1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "AMDGPU.h"
27 #include "AMDGPUSubtarget.h"
28 #include "SIDefines.h"
29 #include "SIInstrInfo.h"
30 #include "SIMachineFunctionInfo.h"
31 #include "SIRegisterInfo.h"
32 #include "Utils/AMDGPUBaseInfo.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/PostOrderIterator.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineMemOperand.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/DebugCounter.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstdint>
55 #include <cstring>
56 #include <memory>
57 #include <utility>
58 #include <vector>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "si-insert-waitcnts"
63 
64 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
65               "Force emit s_waitcnt expcnt(0) instrs");
66 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
67               "Force emit s_waitcnt lgkmcnt(0) instrs");
68 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
69               "Force emit s_waitcnt vmcnt(0) instrs");
70 
71 static cl::opt<bool> ForceEmitZeroFlag(
72   "amdgpu-waitcnt-forcezero",
73   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
74   cl::init(false), cl::Hidden);
75 
76 namespace {
77 
78 template <typename EnumT>
79 class enum_iterator
80     : public iterator_facade_base<enum_iterator<EnumT>,
81                                   std::forward_iterator_tag, const EnumT> {
82   EnumT Value;
83 public:
84   enum_iterator() = default;
85   enum_iterator(EnumT Value) : Value(Value) {}
86 
87   enum_iterator &operator++() {
88     Value = static_cast<EnumT>(Value + 1);
89     return *this;
90   }
91 
92   bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
93 
94   EnumT operator*() const { return Value; }
95 };
96 
97 // Class of object that encapsulates latest instruction counter score
98 // associated with the operand.  Used for determining whether
99 // s_waitcnt instruction needs to be emited.
100 
101 #define CNT_MASK(t) (1u << (t))
102 
103 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
104 
105 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
106   return make_range(enum_iterator<InstCounterType>(VM_CNT),
107                     enum_iterator<InstCounterType>(NUM_INST_CNTS));
108 }
109 
110 using RegInterval = std::pair<signed, signed>;
111 
112 struct {
113   uint32_t VmcntMax;
114   uint32_t ExpcntMax;
115   uint32_t LgkmcntMax;
116   uint32_t VscntMax;
117   int32_t NumVGPRsMax;
118   int32_t NumSGPRsMax;
119 } HardwareLimits;
120 
121 struct {
122   unsigned VGPR0;
123   unsigned VGPRL;
124   unsigned SGPR0;
125   unsigned SGPRL;
126 } RegisterEncoding;
127 
128 enum WaitEventType {
129   VMEM_ACCESS,      // vector-memory read & write
130   VMEM_READ_ACCESS, // vector-memory read
131   VMEM_WRITE_ACCESS,// vector-memory write
132   LDS_ACCESS,       // lds read & write
133   GDS_ACCESS,       // gds read & write
134   SQ_MESSAGE,       // send message
135   SMEM_ACCESS,      // scalar-memory read & write
136   EXP_GPR_LOCK,     // export holding on its data src
137   GDS_GPR_LOCK,     // GDS holding on its data and addr src
138   EXP_POS_ACCESS,   // write to export position
139   EXP_PARAM_ACCESS, // write to export parameter
140   VMW_GPR_LOCK,     // vector-memory write holding on its data src
141   NUM_WAIT_EVENTS,
142 };
143 
144 static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = {
145   (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
146   (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
147       (1 << SQ_MESSAGE),
148   (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
149       (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
150   (1 << VMEM_WRITE_ACCESS)
151 };
152 
153 // The mapping is:
154 //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
155 //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
156 //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
157 // We reserve a fixed number of VGPR slots in the scoring tables for
158 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
159 enum RegisterMapping {
160   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
161   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
162   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
163   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
164   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
165 };
166 
167 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
168   switch (T) {
169   case VM_CNT:
170     Wait.VmCnt = std::min(Wait.VmCnt, Count);
171     break;
172   case EXP_CNT:
173     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
174     break;
175   case LGKM_CNT:
176     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
177     break;
178   case VS_CNT:
179     Wait.VsCnt = std::min(Wait.VsCnt, Count);
180     break;
181   default:
182     llvm_unreachable("bad InstCounterType");
183   }
184 }
185 
186 // This objects maintains the current score brackets of each wait counter, and
187 // a per-register scoreboard for each wait counter.
188 //
189 // We also maintain the latest score for every event type that can change the
190 // waitcnt in order to know if there are multiple types of events within
191 // the brackets. When multiple types of event happen in the bracket,
192 // wait count may get decreased out of order, therefore we need to put in
193 // "s_waitcnt 0" before use.
194 class WaitcntBrackets {
195 public:
196   WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {
197     for (auto T : inst_counter_types())
198       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
199   }
200 
201   static uint32_t getWaitCountMax(InstCounterType T) {
202     switch (T) {
203     case VM_CNT:
204       return HardwareLimits.VmcntMax;
205     case LGKM_CNT:
206       return HardwareLimits.LgkmcntMax;
207     case EXP_CNT:
208       return HardwareLimits.ExpcntMax;
209     case VS_CNT:
210       return HardwareLimits.VscntMax;
211     default:
212       break;
213     }
214     return 0;
215   }
216 
217   uint32_t getScoreLB(InstCounterType T) const {
218     assert(T < NUM_INST_CNTS);
219     if (T >= NUM_INST_CNTS)
220       return 0;
221     return ScoreLBs[T];
222   }
223 
224   uint32_t getScoreUB(InstCounterType T) const {
225     assert(T < NUM_INST_CNTS);
226     if (T >= NUM_INST_CNTS)
227       return 0;
228     return ScoreUBs[T];
229   }
230 
231   // Mapping from event to counter.
232   InstCounterType eventCounter(WaitEventType E) {
233     if (WaitEventMaskForInst[VM_CNT] & (1 << E))
234       return VM_CNT;
235     if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
236       return LGKM_CNT;
237     if (WaitEventMaskForInst[VS_CNT] & (1 << E))
238       return VS_CNT;
239     assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
240     return EXP_CNT;
241   }
242 
243   uint32_t getRegScore(int GprNo, InstCounterType T) {
244     if (GprNo < NUM_ALL_VGPRS) {
245       return VgprScores[T][GprNo];
246     }
247     assert(T == LGKM_CNT);
248     return SgprScores[GprNo - NUM_ALL_VGPRS];
249   }
250 
251   void clear() {
252     memset(ScoreLBs, 0, sizeof(ScoreLBs));
253     memset(ScoreUBs, 0, sizeof(ScoreUBs));
254     PendingEvents = 0;
255     memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents));
256     for (auto T : inst_counter_types())
257       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
258     memset(SgprScores, 0, sizeof(SgprScores));
259   }
260 
261   bool merge(const WaitcntBrackets &Other);
262 
263   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
264                              const MachineRegisterInfo *MRI,
265                              const SIRegisterInfo *TRI, unsigned OpNo,
266                              bool Def) const;
267 
268   int32_t getMaxVGPR() const { return VgprUB; }
269   int32_t getMaxSGPR() const { return SgprUB; }
270 
271   bool counterOutOfOrder(InstCounterType T) const;
272   bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
273   bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
274   void determineWait(InstCounterType T, uint32_t ScoreToWait,
275                      AMDGPU::Waitcnt &Wait) const;
276   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
277   void applyWaitcnt(InstCounterType T, unsigned Count);
278   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
279                      const MachineRegisterInfo *MRI, WaitEventType E,
280                      MachineInstr &MI);
281 
282   bool hasPending() const { return PendingEvents != 0; }
283   bool hasPendingEvent(WaitEventType E) const {
284     return PendingEvents & (1 << E);
285   }
286 
287   bool hasPendingFlat() const {
288     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
289              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
290             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
291              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
292   }
293 
294   void setPendingFlat() {
295     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
296     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
297   }
298 
299   void print(raw_ostream &);
300   void dump() { print(dbgs()); }
301 
302 private:
303   struct MergeInfo {
304     uint32_t OldLB;
305     uint32_t OtherLB;
306     uint32_t MyShift;
307     uint32_t OtherShift;
308   };
309   static bool mergeScore(const MergeInfo &M, uint32_t &Score,
310                          uint32_t OtherScore);
311 
312   void setScoreLB(InstCounterType T, uint32_t Val) {
313     assert(T < NUM_INST_CNTS);
314     if (T >= NUM_INST_CNTS)
315       return;
316     ScoreLBs[T] = Val;
317   }
318 
319   void setScoreUB(InstCounterType T, uint32_t Val) {
320     assert(T < NUM_INST_CNTS);
321     if (T >= NUM_INST_CNTS)
322       return;
323     ScoreUBs[T] = Val;
324     if (T == EXP_CNT) {
325       uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
326       if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
327         ScoreLBs[T] = UB;
328     }
329   }
330 
331   void setRegScore(int GprNo, InstCounterType T, uint32_t Val) {
332     if (GprNo < NUM_ALL_VGPRS) {
333       if (GprNo > VgprUB) {
334         VgprUB = GprNo;
335       }
336       VgprScores[T][GprNo] = Val;
337     } else {
338       assert(T == LGKM_CNT);
339       if (GprNo - NUM_ALL_VGPRS > SgprUB) {
340         SgprUB = GprNo - NUM_ALL_VGPRS;
341       }
342       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
343     }
344   }
345 
346   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
347                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
348                    unsigned OpNo, uint32_t Val);
349 
350   const GCNSubtarget *ST = nullptr;
351   uint32_t ScoreLBs[NUM_INST_CNTS] = {0};
352   uint32_t ScoreUBs[NUM_INST_CNTS] = {0};
353   uint32_t PendingEvents = 0;
354   bool MixedPendingEvents[NUM_INST_CNTS] = {false};
355   // Remember the last flat memory operation.
356   uint32_t LastFlat[NUM_INST_CNTS] = {0};
357   // wait_cnt scores for every vgpr.
358   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
359   int32_t VgprUB = 0;
360   int32_t SgprUB = 0;
361   uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
362   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
363   uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
364 };
365 
366 class SIInsertWaitcnts : public MachineFunctionPass {
367 private:
368   const GCNSubtarget *ST = nullptr;
369   const SIInstrInfo *TII = nullptr;
370   const SIRegisterInfo *TRI = nullptr;
371   const MachineRegisterInfo *MRI = nullptr;
372   AMDGPU::IsaVersion IV;
373 
374   DenseSet<MachineInstr *> TrackedWaitcntSet;
375   DenseSet<MachineInstr *> VCCZBugHandledSet;
376 
377   struct BlockInfo {
378     MachineBasicBlock *MBB;
379     std::unique_ptr<WaitcntBrackets> Incoming;
380     bool Dirty = true;
381 
382     explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
383   };
384 
385   std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index
386   DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap;
387 
388   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
389   // because of amdgpu-waitcnt-forcezero flag
390   bool ForceEmitZeroWaitcnts;
391   bool ForceEmitWaitcnt[NUM_INST_CNTS];
392 
393 public:
394   static char ID;
395 
396   SIInsertWaitcnts() : MachineFunctionPass(ID) {
397     (void)ForceExpCounter;
398     (void)ForceLgkmCounter;
399     (void)ForceVMCounter;
400   }
401 
402   bool runOnMachineFunction(MachineFunction &MF) override;
403 
404   StringRef getPassName() const override {
405     return "SI insert wait instructions";
406   }
407 
408   void getAnalysisUsage(AnalysisUsage &AU) const override {
409     AU.setPreservesCFG();
410     MachineFunctionPass::getAnalysisUsage(AU);
411   }
412 
413   bool isForceEmitWaitcnt() const {
414     for (auto T : inst_counter_types())
415       if (ForceEmitWaitcnt[T])
416         return true;
417     return false;
418   }
419 
420   void setForceEmitWaitcnt() {
421 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
422 // For debug builds, get the debug counter info and adjust if need be
423 #ifndef NDEBUG
424     if (DebugCounter::isCounterSet(ForceExpCounter) &&
425         DebugCounter::shouldExecute(ForceExpCounter)) {
426       ForceEmitWaitcnt[EXP_CNT] = true;
427     } else {
428       ForceEmitWaitcnt[EXP_CNT] = false;
429     }
430 
431     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
432          DebugCounter::shouldExecute(ForceLgkmCounter)) {
433       ForceEmitWaitcnt[LGKM_CNT] = true;
434     } else {
435       ForceEmitWaitcnt[LGKM_CNT] = false;
436     }
437 
438     if (DebugCounter::isCounterSet(ForceVMCounter) &&
439         DebugCounter::shouldExecute(ForceVMCounter)) {
440       ForceEmitWaitcnt[VM_CNT] = true;
441     } else {
442       ForceEmitWaitcnt[VM_CNT] = false;
443     }
444 #endif // NDEBUG
445   }
446 
447   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
448   bool generateWaitcntInstBefore(MachineInstr &MI,
449                                  WaitcntBrackets &ScoreBrackets,
450                                  MachineInstr *OldWaitcntInstr);
451   void updateEventWaitcntAfter(MachineInstr &Inst,
452                                WaitcntBrackets *ScoreBrackets);
453   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
454                             WaitcntBrackets &ScoreBrackets);
455 };
456 
457 } // end anonymous namespace
458 
459 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
460                                             const SIInstrInfo *TII,
461                                             const MachineRegisterInfo *MRI,
462                                             const SIRegisterInfo *TRI,
463                                             unsigned OpNo, bool Def) const {
464   const MachineOperand &Op = MI->getOperand(OpNo);
465   if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
466       (Def && !Op.isDef()) || TRI->isAGPR(*MRI, Op.getReg()))
467     return {-1, -1};
468 
469   // A use via a PW operand does not need a waitcnt.
470   // A partial write is not a WAW.
471   assert(!Op.getSubReg() || !Op.isUndef());
472 
473   RegInterval Result;
474   const MachineRegisterInfo &MRIA = *MRI;
475 
476   unsigned Reg = TRI->getEncodingValue(Op.getReg());
477 
478   if (TRI->isVGPR(MRIA, Op.getReg())) {
479     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
480     Result.first = Reg - RegisterEncoding.VGPR0;
481     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
482   } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
483     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
484     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
485     assert(Result.first >= NUM_ALL_VGPRS &&
486            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
487   }
488   // TODO: Handle TTMP
489   // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
490   else
491     return {-1, -1};
492 
493   const MachineInstr &MIA = *MI;
494   const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
495   unsigned Size = TRI->getRegSizeInBits(*RC);
496   Result.second = Result.first + (Size / 32);
497 
498   return Result;
499 }
500 
501 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
502                                   const SIInstrInfo *TII,
503                                   const SIRegisterInfo *TRI,
504                                   const MachineRegisterInfo *MRI, unsigned OpNo,
505                                   uint32_t Val) {
506   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
507   LLVM_DEBUG({
508     const MachineOperand &Opnd = MI->getOperand(OpNo);
509     assert(TRI->isVGPR(*MRI, Opnd.getReg()));
510   });
511   for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
512     setRegScore(RegNo, EXP_CNT, Val);
513   }
514 }
515 
516 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
517                                     const SIRegisterInfo *TRI,
518                                     const MachineRegisterInfo *MRI,
519                                     WaitEventType E, MachineInstr &Inst) {
520   const MachineRegisterInfo &MRIA = *MRI;
521   InstCounterType T = eventCounter(E);
522   uint32_t CurrScore = getScoreUB(T) + 1;
523   if (CurrScore == 0)
524     report_fatal_error("InsertWaitcnt score wraparound");
525   // PendingEvents and ScoreUB need to be update regardless if this event
526   // changes the score of a register or not.
527   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
528   if (!hasPendingEvent(E)) {
529     if (PendingEvents & WaitEventMaskForInst[T])
530       MixedPendingEvents[T] = true;
531     PendingEvents |= 1 << E;
532   }
533   setScoreUB(T, CurrScore);
534 
535   if (T == EXP_CNT) {
536     // Put score on the source vgprs. If this is a store, just use those
537     // specific register(s).
538     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
539       int AddrOpIdx =
540           AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
541       // All GDS operations must protect their address register (same as
542       // export.)
543       if (AddrOpIdx != -1) {
544         setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
545       }
546 
547       if (Inst.mayStore()) {
548         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
549                                        AMDGPU::OpName::data0) != -1) {
550           setExpScore(
551               &Inst, TII, TRI, MRI,
552               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
553               CurrScore);
554         }
555         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
556                                        AMDGPU::OpName::data1) != -1) {
557           setExpScore(&Inst, TII, TRI, MRI,
558                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
559                                                  AMDGPU::OpName::data1),
560                       CurrScore);
561         }
562       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
563                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
564                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
565                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
566                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
567                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
568                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
569                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
570                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
571         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
572           const MachineOperand &Op = Inst.getOperand(I);
573           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
574             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
575           }
576         }
577       }
578     } else if (TII->isFLAT(Inst)) {
579       if (Inst.mayStore()) {
580         setExpScore(
581             &Inst, TII, TRI, MRI,
582             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
583             CurrScore);
584       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
585         setExpScore(
586             &Inst, TII, TRI, MRI,
587             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
588             CurrScore);
589       }
590     } else if (TII->isMIMG(Inst)) {
591       if (Inst.mayStore()) {
592         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
593       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
594         setExpScore(
595             &Inst, TII, TRI, MRI,
596             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
597             CurrScore);
598       }
599     } else if (TII->isMTBUF(Inst)) {
600       if (Inst.mayStore()) {
601         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
602       }
603     } else if (TII->isMUBUF(Inst)) {
604       if (Inst.mayStore()) {
605         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
606       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
607         setExpScore(
608             &Inst, TII, TRI, MRI,
609             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
610             CurrScore);
611       }
612     } else {
613       if (TII->isEXP(Inst)) {
614         // For export the destination registers are really temps that
615         // can be used as the actual source after export patching, so
616         // we need to treat them like sources and set the EXP_CNT
617         // score.
618         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
619           MachineOperand &DefMO = Inst.getOperand(I);
620           if (DefMO.isReg() && DefMO.isDef() &&
621               TRI->isVGPR(MRIA, DefMO.getReg())) {
622             setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
623                         CurrScore);
624           }
625         }
626       }
627       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
628         MachineOperand &MO = Inst.getOperand(I);
629         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
630           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
631         }
632       }
633     }
634 #if 0 // TODO: check if this is handled by MUBUF code above.
635   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
636        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
637        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
638     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
639     unsigned OpNo;//TODO: find the OpNo for this operand;
640     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
641     for (signed RegNo = Interval.first; RegNo < Interval.second;
642     ++RegNo) {
643       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
644     }
645 #endif
646   } else {
647     // Match the score to the destination registers.
648     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
649       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
650       if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
651         continue;
652       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
653         setRegScore(RegNo, T, CurrScore);
654       }
655     }
656     if (TII->isDS(Inst) && Inst.mayStore()) {
657       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
658     }
659   }
660 }
661 
662 void WaitcntBrackets::print(raw_ostream &OS) {
663   OS << '\n';
664   for (auto T : inst_counter_types()) {
665     uint32_t LB = getScoreLB(T);
666     uint32_t UB = getScoreUB(T);
667 
668     switch (T) {
669     case VM_CNT:
670       OS << "    VM_CNT(" << UB - LB << "): ";
671       break;
672     case LGKM_CNT:
673       OS << "    LGKM_CNT(" << UB - LB << "): ";
674       break;
675     case EXP_CNT:
676       OS << "    EXP_CNT(" << UB - LB << "): ";
677       break;
678     case VS_CNT:
679       OS << "    VS_CNT(" << UB - LB << "): ";
680       break;
681     default:
682       OS << "    UNKNOWN(" << UB - LB << "): ";
683       break;
684     }
685 
686     if (LB < UB) {
687       // Print vgpr scores.
688       for (int J = 0; J <= getMaxVGPR(); J++) {
689         uint32_t RegScore = getRegScore(J, T);
690         if (RegScore <= LB)
691           continue;
692         uint32_t RelScore = RegScore - LB - 1;
693         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
694           OS << RelScore << ":v" << J << " ";
695         } else {
696           OS << RelScore << ":ds ";
697         }
698       }
699       // Also need to print sgpr scores for lgkm_cnt.
700       if (T == LGKM_CNT) {
701         for (int J = 0; J <= getMaxSGPR(); J++) {
702           uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
703           if (RegScore <= LB)
704             continue;
705           uint32_t RelScore = RegScore - LB - 1;
706           OS << RelScore << ":s" << J << " ";
707         }
708       }
709     }
710     OS << '\n';
711   }
712   OS << '\n';
713 }
714 
715 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
716 /// whether a waitcnt instruction is needed at all.
717 bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
718   return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
719          simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
720          simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
721          simplifyWaitcnt(VS_CNT, Wait.VsCnt);
722 }
723 
724 bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
725                                       unsigned &Count) const {
726   const uint32_t LB = getScoreLB(T);
727   const uint32_t UB = getScoreUB(T);
728   if (Count < UB && UB - Count > LB)
729     return true;
730 
731   Count = ~0u;
732   return false;
733 }
734 
735 void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait,
736                                     AMDGPU::Waitcnt &Wait) const {
737   // If the score of src_operand falls within the bracket, we need an
738   // s_waitcnt instruction.
739   const uint32_t LB = getScoreLB(T);
740   const uint32_t UB = getScoreUB(T);
741   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
742     if ((T == VM_CNT || T == LGKM_CNT) &&
743         hasPendingFlat() &&
744         !ST->hasFlatLgkmVMemCountInOrder()) {
745       // If there is a pending FLAT operation, and this is a VMem or LGKM
746       // waitcnt and the target can report early completion, then we need
747       // to force a waitcnt 0.
748       addWait(Wait, T, 0);
749     } else if (counterOutOfOrder(T)) {
750       // Counter can get decremented out-of-order when there
751       // are multiple types event in the bracket. Also emit an s_wait counter
752       // with a conservative value of 0 for the counter.
753       addWait(Wait, T, 0);
754     } else {
755       addWait(Wait, T, UB - ScoreToWait);
756     }
757   }
758 }
759 
760 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
761   applyWaitcnt(VM_CNT, Wait.VmCnt);
762   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
763   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
764   applyWaitcnt(VS_CNT, Wait.VsCnt);
765 }
766 
767 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
768   const uint32_t UB = getScoreUB(T);
769   if (Count >= UB)
770     return;
771   if (Count != 0) {
772     if (counterOutOfOrder(T))
773       return;
774     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
775   } else {
776     setScoreLB(T, UB);
777     MixedPendingEvents[T] = false;
778     PendingEvents &= ~WaitEventMaskForInst[T];
779   }
780 }
781 
782 // Where there are multiple types of event in the bracket of a counter,
783 // the decrement may go out of order.
784 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
785   // Scalar memory read always can go out of order.
786   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
787     return true;
788   return MixedPendingEvents[T];
789 }
790 
791 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
792                       false)
793 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
794                     false)
795 
796 char SIInsertWaitcnts::ID = 0;
797 
798 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
799 
800 FunctionPass *llvm::createSIInsertWaitcntsPass() {
801   return new SIInsertWaitcnts();
802 }
803 
804 static bool readsVCCZ(const MachineInstr &MI) {
805   unsigned Opc = MI.getOpcode();
806   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
807          !MI.getOperand(1).isUndef();
808 }
809 
810 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
811 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
812   // Currently all conventions wait, but this may not always be the case.
813   //
814   // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
815   // senses to omit the wait and do it in the caller.
816   return true;
817 }
818 
819 /// \returns true if the callee is expected to wait for any outstanding waits
820 /// before returning.
821 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
822   return true;
823 }
824 
825 ///  Generate s_waitcnt instruction to be placed before cur_Inst.
826 ///  Instructions of a given type are returned in order,
827 ///  but instructions of different types can complete out of order.
828 ///  We rely on this in-order completion
829 ///  and simply assign a score to the memory access instructions.
830 ///  We keep track of the active "score bracket" to determine
831 ///  if an access of a memory read requires an s_waitcnt
832 ///  and if so what the value of each counter is.
833 ///  The "score bracket" is bound by the lower bound and upper bound
834 ///  scores (*_score_LB and *_score_ub respectively).
835 bool SIInsertWaitcnts::generateWaitcntInstBefore(
836     MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
837     MachineInstr *OldWaitcntInstr) {
838   setForceEmitWaitcnt();
839   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
840 
841   if (MI.isDebugInstr())
842     return false;
843 
844   AMDGPU::Waitcnt Wait;
845 
846   // See if this instruction has a forced S_WAITCNT VM.
847   // TODO: Handle other cases of NeedsWaitcntVmBefore()
848   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
849       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
850       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
851       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
852       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
853     Wait.VmCnt = 0;
854   }
855 
856   // All waits must be resolved at call return.
857   // NOTE: this could be improved with knowledge of all call sites or
858   //   with knowledge of the called routines.
859   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
860       MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
861       (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
862     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
863   }
864   // Resolve vm waits before gs-done.
865   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
866             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
867            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
868             AMDGPU::SendMsg::ID_GS_DONE)) {
869     Wait.VmCnt = 0;
870   }
871 #if 0 // TODO: the following blocks of logic when we have fence.
872   else if (MI.getOpcode() == SC_FENCE) {
873     const unsigned int group_size =
874       context->shader_info->GetMaxThreadGroupSize();
875     // group_size == 0 means thread group size is unknown at compile time
876     const bool group_is_multi_wave =
877       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
878     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
879 
880     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
881       SCRegType src_type = Inst->GetSrcType(i);
882       switch (src_type) {
883         case SCMEM_LDS:
884           if (group_is_multi_wave ||
885             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
886             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
887                                ScoreBrackets->getScoreUB(LGKM_CNT));
888             // LDS may have to wait for VM_CNT after buffer load to LDS
889             if (target_info->HasBufferLoadToLDS()) {
890               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
891                                  ScoreBrackets->getScoreUB(VM_CNT));
892             }
893           }
894           break;
895 
896         case SCMEM_GDS:
897           if (group_is_multi_wave || fence_is_global) {
898             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
899               ScoreBrackets->getScoreUB(EXP_CNT));
900             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
901               ScoreBrackets->getScoreUB(LGKM_CNT));
902           }
903           break;
904 
905         case SCMEM_UAV:
906         case SCMEM_TFBUF:
907         case SCMEM_RING:
908         case SCMEM_SCATTER:
909           if (group_is_multi_wave || fence_is_global) {
910             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
911               ScoreBrackets->getScoreUB(EXP_CNT));
912             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
913               ScoreBrackets->getScoreUB(VM_CNT));
914           }
915           break;
916 
917         case SCMEM_SCRATCH:
918         default:
919           break;
920       }
921     }
922   }
923 #endif
924 
925   // Export & GDS instructions do not read the EXEC mask until after the export
926   // is granted (which can occur well after the instruction is issued).
927   // The shader program must flush all EXP operations on the export-count
928   // before overwriting the EXEC mask.
929   else {
930     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
931       // Export and GDS are tracked individually, either may trigger a waitcnt
932       // for EXEC.
933       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
934           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
935           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
936           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
937         Wait.ExpCnt = 0;
938       }
939     }
940 
941     if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
942       // The function is going to insert a wait on everything in its prolog.
943       // This still needs to be careful if the call target is a load (e.g. a GOT
944       // load). We also need to check WAW depenancy with saved PC.
945       Wait = AMDGPU::Waitcnt();
946 
947       int CallAddrOpIdx =
948           AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
949       RegInterval CallAddrOpInterval = ScoreBrackets.getRegInterval(
950           &MI, TII, MRI, TRI, CallAddrOpIdx, false);
951 
952       for (signed RegNo = CallAddrOpInterval.first;
953            RegNo < CallAddrOpInterval.second; ++RegNo)
954         ScoreBrackets.determineWait(
955             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
956 
957       int RtnAddrOpIdx =
958             AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
959       if (RtnAddrOpIdx != -1) {
960         RegInterval RtnAddrOpInterval = ScoreBrackets.getRegInterval(
961             &MI, TII, MRI, TRI, RtnAddrOpIdx, false);
962 
963         for (signed RegNo = RtnAddrOpInterval.first;
964              RegNo < RtnAddrOpInterval.second; ++RegNo)
965           ScoreBrackets.determineWait(
966               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
967       }
968 
969     } else {
970       // FIXME: Should not be relying on memoperands.
971       // Look at the source operands of every instruction to see if
972       // any of them results from a previous memory operation that affects
973       // its current usage. If so, an s_waitcnt instruction needs to be
974       // emitted.
975       // If the source operand was defined by a load, add the s_waitcnt
976       // instruction.
977       for (const MachineMemOperand *Memop : MI.memoperands()) {
978         unsigned AS = Memop->getAddrSpace();
979         if (AS != AMDGPUAS::LOCAL_ADDRESS)
980           continue;
981         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
982         // VM_CNT is only relevant to vgpr or LDS.
983         ScoreBrackets.determineWait(
984             VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
985       }
986 
987       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
988         const MachineOperand &Op = MI.getOperand(I);
989         const MachineRegisterInfo &MRIA = *MRI;
990         RegInterval Interval =
991             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false);
992         for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
993           if (TRI->isVGPR(MRIA, Op.getReg())) {
994             // VM_CNT is only relevant to vgpr or LDS.
995             ScoreBrackets.determineWait(
996                 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
997           }
998           ScoreBrackets.determineWait(
999               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1000         }
1001       }
1002       // End of for loop that looks at all source operands to decide vm_wait_cnt
1003       // and lgk_wait_cnt.
1004 
1005       // Two cases are handled for destination operands:
1006       // 1) If the destination operand was defined by a load, add the s_waitcnt
1007       // instruction to guarantee the right WAW order.
1008       // 2) If a destination operand that was used by a recent export/store ins,
1009       // add s_waitcnt on exp_cnt to guarantee the WAR order.
1010       if (MI.mayStore()) {
1011         // FIXME: Should not be relying on memoperands.
1012         for (const MachineMemOperand *Memop : MI.memoperands()) {
1013           unsigned AS = Memop->getAddrSpace();
1014           if (AS != AMDGPUAS::LOCAL_ADDRESS)
1015             continue;
1016           unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1017           ScoreBrackets.determineWait(
1018               VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1019           ScoreBrackets.determineWait(
1020               EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1021         }
1022       }
1023       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1024         MachineOperand &Def = MI.getOperand(I);
1025         const MachineRegisterInfo &MRIA = *MRI;
1026         RegInterval Interval =
1027             ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true);
1028         for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1029           if (TRI->isVGPR(MRIA, Def.getReg())) {
1030             ScoreBrackets.determineWait(
1031                 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1032             ScoreBrackets.determineWait(
1033                 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1034           }
1035           ScoreBrackets.determineWait(
1036               LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1037         }
1038       } // End of for loop that looks at all dest operands.
1039     }
1040   }
1041 
1042   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1043   // occurs before the instruction. Doing it here prevents any additional
1044   // S_WAITCNTs from being emitted if the instruction was marked as
1045   // requiring a WAITCNT beforehand.
1046   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1047       !ST->hasAutoWaitcntBeforeBarrier()) {
1048     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
1049   }
1050 
1051   // TODO: Remove this work-around, enable the assert for Bug 457939
1052   //       after fixing the scheduler. Also, the Shader Compiler code is
1053   //       independent of target.
1054   if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1055     if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1056             ScoreBrackets.getScoreUB(LGKM_CNT) &&
1057         ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1058       Wait.LgkmCnt = 0;
1059     }
1060   }
1061 
1062   // Early-out if no wait is indicated.
1063   if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
1064     bool Modified = false;
1065     if (OldWaitcntInstr) {
1066       for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1067            &*II != &MI; II = NextI, ++NextI) {
1068         if (II->isDebugInstr())
1069           continue;
1070 
1071         if (TrackedWaitcntSet.count(&*II)) {
1072           TrackedWaitcntSet.erase(&*II);
1073           II->eraseFromParent();
1074           Modified = true;
1075         } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1076           int64_t Imm = II->getOperand(0).getImm();
1077           ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
1078         } else {
1079           assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1080           assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1081           ScoreBrackets.applyWaitcnt(
1082               AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm()));
1083         }
1084       }
1085     }
1086     return Modified;
1087   }
1088 
1089   if (ForceEmitZeroWaitcnts)
1090     Wait = AMDGPU::Waitcnt::allZero(IV);
1091 
1092   if (ForceEmitWaitcnt[VM_CNT])
1093     Wait.VmCnt = 0;
1094   if (ForceEmitWaitcnt[EXP_CNT])
1095     Wait.ExpCnt = 0;
1096   if (ForceEmitWaitcnt[LGKM_CNT])
1097     Wait.LgkmCnt = 0;
1098   if (ForceEmitWaitcnt[VS_CNT])
1099     Wait.VsCnt = 0;
1100 
1101   ScoreBrackets.applyWaitcnt(Wait);
1102 
1103   AMDGPU::Waitcnt OldWait;
1104   bool Modified = false;
1105 
1106   if (OldWaitcntInstr) {
1107     for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
1108          &*II != &MI; II = NextI, NextI++) {
1109       if (II->isDebugInstr())
1110         continue;
1111 
1112       if (II->getOpcode() == AMDGPU::S_WAITCNT) {
1113         unsigned IEnc = II->getOperand(0).getImm();
1114         AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
1115         OldWait = OldWait.combined(IWait);
1116         if (!TrackedWaitcntSet.count(&*II))
1117           Wait = Wait.combined(IWait);
1118         unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
1119         if (IEnc != NewEnc) {
1120           II->getOperand(0).setImm(NewEnc);
1121           Modified = true;
1122         }
1123         Wait.VmCnt = ~0u;
1124         Wait.LgkmCnt = ~0u;
1125         Wait.ExpCnt = ~0u;
1126       } else {
1127         assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
1128         assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1129 
1130         unsigned ICnt = II->getOperand(1).getImm();
1131         OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
1132         if (!TrackedWaitcntSet.count(&*II))
1133           Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
1134         if (Wait.VsCnt != ICnt) {
1135           II->getOperand(1).setImm(Wait.VsCnt);
1136           Modified = true;
1137         }
1138         Wait.VsCnt = ~0u;
1139       }
1140 
1141       LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n"
1142                         << "Old Instr: " << MI << '\n'
1143                         << "New Instr: " << *II << '\n');
1144 
1145       if (!Wait.hasWait())
1146         return Modified;
1147     }
1148   }
1149 
1150   if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
1151     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1152     auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1153                              MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1154                          .addImm(Enc);
1155     TrackedWaitcntSet.insert(SWaitInst);
1156     Modified = true;
1157 
1158     LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n"
1159                       << "Old Instr: " << MI << '\n'
1160                       << "New Instr: " << *SWaitInst << '\n');
1161   }
1162 
1163   if (Wait.VsCnt != ~0u) {
1164     assert(ST->hasVscnt());
1165 
1166     auto SWaitInst =
1167         BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1168                 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1169             .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1170             .addImm(Wait.VsCnt);
1171     TrackedWaitcntSet.insert(SWaitInst);
1172     Modified = true;
1173 
1174     LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n"
1175                       << "Old Instr: " << MI << '\n'
1176                       << "New Instr: " << *SWaitInst << '\n');
1177   }
1178 
1179   return Modified;
1180 }
1181 
1182 // This is a flat memory operation. Check to see if it has memory
1183 // tokens for both LDS and Memory, and if so mark it as a flat.
1184 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1185   if (MI.memoperands_empty())
1186     return true;
1187 
1188   for (const MachineMemOperand *Memop : MI.memoperands()) {
1189     unsigned AS = Memop->getAddrSpace();
1190     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1191       return true;
1192   }
1193 
1194   return false;
1195 }
1196 
1197 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1198                                                WaitcntBrackets *ScoreBrackets) {
1199   // Now look at the instruction opcode. If it is a memory access
1200   // instruction, update the upper-bound of the appropriate counter's
1201   // bracket and the destination operand scores.
1202   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1203   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1204     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1205         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1206       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1207       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1208     } else {
1209       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1210     }
1211   } else if (TII->isFLAT(Inst)) {
1212     assert(Inst.mayLoad() || Inst.mayStore());
1213 
1214     if (TII->usesVM_CNT(Inst)) {
1215       if (!ST->hasVscnt())
1216         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1217       else if (Inst.mayLoad() &&
1218                AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
1219         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1220       else
1221         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1222     }
1223 
1224     if (TII->usesLGKM_CNT(Inst)) {
1225       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1226 
1227       // This is a flat memory operation, so note it - it will require
1228       // that both the VM and LGKM be flushed to zero if it is pending when
1229       // a VM or LGKM dependency occurs.
1230       if (mayAccessLDSThroughFlat(Inst))
1231         ScoreBrackets->setPendingFlat();
1232     }
1233   } else if (SIInstrInfo::isVMEM(Inst) &&
1234              // TODO: get a better carve out.
1235              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
1236              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
1237              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
1238              Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
1239              Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
1240     if (!ST->hasVscnt())
1241       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1242     else if ((Inst.mayLoad() &&
1243               AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
1244              /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1245              (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1246       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1247     else if (Inst.mayStore())
1248       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1249 
1250     if (ST->vmemWriteNeedsExpWaitcnt() &&
1251         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
1252       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1253     }
1254   } else if (TII->isSMRD(Inst)) {
1255     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1256   } else if (Inst.isCall()) {
1257     if (callWaitsOnFunctionReturn(Inst)) {
1258       // Act as a wait on everything
1259       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(IV));
1260     } else {
1261       // May need to way wait for anything.
1262       ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1263     }
1264   } else {
1265     switch (Inst.getOpcode()) {
1266     case AMDGPU::S_SENDMSG:
1267     case AMDGPU::S_SENDMSGHALT:
1268       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1269       break;
1270     case AMDGPU::EXP:
1271     case AMDGPU::EXP_DONE: {
1272       int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1273       if (Imm >= 32 && Imm <= 63)
1274         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1275       else if (Imm >= 12 && Imm <= 15)
1276         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1277       else
1278         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1279       break;
1280     }
1281     case AMDGPU::S_MEMTIME:
1282     case AMDGPU::S_MEMREALTIME:
1283       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1284       break;
1285     default:
1286       break;
1287     }
1288   }
1289 }
1290 
1291 bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score,
1292                                  uint32_t OtherScore) {
1293   uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1294   uint32_t OtherShifted =
1295       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1296   Score = std::max(MyShifted, OtherShifted);
1297   return OtherShifted > MyShifted;
1298 }
1299 
1300 /// Merge the pending events and associater score brackets of \p Other into
1301 /// this brackets status.
1302 ///
1303 /// Returns whether the merge resulted in a change that requires tighter waits
1304 /// (i.e. the merged brackets strictly dominate the original brackets).
1305 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1306   bool StrictDom = false;
1307 
1308   for (auto T : inst_counter_types()) {
1309     // Merge event flags for this counter
1310     const bool OldOutOfOrder = counterOutOfOrder(T);
1311     const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T];
1312     const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1313     if (OtherEvents & ~OldEvents)
1314       StrictDom = true;
1315     if (Other.MixedPendingEvents[T] ||
1316         (OldEvents && OtherEvents && OldEvents != OtherEvents))
1317       MixedPendingEvents[T] = true;
1318     PendingEvents |= OtherEvents;
1319 
1320     // Merge scores for this counter
1321     const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T];
1322     const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1323     MergeInfo M;
1324     M.OldLB = ScoreLBs[T];
1325     M.OtherLB = Other.ScoreLBs[T];
1326     M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0;
1327     M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift;
1328 
1329     const uint32_t NewUB = ScoreUBs[T] + M.MyShift;
1330     if (NewUB < ScoreUBs[T])
1331       report_fatal_error("waitcnt score overflow");
1332     ScoreUBs[T] = NewUB;
1333     ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift);
1334 
1335     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1336 
1337     bool RegStrictDom = false;
1338     for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E;
1339          J++) {
1340       RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1341     }
1342 
1343     if (T == LGKM_CNT) {
1344       for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1;
1345            J != E; J++) {
1346         RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1347       }
1348     }
1349 
1350     if (RegStrictDom && !OldOutOfOrder)
1351       StrictDom = true;
1352   }
1353 
1354   VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR());
1355   SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR());
1356 
1357   return StrictDom;
1358 }
1359 
1360 // Generate s_waitcnt instructions where needed.
1361 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1362                                             MachineBasicBlock &Block,
1363                                             WaitcntBrackets &ScoreBrackets) {
1364   bool Modified = false;
1365 
1366   LLVM_DEBUG({
1367     dbgs() << "*** Block" << Block.getNumber() << " ***";
1368     ScoreBrackets.dump();
1369   });
1370 
1371   // Walk over the instructions.
1372   MachineInstr *OldWaitcntInstr = nullptr;
1373 
1374   for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1375                                          E = Block.instr_end();
1376        Iter != E;) {
1377     MachineInstr &Inst = *Iter;
1378 
1379     // Track pre-existing waitcnts from earlier iterations.
1380     if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1381         (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1382          Inst.getOperand(0).isReg() &&
1383          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1384       if (!OldWaitcntInstr)
1385         OldWaitcntInstr = &Inst;
1386       ++Iter;
1387       continue;
1388     }
1389 
1390     bool VCCZBugWorkAround = false;
1391     if (readsVCCZ(Inst) &&
1392         (!VCCZBugHandledSet.count(&Inst))) {
1393       if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1394               ScoreBrackets.getScoreUB(LGKM_CNT) &&
1395           ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1396         if (ST->hasReadVCCZBug())
1397           VCCZBugWorkAround = true;
1398       }
1399     }
1400 
1401     // Generate an s_waitcnt instruction to be placed before
1402     // cur_Inst, if needed.
1403     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1404     OldWaitcntInstr = nullptr;
1405 
1406     updateEventWaitcntAfter(Inst, &ScoreBrackets);
1407 
1408 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1409     // If this instruction generates a S_SETVSKIP because it is an
1410     // indexed resource, and we are on Tahiti, then it will also force
1411     // an S_WAITCNT vmcnt(0)
1412     if (RequireCheckResourceType(Inst, context)) {
1413       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1414       ScoreBrackets->setScoreLB(VM_CNT,
1415       ScoreBrackets->getScoreUB(VM_CNT));
1416     }
1417 #endif
1418 
1419     LLVM_DEBUG({
1420       Inst.print(dbgs());
1421       ScoreBrackets.dump();
1422     });
1423 
1424     // TODO: Remove this work-around after fixing the scheduler and enable the
1425     // assert above.
1426     if (VCCZBugWorkAround) {
1427       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
1428       // bit is updated, so we can restore the bit by reading the value of
1429       // vcc and then writing it back to the register.
1430       BuildMI(Block, Inst, Inst.getDebugLoc(),
1431               TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1432               TRI->getVCC())
1433           .addReg(TRI->getVCC());
1434       VCCZBugHandledSet.insert(&Inst);
1435       Modified = true;
1436     }
1437 
1438     ++Iter;
1439   }
1440 
1441   return Modified;
1442 }
1443 
1444 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1445   ST = &MF.getSubtarget<GCNSubtarget>();
1446   TII = ST->getInstrInfo();
1447   TRI = &TII->getRegisterInfo();
1448   MRI = &MF.getRegInfo();
1449   IV = AMDGPU::getIsaVersion(ST->getCPU());
1450   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1451 
1452   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1453   for (auto T : inst_counter_types())
1454     ForceEmitWaitcnt[T] = false;
1455 
1456   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1457   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1458   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1459   HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1460 
1461   HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
1462   HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
1463   assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1464   assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1465 
1466   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1467   RegisterEncoding.VGPRL =
1468       RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
1469   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1470   RegisterEncoding.SGPRL =
1471       RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
1472 
1473   TrackedWaitcntSet.clear();
1474   VCCZBugHandledSet.clear();
1475   RpotIdxMap.clear();
1476   BlockInfos.clear();
1477 
1478   // Keep iterating over the blocks in reverse post order, inserting and
1479   // updating s_waitcnt where needed, until a fix point is reached.
1480   for (MachineBasicBlock *MBB :
1481        ReversePostOrderTraversal<MachineFunction *>(&MF)) {
1482     RpotIdxMap[MBB] = BlockInfos.size();
1483     BlockInfos.emplace_back(MBB);
1484   }
1485 
1486   std::unique_ptr<WaitcntBrackets> Brackets;
1487   bool Modified = false;
1488   bool Repeat;
1489   do {
1490     Repeat = false;
1491 
1492     for (BlockInfo &BI : BlockInfos) {
1493       if (!BI.Dirty)
1494         continue;
1495 
1496       unsigned Idx = std::distance(&*BlockInfos.begin(), &BI);
1497 
1498       if (BI.Incoming) {
1499         if (!Brackets)
1500           Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1501         else
1502           *Brackets = *BI.Incoming;
1503       } else {
1504         if (!Brackets)
1505           Brackets = std::make_unique<WaitcntBrackets>(ST);
1506         else
1507           Brackets->clear();
1508       }
1509 
1510       Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1511       BI.Dirty = false;
1512 
1513       if (Brackets->hasPending()) {
1514         BlockInfo *MoveBracketsToSucc = nullptr;
1515         for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1516           unsigned SuccIdx = RpotIdxMap[Succ];
1517           BlockInfo &SuccBI = BlockInfos[SuccIdx];
1518           if (!SuccBI.Incoming) {
1519             SuccBI.Dirty = true;
1520             if (SuccIdx <= Idx)
1521               Repeat = true;
1522             if (!MoveBracketsToSucc) {
1523               MoveBracketsToSucc = &SuccBI;
1524             } else {
1525               SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1526             }
1527           } else if (SuccBI.Incoming->merge(*Brackets)) {
1528             SuccBI.Dirty = true;
1529             if (SuccIdx <= Idx)
1530               Repeat = true;
1531           }
1532         }
1533         if (MoveBracketsToSucc)
1534           MoveBracketsToSucc->Incoming = std::move(Brackets);
1535       }
1536     }
1537   } while (Repeat);
1538 
1539   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1540 
1541   bool HaveScalarStores = false;
1542 
1543   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1544        ++BI) {
1545     MachineBasicBlock &MBB = *BI;
1546 
1547     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1548          ++I) {
1549       if (!HaveScalarStores && TII->isScalarStore(*I))
1550         HaveScalarStores = true;
1551 
1552       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1553           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1554         EndPgmBlocks.push_back(&MBB);
1555     }
1556   }
1557 
1558   if (HaveScalarStores) {
1559     // If scalar writes are used, the cache must be flushed or else the next
1560     // wave to reuse the same scratch memory can be clobbered.
1561     //
1562     // Insert s_dcache_wb at wave termination points if there were any scalar
1563     // stores, and only if the cache hasn't already been flushed. This could be
1564     // improved by looking across blocks for flushes in postdominating blocks
1565     // from the stores but an explicitly requested flush is probably very rare.
1566     for (MachineBasicBlock *MBB : EndPgmBlocks) {
1567       bool SeenDCacheWB = false;
1568 
1569       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1570            ++I) {
1571         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1572           SeenDCacheWB = true;
1573         else if (TII->isScalarStore(*I))
1574           SeenDCacheWB = false;
1575 
1576         // FIXME: It would be better to insert this before a waitcnt if any.
1577         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1578              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1579             !SeenDCacheWB) {
1580           Modified = true;
1581           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1582         }
1583       }
1584     }
1585   }
1586 
1587   if (!MFI->isEntryFunction()) {
1588     // Wait for any outstanding memory operations that the input registers may
1589     // depend on. We can't track them and it's better to the wait after the
1590     // costly call sequence.
1591 
1592     // TODO: Could insert earlier and schedule more liberally with operations
1593     // that only use caller preserved registers.
1594     MachineBasicBlock &EntryBB = MF.front();
1595     if (ST->hasVscnt())
1596       BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(),
1597               TII->get(AMDGPU::S_WAITCNT_VSCNT))
1598       .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1599       .addImm(0);
1600     BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1601       .addImm(0);
1602 
1603     Modified = true;
1604   }
1605 
1606   return Modified;
1607 }
1608