScoreUBs[VM_CNT]; 270 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT]; 271 } 272 273 // Return true if there might be pending writes to the specified vgpr by VMEM 274 // instructions with types different from V. 275 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const { 276 assert(GprNo < NUM_ALL_VGPRS); 277 return VgprVmemTypes[GprNo] & ~(1 << V); 278 } 279 280 void clearVgprVmemTypes(int GprNo) { 281 assert(GprNo < NUM_ALL_VGPRS); 282 VgprVmemTypes[GprNo] = 0; 283 } 284 285 void print(raw_ostream &); 286 void dump() { print(dbgs()); } 287 288 private: 289 struct MergeInfo { 290 unsigned OldLB; 291 unsigned OtherLB; 292 unsigned MyShift; 293 unsigned OtherShift; 294 }; 295 static bool mergeScore(const MergeInfo &M, unsigned &Score, 296 unsigned OtherScore); 297 298 void setScoreLB(InstCounterType T, unsigned Val) { 299 assert(T < NUM_INST_CNTS); 300 ScoreLBs[T] = Val; 301 } 302 303 void setScoreUB(InstCounterType T, unsigned Val) { 304 assert(T < NUM_INST_CNTS); 305 ScoreUBs[T] = Val; 306 if (T == EXP_CNT) { 307 unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT); 308 if (ScoreLBs[T] < UB && UB < ScoreUBs[T]) 309 ScoreLBs[T] = UB; 310 } 311 } 312 313 void setRegScore(int GprNo, InstCounterType T, unsigned Val) { 314 if (GprNo < NUM_ALL_VGPRS) { 315 VgprUB = std::max(VgprUB, GprNo); 316 VgprScores[T][GprNo] = Val; 317 } else { 318 assert(T == LGKM_CNT); 319 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS); 320 SgprScores[GprNo - NUM_ALL_VGPRS] = Val; 321 } 322 } 323 324 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII, 325 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI, 326 unsigned OpNo, unsigned Val); 327 328 const GCNSubtarget *ST = nullptr; 329 HardwareLimits Limits = {}; 330 RegisterEncoding Encoding = {}; 331 unsigned ScoreLBs[NUM_INST_CNTS] = {0}; 332 unsigned ScoreUBs[NUM_INST_CNTS] = {0}; 333 unsigned PendingEvents = 0; 334 // Remember the last flat memory operation. 335 unsigned LastFlat[NUM_INST_CNTS] = {0}; 336 // wait_cnt scores for every vgpr. 337 // Keep track of the VgprUB and SgprUB to make merge at join efficient. 338 int VgprUB = -1; 339 int SgprUB = -1; 340 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}}; 341 // Wait cnt scores for every sgpr, only lgkmcnt is relevant. 342 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0}; 343 // Bitmask of the VmemTypes of VMEM instructions that might have a pending 344 // write to each vgpr. 345 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0}; 346 }; 347 348 class SIInsertWaitcnts : public MachineFunctionPass { 349 private: 350 const GCNSubtarget *ST = nullptr; 351 const SIInstrInfo *TII = nullptr; 352 const SIRegisterInfo *TRI = nullptr; 353 const MachineRegisterInfo *MRI = nullptr; 354 AMDGPU::IsaVersion IV; 355 356 DenseSet<MachineInstr *> TrackedWaitcntSet; 357 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses; 358 MachinePostDominatorTree *PDT; 359 360 struct BlockInfo { 361 MachineBasicBlock *MBB; 362 std::unique_ptr<WaitcntBrackets> Incoming; 363 bool Dirty = true; 364 365 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {} 366 }; 367 368 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos; 369 370 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0 371 // because of amdgpu-waitcnt-forcezero flag 372 bool ForceEmitZeroWaitcnts; 373 bool ForceEmitWaitcnt[NUM_INST_CNTS]; 374 375 public: 376 static char ID; 377 378 SIInsertWaitcnts() : MachineFunctionPass(ID) { 379 (void)ForceExpCounter; 380 (void)ForceLgkmCounter; 381 (void)ForceVMCounter; 382 } 383 384 bool runOnMachineFunction(MachineFunction &MF) override; 385 386 StringRef getPassName() const override { 387 return "SI insert wait instructions"; 388 } 389 390 void getAnalysisUsage(AnalysisUsage &AU) const override { 391 AU.setPreservesCFG(); 392 AU.addRequired<MachinePostDominatorTree>(); 393 MachineFunctionPass::getAnalysisUsage(AU); 394 } 395 396 bool isForceEmitWaitcnt() const { 397 for (auto T : inst_counter_types()) 398 if (ForceEmitWaitcnt[T]) 399 return true; 400 return false; 401 } 402 403 void setForceEmitWaitcnt() { 404 // For non-debug builds, ForceEmitWaitcnt has been initialized to false; 405 // For debug builds, get the debug counter info and adjust if need be 406 #ifndef NDEBUG 407 if (DebugCounter::isCounterSet(ForceExpCounter) && 408 DebugCounter::shouldExecute(ForceExpCounter)) { 409 ForceEmitWaitcnt[EXP_CNT] = true; 410 } else { 411 ForceEmitWaitcnt[EXP_CNT] = false; 412 } 413 414 if (DebugCounter::isCounterSet(ForceLgkmCounter) && 415 DebugCounter::shouldExecute(ForceLgkmCounter)) { 416 ForceEmitWaitcnt[LGKM_CNT] = true; 417 } else { 418 ForceEmitWaitcnt[LGKM_CNT] = false; 419 } 420 421 if (DebugCounter::isCounterSet(ForceVMCounter) && 422 DebugCounter::shouldExecute(ForceVMCounter)) { 423 ForceEmitWaitcnt[VM_CNT] = true; 424 } else { 425 ForceEmitWaitcnt[VM_CNT] = false; 426 } 427 #endif // NDEBUG 428 } 429 430 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const; 431 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const; 432 bool generateWaitcntInstBefore(MachineInstr &MI, 433 WaitcntBrackets &ScoreBrackets, 434 MachineInstr *OldWaitcntInstr); 435 void updateEventWaitcntAfter(MachineInstr &Inst, 436 WaitcntBrackets *ScoreBrackets); 437 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block, 438 WaitcntBrackets &ScoreBrackets); 439 bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 440 MachineInstr &OldWaitcntInstr, 441 AMDGPU::Waitcnt &Wait, const MachineInstr *MI); 442 }; 443 444 } // end anonymous namespace 445 446 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI, 447 const SIInstrInfo *TII, 448 const MachineRegisterInfo *MRI, 449 const SIRegisterInfo *TRI, 450 unsigned OpNo) const { 451 const MachineOperand &Op = MI->getOperand(OpNo); 452 if (!TRI->isInAllocatableClass(Op.getReg())) 453 return {-1, -1}; 454 455 // A use via a PW operand does not need a waitcnt. 456 // A partial write is not a WAW. 457 assert(!Op.getSubReg() || !Op.isUndef()); 458 459 RegInterval Result; 460 461 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST)); 462 463 if (TRI->isVectorRegister(*MRI, Op.getReg())) { 464 assert(Reg >= Encoding.VGPR0 && Reg <= Encoding.VGPRL); 465 Result.first = Reg - Encoding.VGPR0; 466 if (TRI->isAGPR(*MRI, Op.getReg())) 467 Result.first += AGPR_OFFSET; 468 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS); 469 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) { 470 assert(Reg >= Encoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS); 471 Result.first = Reg - Encoding.SGPR0 + NUM_ALL_VGPRS; 472 assert(Result.first >= NUM_ALL_VGPRS && 473 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS); 474 } 475 // TODO: Handle TTMP 476 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ... 477 else 478 return {-1, -1}; 479 480 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo); 481 unsigned Size = TRI->getRegSizeInBits(*RC); 482 Result.second = Result.first + ((Size + 16) / 32); 483 484 return Result; 485 } 486 487 void WaitcntBrackets::setExpScore(const MachineInstr *MI, 488 const SIInstrInfo *TII, 489 const SIRegisterInfo *TRI, 490 const MachineRegisterInfo *MRI, unsigned OpNo, 491 unsigned Val) { 492 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo); 493 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg())); 494 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 495 setRegScore(RegNo, EXP_CNT, Val); 496 } 497 } 498 499 // MUBUF and FLAT LDS DMA operations need a wait on vmcnt before LDS written 500 // can be accessed. A load from LDS to VMEM does not need a wait. 501 static bool mayWriteLDSThroughDMA(const MachineInstr &MI) { 502 return SIInstrInfo::isVALU(MI) && 503 (SIInstrInfo::isMUBUF(MI) || SIInstrInfo::isFLAT(MI)) && 504 MI.getOpcode() != AMDGPU::BUFFER_STORE_LDS_DWORD; 505 } 506 507 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII, 508 const SIRegisterInfo *TRI, 509 const MachineRegisterInfo *MRI, 510 WaitEventType E, MachineInstr &Inst) { 511 InstCounterType T = eventCounter(E); 512 unsigned CurrScore = getScoreUB(T) + 1; 513 if (CurrScore == 0) 514 report_fatal_error("InsertWaitcnt score wraparound"); 515 // PendingEvents and ScoreUB need to be update regardless if this event 516 // changes the score of a register or not. 517 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message. 518 PendingEvents |= 1 << E; 519 setScoreUB(T, CurrScore); 520 521 if (T == EXP_CNT) { 522 // Put score on the source vgprs. If this is a store, just use those 523 // specific register(s). 524 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) { 525 int AddrOpIdx = 526 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr); 527 // All GDS operations must protect their address register (same as 528 // export.) 529 if (AddrOpIdx != -1) { 530 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore); 531 } 532 533 if (Inst.mayStore()) { 534 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 535 AMDGPU::OpName::data0) != -1) { 536 setExpScore( 537 &Inst, TII, TRI, MRI, 538 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0), 539 CurrScore); 540 } 541 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 542 AMDGPU::OpName::data1) != -1) { 543 setExpScore(&Inst, TII, TRI, MRI, 544 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), 545 AMDGPU::OpName::data1), 546 CurrScore); 547 } 548 } else if (SIInstrInfo::isAtomicRet(Inst) && 549 Inst.getOpcode() != AMDGPU::DS_GWS_INIT && 550 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V && 551 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR && 552 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P && 553 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER && 554 Inst.getOpcode() != AMDGPU::DS_APPEND && 555 Inst.getOpcode() != AMDGPU::DS_CONSUME && 556 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) { 557 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 558 const MachineOperand &Op = Inst.getOperand(I); 559 if (Op.isReg() && !Op.isDef() && 560 TRI->isVectorRegister(*MRI, Op.getReg())) { 561 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 562 } 563 } 564 } 565 } else if (TII->isFLAT(Inst)) { 566 if (Inst.mayStore()) { 567 setExpScore( 568 &Inst, TII, TRI, MRI, 569 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 570 CurrScore); 571 } else if (SIInstrInfo::isAtomicRet(Inst)) { 572 setExpScore( 573 &Inst, TII, TRI, MRI, 574 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 575 CurrScore); 576 } 577 } else if (TII->isMIMG(Inst)) { 578 if (Inst.mayStore()) { 579 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 580 } else if (SIInstrInfo::isAtomicRet(Inst)) { 581 setExpScore( 582 &Inst, TII, TRI, MRI, 583 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 584 CurrScore); 585 } 586 } else if (TII->isMTBUF(Inst)) { 587 if (Inst.mayStore()) { 588 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 589 } 590 } else if (TII->isMUBUF(Inst)) { 591 if (Inst.mayStore()) { 592 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore); 593 } else if (SIInstrInfo::isAtomicRet(Inst)) { 594 setExpScore( 595 &Inst, TII, TRI, MRI, 596 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data), 597 CurrScore); 598 } 599 } else { 600 if (TII->isEXP(Inst)) { 601 // For export the destination registers are really temps that 602 // can be used as the actual source after export patching, so 603 // we need to treat them like sources and set the EXP_CNT 604 // score. 605 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 606 MachineOperand &DefMO = Inst.getOperand(I); 607 if (DefMO.isReg() && DefMO.isDef() && 608 TRI->isVGPR(*MRI, DefMO.getReg())) { 609 setRegScore( 610 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)), 611 EXP_CNT, CurrScore); 612 } 613 } 614 } 615 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 616 MachineOperand &MO = Inst.getOperand(I); 617 if (MO.isReg() && !MO.isDef() && 618 TRI->isVectorRegister(*MRI, MO.getReg())) { 619 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore); 620 } 621 } 622 } 623 #if 0 // TODO: check if this is handled by MUBUF code above. 624 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD || 625 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 || 626 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) { 627 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data); 628 unsigned OpNo;//TODO: find the OpNo for this operand; 629 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo); 630 for (int RegNo = Interval.first; RegNo < Interval.second; 631 ++RegNo) { 632 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore); 633 } 634 #endif 635 } else { 636 // Match the score to the destination registers. 637 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) { 638 auto &Op = Inst.getOperand(I); 639 if (!Op.isReg() || !Op.isDef()) 640 continue; 641 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I); 642 if (T == VM_CNT) { 643 if (Interval.first >= NUM_ALL_VGPRS) 644 continue; 645 if (SIInstrInfo::isVMEM(Inst)) { 646 VmemType V = getVmemType(Inst); 647 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) 648 VgprVmemTypes[RegNo] |= 1 << V; 649 } 650 } 651 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 652 setRegScore(RegNo, T, CurrScore); 653 } 654 } 655 if (Inst.mayStore() && (TII->isDS(Inst) || mayWriteLDSThroughDMA(Inst))) { 656 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore); 657 } 658 } 659 } 660 661 void WaitcntBrackets::print(raw_ostream &OS) { 662 OS << '\n'; 663 for (auto T : inst_counter_types()) { 664 unsigned LB = getScoreLB(T); 665 unsigned UB = getScoreUB(T); 666 667 switch (T) { 668 case VM_CNT: 669 OS << " VM_CNT(" << UB - LB << "): "; 670 break; 671 case LGKM_CNT: 672 OS << " LGKM_CNT(" << UB - LB << "): "; 673 break; 674 case EXP_CNT: 675 OS << " EXP_CNT(" << UB - LB << "): "; 676 break; 677 case VS_CNT: 678 OS << " VS_CNT(" << UB - LB << "): "; 679 break; 680 default: 681 OS << " UNKNOWN(" << UB - LB << "): "; 682 break; 683 } 684 685 if (LB < UB) { 686 // Print vgpr scores. 687 for (int J = 0; J <= VgprUB; J++) { 688 unsigned RegScore = getRegScore(J, T); 689 if (RegScore <= LB) 690 continue; 691 unsigned RelScore = RegScore - LB - 1; 692 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) { 693 OS << RelScore << ":v" << J << " "; 694 } else { 695 OS << RelScore << ":ds "; 696 } 697 } 698 // Also need to print sgpr scores for lgkm_cnt. 699 if (T == LGKM_CNT) { 700 for (int J = 0; J <= SgprUB; J++) { 701 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT); 702 if (RegScore <= LB) 703 continue; 704 unsigned RelScore = RegScore - LB - 1; 705 OS << RelScore << ":s" << J << " "; 706 } 707 } 708 } 709 OS << '\n'; 710 } 711 OS << '\n'; 712 } 713 714 /// Simplify the waitcnt, in the sense of removing redundant counts, and return 715 /// whether a waitcnt instruction is needed at all. 716 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const { 717 simplifyWaitcnt(VM_CNT, Wait.VmCnt); 718 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt); 719 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 720 simplifyWaitcnt(VS_CNT, Wait.VsCnt); 721 } 722 723 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T, 724 unsigned &Count) const { 725 const unsigned LB = getScoreLB(T); 726 const unsigned UB = getScoreUB(T); 727 728 // The number of outstanding events for this type, T, can be calculated 729 // as (UB - LB). If the current Count is greater than or equal to the number 730 // of outstanding events, then the wait for this counter is redundant. 731 if (Count >= UB - LB) 732 Count = ~0u; 733 } 734 735 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait, 736 AMDGPU::Waitcnt &Wait) const { 737 // If the score of src_operand falls within the bracket, we need an 738 // s_waitcnt instruction. 739 const unsigned LB = getScoreLB(T); 740 const unsigned UB = getScoreUB(T); 741 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) { 742 if ((T == VM_CNT || T == LGKM_CNT) && 743 hasPendingFlat() && 744 !ST->hasFlatLgkmVMemCountInOrder()) { 745 // If there is a pending FLAT operation, and this is a VMem or LGKM 746 // waitcnt and the target can report early completion, then we need 747 // to force a waitcnt 0. 748 addWait(Wait, T, 0); 749 } else if (counterOutOfOrder(T)) { 750 // Counter can get decremented out-of-order when there 751 // are multiple types event in the bracket. Also emit an s_wait counter 752 // with a conservative value of 0 for the counter. 753 addWait(Wait, T, 0); 754 } else { 755 // If a counter has been maxed out avoid overflow by waiting for 756 // MAX(CounterType) - 1 instead. 757 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1); 758 addWait(Wait, T, NeededWait); 759 } 760 } 761 } 762 763 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) { 764 applyWaitcnt(VM_CNT, Wait.VmCnt); 765 applyWaitcnt(EXP_CNT, Wait.ExpCnt); 766 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt); 767 applyWaitcnt(VS_CNT, Wait.VsCnt); 768 } 769 770 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) { 771 const unsigned UB = getScoreUB(T); 772 if (Count >= UB) 773 return; 774 if (Count != 0) { 775 if (counterOutOfOrder(T)) 776 return; 777 setScoreLB(T, std::max(getScoreLB(T), UB - Count)); 778 } else { 779 setScoreLB(T, UB); 780 PendingEvents &= ~WaitEventMaskForInst[T]; 781 } 782 } 783 784 // Where there are multiple types of event in the bracket of a counter, 785 // the decrement may go out of order. 786 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const { 787 // Scalar memory read always can go out of order. 788 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS)) 789 return true; 790 return hasMixedPendingEvents(T); 791 } 792 793 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 794 false) 795 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) 796 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false, 797 false) 798 799 char SIInsertWaitcnts::ID = 0; 800 801 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID; 802 803 FunctionPass *llvm::createSIInsertWaitcntsPass() { 804 return new SIInsertWaitcnts(); 805 } 806 807 /// Combine consecutive waitcnt instructions that precede \p MI and follow 808 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added 809 /// by previous passes. Currently this pass conservatively assumes that these 810 /// preexisting waitcnt are required for correctness. 811 bool SIInsertWaitcnts::applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets, 812 MachineInstr &OldWaitcntInstr, 813 AMDGPU::Waitcnt &Wait, 814 const MachineInstr *MI) { 815 bool Modified = false; 816 MachineInstr *WaitcntInstr = nullptr; 817 MachineInstr *WaitcntVsCntInstr = nullptr; 818 for (auto II = OldWaitcntInstr.getIterator(), NextI = std::next(II); 819 &*II != MI; II = NextI, ++NextI) { 820 if (II->isMetaInstruction()) 821 continue; 822 823 if (II->getOpcode() == AMDGPU::S_WAITCNT) { 824 // Conservatively update required wait if this waitcnt was added in an 825 // earlier pass. In this case it will not exist in the tracked waitcnt 826 // set. 827 if (!TrackedWaitcntSet.count(&*II)) { 828 unsigned IEnc = II->getOperand(0).getImm(); 829 AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc); 830 Wait = Wait.combined(OldWait); 831 } 832 833 // Merge consecutive waitcnt of the same type by erasing multiples. 834 if (!WaitcntInstr) { 835 WaitcntInstr = &*II; 836 } else { 837 II->eraseFromParent(); 838 Modified = true; 839 } 840 841 } else { 842 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT); 843 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL); 844 if (!TrackedWaitcntSet.count(&*II)) { 845 unsigned OldVSCnt = 846 TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm(); 847 Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt); 848 } 849 850 if (!WaitcntVsCntInstr) { 851 WaitcntVsCntInstr = &*II; 852 } else { 853 II->eraseFromParent(); 854 Modified = true; 855 } 856 } 857 } 858 859 // Updated encoding of merged waitcnt with the required wait. 860 if (WaitcntInstr) { 861 if (Wait.hasWaitExceptVsCnt()) { 862 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait); 863 unsigned OldEnc = WaitcntInstr->getOperand(0).getImm(); 864 if (OldEnc != NewEnc) { 865 WaitcntInstr->getOperand(0).setImm(NewEnc); 866 Modified = true; 867 } 868 ScoreBrackets.applyWaitcnt(Wait); 869 Wait.VmCnt = ~0u; 870 Wait.LgkmCnt = ~0u; 871 Wait.ExpCnt = ~0u; 872 873 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 874 << "Old Instr: " << *MI << "New Instr: " << *WaitcntInstr 875 << '\n'); 876 } else { 877 WaitcntInstr->eraseFromParent(); 878 Modified = true; 879 } 880 } 881 882 if (WaitcntVsCntInstr) { 883 if (Wait.hasWaitVsCnt()) { 884 assert(ST->hasVscnt()); 885 unsigned OldVSCnt = 886 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16) 887 ->getImm(); 888 if (Wait.VsCnt != OldVSCnt) { 889 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16) 890 ->setImm(Wait.VsCnt); 891 Modified = true; 892 } 893 ScoreBrackets.applyWaitcnt(Wait); 894 Wait.VsCnt = ~0u; 895 896 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 897 << "Old Instr: " << *MI 898 << "New Instr: " << *WaitcntVsCntInstr << '\n'); 899 } else { 900 WaitcntVsCntInstr->eraseFromParent(); 901 Modified = true; 902 } 903 } 904 905 return Modified; 906 } 907 908 static bool readsVCCZ(const MachineInstr &MI) { 909 unsigned Opc = MI.getOpcode(); 910 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) && 911 !MI.getOperand(1).isUndef(); 912 } 913 914 /// \returns true if the callee inserts an s_waitcnt 0 on function entry. 915 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) { 916 // Currently all conventions wait, but this may not always be the case. 917 // 918 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make 919 // senses to omit the wait and do it in the caller. 920 return true; 921 } 922 923 /// \returns true if the callee is expected to wait for any outstanding waits 924 /// before returning. 925 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) { 926 return true; 927 } 928 929 /// Generate s_waitcnt instruction to be placed before cur_Inst. 930 /// Instructions of a given type are returned in order, 931 /// but instructions of different types can complete out of order. 932 /// We rely on this in-order completion 933 /// and simply assign a score to the memory access instructions. 934 /// We keep track of the active "score bracket" to determine 935 /// if an access of a memory read requires an s_waitcnt 936 /// and if so what the value of each counter is. 937 /// The "score bracket" is bound by the lower bound and upper bound 938 /// scores (*_score_LB and *_score_ub respectively). 939 bool SIInsertWaitcnts::generateWaitcntInstBefore( 940 MachineInstr &MI, WaitcntBrackets &ScoreBrackets, 941 MachineInstr *OldWaitcntInstr) { 942 setForceEmitWaitcnt(); 943 944 if (MI.isMetaInstruction()) 945 return false; 946 947 AMDGPU::Waitcnt Wait; 948 bool Modified = false; 949 950 // FIXME: This should have already been handled by the memory legalizer. 951 // Removing this currently doesn't affect any lit tests, but we need to 952 // verify that nothing was relying on this. The number of buffer invalidates 953 // being handled here should not be expanded. 954 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 || 955 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC || 956 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL || 957 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV || 958 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) { 959 Wait.VmCnt = 0; 960 } 961 962 // All waits must be resolved at call return. 963 // NOTE: this could be improved with knowledge of all call sites or 964 // with knowledge of the called routines. 965 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG || 966 MI.getOpcode() == AMDGPU::SI_RETURN || 967 MI.getOpcode() == AMDGPU::S_SETPC_B64_return || 968 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) { 969 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 970 } 971 // Resolve vm waits before gs-done. 972 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG || 973 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) && 974 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) == 975 AMDGPU::SendMsg::ID_GS_DONE)) { 976 Wait.VmCnt = 0; 977 } 978 #if 0 // TODO: the following blocks of logic when we have fence. 979 else if (MI.getOpcode() == SC_FENCE) { 980 const unsigned int group_size = 981 context->shader_info->GetMaxThreadGroupSize(); 982 // group_size == 0 means thread group size is unknown at compile time 983 const bool group_is_multi_wave = 984 (group_size == 0 || group_size > target_info->GetWaveFrontSize()); 985 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence(); 986 987 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) { 988 SCRegType src_type = Inst->GetSrcType(i); 989 switch (src_type) { 990 case SCMEM_LDS: 991 if (group_is_multi_wave || 992 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) { 993 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 994 ScoreBrackets->getScoreUB(LGKM_CNT)); 995 // LDS may have to wait for VM_CNT after buffer load to LDS 996 if (target_info->HasBufferLoadToLDS()) { 997 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 998 ScoreBrackets->getScoreUB(VM_CNT)); 999 } 1000 } 1001 break; 1002 1003 case SCMEM_GDS: 1004 if (group_is_multi_wave || fence_is_global) { 1005 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1006 ScoreBrackets->getScoreUB(EXP_CNT)); 1007 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT, 1008 ScoreBrackets->getScoreUB(LGKM_CNT)); 1009 } 1010 break; 1011 1012 case SCMEM_UAV: 1013 case SCMEM_TFBUF: 1014 case SCMEM_RING: 1015 case SCMEM_SCATTER: 1016 if (group_is_multi_wave || fence_is_global) { 1017 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT, 1018 ScoreBrackets->getScoreUB(EXP_CNT)); 1019 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT, 1020 ScoreBrackets->getScoreUB(VM_CNT)); 1021 } 1022 break; 1023 1024 case SCMEM_SCRATCH: 1025 default: 1026 break; 1027 } 1028 } 1029 } 1030 #endif 1031 1032 // Export & GDS instructions do not read the EXEC mask until after the export 1033 // is granted (which can occur well after the instruction is issued). 1034 // The shader program must flush all EXP operations on the export-count 1035 // before overwriting the EXEC mask. 1036 else { 1037 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) { 1038 // Export and GDS are tracked individually, either may trigger a waitcnt 1039 // for EXEC. 1040 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) || 1041 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) || 1042 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) || 1043 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) { 1044 Wait.ExpCnt = 0; 1045 } 1046 } 1047 1048 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) { 1049 // The function is going to insert a wait on everything in its prolog. 1050 // This still needs to be careful if the call target is a load (e.g. a GOT 1051 // load). We also need to check WAW dependency with saved PC. 1052 Wait = AMDGPU::Waitcnt(); 1053 1054 int CallAddrOpIdx = 1055 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0); 1056 1057 if (MI.getOperand(CallAddrOpIdx).isReg()) { 1058 RegInterval CallAddrOpInterval = 1059 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx); 1060 1061 for (int RegNo = CallAddrOpInterval.first; 1062 RegNo < CallAddrOpInterval.second; ++RegNo) 1063 ScoreBrackets.determineWait( 1064 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1065 1066 int RtnAddrOpIdx = 1067 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst); 1068 if (RtnAddrOpIdx != -1) { 1069 RegInterval RtnAddrOpInterval = 1070 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx); 1071 1072 for (int RegNo = RtnAddrOpInterval.first; 1073 RegNo < RtnAddrOpInterval.second; ++RegNo) 1074 ScoreBrackets.determineWait( 1075 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1076 } 1077 } 1078 } else { 1079 // FIXME: Should not be relying on memoperands. 1080 // Look at the source operands of every instruction to see if 1081 // any of them results from a previous memory operation that affects 1082 // its current usage. If so, an s_waitcnt instruction needs to be 1083 // emitted. 1084 // If the source operand was defined by a load, add the s_waitcnt 1085 // instruction. 1086 // 1087 // Two cases are handled for destination operands: 1088 // 1) If the destination operand was defined by a load, add the s_waitcnt 1089 // instruction to guarantee the right WAW order. 1090 // 2) If a destination operand that was used by a recent export/store ins, 1091 // add s_waitcnt on exp_cnt to guarantee the WAR order. 1092 for (const MachineMemOperand *Memop : MI.memoperands()) { 1093 const Value *Ptr = Memop->getValue(); 1094 if (Memop->isStore() && SLoadAddresses.count(Ptr)) { 1095 addWait(Wait, LGKM_CNT, 0); 1096 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second)) 1097 SLoadAddresses.erase(Ptr); 1098 } 1099 unsigned AS = Memop->getAddrSpace(); 1100 if (AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::FLAT_ADDRESS) 1101 continue; 1102 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS; 1103 // VM_CNT is only relevant to vgpr or LDS. 1104 ScoreBrackets.determineWait( 1105 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1106 if (Memop->isStore()) { 1107 ScoreBrackets.determineWait( 1108 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1109 } 1110 } 1111 1112 // Loop over use and def operands. 1113 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1114 MachineOperand &Op = MI.getOperand(I); 1115 if (!Op.isReg()) 1116 continue; 1117 RegInterval Interval = 1118 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I); 1119 1120 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg()); 1121 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) { 1122 if (IsVGPR) { 1123 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the 1124 // previous write and this write are the same type of VMEM 1125 // instruction, in which case they're guaranteed to write their 1126 // results in order anyway. 1127 if (Op.isUse() || !SIInstrInfo::isVMEM(MI) || 1128 ScoreBrackets.hasOtherPendingVmemTypes(RegNo, 1129 getVmemType(MI))) { 1130 ScoreBrackets.determineWait( 1131 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait); 1132 ScoreBrackets.clearVgprVmemTypes(RegNo); 1133 } 1134 if (Op.isDef()) { 1135 ScoreBrackets.determineWait( 1136 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait); 1137 } 1138 } 1139 ScoreBrackets.determineWait( 1140 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait); 1141 } 1142 } 1143 } 1144 } 1145 1146 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0 1147 // occurs before the instruction. Doing it here prevents any additional 1148 // S_WAITCNTs from being emitted if the instruction was marked as 1149 // requiring a WAITCNT beforehand. 1150 if (MI.getOpcode() == AMDGPU::S_BARRIER && 1151 !ST->hasAutoWaitcntBeforeBarrier()) { 1152 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1153 } 1154 1155 // TODO: Remove this work-around, enable the assert for Bug 457939 1156 // after fixing the scheduler. Also, the Shader Compiler code is 1157 // independent of target. 1158 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) { 1159 if (ScoreBrackets.getScoreLB(LGKM_CNT) < 1160 ScoreBrackets.getScoreUB(LGKM_CNT) && 1161 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1162 Wait.LgkmCnt = 0; 1163 } 1164 } 1165 1166 // Verify that the wait is actually needed. 1167 ScoreBrackets.simplifyWaitcnt(Wait); 1168 1169 if (ForceEmitZeroWaitcnts) 1170 Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt()); 1171 1172 if (ForceEmitWaitcnt[VM_CNT]) 1173 Wait.VmCnt = 0; 1174 if (ForceEmitWaitcnt[EXP_CNT]) 1175 Wait.ExpCnt = 0; 1176 if (ForceEmitWaitcnt[LGKM_CNT]) 1177 Wait.LgkmCnt = 0; 1178 if (ForceEmitWaitcnt[VS_CNT]) 1179 Wait.VsCnt = 0; 1180 1181 if (OldWaitcntInstr) { 1182 // Try to merge the required wait with preexisting waitcnt instructions. 1183 // Also erase redundant waitcnt. 1184 Modified = 1185 applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, &MI); 1186 } else { 1187 // Update waitcnt brackets after determining the required wait. 1188 ScoreBrackets.applyWaitcnt(Wait); 1189 } 1190 1191 // Build new waitcnt instructions unless no wait is needed or the old waitcnt 1192 // instruction was modified to handle the required wait. 1193 if (Wait.hasWaitExceptVsCnt()) { 1194 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait); 1195 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(), 1196 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT)) 1197 .addImm(Enc); 1198 TrackedWaitcntSet.insert(SWaitInst); 1199 Modified = true; 1200 1201 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1202 << "Old Instr: " << MI 1203 << "New Instr: " << *SWaitInst << '\n'); 1204 } 1205 1206 if (Wait.hasWaitVsCnt()) { 1207 assert(ST->hasVscnt()); 1208 1209 auto SWaitInst = 1210 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(), 1211 TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1212 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1213 .addImm(Wait.VsCnt); 1214 TrackedWaitcntSet.insert(SWaitInst); 1215 Modified = true; 1216 1217 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n" 1218 << "Old Instr: " << MI 1219 << "New Instr: " << *SWaitInst << '\n'); 1220 } 1221 1222 return Modified; 1223 } 1224 1225 // This is a flat memory operation. Check to see if it has memory tokens other 1226 // than LDS. Other address spaces supported by flat memory operations involve 1227 // global memory. 1228 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const { 1229 assert(TII->isFLAT(MI)); 1230 1231 // All flat instructions use the VMEM counter. 1232 assert(TII->usesVM_CNT(MI)); 1233 1234 // If there are no memory operands then conservatively assume the flat 1235 // operation may access VMEM. 1236 if (MI.memoperands_empty()) 1237 return true; 1238 1239 // See if any memory operand specifies an address space that involves VMEM. 1240 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces 1241 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION 1242 // (GDS) address space is not supported by flat operations. Therefore, simply 1243 // return true unless only the LDS address space is found. 1244 for (const MachineMemOperand *Memop : MI.memoperands()) { 1245 unsigned AS = Memop->getAddrSpace(); 1246 assert(AS != AMDGPUAS::REGION_ADDRESS); 1247 if (AS != AMDGPUAS::LOCAL_ADDRESS) 1248 return true; 1249 } 1250 1251 return false; 1252 } 1253 1254 // This is a flat memory operation. Check to see if it has memory tokens for 1255 // either LDS or FLAT. 1256 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const { 1257 assert(TII->isFLAT(MI)); 1258 1259 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter. 1260 if (!TII->usesLGKM_CNT(MI)) 1261 return false; 1262 1263 // If in tgsplit mode then there can be no use of LDS. 1264 if (ST->isTgSplitEnabled()) 1265 return false; 1266 1267 // If there are no memory operands then conservatively assume the flat 1268 // operation may access LDS. 1269 if (MI.memoperands_empty()) 1270 return true; 1271 1272 // See if any memory operand specifies an address space that involves LDS. 1273 for (const MachineMemOperand *Memop : MI.memoperands()) { 1274 unsigned AS = Memop->getAddrSpace(); 1275 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) 1276 return true; 1277 } 1278 1279 return false; 1280 } 1281 1282 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst, 1283 WaitcntBrackets *ScoreBrackets) { 1284 // Now look at the instruction opcode. If it is a memory access 1285 // instruction, update the upper-bound of the appropriate counter's 1286 // bracket and the destination operand scores. 1287 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere. 1288 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) { 1289 if (TII->isAlwaysGDS(Inst.getOpcode()) || 1290 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) { 1291 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst); 1292 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst); 1293 } else { 1294 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1295 } 1296 } else if (TII->isFLAT(Inst)) { 1297 assert(Inst.mayLoadOrStore()); 1298 1299 int FlatASCount = 0; 1300 1301 if (mayAccessVMEMThroughFlat(Inst)) { 1302 ++FlatASCount; 1303 if (!ST->hasVscnt()) 1304 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1305 else if (Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) 1306 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1307 else 1308 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1309 } 1310 1311 if (mayAccessLDSThroughFlat(Inst)) { 1312 ++FlatASCount; 1313 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst); 1314 } 1315 1316 // A Flat memory operation must access at least one address space. 1317 assert(FlatASCount); 1318 1319 // This is a flat memory operation that access both VMEM and LDS, so note it 1320 // - it will require that both the VM and LGKM be flushed to zero if it is 1321 // pending when a VM or LGKM dependency occurs. 1322 if (FlatASCount > 1) 1323 ScoreBrackets->setPendingFlat(); 1324 } else if (SIInstrInfo::isVMEM(Inst) && 1325 !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) { 1326 if (!ST->hasVscnt()) 1327 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst); 1328 else if ((Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) || 1329 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */ 1330 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore())) 1331 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst); 1332 else if (Inst.mayStore()) 1333 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst); 1334 1335 if (ST->vmemWriteNeedsExpWaitcnt() && 1336 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) { 1337 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst); 1338 } 1339 } else if (TII->isSMRD(Inst)) { 1340 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1341 } else if (Inst.isCall()) { 1342 if (callWaitsOnFunctionReturn(Inst)) { 1343 // Act as a wait on everything 1344 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt())); 1345 } else { 1346 // May need to way wait for anything. 1347 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt()); 1348 } 1349 } else if (SIInstrInfo::isEXP(Inst)) { 1350 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm(); 1351 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31) 1352 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst); 1353 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST) 1354 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst); 1355 else 1356 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst); 1357 } else { 1358 switch (Inst.getOpcode()) { 1359 case AMDGPU::S_SENDMSG: 1360 case AMDGPU::S_SENDMSGHALT: 1361 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst); 1362 break; 1363 case AMDGPU::S_MEMTIME: 1364 case AMDGPU::S_MEMREALTIME: 1365 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst); 1366 break; 1367 } 1368 } 1369 } 1370 1371 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score, 1372 unsigned OtherScore) { 1373 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift; 1374 unsigned OtherShifted = 1375 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift; 1376 Score = std::max(MyShifted, OtherShifted); 1377 return OtherShifted > MyShifted; 1378 } 1379 1380 /// Merge the pending events and associater score brackets of \p Other into 1381 /// this brackets status. 1382 /// 1383 /// Returns whether the merge resulted in a change that requires tighter waits 1384 /// (i.e. the merged brackets strictly dominate the original brackets). 1385 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) { 1386 bool StrictDom = false; 1387 1388 VgprUB = std::max(VgprUB, Other.VgprUB); 1389 SgprUB = std::max(SgprUB, Other.SgprUB); 1390 1391 for (auto T : inst_counter_types()) { 1392 // Merge event flags for this counter 1393 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T]; 1394 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T]; 1395 if (OtherEvents & ~OldEvents) 1396 StrictDom = true; 1397 PendingEvents |= OtherEvents; 1398 1399 // Merge scores for this counter 1400 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T]; 1401 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T]; 1402 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending); 1403 if (NewUB < ScoreLBs[T]) 1404 report_fatal_error("waitcnt score overflow"); 1405 1406 MergeInfo M; 1407 M.OldLB = ScoreLBs[T]; 1408 M.OtherLB = Other.ScoreLBs[T]; 1409 M.MyShift = NewUB - ScoreUBs[T]; 1410 M.OtherShift = NewUB - Other.ScoreUBs[T]; 1411 1412 ScoreUBs[T] = NewUB; 1413 1414 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]); 1415 1416 bool RegStrictDom = false; 1417 for (int J = 0; J <= VgprUB; J++) { 1418 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]); 1419 } 1420 1421 if (T == VM_CNT) { 1422 for (int J = 0; J <= VgprUB; J++) { 1423 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J]; 1424 RegStrictDom |= NewVmemTypes != VgprVmemTypes[J]; 1425 VgprVmemTypes[J] = NewVmemTypes; 1426 } 1427 } 1428 1429 if (T == LGKM_CNT) { 1430 for (int J = 0; J <= SgprUB; J++) { 1431 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]); 1432 } 1433 } 1434 1435 if (RegStrictDom) 1436 StrictDom = true; 1437 } 1438 1439 return StrictDom; 1440 } 1441 1442 // Generate s_waitcnt instructions where needed. 1443 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF, 1444 MachineBasicBlock &Block, 1445 WaitcntBrackets &ScoreBrackets) { 1446 bool Modified = false; 1447 1448 LLVM_DEBUG({ 1449 dbgs() << "*** Block" << Block.getNumber() << " ***"; 1450 ScoreBrackets.dump(); 1451 }); 1452 1453 // Track the correctness of vccz through this basic block. There are two 1454 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and 1455 // ST->partialVCCWritesUpdateVCCZ(). 1456 bool VCCZCorrect = true; 1457 if (ST->hasReadVCCZBug()) { 1458 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1459 // to vcc and then issued an smem load. 1460 VCCZCorrect = false; 1461 } else if (!ST->partialVCCWritesUpdateVCCZ()) { 1462 // vccz could be incorrect at a basic block boundary if a predecessor wrote 1463 // to vcc_lo or vcc_hi. 1464 VCCZCorrect = false; 1465 } 1466 1467 // Walk over the instructions. 1468 MachineInstr *OldWaitcntInstr = nullptr; 1469 1470 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(), 1471 E = Block.instr_end(); 1472 Iter != E;) { 1473 MachineInstr &Inst = *Iter; 1474 1475 // Track pre-existing waitcnts that were added in earlier iterations or by 1476 // the memory legalizer. 1477 if (Inst.getOpcode() == AMDGPU::S_WAITCNT || 1478 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT && 1479 Inst.getOperand(0).isReg() && 1480 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) { 1481 if (!OldWaitcntInstr) 1482 OldWaitcntInstr = &Inst; 1483 ++Iter; 1484 continue; 1485 } 1486 1487 // Generate an s_waitcnt instruction to be placed before Inst, if needed. 1488 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr); 1489 OldWaitcntInstr = nullptr; 1490 1491 // Restore vccz if it's not known to be correct already. 1492 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst); 1493 1494 // Don't examine operands unless we need to track vccz correctness. 1495 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) { 1496 if (Inst.definesRegister(AMDGPU::VCC_LO) || 1497 Inst.definesRegister(AMDGPU::VCC_HI)) { 1498 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz. 1499 if (!ST->partialVCCWritesUpdateVCCZ()) 1500 VCCZCorrect = false; 1501 } else if (Inst.definesRegister(AMDGPU::VCC)) { 1502 // There is a hardware bug on CI/SI where SMRD instruction may corrupt 1503 // vccz bit, so when we detect that an instruction may read from a 1504 // corrupt vccz bit, we need to: 1505 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD 1506 // operations to complete. 1507 // 2. Restore the correct value of vccz by writing the current value 1508 // of vcc back to vcc. 1509 if (ST->hasReadVCCZBug() && 1510 ScoreBrackets.getScoreLB(LGKM_CNT) < 1511 ScoreBrackets.getScoreUB(LGKM_CNT) && 1512 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) { 1513 // Writes to vcc while there's an outstanding smem read may get 1514 // clobbered as soon as any read completes. 1515 VCCZCorrect = false; 1516 } else { 1517 // Writes to vcc will fix any incorrect value in vccz. 1518 VCCZCorrect = true; 1519 } 1520 } 1521 } 1522 1523 if (TII->isSMRD(Inst)) { 1524 for (const MachineMemOperand *Memop : Inst.memoperands()) { 1525 // No need to handle invariant loads when avoiding WAR conflicts, as 1526 // there cannot be a vector store to the same memory location. 1527 if (!Memop->isInvariant()) { 1528 const Value *Ptr = Memop->getValue(); 1529 SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent())); 1530 } 1531 } 1532 if (ST->hasReadVCCZBug()) { 1533 // This smem read could complete and clobber vccz at any time. 1534 VCCZCorrect = false; 1535 } 1536 } 1537 1538 updateEventWaitcntAfter(Inst, &ScoreBrackets); 1539 1540 #if 0 // TODO: implement resource type check controlled by options with ub = LB. 1541 // If this instruction generates a S_SETVSKIP because it is an 1542 // indexed resource, and we are on Tahiti, then it will also force 1543 // an S_WAITCNT vmcnt(0) 1544 if (RequireCheckResourceType(Inst, context)) { 1545 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted. 1546 ScoreBrackets->setScoreLB(VM_CNT, 1547 ScoreBrackets->getScoreUB(VM_CNT)); 1548 } 1549 #endif 1550 1551 LLVM_DEBUG({ 1552 Inst.print(dbgs()); 1553 ScoreBrackets.dump(); 1554 }); 1555 1556 // TODO: Remove this work-around after fixing the scheduler and enable the 1557 // assert above. 1558 if (RestoreVCCZ) { 1559 // Restore the vccz bit. Any time a value is written to vcc, the vcc 1560 // bit is updated, so we can restore the bit by reading the value of 1561 // vcc and then writing it back to the register. 1562 BuildMI(Block, Inst, Inst.getDebugLoc(), 1563 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1564 TRI->getVCC()) 1565 .addReg(TRI->getVCC()); 1566 VCCZCorrect = true; 1567 Modified = true; 1568 } 1569 1570 ++Iter; 1571 } 1572 1573 return Modified; 1574 } 1575 1576 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) { 1577 ST = &MF.getSubtarget<GCNSubtarget>(); 1578 TII = ST->getInstrInfo(); 1579 TRI = &TII->getRegisterInfo(); 1580 MRI = &MF.getRegInfo(); 1581 IV = AMDGPU::getIsaVersion(ST->getCPU()); 1582 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1583 PDT = &getAnalysis<MachinePostDominatorTree>(); 1584 1585 ForceEmitZeroWaitcnts = ForceEmitZeroFlag; 1586 for (auto T : inst_counter_types()) 1587 ForceEmitWaitcnt[T] = false; 1588 1589 HardwareLimits Limits = {}; 1590 Limits.VmcntMax = AMDGPU::getVmcntBitMask(IV); 1591 Limits.ExpcntMax = AMDGPU::getExpcntBitMask(IV); 1592 Limits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV); 1593 Limits.VscntMax = ST->hasVscnt() ? 63 : 0; 1594 1595 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs(); 1596 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs(); 1597 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS); 1598 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS); 1599 1600 RegisterEncoding Encoding = {}; 1601 Encoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0); 1602 Encoding.VGPRL = Encoding.VGPR0 + NumVGPRsMax - 1; 1603 Encoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0); 1604 Encoding.SGPRL = Encoding.SGPR0 + NumSGPRsMax - 1; 1605 1606 TrackedWaitcntSet.clear(); 1607 BlockInfos.clear(); 1608 bool Modified = false; 1609 1610 if (!MFI->isEntryFunction()) { 1611 // Wait for any outstanding memory operations that the input registers may 1612 // depend on. We can't track them and it's better to do the wait after the 1613 // costly call sequence. 1614 1615 // TODO: Could insert earlier and schedule more liberally with operations 1616 // that only use caller preserved registers. 1617 MachineBasicBlock &EntryBB = MF.front(); 1618 MachineBasicBlock::iterator I = EntryBB.begin(); 1619 for (MachineBasicBlock::iterator E = EntryBB.end(); 1620 I != E && (I->isPHI() || I->isMetaInstruction()); ++I) 1621 ; 1622 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0); 1623 if (ST->hasVscnt()) 1624 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT)) 1625 .addReg(AMDGPU::SGPR_NULL, RegState::Undef) 1626 .addImm(0); 1627 1628 Modified = true; 1629 } 1630 1631 // Keep iterating over the blocks in reverse post order, inserting and 1632 // updating s_waitcnt where needed, until a fix point is reached. 1633 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF)) 1634 BlockInfos.insert({MBB, BlockInfo(MBB)}); 1635 1636 std::unique_ptr<WaitcntBrackets> Brackets; 1637 bool Repeat; 1638 do { 1639 Repeat = false; 1640 1641 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE; 1642 ++BII) { 1643 BlockInfo &BI = BII->second; 1644 if (!BI.Dirty) 1645 continue; 1646 1647 if (BI.Incoming) { 1648 if (!Brackets) 1649 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming); 1650 else 1651 *Brackets = *BI.Incoming; 1652 } else { 1653 if (!Brackets) 1654 Brackets = std::make_unique<WaitcntBrackets>(ST, Limits, Encoding); 1655 else 1656 *Brackets = WaitcntBrackets(ST, Limits, Encoding); 1657 } 1658 1659 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets); 1660 BI.Dirty = false; 1661 1662 if (Brackets->hasPending()) { 1663 BlockInfo *MoveBracketsToSucc = nullptr; 1664 for (MachineBasicBlock *Succ : BI.MBB->successors()) { 1665 auto SuccBII = BlockInfos.find(Succ); 1666 BlockInfo &SuccBI = SuccBII->second; 1667 if (!SuccBI.Incoming) { 1668 SuccBI.Dirty = true; 1669 if (SuccBII <= BII) 1670 Repeat = true; 1671 if (!MoveBracketsToSucc) { 1672 MoveBracketsToSucc = &SuccBI; 1673 } else { 1674 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets); 1675 } 1676 } else if (SuccBI.Incoming->merge(*Brackets)) { 1677 SuccBI.Dirty = true; 1678 if (SuccBII <= BII) 1679 Repeat = true; 1680 } 1681 } 1682 if (MoveBracketsToSucc) 1683 MoveBracketsToSucc->Incoming = std::move(Brackets); 1684 } 1685 } 1686 } while (Repeat); 1687 1688 if (ST->hasScalarStores()) { 1689 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks; 1690 bool HaveScalarStores = false; 1691 1692 for (MachineBasicBlock &MBB : MF) { 1693 for (MachineInstr &MI : MBB) { 1694 if (!HaveScalarStores && TII->isScalarStore(MI)) 1695 HaveScalarStores = true; 1696 1697 if (MI.getOpcode() == AMDGPU::S_ENDPGM || 1698 MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) 1699 EndPgmBlocks.push_back(&MBB); 1700 } 1701 } 1702 1703 if (HaveScalarStores) { 1704 // If scalar writes are used, the cache must be flushed or else the next 1705 // wave to reuse the same scratch memory can be clobbered. 1706 // 1707 // Insert s_dcache_wb at wave termination points if there were any scalar 1708 // stores, and only if the cache hasn't already been flushed. This could 1709 // be improved by looking across blocks for flushes in postdominating 1710 // blocks from the stores but an explicitly requested flush is probably 1711 // very rare. 1712 for (MachineBasicBlock *MBB : EndPgmBlocks) { 1713 bool SeenDCacheWB = false; 1714 1715 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 1716 I != E; ++I) { 1717 if (I->getOpcode() == AMDGPU::S_DCACHE_WB) 1718 SeenDCacheWB = true; 1719 else if (TII->isScalarStore(*I)) 1720 SeenDCacheWB = false; 1721 1722 // FIXME: It would be better to insert this before a waitcnt if any. 1723 if ((I->getOpcode() == AMDGPU::S_ENDPGM || 1724 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) && 1725 !SeenDCacheWB) { 1726 Modified = true; 1727 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB)); 1728 } 1729 } 1730 } 1731 } 1732 } 1733 1734 return Modified; 1735 } 1736