1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "SIDefines.h"
20 #include "SIInstrInfo.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "SIRegisterInfo.h"
23 #include "Utils/AMDGPUBaseInfo.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/StringSwitch.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/CallingConvLower.h"
36 #include "llvm/CodeGen/DAGCombine.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGNodes.h"
52 #include "llvm/CodeGen/TargetCallingConv.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/ValueTypes.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugLoc.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/DiagnosticInfo.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/GlobalValue.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/IntrinsicInst.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MachineValueType.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Target/TargetOptions.h"
76 #include <cassert>
77 #include <cmath>
78 #include <cstdint>
79 #include <iterator>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "si-lower"
87 
88 STATISTIC(NumTailCalls, "Number of tail calls");
89 
90 static cl::opt<bool> DisableLoopAlignment(
91   "amdgpu-disable-loop-alignment",
92   cl::desc("Do not align and prefetch loops"),
93   cl::init(false));
94 
95 static cl::opt<bool> VGPRReserveforSGPRSpill(
96     "amdgpu-reserve-vgpr-for-sgpr-spill",
97     cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
98 
99 static cl::opt<bool> UseDivergentRegisterIndexing(
100   "amdgpu-use-divergent-register-indexing",
101   cl::Hidden,
102   cl::desc("Use indirect register addressing for divergent indexes"),
103   cl::init(false));
104 
105 static bool hasFP32Denormals(const MachineFunction &MF) {
106   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
107   return Info->getMode().allFP32Denormals();
108 }
109 
110 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
111   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
112   return Info->getMode().allFP64FP16Denormals();
113 }
114 
115 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
116   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
117   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
118     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
119       return AMDGPU::SGPR0 + Reg;
120     }
121   }
122   llvm_unreachable("Cannot allocate sgpr");
123 }
124 
125 SITargetLowering::SITargetLowering(const TargetMachine &TM,
126                                    const GCNSubtarget &STI)
127     : AMDGPUTargetLowering(TM, STI),
128       Subtarget(&STI) {
129   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
130   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
131 
132   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
133   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
134 
135   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
136   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
137   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
138 
139   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
140   addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
141 
142   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
143   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
144 
145   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
146   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
147 
148   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
149   addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
150 
151   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
152   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
153 
154   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
155   addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass);
156 
157   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
158   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
159 
160   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
161   addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass);
162 
163   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
164   addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass);
165 
166   if (Subtarget->has16BitInsts()) {
167     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
168     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
169 
170     // Unless there are also VOP3P operations, not operations are really legal.
171     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
172     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
173     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
174     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
175   }
176 
177   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
178   addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
179 
180   computeRegisterProperties(Subtarget->getRegisterInfo());
181 
182   // The boolean content concept here is too inflexible. Compares only ever
183   // really produce a 1-bit result. Any copy/extend from these will turn into a
184   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
185   // it's what most targets use.
186   setBooleanContents(ZeroOrOneBooleanContent);
187   setBooleanVectorContents(ZeroOrOneBooleanContent);
188 
189   // We need to custom lower vector stores from local memory
190   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
191   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
192   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
193   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
194   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
195   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
196   setOperationAction(ISD::LOAD, MVT::i1, Custom);
197   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
198 
199   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
200   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
201   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
202   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
203   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
204   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
205   setOperationAction(ISD::STORE, MVT::i1, Custom);
206   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
207 
208   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
209   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
210   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
211   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
212   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
213   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
214   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
215   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
216   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
217   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
218   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
219   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
220   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
221   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
222   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
223   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
224 
225   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
226   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
227   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
228   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
229   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
230 
231   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
232   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
233 
234   setOperationAction(ISD::SELECT, MVT::i1, Promote);
235   setOperationAction(ISD::SELECT, MVT::i64, Custom);
236   setOperationAction(ISD::SELECT, MVT::f64, Promote);
237   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
238 
239   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
240   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
241   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
242   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
243   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
244 
245   setOperationAction(ISD::SETCC, MVT::i1, Promote);
246   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
247   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
248   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
249 
250   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
251   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
252   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
253   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
254   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
255   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
256   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
257   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
258 
259   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
260   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
261   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
262   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
263   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
264   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
265   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
266   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
267 
268   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
269   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
270   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
271   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
272   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
273   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
274 
275   setOperationAction(ISD::UADDO, MVT::i32, Legal);
276   setOperationAction(ISD::USUBO, MVT::i32, Legal);
277 
278   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
279   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
280 
281   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
282   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
283   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
284 
285 #if 0
286   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
287   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
288 #endif
289 
290   // We only support LOAD/STORE and vector manipulation ops for vectors
291   // with > 4 elements.
292   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
293                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
294                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
295                   MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
296     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
297       switch (Op) {
298       case ISD::LOAD:
299       case ISD::STORE:
300       case ISD::BUILD_VECTOR:
301       case ISD::BITCAST:
302       case ISD::EXTRACT_VECTOR_ELT:
303       case ISD::INSERT_VECTOR_ELT:
304       case ISD::INSERT_SUBVECTOR:
305       case ISD::EXTRACT_SUBVECTOR:
306       case ISD::SCALAR_TO_VECTOR:
307         break;
308       case ISD::CONCAT_VECTORS:
309         setOperationAction(Op, VT, Custom);
310         break;
311       default:
312         setOperationAction(Op, VT, Expand);
313         break;
314       }
315     }
316   }
317 
318   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
319 
320   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
321   // is expanded to avoid having two separate loops in case the index is a VGPR.
322 
323   // Most operations are naturally 32-bit vector operations. We only support
324   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
325   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
326     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
327     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
328 
329     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
330     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
331 
332     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
333     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
334 
335     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
336     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
337   }
338 
339   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
340     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
341     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
342 
343     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
344     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
345 
346     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
347     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
348 
349     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
350     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
351   }
352 
353   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
354     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
355     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
356 
357     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
358     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
359 
360     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
361     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
362 
363     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
364     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
365   }
366 
367   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
368     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
369     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
370 
371     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
372     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
373 
374     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
375     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
376 
377     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
378     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
379   }
380 
381   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
382   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
383   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
384   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
385 
386   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
387   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
388 
389   // Avoid stack access for these.
390   // TODO: Generalize to more vector types.
391   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
392   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
393   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
394   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
395 
396   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
397   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
398   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
399   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
400   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
401 
402   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
403   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
404   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
405 
406   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
407   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
408   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
409   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
410 
411   // Deal with vec3 vector operations when widened to vec4.
412   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
413   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
414   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
415   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
416 
417   // Deal with vec5 vector operations when widened to vec8.
418   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
419   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
420   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
421   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
422 
423   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
424   // and output demarshalling
425   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
426   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
427 
428   // We can't return success/failure, only the old value,
429   // let LLVM add the comparison
430   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
431   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
432 
433   if (Subtarget->hasFlatAddressSpace()) {
434     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
435     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
436   }
437 
438   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
439 
440   // FIXME: This should be narrowed to i32, but that only happens if i64 is
441   // illegal.
442   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
443   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
444   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
445 
446   // On SI this is s_memtime and s_memrealtime on VI.
447   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
448   setOperationAction(ISD::TRAP, MVT::Other, Custom);
449   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
450 
451   if (Subtarget->has16BitInsts()) {
452     setOperationAction(ISD::FPOW, MVT::f16, Promote);
453     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
454     setOperationAction(ISD::FLOG, MVT::f16, Custom);
455     setOperationAction(ISD::FEXP, MVT::f16, Custom);
456     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
457   }
458 
459   if (Subtarget->hasMadMacF32Insts())
460     setOperationAction(ISD::FMAD, MVT::f32, Legal);
461 
462   if (!Subtarget->hasBFI()) {
463     // fcopysign can be done in a single instruction with BFI.
464     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
465     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466   }
467 
468   if (!Subtarget->hasBCNT(32))
469     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
470 
471   if (!Subtarget->hasBCNT(64))
472     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
473 
474   if (Subtarget->hasFFBH())
475     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
476 
477   if (Subtarget->hasFFBL())
478     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
479 
480   // We only really have 32-bit BFE instructions (and 16-bit on VI).
481   //
482   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
483   // effort to match them now. We want this to be false for i64 cases when the
484   // extraction isn't restricted to the upper or lower half. Ideally we would
485   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
486   // span the midpoint are probably relatively rare, so don't worry about them
487   // for now.
488   if (Subtarget->hasBFE())
489     setHasExtractBitsInsn(true);
490 
491   // Clamp modifier on add/sub
492   if (Subtarget->hasIntClamp()) {
493     setOperationAction(ISD::UADDSAT, MVT::i32, Legal);
494     setOperationAction(ISD::USUBSAT, MVT::i32, Legal);
495   }
496 
497   if (Subtarget->hasAddNoCarry()) {
498     setOperationAction(ISD::SADDSAT, MVT::i16, Legal);
499     setOperationAction(ISD::SSUBSAT, MVT::i16, Legal);
500     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
501     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
502   }
503 
504   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
505   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
506   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
507   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
508 
509 
510   // These are really only legal for ieee_mode functions. We should be avoiding
511   // them for functions that don't have ieee_mode enabled, so just say they are
512   // legal.
513   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
514   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
515   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
516   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
517 
518 
519   if (Subtarget->haveRoundOpsF64()) {
520     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
521     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
522     setOperationAction(ISD::FRINT, MVT::f64, Legal);
523   } else {
524     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
525     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
526     setOperationAction(ISD::FRINT, MVT::f64, Custom);
527     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
528   }
529 
530   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
531 
532   setOperationAction(ISD::FSIN, MVT::f32, Custom);
533   setOperationAction(ISD::FCOS, MVT::f32, Custom);
534   setOperationAction(ISD::FDIV, MVT::f32, Custom);
535   setOperationAction(ISD::FDIV, MVT::f64, Custom);
536 
537   if (Subtarget->has16BitInsts()) {
538     setOperationAction(ISD::Constant, MVT::i16, Legal);
539 
540     setOperationAction(ISD::SMIN, MVT::i16, Legal);
541     setOperationAction(ISD::SMAX, MVT::i16, Legal);
542 
543     setOperationAction(ISD::UMIN, MVT::i16, Legal);
544     setOperationAction(ISD::UMAX, MVT::i16, Legal);
545 
546     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
547     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
548 
549     setOperationAction(ISD::ROTR, MVT::i16, Expand);
550     setOperationAction(ISD::ROTL, MVT::i16, Expand);
551 
552     setOperationAction(ISD::SDIV, MVT::i16, Promote);
553     setOperationAction(ISD::UDIV, MVT::i16, Promote);
554     setOperationAction(ISD::SREM, MVT::i16, Promote);
555     setOperationAction(ISD::UREM, MVT::i16, Promote);
556     setOperationAction(ISD::UADDSAT, MVT::i16, Legal);
557     setOperationAction(ISD::USUBSAT, MVT::i16, Legal);
558 
559     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
560 
561     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
562     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
563     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
564     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
565     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
566 
567     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
568 
569     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
570 
571     setOperationAction(ISD::LOAD, MVT::i16, Custom);
572 
573     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
574 
575     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
576     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
577     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
578     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
579 
580     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
581     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
582 
583     // F16 - Constant Actions.
584     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
585 
586     // F16 - Load/Store Actions.
587     setOperationAction(ISD::LOAD, MVT::f16, Promote);
588     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
589     setOperationAction(ISD::STORE, MVT::f16, Promote);
590     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
591 
592     // F16 - VOP1 Actions.
593     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
594     setOperationAction(ISD::FCOS, MVT::f16, Custom);
595     setOperationAction(ISD::FSIN, MVT::f16, Custom);
596 
597     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
598     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
599 
600     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
601     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
602     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
603     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
604     setOperationAction(ISD::FROUND, MVT::f16, Custom);
605 
606     // F16 - VOP2 Actions.
607     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
608     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
609 
610     setOperationAction(ISD::FDIV, MVT::f16, Custom);
611 
612     // F16 - VOP3 Actions.
613     setOperationAction(ISD::FMA, MVT::f16, Legal);
614     if (STI.hasMadF16())
615       setOperationAction(ISD::FMAD, MVT::f16, Legal);
616 
617     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
618       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
619         switch (Op) {
620         case ISD::LOAD:
621         case ISD::STORE:
622         case ISD::BUILD_VECTOR:
623         case ISD::BITCAST:
624         case ISD::EXTRACT_VECTOR_ELT:
625         case ISD::INSERT_VECTOR_ELT:
626         case ISD::INSERT_SUBVECTOR:
627         case ISD::EXTRACT_SUBVECTOR:
628         case ISD::SCALAR_TO_VECTOR:
629           break;
630         case ISD::CONCAT_VECTORS:
631           setOperationAction(Op, VT, Custom);
632           break;
633         default:
634           setOperationAction(Op, VT, Expand);
635           break;
636         }
637       }
638     }
639 
640     // v_perm_b32 can handle either of these.
641     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
642     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
643     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
644 
645     // XXX - Do these do anything? Vector constants turn into build_vector.
646     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
647     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
648 
649     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
650     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
651 
652     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
653     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
654     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
655     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
656 
657     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
658     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
659     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
660     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
661 
662     setOperationAction(ISD::AND, MVT::v2i16, Promote);
663     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
664     setOperationAction(ISD::OR, MVT::v2i16, Promote);
665     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
666     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
667     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
668 
669     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
670     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
671     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
672     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
673 
674     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
675     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
676     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
677     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
678 
679     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
680     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
681     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
682     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
683 
684     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
685     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
686     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
687 
688     if (!Subtarget->hasVOP3PInsts()) {
689       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
690       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
691     }
692 
693     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
694     // This isn't really legal, but this avoids the legalizer unrolling it (and
695     // allows matching fneg (fabs x) patterns)
696     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
697 
698     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
699     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
700     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
701     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
702 
703     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
704     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
705 
706     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
707     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
708   }
709 
710   if (Subtarget->hasVOP3PInsts()) {
711     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
712     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
713     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
714     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
715     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
716     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
717     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
718     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
719     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
720     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
721 
722     setOperationAction(ISD::UADDSAT, MVT::v2i16, Legal);
723     setOperationAction(ISD::USUBSAT, MVT::v2i16, Legal);
724     setOperationAction(ISD::SADDSAT, MVT::v2i16, Legal);
725     setOperationAction(ISD::SSUBSAT, MVT::v2i16, Legal);
726 
727     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
728     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
729     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
730 
731     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
732     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
733 
734     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
735 
736     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
737     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
738 
739     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
740     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
741 
742     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
743     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
744     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
745     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
746     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
747     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
748 
749     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
750     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
751     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
752     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
753 
754     setOperationAction(ISD::UADDSAT, MVT::v4i16, Custom);
755     setOperationAction(ISD::SADDSAT, MVT::v4i16, Custom);
756     setOperationAction(ISD::USUBSAT, MVT::v4i16, Custom);
757     setOperationAction(ISD::SSUBSAT, MVT::v4i16, Custom);
758 
759     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
760     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
761     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
762 
763     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
764     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
765 
766     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
767     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
768     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
769 
770     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
771     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
772     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
773   }
774 
775   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
776   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
777 
778   if (Subtarget->has16BitInsts()) {
779     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
780     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
781     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
782     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
783   } else {
784     // Legalization hack.
785     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
786     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
787 
788     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
789     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
790   }
791 
792   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
793     setOperationAction(ISD::SELECT, VT, Custom);
794   }
795 
796   setOperationAction(ISD::SMULO, MVT::i64, Custom);
797   setOperationAction(ISD::UMULO, MVT::i64, Custom);
798 
799   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
800   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
801   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
802   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
803   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
804   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
805   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
806 
807   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
808   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
809   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3f16, Custom);
810   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v3i16, Custom);
811   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
812   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
813   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
814   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
815   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
816   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
817   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
818 
819   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
820   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
821   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
822   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3i16, Custom);
823   setOperationAction(ISD::INTRINSIC_VOID, MVT::v3f16, Custom);
824   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
825   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
826   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
827   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
828   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
829 
830   setTargetDAGCombine(ISD::ADD);
831   setTargetDAGCombine(ISD::ADDCARRY);
832   setTargetDAGCombine(ISD::SUB);
833   setTargetDAGCombine(ISD::SUBCARRY);
834   setTargetDAGCombine(ISD::FADD);
835   setTargetDAGCombine(ISD::FSUB);
836   setTargetDAGCombine(ISD::FMINNUM);
837   setTargetDAGCombine(ISD::FMAXNUM);
838   setTargetDAGCombine(ISD::FMINNUM_IEEE);
839   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
840   setTargetDAGCombine(ISD::FMA);
841   setTargetDAGCombine(ISD::SMIN);
842   setTargetDAGCombine(ISD::SMAX);
843   setTargetDAGCombine(ISD::UMIN);
844   setTargetDAGCombine(ISD::UMAX);
845   setTargetDAGCombine(ISD::SETCC);
846   setTargetDAGCombine(ISD::AND);
847   setTargetDAGCombine(ISD::OR);
848   setTargetDAGCombine(ISD::XOR);
849   setTargetDAGCombine(ISD::SINT_TO_FP);
850   setTargetDAGCombine(ISD::UINT_TO_FP);
851   setTargetDAGCombine(ISD::FCANONICALIZE);
852   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
853   setTargetDAGCombine(ISD::ZERO_EXTEND);
854   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
855   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
856   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
857 
858   // All memory operations. Some folding on the pointer operand is done to help
859   // matching the constant offsets in the addressing modes.
860   setTargetDAGCombine(ISD::LOAD);
861   setTargetDAGCombine(ISD::STORE);
862   setTargetDAGCombine(ISD::ATOMIC_LOAD);
863   setTargetDAGCombine(ISD::ATOMIC_STORE);
864   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
865   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
866   setTargetDAGCombine(ISD::ATOMIC_SWAP);
867   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
868   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
869   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
870   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
871   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
872   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
873   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
874   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
875   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
876   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
877   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
878   setTargetDAGCombine(ISD::INTRINSIC_VOID);
879   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
880 
881   // FIXME: In other contexts we pretend this is a per-function property.
882   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
883 
884   setSchedulingPreference(Sched::RegPressure);
885 }
886 
887 const GCNSubtarget *SITargetLowering::getSubtarget() const {
888   return Subtarget;
889 }
890 
891 //===----------------------------------------------------------------------===//
892 // TargetLowering queries
893 //===----------------------------------------------------------------------===//
894 
895 // v_mad_mix* support a conversion from f16 to f32.
896 //
897 // There is only one special case when denormals are enabled we don't currently,
898 // where this is OK to use.
899 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
900                                        EVT DestVT, EVT SrcVT) const {
901   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
902           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
903     DestVT.getScalarType() == MVT::f32 &&
904     SrcVT.getScalarType() == MVT::f16 &&
905     // TODO: This probably only requires no input flushing?
906     !hasFP32Denormals(DAG.getMachineFunction());
907 }
908 
909 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
910   // SI has some legal vector types, but no legal vector operations. Say no
911   // shuffles are legal in order to prefer scalarizing some vector operations.
912   return false;
913 }
914 
915 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
916                                                     CallingConv::ID CC,
917                                                     EVT VT) const {
918   if (CC == CallingConv::AMDGPU_KERNEL)
919     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
920 
921   if (VT.isVector()) {
922     EVT ScalarVT = VT.getScalarType();
923     unsigned Size = ScalarVT.getSizeInBits();
924     if (Size == 16) {
925       if (Subtarget->has16BitInsts())
926         return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
927       return VT.isInteger() ? MVT::i32 : MVT::f32;
928     }
929 
930     if (Size < 16)
931       return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
932     return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
933   }
934 
935   if (VT.getSizeInBits() > 32)
936     return MVT::i32;
937 
938   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
939 }
940 
941 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
942                                                          CallingConv::ID CC,
943                                                          EVT VT) const {
944   if (CC == CallingConv::AMDGPU_KERNEL)
945     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
946 
947   if (VT.isVector()) {
948     unsigned NumElts = VT.getVectorNumElements();
949     EVT ScalarVT = VT.getScalarType();
950     unsigned Size = ScalarVT.getSizeInBits();
951 
952     // FIXME: Should probably promote 8-bit vectors to i16.
953     if (Size == 16 && Subtarget->has16BitInsts())
954       return (NumElts + 1) / 2;
955 
956     if (Size <= 32)
957       return NumElts;
958 
959     if (Size > 32)
960       return NumElts * ((Size + 31) / 32);
961   } else if (VT.getSizeInBits() > 32)
962     return (VT.getSizeInBits() + 31) / 32;
963 
964   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
965 }
966 
967 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
968   LLVMContext &Context, CallingConv::ID CC,
969   EVT VT, EVT &IntermediateVT,
970   unsigned &NumIntermediates, MVT &RegisterVT) const {
971   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
972     unsigned NumElts = VT.getVectorNumElements();
973     EVT ScalarVT = VT.getScalarType();
974     unsigned Size = ScalarVT.getSizeInBits();
975     // FIXME: We should fix the ABI to be the same on targets without 16-bit
976     // support, but unless we can properly handle 3-vectors, it will be still be
977     // inconsistent.
978     if (Size == 16 && Subtarget->has16BitInsts()) {
979       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
980       IntermediateVT = RegisterVT;
981       NumIntermediates = (NumElts + 1) / 2;
982       return NumIntermediates;
983     }
984 
985     if (Size == 32) {
986       RegisterVT = ScalarVT.getSimpleVT();
987       IntermediateVT = RegisterVT;
988       NumIntermediates = NumElts;
989       return NumIntermediates;
990     }
991 
992     if (Size < 16 && Subtarget->has16BitInsts()) {
993       // FIXME: Should probably form v2i16 pieces
994       RegisterVT = MVT::i16;
995       IntermediateVT = ScalarVT;
996       NumIntermediates = NumElts;
997       return NumIntermediates;
998     }
999 
1000 
1001     if (Size != 16 && Size <= 32) {
1002       RegisterVT = MVT::i32;
1003       IntermediateVT = ScalarVT;
1004       NumIntermediates = NumElts;
1005       return NumIntermediates;
1006     }
1007 
1008     if (Size > 32) {
1009       RegisterVT = MVT::i32;
1010       IntermediateVT = RegisterVT;
1011       NumIntermediates = NumElts * ((Size + 31) / 32);
1012       return NumIntermediates;
1013     }
1014   }
1015 
1016   return TargetLowering::getVectorTypeBreakdownForCallingConv(
1017     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1018 }
1019 
1020 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
1021   assert(DMaskLanes != 0);
1022 
1023   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1024     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
1025     return EVT::getVectorVT(Ty->getContext(),
1026                             EVT::getEVT(VT->getElementType()),
1027                             NumElts);
1028   }
1029 
1030   return EVT::getEVT(Ty);
1031 }
1032 
1033 // Peek through TFE struct returns to only use the data size.
1034 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
1035   auto *ST = dyn_cast<StructType>(Ty);
1036   if (!ST)
1037     return memVTFromImageData(Ty, DMaskLanes);
1038 
1039   // Some intrinsics return an aggregate type - special case to work out the
1040   // correct memVT.
1041   //
1042   // Only limited forms of aggregate type currently expected.
1043   if (ST->getNumContainedTypes() != 2 ||
1044       !ST->getContainedType(1)->isIntegerTy(32))
1045     return EVT();
1046   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
1047 }
1048 
1049 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1050                                           const CallInst &CI,
1051                                           MachineFunction &MF,
1052                                           unsigned IntrID) const {
1053   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1054           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1055     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1056                                                   (Intrinsic::ID)IntrID);
1057     if (Attr.hasFnAttribute(Attribute::ReadNone))
1058       return false;
1059 
1060     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1061 
1062     if (RsrcIntr->IsImage) {
1063       Info.ptrVal = MFI->getImagePSV(
1064         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1065         CI.getArgOperand(RsrcIntr->RsrcArg));
1066       Info.align.reset();
1067     } else {
1068       Info.ptrVal = MFI->getBufferPSV(
1069         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1070         CI.getArgOperand(RsrcIntr->RsrcArg));
1071     }
1072 
1073     Info.flags = MachineMemOperand::MODereferenceable;
1074     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1075       unsigned DMaskLanes = 4;
1076 
1077       if (RsrcIntr->IsImage) {
1078         const AMDGPU::ImageDimIntrinsicInfo *Intr
1079           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1080         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1081           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1082 
1083         if (!BaseOpcode->Gather4) {
1084           // If this isn't a gather, we may have excess loaded elements in the
1085           // IR type. Check the dmask for the real number of elements loaded.
1086           unsigned DMask
1087             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1088           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1089         }
1090 
1091         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1092       } else
1093         Info.memVT = EVT::getEVT(CI.getType());
1094 
1095       // FIXME: What does alignment mean for an image?
1096       Info.opc = ISD::INTRINSIC_W_CHAIN;
1097       Info.flags |= MachineMemOperand::MOLoad;
1098     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1099       Info.opc = ISD::INTRINSIC_VOID;
1100 
1101       Type *DataTy = CI.getArgOperand(0)->getType();
1102       if (RsrcIntr->IsImage) {
1103         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1104         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1105         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1106       } else
1107         Info.memVT = EVT::getEVT(DataTy);
1108 
1109       Info.flags |= MachineMemOperand::MOStore;
1110     } else {
1111       // Atomic
1112       Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID :
1113                                             ISD::INTRINSIC_W_CHAIN;
1114       Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1115       Info.flags = MachineMemOperand::MOLoad |
1116                    MachineMemOperand::MOStore |
1117                    MachineMemOperand::MODereferenceable;
1118 
1119       // XXX - Should this be volatile without known ordering?
1120       Info.flags |= MachineMemOperand::MOVolatile;
1121     }
1122     return true;
1123   }
1124 
1125   switch (IntrID) {
1126   case Intrinsic::amdgcn_atomic_inc:
1127   case Intrinsic::amdgcn_atomic_dec:
1128   case Intrinsic::amdgcn_ds_ordered_add:
1129   case Intrinsic::amdgcn_ds_ordered_swap:
1130   case Intrinsic::amdgcn_ds_fadd:
1131   case Intrinsic::amdgcn_ds_fmin:
1132   case Intrinsic::amdgcn_ds_fmax: {
1133     Info.opc = ISD::INTRINSIC_W_CHAIN;
1134     Info.memVT = MVT::getVT(CI.getType());
1135     Info.ptrVal = CI.getOperand(0);
1136     Info.align.reset();
1137     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1138 
1139     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1140     if (!Vol->isZero())
1141       Info.flags |= MachineMemOperand::MOVolatile;
1142 
1143     return true;
1144   }
1145   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1146     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1147 
1148     Info.opc = ISD::INTRINSIC_W_CHAIN;
1149     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1150     Info.ptrVal = MFI->getBufferPSV(
1151       *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1152       CI.getArgOperand(1));
1153     Info.align.reset();
1154     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1155 
1156     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1157     if (!Vol || !Vol->isZero())
1158       Info.flags |= MachineMemOperand::MOVolatile;
1159 
1160     return true;
1161   }
1162   case Intrinsic::amdgcn_ds_append:
1163   case Intrinsic::amdgcn_ds_consume: {
1164     Info.opc = ISD::INTRINSIC_W_CHAIN;
1165     Info.memVT = MVT::getVT(CI.getType());
1166     Info.ptrVal = CI.getOperand(0);
1167     Info.align.reset();
1168     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1169 
1170     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1171     if (!Vol->isZero())
1172       Info.flags |= MachineMemOperand::MOVolatile;
1173 
1174     return true;
1175   }
1176   case Intrinsic::amdgcn_global_atomic_csub: {
1177     Info.opc = ISD::INTRINSIC_W_CHAIN;
1178     Info.memVT = MVT::getVT(CI.getType());
1179     Info.ptrVal = CI.getOperand(0);
1180     Info.align.reset();
1181     Info.flags = MachineMemOperand::MOLoad |
1182                  MachineMemOperand::MOStore |
1183                  MachineMemOperand::MOVolatile;
1184     return true;
1185   }
1186   case Intrinsic::amdgcn_global_atomic_fadd: {
1187     Info.opc = ISD::INTRINSIC_W_CHAIN;
1188     Info.memVT = MVT::getVT(CI.getType());
1189     Info.ptrVal = CI.getOperand(0);
1190     Info.align.reset();
1191     Info.flags = MachineMemOperand::MOLoad |
1192                  MachineMemOperand::MOStore |
1193                  MachineMemOperand::MODereferenceable |
1194                  MachineMemOperand::MOVolatile;
1195     return true;
1196   }
1197   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1198     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1199     Info.opc = ISD::INTRINSIC_W_CHAIN;
1200     Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1201     Info.ptrVal = MFI->getImagePSV(
1202         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(), CI.getArgOperand(5));
1203     Info.align.reset();
1204     Info.flags = MachineMemOperand::MOLoad |
1205                  MachineMemOperand::MODereferenceable;
1206     return true;
1207   }
1208   case Intrinsic::amdgcn_ds_gws_init:
1209   case Intrinsic::amdgcn_ds_gws_barrier:
1210   case Intrinsic::amdgcn_ds_gws_sema_v:
1211   case Intrinsic::amdgcn_ds_gws_sema_br:
1212   case Intrinsic::amdgcn_ds_gws_sema_p:
1213   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1214     Info.opc = ISD::INTRINSIC_VOID;
1215 
1216     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1217     Info.ptrVal =
1218         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1219 
1220     // This is an abstract access, but we need to specify a type and size.
1221     Info.memVT = MVT::i32;
1222     Info.size = 4;
1223     Info.align = Align(4);
1224 
1225     Info.flags = MachineMemOperand::MOStore;
1226     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1227       Info.flags = MachineMemOperand::MOLoad;
1228     return true;
1229   }
1230   default:
1231     return false;
1232   }
1233 }
1234 
1235 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1236                                             SmallVectorImpl<Value*> &Ops,
1237                                             Type *&AccessTy) const {
1238   switch (II->getIntrinsicID()) {
1239   case Intrinsic::amdgcn_atomic_inc:
1240   case Intrinsic::amdgcn_atomic_dec:
1241   case Intrinsic::amdgcn_ds_ordered_add:
1242   case Intrinsic::amdgcn_ds_ordered_swap:
1243   case Intrinsic::amdgcn_ds_append:
1244   case Intrinsic::amdgcn_ds_consume:
1245   case Intrinsic::amdgcn_ds_fadd:
1246   case Intrinsic::amdgcn_ds_fmin:
1247   case Intrinsic::amdgcn_ds_fmax:
1248   case Intrinsic::amdgcn_global_atomic_fadd:
1249   case Intrinsic::amdgcn_global_atomic_csub: {
1250     Value *Ptr = II->getArgOperand(0);
1251     AccessTy = II->getType();
1252     Ops.push_back(Ptr);
1253     return true;
1254   }
1255   default:
1256     return false;
1257   }
1258 }
1259 
1260 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1261   if (!Subtarget->hasFlatInstOffsets()) {
1262     // Flat instructions do not have offsets, and only have the register
1263     // address.
1264     return AM.BaseOffs == 0 && AM.Scale == 0;
1265   }
1266 
1267   return AM.Scale == 0 &&
1268          (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1269                                   AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS,
1270                                   /*Signed=*/false));
1271 }
1272 
1273 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1274   if (Subtarget->hasFlatGlobalInsts())
1275     return AM.Scale == 0 &&
1276            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1277                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1278                                     /*Signed=*/true));
1279 
1280   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1281       // Assume the we will use FLAT for all global memory accesses
1282       // on VI.
1283       // FIXME: This assumption is currently wrong.  On VI we still use
1284       // MUBUF instructions for the r + i addressing mode.  As currently
1285       // implemented, the MUBUF instructions only work on buffer < 4GB.
1286       // It may be possible to support > 4GB buffers with MUBUF instructions,
1287       // by setting the stride value in the resource descriptor which would
1288       // increase the size limit to (stride * 4GB).  However, this is risky,
1289       // because it has never been validated.
1290     return isLegalFlatAddressingMode(AM);
1291   }
1292 
1293   return isLegalMUBUFAddressingMode(AM);
1294 }
1295 
1296 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1297   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1298   // additionally can do r + r + i with addr64. 32-bit has more addressing
1299   // mode options. Depending on the resource constant, it can also do
1300   // (i64 r0) + (i32 r1) * (i14 i).
1301   //
1302   // Private arrays end up using a scratch buffer most of the time, so also
1303   // assume those use MUBUF instructions. Scratch loads / stores are currently
1304   // implemented as mubuf instructions with offen bit set, so slightly
1305   // different than the normal addr64.
1306   if (!SIInstrInfo::isLegalMUBUFImmOffset(AM.BaseOffs))
1307     return false;
1308 
1309   // FIXME: Since we can split immediate into soffset and immediate offset,
1310   // would it make sense to allow any immediate?
1311 
1312   switch (AM.Scale) {
1313   case 0: // r + i or just i, depending on HasBaseReg.
1314     return true;
1315   case 1:
1316     return true; // We have r + r or r + i.
1317   case 2:
1318     if (AM.HasBaseReg) {
1319       // Reject 2 * r + r.
1320       return false;
1321     }
1322 
1323     // Allow 2 * r as r + r
1324     // Or  2 * r + i is allowed as r + r + i.
1325     return true;
1326   default: // Don't allow n * r
1327     return false;
1328   }
1329 }
1330 
1331 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1332                                              const AddrMode &AM, Type *Ty,
1333                                              unsigned AS, Instruction *I) const {
1334   // No global is ever allowed as a base.
1335   if (AM.BaseGV)
1336     return false;
1337 
1338   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1339     return isLegalGlobalAddressingMode(AM);
1340 
1341   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1342       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1343       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1344     // If the offset isn't a multiple of 4, it probably isn't going to be
1345     // correctly aligned.
1346     // FIXME: Can we get the real alignment here?
1347     if (AM.BaseOffs % 4 != 0)
1348       return isLegalMUBUFAddressingMode(AM);
1349 
1350     // There are no SMRD extloads, so if we have to do a small type access we
1351     // will use a MUBUF load.
1352     // FIXME?: We also need to do this if unaligned, but we don't know the
1353     // alignment here.
1354     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1355       return isLegalGlobalAddressingMode(AM);
1356 
1357     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1358       // SMRD instructions have an 8-bit, dword offset on SI.
1359       if (!isUInt<8>(AM.BaseOffs / 4))
1360         return false;
1361     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1362       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1363       // in 8-bits, it can use a smaller encoding.
1364       if (!isUInt<32>(AM.BaseOffs / 4))
1365         return false;
1366     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1367       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1368       if (!isUInt<20>(AM.BaseOffs))
1369         return false;
1370     } else
1371       llvm_unreachable("unhandled generation");
1372 
1373     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1374       return true;
1375 
1376     if (AM.Scale == 1 && AM.HasBaseReg)
1377       return true;
1378 
1379     return false;
1380 
1381   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1382     return isLegalMUBUFAddressingMode(AM);
1383   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1384              AS == AMDGPUAS::REGION_ADDRESS) {
1385     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1386     // field.
1387     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1388     // an 8-bit dword offset but we don't know the alignment here.
1389     if (!isUInt<16>(AM.BaseOffs))
1390       return false;
1391 
1392     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1393       return true;
1394 
1395     if (AM.Scale == 1 && AM.HasBaseReg)
1396       return true;
1397 
1398     return false;
1399   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1400              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1401     // For an unknown address space, this usually means that this is for some
1402     // reason being used for pure arithmetic, and not based on some addressing
1403     // computation. We don't have instructions that compute pointers with any
1404     // addressing modes, so treat them as having no offset like flat
1405     // instructions.
1406     return isLegalFlatAddressingMode(AM);
1407   }
1408 
1409   // Assume a user alias of global for unknown address spaces.
1410   return isLegalGlobalAddressingMode(AM);
1411 }
1412 
1413 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1414                                         const SelectionDAG &DAG) const {
1415   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1416     return (MemVT.getSizeInBits() <= 4 * 32);
1417   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1418     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1419     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1420   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1421     return (MemVT.getSizeInBits() <= 2 * 32);
1422   }
1423   return true;
1424 }
1425 
1426 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1427     unsigned Size, unsigned AddrSpace, Align Alignment,
1428     MachineMemOperand::Flags Flags, bool *IsFast) const {
1429   if (IsFast)
1430     *IsFast = false;
1431 
1432   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1433       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1434     // Check if alignment requirements for ds_read/write instructions are
1435     // disabled.
1436     if (Subtarget->hasUnalignedDSAccess() &&
1437         Subtarget->hasUnalignedAccessMode() &&
1438         !Subtarget->hasLDSMisalignedBug()) {
1439       if (IsFast)
1440         *IsFast = Alignment != Align(2);
1441       return true;
1442     }
1443 
1444     if (Size == 64) {
1445       // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1446       // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1447       // with adjacent offsets.
1448       bool AlignedBy4 = Alignment >= Align(4);
1449       if (IsFast)
1450         *IsFast = AlignedBy4;
1451 
1452       return AlignedBy4;
1453     }
1454     if (Size == 96) {
1455       // ds_read/write_b96 require 16-byte alignment on gfx8 and older.
1456       bool Aligned = Alignment >= Align(16);
1457       if (IsFast)
1458         *IsFast = Aligned;
1459 
1460       return Aligned;
1461     }
1462     if (Size == 128) {
1463       // ds_read/write_b128 require 16-byte alignment on gfx8 and older, but we
1464       // can do a 8 byte aligned, 16 byte access in a single operation using
1465       // ds_read2/write2_b64.
1466       bool Aligned = Alignment >= Align(8);
1467       if (IsFast)
1468         *IsFast = Aligned;
1469 
1470       return Aligned;
1471     }
1472   }
1473 
1474   // FIXME: We have to be conservative here and assume that flat operations
1475   // will access scratch.  If we had access to the IR function, then we
1476   // could determine if any private memory was used in the function.
1477   if (!Subtarget->hasUnalignedScratchAccess() &&
1478       (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1479        AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1480     bool AlignedBy4 = Alignment >= Align(4);
1481     if (IsFast)
1482       *IsFast = AlignedBy4;
1483 
1484     return AlignedBy4;
1485   }
1486 
1487   if (Subtarget->hasUnalignedBufferAccess() &&
1488       !(AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1489         AddrSpace == AMDGPUAS::REGION_ADDRESS)) {
1490     // If we have an uniform constant load, it still requires using a slow
1491     // buffer instruction if unaligned.
1492     if (IsFast) {
1493       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1494       // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1495       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1496                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1497         Alignment >= Align(4) : Alignment != Align(2);
1498     }
1499 
1500     return true;
1501   }
1502 
1503   // Smaller than dword value must be aligned.
1504   if (Size < 32)
1505     return false;
1506 
1507   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1508   // byte-address are ignored, thus forcing Dword alignment.
1509   // This applies to private, global, and constant memory.
1510   if (IsFast)
1511     *IsFast = true;
1512 
1513   return Size >= 32 && Alignment >= Align(4);
1514 }
1515 
1516 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1517     EVT VT, unsigned AddrSpace, unsigned Alignment,
1518     MachineMemOperand::Flags Flags, bool *IsFast) const {
1519   if (IsFast)
1520     *IsFast = false;
1521 
1522   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1523   // which isn't a simple VT.
1524   // Until MVT is extended to handle this, simply check for the size and
1525   // rely on the condition below: allow accesses if the size is a multiple of 4.
1526   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1527                            VT.getStoreSize() > 16)) {
1528     return false;
1529   }
1530 
1531   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1532                                             Align(Alignment), Flags, IsFast);
1533 }
1534 
1535 EVT SITargetLowering::getOptimalMemOpType(
1536     const MemOp &Op, const AttributeList &FuncAttributes) const {
1537   // FIXME: Should account for address space here.
1538 
1539   // The default fallback uses the private pointer size as a guess for a type to
1540   // use. Make sure we switch these to 64-bit accesses.
1541 
1542   if (Op.size() >= 16 &&
1543       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1544     return MVT::v4i32;
1545 
1546   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1547     return MVT::v2i32;
1548 
1549   // Use the default.
1550   return MVT::Other;
1551 }
1552 
1553 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1554   const MemSDNode *MemNode = cast<MemSDNode>(N);
1555   const Value *Ptr = MemNode->getMemOperand()->getValue();
1556   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1557   return I && I->getMetadata("amdgpu.noclobber");
1558 }
1559 
1560 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1561                                            unsigned DestAS) const {
1562   // Flat -> private/local is a simple truncate.
1563   // Flat -> global is no-op
1564   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1565     return true;
1566 
1567   const GCNTargetMachine &TM =
1568       static_cast<const GCNTargetMachine &>(getTargetMachine());
1569   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1570 }
1571 
1572 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1573   const MemSDNode *MemNode = cast<MemSDNode>(N);
1574 
1575   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1576 }
1577 
1578 TargetLoweringBase::LegalizeTypeAction
1579 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1580   int NumElts = VT.getVectorNumElements();
1581   if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1582     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1583   return TargetLoweringBase::getPreferredVectorAction(VT);
1584 }
1585 
1586 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1587                                                          Type *Ty) const {
1588   // FIXME: Could be smarter if called for vector constants.
1589   return true;
1590 }
1591 
1592 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1593   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1594     switch (Op) {
1595     case ISD::LOAD:
1596     case ISD::STORE:
1597 
1598     // These operations are done with 32-bit instructions anyway.
1599     case ISD::AND:
1600     case ISD::OR:
1601     case ISD::XOR:
1602     case ISD::SELECT:
1603       // TODO: Extensions?
1604       return true;
1605     default:
1606       return false;
1607     }
1608   }
1609 
1610   // SimplifySetCC uses this function to determine whether or not it should
1611   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1612   if (VT == MVT::i1 && Op == ISD::SETCC)
1613     return false;
1614 
1615   return TargetLowering::isTypeDesirableForOp(Op, VT);
1616 }
1617 
1618 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1619                                                    const SDLoc &SL,
1620                                                    SDValue Chain,
1621                                                    uint64_t Offset) const {
1622   const DataLayout &DL = DAG.getDataLayout();
1623   MachineFunction &MF = DAG.getMachineFunction();
1624   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1625 
1626   const ArgDescriptor *InputPtrReg;
1627   const TargetRegisterClass *RC;
1628   LLT ArgTy;
1629 
1630   std::tie(InputPtrReg, RC, ArgTy) =
1631       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1632 
1633   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1634   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1635   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1636     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1637 
1638   return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Offset));
1639 }
1640 
1641 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1642                                             const SDLoc &SL) const {
1643   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1644                                                FIRST_IMPLICIT);
1645   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1646 }
1647 
1648 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1649                                          const SDLoc &SL, SDValue Val,
1650                                          bool Signed,
1651                                          const ISD::InputArg *Arg) const {
1652   // First, if it is a widened vector, narrow it.
1653   if (VT.isVector() &&
1654       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1655     EVT NarrowedVT =
1656         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1657                          VT.getVectorNumElements());
1658     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1659                       DAG.getConstant(0, SL, MVT::i32));
1660   }
1661 
1662   // Then convert the vector elements or scalar value.
1663   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1664       VT.bitsLT(MemVT)) {
1665     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1666     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1667   }
1668 
1669   if (MemVT.isFloatingPoint())
1670     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1671   else if (Signed)
1672     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1673   else
1674     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1675 
1676   return Val;
1677 }
1678 
1679 SDValue SITargetLowering::lowerKernargMemParameter(
1680     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1681     uint64_t Offset, Align Alignment, bool Signed,
1682     const ISD::InputArg *Arg) const {
1683   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1684 
1685   // Try to avoid using an extload by loading earlier than the argument address,
1686   // and extracting the relevant bits. The load should hopefully be merged with
1687   // the previous argument.
1688   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1689     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1690     int64_t AlignDownOffset = alignDown(Offset, 4);
1691     int64_t OffsetDiff = Offset - AlignDownOffset;
1692 
1693     EVT IntVT = MemVT.changeTypeToInteger();
1694 
1695     // TODO: If we passed in the base kernel offset we could have a better
1696     // alignment than 4, but we don't really need it.
1697     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1698     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
1699                                MachineMemOperand::MODereferenceable |
1700                                    MachineMemOperand::MOInvariant);
1701 
1702     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1703     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1704 
1705     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1706     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1707     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1708 
1709 
1710     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1711   }
1712 
1713   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1714   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1715                              MachineMemOperand::MODereferenceable |
1716                                  MachineMemOperand::MOInvariant);
1717 
1718   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1719   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1720 }
1721 
1722 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1723                                               const SDLoc &SL, SDValue Chain,
1724                                               const ISD::InputArg &Arg) const {
1725   MachineFunction &MF = DAG.getMachineFunction();
1726   MachineFrameInfo &MFI = MF.getFrameInfo();
1727 
1728   if (Arg.Flags.isByVal()) {
1729     unsigned Size = Arg.Flags.getByValSize();
1730     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1731     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1732   }
1733 
1734   unsigned ArgOffset = VA.getLocMemOffset();
1735   unsigned ArgSize = VA.getValVT().getStoreSize();
1736 
1737   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1738 
1739   // Create load nodes to retrieve arguments from the stack.
1740   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1741   SDValue ArgValue;
1742 
1743   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1744   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1745   MVT MemVT = VA.getValVT();
1746 
1747   switch (VA.getLocInfo()) {
1748   default:
1749     break;
1750   case CCValAssign::BCvt:
1751     MemVT = VA.getLocVT();
1752     break;
1753   case CCValAssign::SExt:
1754     ExtType = ISD::SEXTLOAD;
1755     break;
1756   case CCValAssign::ZExt:
1757     ExtType = ISD::ZEXTLOAD;
1758     break;
1759   case CCValAssign::AExt:
1760     ExtType = ISD::EXTLOAD;
1761     break;
1762   }
1763 
1764   ArgValue = DAG.getExtLoad(
1765     ExtType, SL, VA.getLocVT(), Chain, FIN,
1766     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1767     MemVT);
1768   return ArgValue;
1769 }
1770 
1771 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1772   const SIMachineFunctionInfo &MFI,
1773   EVT VT,
1774   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1775   const ArgDescriptor *Reg;
1776   const TargetRegisterClass *RC;
1777   LLT Ty;
1778 
1779   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1780   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1781 }
1782 
1783 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1784                                    CallingConv::ID CallConv,
1785                                    ArrayRef<ISD::InputArg> Ins,
1786                                    BitVector &Skipped,
1787                                    FunctionType *FType,
1788                                    SIMachineFunctionInfo *Info) {
1789   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1790     const ISD::InputArg *Arg = &Ins[I];
1791 
1792     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1793            "vector type argument should have been split");
1794 
1795     // First check if it's a PS input addr.
1796     if (CallConv == CallingConv::AMDGPU_PS &&
1797         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1798       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1799 
1800       // Inconveniently only the first part of the split is marked as isSplit,
1801       // so skip to the end. We only want to increment PSInputNum once for the
1802       // entire split argument.
1803       if (Arg->Flags.isSplit()) {
1804         while (!Arg->Flags.isSplitEnd()) {
1805           assert((!Arg->VT.isVector() ||
1806                   Arg->VT.getScalarSizeInBits() == 16) &&
1807                  "unexpected vector split in ps argument type");
1808           if (!SkipArg)
1809             Splits.push_back(*Arg);
1810           Arg = &Ins[++I];
1811         }
1812       }
1813 
1814       if (SkipArg) {
1815         // We can safely skip PS inputs.
1816         Skipped.set(Arg->getOrigArgIndex());
1817         ++PSInputNum;
1818         continue;
1819       }
1820 
1821       Info->markPSInputAllocated(PSInputNum);
1822       if (Arg->Used)
1823         Info->markPSInputEnabled(PSInputNum);
1824 
1825       ++PSInputNum;
1826     }
1827 
1828     Splits.push_back(*Arg);
1829   }
1830 }
1831 
1832 // Allocate special inputs passed in VGPRs.
1833 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1834                                                       MachineFunction &MF,
1835                                                       const SIRegisterInfo &TRI,
1836                                                       SIMachineFunctionInfo &Info) const {
1837   const LLT S32 = LLT::scalar(32);
1838   MachineRegisterInfo &MRI = MF.getRegInfo();
1839 
1840   if (Info.hasWorkItemIDX()) {
1841     Register Reg = AMDGPU::VGPR0;
1842     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1843 
1844     CCInfo.AllocateReg(Reg);
1845     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1846   }
1847 
1848   if (Info.hasWorkItemIDY()) {
1849     Register Reg = AMDGPU::VGPR1;
1850     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1851 
1852     CCInfo.AllocateReg(Reg);
1853     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1854   }
1855 
1856   if (Info.hasWorkItemIDZ()) {
1857     Register Reg = AMDGPU::VGPR2;
1858     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1859 
1860     CCInfo.AllocateReg(Reg);
1861     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1862   }
1863 }
1864 
1865 // Try to allocate a VGPR at the end of the argument list, or if no argument
1866 // VGPRs are left allocating a stack slot.
1867 // If \p Mask is is given it indicates bitfield position in the register.
1868 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1869 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1870                                          ArgDescriptor Arg = ArgDescriptor()) {
1871   if (Arg.isSet())
1872     return ArgDescriptor::createArg(Arg, Mask);
1873 
1874   ArrayRef<MCPhysReg> ArgVGPRs
1875     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1876   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1877   if (RegIdx == ArgVGPRs.size()) {
1878     // Spill to stack required.
1879     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1880 
1881     return ArgDescriptor::createStack(Offset, Mask);
1882   }
1883 
1884   unsigned Reg = ArgVGPRs[RegIdx];
1885   Reg = CCInfo.AllocateReg(Reg);
1886   assert(Reg != AMDGPU::NoRegister);
1887 
1888   MachineFunction &MF = CCInfo.getMachineFunction();
1889   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1890   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1891   return ArgDescriptor::createRegister(Reg, Mask);
1892 }
1893 
1894 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1895                                              const TargetRegisterClass *RC,
1896                                              unsigned NumArgRegs) {
1897   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1898   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1899   if (RegIdx == ArgSGPRs.size())
1900     report_fatal_error("ran out of SGPRs for arguments");
1901 
1902   unsigned Reg = ArgSGPRs[RegIdx];
1903   Reg = CCInfo.AllocateReg(Reg);
1904   assert(Reg != AMDGPU::NoRegister);
1905 
1906   MachineFunction &MF = CCInfo.getMachineFunction();
1907   MF.addLiveIn(Reg, RC);
1908   return ArgDescriptor::createRegister(Reg);
1909 }
1910 
1911 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1912   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1913 }
1914 
1915 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1916   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1917 }
1918 
1919 /// Allocate implicit function VGPR arguments at the end of allocated user
1920 /// arguments.
1921 void SITargetLowering::allocateSpecialInputVGPRs(
1922   CCState &CCInfo, MachineFunction &MF,
1923   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1924   const unsigned Mask = 0x3ff;
1925   ArgDescriptor Arg;
1926 
1927   if (Info.hasWorkItemIDX()) {
1928     Arg = allocateVGPR32Input(CCInfo, Mask);
1929     Info.setWorkItemIDX(Arg);
1930   }
1931 
1932   if (Info.hasWorkItemIDY()) {
1933     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1934     Info.setWorkItemIDY(Arg);
1935   }
1936 
1937   if (Info.hasWorkItemIDZ())
1938     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1939 }
1940 
1941 /// Allocate implicit function VGPR arguments in fixed registers.
1942 void SITargetLowering::allocateSpecialInputVGPRsFixed(
1943   CCState &CCInfo, MachineFunction &MF,
1944   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1945   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
1946   if (!Reg)
1947     report_fatal_error("failed to allocated VGPR for implicit arguments");
1948 
1949   const unsigned Mask = 0x3ff;
1950   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1951   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
1952   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
1953 }
1954 
1955 void SITargetLowering::allocateSpecialInputSGPRs(
1956   CCState &CCInfo,
1957   MachineFunction &MF,
1958   const SIRegisterInfo &TRI,
1959   SIMachineFunctionInfo &Info) const {
1960   auto &ArgInfo = Info.getArgInfo();
1961 
1962   // TODO: Unify handling with private memory pointers.
1963 
1964   if (Info.hasDispatchPtr())
1965     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1966 
1967   if (Info.hasQueuePtr())
1968     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1969 
1970   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
1971   // constant offset from the kernarg segment.
1972   if (Info.hasImplicitArgPtr())
1973     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1974 
1975   if (Info.hasDispatchID())
1976     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1977 
1978   // flat_scratch_init is not applicable for non-kernel functions.
1979 
1980   if (Info.hasWorkGroupIDX())
1981     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1982 
1983   if (Info.hasWorkGroupIDY())
1984     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1985 
1986   if (Info.hasWorkGroupIDZ())
1987     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1988 }
1989 
1990 // Allocate special inputs passed in user SGPRs.
1991 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1992                                             MachineFunction &MF,
1993                                             const SIRegisterInfo &TRI,
1994                                             SIMachineFunctionInfo &Info) const {
1995   if (Info.hasImplicitBufferPtr()) {
1996     Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1997     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1998     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1999   }
2000 
2001   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2002   if (Info.hasPrivateSegmentBuffer()) {
2003     Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2004     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2005     CCInfo.AllocateReg(PrivateSegmentBufferReg);
2006   }
2007 
2008   if (Info.hasDispatchPtr()) {
2009     Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2010     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2011     CCInfo.AllocateReg(DispatchPtrReg);
2012   }
2013 
2014   if (Info.hasQueuePtr()) {
2015     Register QueuePtrReg = Info.addQueuePtr(TRI);
2016     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2017     CCInfo.AllocateReg(QueuePtrReg);
2018   }
2019 
2020   if (Info.hasKernargSegmentPtr()) {
2021     MachineRegisterInfo &MRI = MF.getRegInfo();
2022     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2023     CCInfo.AllocateReg(InputPtrReg);
2024 
2025     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2026     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2027   }
2028 
2029   if (Info.hasDispatchID()) {
2030     Register DispatchIDReg = Info.addDispatchID(TRI);
2031     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2032     CCInfo.AllocateReg(DispatchIDReg);
2033   }
2034 
2035   if (Info.hasFlatScratchInit()) {
2036     Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2037     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2038     CCInfo.AllocateReg(FlatScratchInitReg);
2039   }
2040 
2041   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2042   // these from the dispatch pointer.
2043 }
2044 
2045 // Allocate special input registers that are initialized per-wave.
2046 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
2047                                            MachineFunction &MF,
2048                                            SIMachineFunctionInfo &Info,
2049                                            CallingConv::ID CallConv,
2050                                            bool IsShader) const {
2051   if (Info.hasWorkGroupIDX()) {
2052     Register Reg = Info.addWorkGroupIDX();
2053     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2054     CCInfo.AllocateReg(Reg);
2055   }
2056 
2057   if (Info.hasWorkGroupIDY()) {
2058     Register Reg = Info.addWorkGroupIDY();
2059     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2060     CCInfo.AllocateReg(Reg);
2061   }
2062 
2063   if (Info.hasWorkGroupIDZ()) {
2064     Register Reg = Info.addWorkGroupIDZ();
2065     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2066     CCInfo.AllocateReg(Reg);
2067   }
2068 
2069   if (Info.hasWorkGroupInfo()) {
2070     Register Reg = Info.addWorkGroupInfo();
2071     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2072     CCInfo.AllocateReg(Reg);
2073   }
2074 
2075   if (Info.hasPrivateSegmentWaveByteOffset()) {
2076     // Scratch wave offset passed in system SGPR.
2077     unsigned PrivateSegmentWaveByteOffsetReg;
2078 
2079     if (IsShader) {
2080       PrivateSegmentWaveByteOffsetReg =
2081         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2082 
2083       // This is true if the scratch wave byte offset doesn't have a fixed
2084       // location.
2085       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2086         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2087         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2088       }
2089     } else
2090       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2091 
2092     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2093     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2094   }
2095 }
2096 
2097 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2098                                      MachineFunction &MF,
2099                                      const SIRegisterInfo &TRI,
2100                                      SIMachineFunctionInfo &Info) {
2101   // Now that we've figured out where the scratch register inputs are, see if
2102   // should reserve the arguments and use them directly.
2103   MachineFrameInfo &MFI = MF.getFrameInfo();
2104   bool HasStackObjects = MFI.hasStackObjects();
2105   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2106 
2107   // Record that we know we have non-spill stack objects so we don't need to
2108   // check all stack objects later.
2109   if (HasStackObjects)
2110     Info.setHasNonSpillStackObjects(true);
2111 
2112   // Everything live out of a block is spilled with fast regalloc, so it's
2113   // almost certain that spilling will be required.
2114   if (TM.getOptLevel() == CodeGenOpt::None)
2115     HasStackObjects = true;
2116 
2117   // For now assume stack access is needed in any callee functions, so we need
2118   // the scratch registers to pass in.
2119   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2120 
2121   if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2122     // If we have stack objects, we unquestionably need the private buffer
2123     // resource. For the Code Object V2 ABI, this will be the first 4 user
2124     // SGPR inputs. We can reserve those and use them directly.
2125 
2126     Register PrivateSegmentBufferReg =
2127         Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2128     Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2129   } else {
2130     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2131     // We tentatively reserve the last registers (skipping the last registers
2132     // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2133     // we'll replace these with the ones immediately after those which were
2134     // really allocated. In the prologue copies will be inserted from the
2135     // argument to these reserved registers.
2136 
2137     // Without HSA, relocations are used for the scratch pointer and the
2138     // buffer resource setup is always inserted in the prologue. Scratch wave
2139     // offset is still in an input SGPR.
2140     Info.setScratchRSrcReg(ReservedBufferReg);
2141   }
2142 
2143   MachineRegisterInfo &MRI = MF.getRegInfo();
2144 
2145   // For entry functions we have to set up the stack pointer if we use it,
2146   // whereas non-entry functions get this "for free". This means there is no
2147   // intrinsic advantage to using S32 over S34 in cases where we do not have
2148   // calls but do need a frame pointer (i.e. if we are requested to have one
2149   // because frame pointer elimination is disabled). To keep things simple we
2150   // only ever use S32 as the call ABI stack pointer, and so using it does not
2151   // imply we need a separate frame pointer.
2152   //
2153   // Try to use s32 as the SP, but move it if it would interfere with input
2154   // arguments. This won't work with calls though.
2155   //
2156   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2157   // registers.
2158   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2159     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2160   } else {
2161     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2162 
2163     if (MFI.hasCalls())
2164       report_fatal_error("call in graphics shader with too many input SGPRs");
2165 
2166     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2167       if (!MRI.isLiveIn(Reg)) {
2168         Info.setStackPtrOffsetReg(Reg);
2169         break;
2170       }
2171     }
2172 
2173     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2174       report_fatal_error("failed to find register for SP");
2175   }
2176 
2177   // hasFP should be accurate for entry functions even before the frame is
2178   // finalized, because it does not rely on the known stack size, only
2179   // properties like whether variable sized objects are present.
2180   if (ST.getFrameLowering()->hasFP(MF)) {
2181     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2182   }
2183 }
2184 
2185 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2186   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2187   return !Info->isEntryFunction();
2188 }
2189 
2190 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2191 
2192 }
2193 
2194 void SITargetLowering::insertCopiesSplitCSR(
2195   MachineBasicBlock *Entry,
2196   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2197   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2198 
2199   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2200   if (!IStart)
2201     return;
2202 
2203   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2204   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2205   MachineBasicBlock::iterator MBBI = Entry->begin();
2206   for (const MCPhysReg *I = IStart; *I; ++I) {
2207     const TargetRegisterClass *RC = nullptr;
2208     if (AMDGPU::SReg_64RegClass.contains(*I))
2209       RC = &AMDGPU::SGPR_64RegClass;
2210     else if (AMDGPU::SReg_32RegClass.contains(*I))
2211       RC = &AMDGPU::SGPR_32RegClass;
2212     else
2213       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2214 
2215     Register NewVR = MRI->createVirtualRegister(RC);
2216     // Create copy from CSR to a virtual register.
2217     Entry->addLiveIn(*I);
2218     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2219       .addReg(*I);
2220 
2221     // Insert the copy-back instructions right before the terminator.
2222     for (auto *Exit : Exits)
2223       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2224               TII->get(TargetOpcode::COPY), *I)
2225         .addReg(NewVR);
2226   }
2227 }
2228 
2229 SDValue SITargetLowering::LowerFormalArguments(
2230     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2231     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2232     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2233   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2234 
2235   MachineFunction &MF = DAG.getMachineFunction();
2236   const Function &Fn = MF.getFunction();
2237   FunctionType *FType = MF.getFunction().getFunctionType();
2238   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2239 
2240   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
2241     DiagnosticInfoUnsupported NoGraphicsHSA(
2242         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2243     DAG.getContext()->diagnose(NoGraphicsHSA);
2244     return DAG.getEntryNode();
2245   }
2246 
2247   SmallVector<ISD::InputArg, 16> Splits;
2248   SmallVector<CCValAssign, 16> ArgLocs;
2249   BitVector Skipped(Ins.size());
2250   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2251                  *DAG.getContext());
2252 
2253   bool IsShader = AMDGPU::isShader(CallConv);
2254   bool IsKernel = AMDGPU::isKernel(CallConv);
2255   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2256 
2257   if (IsShader) {
2258     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2259 
2260     // At least one interpolation mode must be enabled or else the GPU will
2261     // hang.
2262     //
2263     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2264     // set PSInputAddr, the user wants to enable some bits after the compilation
2265     // based on run-time states. Since we can't know what the final PSInputEna
2266     // will look like, so we shouldn't do anything here and the user should take
2267     // responsibility for the correct programming.
2268     //
2269     // Otherwise, the following restrictions apply:
2270     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2271     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2272     //   enabled too.
2273     if (CallConv == CallingConv::AMDGPU_PS) {
2274       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2275            ((Info->getPSInputAddr() & 0xF) == 0 &&
2276             Info->isPSInputAllocated(11))) {
2277         CCInfo.AllocateReg(AMDGPU::VGPR0);
2278         CCInfo.AllocateReg(AMDGPU::VGPR1);
2279         Info->markPSInputAllocated(0);
2280         Info->markPSInputEnabled(0);
2281       }
2282       if (Subtarget->isAmdPalOS()) {
2283         // For isAmdPalOS, the user does not enable some bits after compilation
2284         // based on run-time states; the register values being generated here are
2285         // the final ones set in hardware. Therefore we need to apply the
2286         // workaround to PSInputAddr and PSInputEnable together.  (The case where
2287         // a bit is set in PSInputAddr but not PSInputEnable is where the
2288         // frontend set up an input arg for a particular interpolation mode, but
2289         // nothing uses that input arg. Really we should have an earlier pass
2290         // that removes such an arg.)
2291         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2292         if ((PsInputBits & 0x7F) == 0 ||
2293             ((PsInputBits & 0xF) == 0 &&
2294              (PsInputBits >> 11 & 1)))
2295           Info->markPSInputEnabled(
2296               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2297       }
2298     }
2299 
2300     assert(!Info->hasDispatchPtr() &&
2301            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
2302            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2303            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2304            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2305            !Info->hasWorkItemIDZ());
2306   } else if (IsKernel) {
2307     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2308   } else {
2309     Splits.append(Ins.begin(), Ins.end());
2310   }
2311 
2312   if (IsEntryFunc) {
2313     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2314     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2315   } else {
2316     // For the fixed ABI, pass workitem IDs in the last argument register.
2317     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2318       allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2319   }
2320 
2321   if (IsKernel) {
2322     analyzeFormalArgumentsCompute(CCInfo, Ins);
2323   } else {
2324     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2325     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2326   }
2327 
2328   SmallVector<SDValue, 16> Chains;
2329 
2330   // FIXME: This is the minimum kernel argument alignment. We should improve
2331   // this to the maximum alignment of the arguments.
2332   //
2333   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2334   // kern arg offset.
2335   const Align KernelArgBaseAlign = Align(16);
2336 
2337   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2338     const ISD::InputArg &Arg = Ins[i];
2339     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2340       InVals.push_back(DAG.getUNDEF(Arg.VT));
2341       continue;
2342     }
2343 
2344     CCValAssign &VA = ArgLocs[ArgIdx++];
2345     MVT VT = VA.getLocVT();
2346 
2347     if (IsEntryFunc && VA.isMemLoc()) {
2348       VT = Ins[i].VT;
2349       EVT MemVT = VA.getLocVT();
2350 
2351       const uint64_t Offset = VA.getLocMemOffset();
2352       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2353 
2354       if (Arg.Flags.isByRef()) {
2355         SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2356 
2357         const GCNTargetMachine &TM =
2358             static_cast<const GCNTargetMachine &>(getTargetMachine());
2359         if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2360                                     Arg.Flags.getPointerAddrSpace())) {
2361           Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2362                                      Arg.Flags.getPointerAddrSpace());
2363         }
2364 
2365         InVals.push_back(Ptr);
2366         continue;
2367       }
2368 
2369       SDValue Arg = lowerKernargMemParameter(
2370         DAG, VT, MemVT, DL, Chain, Offset, Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
2371       Chains.push_back(Arg.getValue(1));
2372 
2373       auto *ParamTy =
2374         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2375       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2376           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2377                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2378         // On SI local pointers are just offsets into LDS, so they are always
2379         // less than 16-bits.  On CI and newer they could potentially be
2380         // real pointers, so we can't guarantee their size.
2381         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2382                           DAG.getValueType(MVT::i16));
2383       }
2384 
2385       InVals.push_back(Arg);
2386       continue;
2387     } else if (!IsEntryFunc && VA.isMemLoc()) {
2388       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2389       InVals.push_back(Val);
2390       if (!Arg.Flags.isByVal())
2391         Chains.push_back(Val.getValue(1));
2392       continue;
2393     }
2394 
2395     assert(VA.isRegLoc() && "Parameter must be in a register!");
2396 
2397     Register Reg = VA.getLocReg();
2398     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2399     EVT ValVT = VA.getValVT();
2400 
2401     Reg = MF.addLiveIn(Reg, RC);
2402     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2403 
2404     if (Arg.Flags.isSRet()) {
2405       // The return object should be reasonably addressable.
2406 
2407       // FIXME: This helps when the return is a real sret. If it is a
2408       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2409       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2410       unsigned NumBits
2411         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2412       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2413         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2414     }
2415 
2416     // If this is an 8 or 16-bit value, it is really passed promoted
2417     // to 32 bits. Insert an assert[sz]ext to capture this, then
2418     // truncate to the right size.
2419     switch (VA.getLocInfo()) {
2420     case CCValAssign::Full:
2421       break;
2422     case CCValAssign::BCvt:
2423       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2424       break;
2425     case CCValAssign::SExt:
2426       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2427                         DAG.getValueType(ValVT));
2428       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2429       break;
2430     case CCValAssign::ZExt:
2431       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2432                         DAG.getValueType(ValVT));
2433       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2434       break;
2435     case CCValAssign::AExt:
2436       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2437       break;
2438     default:
2439       llvm_unreachable("Unknown loc info!");
2440     }
2441 
2442     InVals.push_back(Val);
2443   }
2444 
2445   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2446     // Special inputs come after user arguments.
2447     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2448   }
2449 
2450   // Start adding system SGPRs.
2451   if (IsEntryFunc) {
2452     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2453   } else {
2454     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2455     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2456   }
2457 
2458   auto &ArgUsageInfo =
2459     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2460   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2461 
2462   unsigned StackArgSize = CCInfo.getNextStackOffset();
2463   Info->setBytesInStackArgArea(StackArgSize);
2464 
2465   return Chains.empty() ? Chain :
2466     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2467 }
2468 
2469 // TODO: If return values can't fit in registers, we should return as many as
2470 // possible in registers before passing on stack.
2471 bool SITargetLowering::CanLowerReturn(
2472   CallingConv::ID CallConv,
2473   MachineFunction &MF, bool IsVarArg,
2474   const SmallVectorImpl<ISD::OutputArg> &Outs,
2475   LLVMContext &Context) const {
2476   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2477   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2478   // for shaders. Vector types should be explicitly handled by CC.
2479   if (AMDGPU::isEntryFunctionCC(CallConv))
2480     return true;
2481 
2482   SmallVector<CCValAssign, 16> RVLocs;
2483   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2484   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2485 }
2486 
2487 SDValue
2488 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2489                               bool isVarArg,
2490                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2491                               const SmallVectorImpl<SDValue> &OutVals,
2492                               const SDLoc &DL, SelectionDAG &DAG) const {
2493   MachineFunction &MF = DAG.getMachineFunction();
2494   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2495 
2496   if (AMDGPU::isKernel(CallConv)) {
2497     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2498                                              OutVals, DL, DAG);
2499   }
2500 
2501   bool IsShader = AMDGPU::isShader(CallConv);
2502 
2503   Info->setIfReturnsVoid(Outs.empty());
2504   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2505 
2506   // CCValAssign - represent the assignment of the return value to a location.
2507   SmallVector<CCValAssign, 48> RVLocs;
2508   SmallVector<ISD::OutputArg, 48> Splits;
2509 
2510   // CCState - Info about the registers and stack slots.
2511   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2512                  *DAG.getContext());
2513 
2514   // Analyze outgoing return values.
2515   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2516 
2517   SDValue Flag;
2518   SmallVector<SDValue, 48> RetOps;
2519   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2520 
2521   // Add return address for callable functions.
2522   if (!Info->isEntryFunction()) {
2523     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2524     SDValue ReturnAddrReg = CreateLiveInRegister(
2525       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2526 
2527     SDValue ReturnAddrVirtualReg = DAG.getRegister(
2528         MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2529         MVT::i64);
2530     Chain =
2531         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2532     Flag = Chain.getValue(1);
2533     RetOps.push_back(ReturnAddrVirtualReg);
2534   }
2535 
2536   // Copy the result values into the output registers.
2537   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2538        ++I, ++RealRVLocIdx) {
2539     CCValAssign &VA = RVLocs[I];
2540     assert(VA.isRegLoc() && "Can only return in registers!");
2541     // TODO: Partially return in registers if return values don't fit.
2542     SDValue Arg = OutVals[RealRVLocIdx];
2543 
2544     // Copied from other backends.
2545     switch (VA.getLocInfo()) {
2546     case CCValAssign::Full:
2547       break;
2548     case CCValAssign::BCvt:
2549       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2550       break;
2551     case CCValAssign::SExt:
2552       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2553       break;
2554     case CCValAssign::ZExt:
2555       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2556       break;
2557     case CCValAssign::AExt:
2558       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2559       break;
2560     default:
2561       llvm_unreachable("Unknown loc info!");
2562     }
2563 
2564     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2565     Flag = Chain.getValue(1);
2566     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2567   }
2568 
2569   // FIXME: Does sret work properly?
2570   if (!Info->isEntryFunction()) {
2571     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2572     const MCPhysReg *I =
2573       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2574     if (I) {
2575       for (; *I; ++I) {
2576         if (AMDGPU::SReg_64RegClass.contains(*I))
2577           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2578         else if (AMDGPU::SReg_32RegClass.contains(*I))
2579           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2580         else
2581           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2582       }
2583     }
2584   }
2585 
2586   // Update chain and glue.
2587   RetOps[0] = Chain;
2588   if (Flag.getNode())
2589     RetOps.push_back(Flag);
2590 
2591   unsigned Opc = AMDGPUISD::ENDPGM;
2592   if (!IsWaveEnd)
2593     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2594   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2595 }
2596 
2597 SDValue SITargetLowering::LowerCallResult(
2598     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2599     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2600     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2601     SDValue ThisVal) const {
2602   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2603 
2604   // Assign locations to each value returned by this call.
2605   SmallVector<CCValAssign, 16> RVLocs;
2606   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2607                  *DAG.getContext());
2608   CCInfo.AnalyzeCallResult(Ins, RetCC);
2609 
2610   // Copy all of the result registers out of their specified physreg.
2611   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2612     CCValAssign VA = RVLocs[i];
2613     SDValue Val;
2614 
2615     if (VA.isRegLoc()) {
2616       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2617       Chain = Val.getValue(1);
2618       InFlag = Val.getValue(2);
2619     } else if (VA.isMemLoc()) {
2620       report_fatal_error("TODO: return values in memory");
2621     } else
2622       llvm_unreachable("unknown argument location type");
2623 
2624     switch (VA.getLocInfo()) {
2625     case CCValAssign::Full:
2626       break;
2627     case CCValAssign::BCvt:
2628       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2629       break;
2630     case CCValAssign::ZExt:
2631       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2632                         DAG.getValueType(VA.getValVT()));
2633       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2634       break;
2635     case CCValAssign::SExt:
2636       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2637                         DAG.getValueType(VA.getValVT()));
2638       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2639       break;
2640     case CCValAssign::AExt:
2641       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2642       break;
2643     default:
2644       llvm_unreachable("Unknown loc info!");
2645     }
2646 
2647     InVals.push_back(Val);
2648   }
2649 
2650   return Chain;
2651 }
2652 
2653 // Add code to pass special inputs required depending on used features separate
2654 // from the explicit user arguments present in the IR.
2655 void SITargetLowering::passSpecialInputs(
2656     CallLoweringInfo &CLI,
2657     CCState &CCInfo,
2658     const SIMachineFunctionInfo &Info,
2659     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2660     SmallVectorImpl<SDValue> &MemOpChains,
2661     SDValue Chain) const {
2662   // If we don't have a call site, this was a call inserted by
2663   // legalization. These can never use special inputs.
2664   if (!CLI.CB)
2665     return;
2666 
2667   SelectionDAG &DAG = CLI.DAG;
2668   const SDLoc &DL = CLI.DL;
2669 
2670   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2671   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2672 
2673   const AMDGPUFunctionArgInfo *CalleeArgInfo
2674     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2675   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2676     auto &ArgUsageInfo =
2677       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2678     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2679   }
2680 
2681   // TODO: Unify with private memory register handling. This is complicated by
2682   // the fact that at least in kernels, the input argument is not necessarily
2683   // in the same location as the input.
2684   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2685     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2686     AMDGPUFunctionArgInfo::QUEUE_PTR,
2687     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2688     AMDGPUFunctionArgInfo::DISPATCH_ID,
2689     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2690     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2691     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2692   };
2693 
2694   for (auto InputID : InputRegs) {
2695     const ArgDescriptor *OutgoingArg;
2696     const TargetRegisterClass *ArgRC;
2697     LLT ArgTy;
2698 
2699     std::tie(OutgoingArg, ArgRC, ArgTy) =
2700         CalleeArgInfo->getPreloadedValue(InputID);
2701     if (!OutgoingArg)
2702       continue;
2703 
2704     const ArgDescriptor *IncomingArg;
2705     const TargetRegisterClass *IncomingArgRC;
2706     LLT Ty;
2707     std::tie(IncomingArg, IncomingArgRC, Ty) =
2708         CallerArgInfo.getPreloadedValue(InputID);
2709     assert(IncomingArgRC == ArgRC);
2710 
2711     // All special arguments are ints for now.
2712     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2713     SDValue InputReg;
2714 
2715     if (IncomingArg) {
2716       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2717     } else {
2718       // The implicit arg ptr is special because it doesn't have a corresponding
2719       // input for kernels, and is computed from the kernarg segment pointer.
2720       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2721       InputReg = getImplicitArgPtr(DAG, DL);
2722     }
2723 
2724     if (OutgoingArg->isRegister()) {
2725       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2726       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2727         report_fatal_error("failed to allocate implicit input argument");
2728     } else {
2729       unsigned SpecialArgOffset =
2730           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2731       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2732                                               SpecialArgOffset);
2733       MemOpChains.push_back(ArgStore);
2734     }
2735   }
2736 
2737   // Pack workitem IDs into a single register or pass it as is if already
2738   // packed.
2739   const ArgDescriptor *OutgoingArg;
2740   const TargetRegisterClass *ArgRC;
2741   LLT Ty;
2742 
2743   std::tie(OutgoingArg, ArgRC, Ty) =
2744       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2745   if (!OutgoingArg)
2746     std::tie(OutgoingArg, ArgRC, Ty) =
2747         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2748   if (!OutgoingArg)
2749     std::tie(OutgoingArg, ArgRC, Ty) =
2750         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2751   if (!OutgoingArg)
2752     return;
2753 
2754   const ArgDescriptor *IncomingArgX = std::get<0>(
2755       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2756   const ArgDescriptor *IncomingArgY = std::get<0>(
2757       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2758   const ArgDescriptor *IncomingArgZ = std::get<0>(
2759       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2760 
2761   SDValue InputReg;
2762   SDLoc SL;
2763 
2764   // If incoming ids are not packed we need to pack them.
2765   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2766     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2767 
2768   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2769     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2770     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2771                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2772     InputReg = InputReg.getNode() ?
2773                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2774   }
2775 
2776   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2777     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2778     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2779                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2780     InputReg = InputReg.getNode() ?
2781                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2782   }
2783 
2784   if (!InputReg.getNode()) {
2785     // Workitem ids are already packed, any of present incoming arguments
2786     // will carry all required fields.
2787     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2788       IncomingArgX ? *IncomingArgX :
2789       IncomingArgY ? *IncomingArgY :
2790                      *IncomingArgZ, ~0u);
2791     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2792   }
2793 
2794   if (OutgoingArg->isRegister()) {
2795     RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2796     CCInfo.AllocateReg(OutgoingArg->getRegister());
2797   } else {
2798     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2799     SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2800                                             SpecialArgOffset);
2801     MemOpChains.push_back(ArgStore);
2802   }
2803 }
2804 
2805 static bool canGuaranteeTCO(CallingConv::ID CC) {
2806   return CC == CallingConv::Fast;
2807 }
2808 
2809 /// Return true if we might ever do TCO for calls with this calling convention.
2810 static bool mayTailCallThisCC(CallingConv::ID CC) {
2811   switch (CC) {
2812   case CallingConv::C:
2813     return true;
2814   default:
2815     return canGuaranteeTCO(CC);
2816   }
2817 }
2818 
2819 bool SITargetLowering::isEligibleForTailCallOptimization(
2820     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2821     const SmallVectorImpl<ISD::OutputArg> &Outs,
2822     const SmallVectorImpl<SDValue> &OutVals,
2823     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2824   if (!mayTailCallThisCC(CalleeCC))
2825     return false;
2826 
2827   MachineFunction &MF = DAG.getMachineFunction();
2828   const Function &CallerF = MF.getFunction();
2829   CallingConv::ID CallerCC = CallerF.getCallingConv();
2830   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2831   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2832 
2833   // Kernels aren't callable, and don't have a live in return address so it
2834   // doesn't make sense to do a tail call with entry functions.
2835   if (!CallerPreserved)
2836     return false;
2837 
2838   bool CCMatch = CallerCC == CalleeCC;
2839 
2840   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2841     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2842       return true;
2843     return false;
2844   }
2845 
2846   // TODO: Can we handle var args?
2847   if (IsVarArg)
2848     return false;
2849 
2850   for (const Argument &Arg : CallerF.args()) {
2851     if (Arg.hasByValAttr())
2852       return false;
2853   }
2854 
2855   LLVMContext &Ctx = *DAG.getContext();
2856 
2857   // Check that the call results are passed in the same way.
2858   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2859                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2860                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2861     return false;
2862 
2863   // The callee has to preserve all registers the caller needs to preserve.
2864   if (!CCMatch) {
2865     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2866     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2867       return false;
2868   }
2869 
2870   // Nothing more to check if the callee is taking no arguments.
2871   if (Outs.empty())
2872     return true;
2873 
2874   SmallVector<CCValAssign, 16> ArgLocs;
2875   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2876 
2877   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2878 
2879   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2880   // If the stack arguments for this call do not fit into our own save area then
2881   // the call cannot be made tail.
2882   // TODO: Is this really necessary?
2883   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2884     return false;
2885 
2886   const MachineRegisterInfo &MRI = MF.getRegInfo();
2887   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2888 }
2889 
2890 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2891   if (!CI->isTailCall())
2892     return false;
2893 
2894   const Function *ParentFn = CI->getParent()->getParent();
2895   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2896     return false;
2897   return true;
2898 }
2899 
2900 // The wave scratch offset register is used as the global base pointer.
2901 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2902                                     SmallVectorImpl<SDValue> &InVals) const {
2903   SelectionDAG &DAG = CLI.DAG;
2904   const SDLoc &DL = CLI.DL;
2905   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2906   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2907   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2908   SDValue Chain = CLI.Chain;
2909   SDValue Callee = CLI.Callee;
2910   bool &IsTailCall = CLI.IsTailCall;
2911   CallingConv::ID CallConv = CLI.CallConv;
2912   bool IsVarArg = CLI.IsVarArg;
2913   bool IsSibCall = false;
2914   bool IsThisReturn = false;
2915   MachineFunction &MF = DAG.getMachineFunction();
2916 
2917   if (Callee.isUndef() || isNullConstant(Callee)) {
2918     if (!CLI.IsTailCall) {
2919       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2920         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2921     }
2922 
2923     return Chain;
2924   }
2925 
2926   if (IsVarArg) {
2927     return lowerUnhandledCall(CLI, InVals,
2928                               "unsupported call to variadic function ");
2929   }
2930 
2931   if (!CLI.CB)
2932     report_fatal_error("unsupported libcall legalization");
2933 
2934   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
2935       !CLI.CB->getCalledFunction()) {
2936     return lowerUnhandledCall(CLI, InVals,
2937                               "unsupported indirect call to function ");
2938   }
2939 
2940   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2941     return lowerUnhandledCall(CLI, InVals,
2942                               "unsupported required tail call to function ");
2943   }
2944 
2945   if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2946     // Note the issue is with the CC of the calling function, not of the call
2947     // itself.
2948     return lowerUnhandledCall(CLI, InVals,
2949                           "unsupported call from graphics shader of function ");
2950   }
2951 
2952   if (IsTailCall) {
2953     IsTailCall = isEligibleForTailCallOptimization(
2954       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2955     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
2956       report_fatal_error("failed to perform tail call elimination on a call "
2957                          "site marked musttail");
2958     }
2959 
2960     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2961 
2962     // A sibling call is one where we're under the usual C ABI and not planning
2963     // to change that but can still do a tail call:
2964     if (!TailCallOpt && IsTailCall)
2965       IsSibCall = true;
2966 
2967     if (IsTailCall)
2968       ++NumTailCalls;
2969   }
2970 
2971   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2972   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2973   SmallVector<SDValue, 8> MemOpChains;
2974 
2975   // Analyze operands of the call, assigning locations to each operand.
2976   SmallVector<CCValAssign, 16> ArgLocs;
2977   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2978   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2979 
2980   if (AMDGPUTargetMachine::EnableFixedFunctionABI) {
2981     // With a fixed ABI, allocate fixed registers before user arguments.
2982     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2983   }
2984 
2985   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2986 
2987   // Get a count of how many bytes are to be pushed on the stack.
2988   unsigned NumBytes = CCInfo.getNextStackOffset();
2989 
2990   if (IsSibCall) {
2991     // Since we're not changing the ABI to make this a tail call, the memory
2992     // operands are already available in the caller's incoming argument space.
2993     NumBytes = 0;
2994   }
2995 
2996   // FPDiff is the byte offset of the call's argument area from the callee's.
2997   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2998   // by this amount for a tail call. In a sibling call it must be 0 because the
2999   // caller will deallocate the entire stack and the callee still expects its
3000   // arguments to begin at SP+0. Completely unused for non-tail calls.
3001   int32_t FPDiff = 0;
3002   MachineFrameInfo &MFI = MF.getFrameInfo();
3003 
3004   // Adjust the stack pointer for the new arguments...
3005   // These operations are automatically eliminated by the prolog/epilog pass
3006   if (!IsSibCall) {
3007     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3008 
3009     SmallVector<SDValue, 4> CopyFromChains;
3010 
3011     // In the HSA case, this should be an identity copy.
3012     SDValue ScratchRSrcReg
3013       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3014     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
3015     CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3016     Chain = DAG.getTokenFactor(DL, CopyFromChains);
3017   }
3018 
3019   MVT PtrVT = MVT::i32;
3020 
3021   // Walk the register/memloc assignments, inserting copies/loads.
3022   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3023     CCValAssign &VA = ArgLocs[i];
3024     SDValue Arg = OutVals[i];
3025 
3026     // Promote the value if needed.
3027     switch (VA.getLocInfo()) {
3028     case CCValAssign::Full:
3029       break;
3030     case CCValAssign::BCvt:
3031       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3032       break;
3033     case CCValAssign::ZExt:
3034       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3035       break;
3036     case CCValAssign::SExt:
3037       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3038       break;
3039     case CCValAssign::AExt:
3040       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3041       break;
3042     case CCValAssign::FPExt:
3043       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3044       break;
3045     default:
3046       llvm_unreachable("Unknown loc info!");
3047     }
3048 
3049     if (VA.isRegLoc()) {
3050       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3051     } else {
3052       assert(VA.isMemLoc());
3053 
3054       SDValue DstAddr;
3055       MachinePointerInfo DstInfo;
3056 
3057       unsigned LocMemOffset = VA.getLocMemOffset();
3058       int32_t Offset = LocMemOffset;
3059 
3060       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3061       MaybeAlign Alignment;
3062 
3063       if (IsTailCall) {
3064         ISD::ArgFlagsTy Flags = Outs[i].Flags;
3065         unsigned OpSize = Flags.isByVal() ?
3066           Flags.getByValSize() : VA.getValVT().getStoreSize();
3067 
3068         // FIXME: We can have better than the minimum byval required alignment.
3069         Alignment =
3070             Flags.isByVal()
3071                 ? Flags.getNonZeroByValAlign()
3072                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3073 
3074         Offset = Offset + FPDiff;
3075         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3076 
3077         DstAddr = DAG.getFrameIndex(FI, PtrVT);
3078         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3079 
3080         // Make sure any stack arguments overlapping with where we're storing
3081         // are loaded before this eventual operation. Otherwise they'll be
3082         // clobbered.
3083 
3084         // FIXME: Why is this really necessary? This seems to just result in a
3085         // lot of code to copy the stack and write them back to the same
3086         // locations, which are supposed to be immutable?
3087         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3088       } else {
3089         DstAddr = PtrOff;
3090         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3091         Alignment =
3092             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3093       }
3094 
3095       if (Outs[i].Flags.isByVal()) {
3096         SDValue SizeNode =
3097             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3098         SDValue Cpy =
3099             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3100                           Outs[i].Flags.getNonZeroByValAlign(),
3101                           /*isVol = */ false, /*AlwaysInline = */ true,
3102                           /*isTailCall = */ false, DstInfo,
3103                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3104 
3105         MemOpChains.push_back(Cpy);
3106       } else {
3107         SDValue Store =
3108             DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3109         MemOpChains.push_back(Store);
3110       }
3111     }
3112   }
3113 
3114   if (!AMDGPUTargetMachine::EnableFixedFunctionABI) {
3115     // Copy special input registers after user input arguments.
3116     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3117   }
3118 
3119   if (!MemOpChains.empty())
3120     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3121 
3122   // Build a sequence of copy-to-reg nodes chained together with token chain
3123   // and flag operands which copy the outgoing args into the appropriate regs.
3124   SDValue InFlag;
3125   for (auto &RegToPass : RegsToPass) {
3126     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3127                              RegToPass.second, InFlag);
3128     InFlag = Chain.getValue(1);
3129   }
3130 
3131 
3132   SDValue PhysReturnAddrReg;
3133   if (IsTailCall) {
3134     // Since the return is being combined with the call, we need to pass on the
3135     // return address.
3136 
3137     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3138     SDValue ReturnAddrReg = CreateLiveInRegister(
3139       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3140 
3141     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3142                                         MVT::i64);
3143     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3144     InFlag = Chain.getValue(1);
3145   }
3146 
3147   // We don't usually want to end the call-sequence here because we would tidy
3148   // the frame up *after* the call, however in the ABI-changing tail-call case
3149   // we've carefully laid out the parameters so that when sp is reset they'll be
3150   // in the correct location.
3151   if (IsTailCall && !IsSibCall) {
3152     Chain = DAG.getCALLSEQ_END(Chain,
3153                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3154                                DAG.getTargetConstant(0, DL, MVT::i32),
3155                                InFlag, DL);
3156     InFlag = Chain.getValue(1);
3157   }
3158 
3159   std::vector<SDValue> Ops;
3160   Ops.push_back(Chain);
3161   Ops.push_back(Callee);
3162   // Add a redundant copy of the callee global which will not be legalized, as
3163   // we need direct access to the callee later.
3164   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3165     const GlobalValue *GV = GSD->getGlobal();
3166     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3167   } else {
3168     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3169   }
3170 
3171   if (IsTailCall) {
3172     // Each tail call may have to adjust the stack by a different amount, so
3173     // this information must travel along with the operation for eventual
3174     // consumption by emitEpilogue.
3175     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3176 
3177     Ops.push_back(PhysReturnAddrReg);
3178   }
3179 
3180   // Add argument registers to the end of the list so that they are known live
3181   // into the call.
3182   for (auto &RegToPass : RegsToPass) {
3183     Ops.push_back(DAG.getRegister(RegToPass.first,
3184                                   RegToPass.second.getValueType()));
3185   }
3186 
3187   // Add a register mask operand representing the call-preserved registers.
3188 
3189   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3190   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3191   assert(Mask && "Missing call preserved mask for calling convention");
3192   Ops.push_back(DAG.getRegisterMask(Mask));
3193 
3194   if (InFlag.getNode())
3195     Ops.push_back(InFlag);
3196 
3197   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3198 
3199   // If we're doing a tall call, use a TC_RETURN here rather than an
3200   // actual call instruction.
3201   if (IsTailCall) {
3202     MFI.setHasTailCall();
3203     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3204   }
3205 
3206   // Returns a chain and a flag for retval copy to use.
3207   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3208   Chain = Call.getValue(0);
3209   InFlag = Call.getValue(1);
3210 
3211   uint64_t CalleePopBytes = NumBytes;
3212   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3213                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3214                              InFlag, DL);
3215   if (!Ins.empty())
3216     InFlag = Chain.getValue(1);
3217 
3218   // Handle result values, copying them out of physregs into vregs that we
3219   // return.
3220   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3221                          InVals, IsThisReturn,
3222                          IsThisReturn ? OutVals[0] : SDValue());
3223 }
3224 
3225 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3226 // except for applying the wave size scale to the increment amount.
3227 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3228     SDValue Op, SelectionDAG &DAG) const {
3229   const MachineFunction &MF = DAG.getMachineFunction();
3230   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3231 
3232   SDLoc dl(Op);
3233   EVT VT = Op.getValueType();
3234   SDValue Tmp1 = Op;
3235   SDValue Tmp2 = Op.getValue(1);
3236   SDValue Tmp3 = Op.getOperand(2);
3237   SDValue Chain = Tmp1.getOperand(0);
3238 
3239   Register SPReg = Info->getStackPtrOffsetReg();
3240 
3241   // Chain the dynamic stack allocation so that it doesn't modify the stack
3242   // pointer when other instructions are using the stack.
3243   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3244 
3245   SDValue Size  = Tmp2.getOperand(1);
3246   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3247   Chain = SP.getValue(1);
3248   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3249   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3250   const TargetFrameLowering *TFL = ST.getFrameLowering();
3251   unsigned Opc =
3252     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3253     ISD::ADD : ISD::SUB;
3254 
3255   SDValue ScaledSize = DAG.getNode(
3256       ISD::SHL, dl, VT, Size,
3257       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3258 
3259   Align StackAlign = TFL->getStackAlign();
3260   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3261   if (Alignment && *Alignment > StackAlign) {
3262     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3263                        DAG.getConstant(-(uint64_t)Alignment->value()
3264                                            << ST.getWavefrontSizeLog2(),
3265                                        dl, VT));
3266   }
3267 
3268   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3269   Tmp2 = DAG.getCALLSEQ_END(
3270       Chain, DAG.getIntPtrConstant(0, dl, true),
3271       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3272 
3273   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3274 }
3275 
3276 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3277                                                   SelectionDAG &DAG) const {
3278   // We only handle constant sizes here to allow non-entry block, static sized
3279   // allocas. A truly dynamic value is more difficult to support because we
3280   // don't know if the size value is uniform or not. If the size isn't uniform,
3281   // we would need to do a wave reduction to get the maximum size to know how
3282   // much to increment the uniform stack pointer.
3283   SDValue Size = Op.getOperand(1);
3284   if (isa<ConstantSDNode>(Size))
3285       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3286 
3287   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3288 }
3289 
3290 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3291                                              const MachineFunction &MF) const {
3292   Register Reg = StringSwitch<Register>(RegName)
3293     .Case("m0", AMDGPU::M0)
3294     .Case("exec", AMDGPU::EXEC)
3295     .Case("exec_lo", AMDGPU::EXEC_LO)
3296     .Case("exec_hi", AMDGPU::EXEC_HI)
3297     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3298     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3299     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3300     .Default(Register());
3301 
3302   if (Reg == AMDGPU::NoRegister) {
3303     report_fatal_error(Twine("invalid register name \""
3304                              + StringRef(RegName)  + "\"."));
3305 
3306   }
3307 
3308   if (!Subtarget->hasFlatScrRegister() &&
3309        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3310     report_fatal_error(Twine("invalid register \""
3311                              + StringRef(RegName)  + "\" for subtarget."));
3312   }
3313 
3314   switch (Reg) {
3315   case AMDGPU::M0:
3316   case AMDGPU::EXEC_LO:
3317   case AMDGPU::EXEC_HI:
3318   case AMDGPU::FLAT_SCR_LO:
3319   case AMDGPU::FLAT_SCR_HI:
3320     if (VT.getSizeInBits() == 32)
3321       return Reg;
3322     break;
3323   case AMDGPU::EXEC:
3324   case AMDGPU::FLAT_SCR:
3325     if (VT.getSizeInBits() == 64)
3326       return Reg;
3327     break;
3328   default:
3329     llvm_unreachable("missing register type checking");
3330   }
3331 
3332   report_fatal_error(Twine("invalid type for register \""
3333                            + StringRef(RegName) + "\"."));
3334 }
3335 
3336 // If kill is not the last instruction, split the block so kill is always a
3337 // proper terminator.
3338 MachineBasicBlock *
3339 SITargetLowering::splitKillBlock(MachineInstr &MI,
3340                                  MachineBasicBlock *BB) const {
3341   MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
3342   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3343   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3344   return SplitBB;
3345 }
3346 
3347 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3348 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3349 // be the first instruction in the remainder block.
3350 //
3351 /// \returns { LoopBody, Remainder }
3352 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3353 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3354   MachineFunction *MF = MBB.getParent();
3355   MachineBasicBlock::iterator I(&MI);
3356 
3357   // To insert the loop we need to split the block. Move everything after this
3358   // point to a new block, and insert a new empty block between the two.
3359   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3360   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3361   MachineFunction::iterator MBBI(MBB);
3362   ++MBBI;
3363 
3364   MF->insert(MBBI, LoopBB);
3365   MF->insert(MBBI, RemainderBB);
3366 
3367   LoopBB->addSuccessor(LoopBB);
3368   LoopBB->addSuccessor(RemainderBB);
3369 
3370   // Move the rest of the block into a new block.
3371   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3372 
3373   if (InstInLoop) {
3374     auto Next = std::next(I);
3375 
3376     // Move instruction to loop body.
3377     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3378 
3379     // Move the rest of the block.
3380     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3381   } else {
3382     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3383   }
3384 
3385   MBB.addSuccessor(LoopBB);
3386 
3387   return std::make_pair(LoopBB, RemainderBB);
3388 }
3389 
3390 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3391 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3392   MachineBasicBlock *MBB = MI.getParent();
3393   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3394   auto I = MI.getIterator();
3395   auto E = std::next(I);
3396 
3397   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3398     .addImm(0);
3399 
3400   MIBundleBuilder Bundler(*MBB, I, E);
3401   finalizeBundle(*MBB, Bundler.begin());
3402 }
3403 
3404 MachineBasicBlock *
3405 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3406                                          MachineBasicBlock *BB) const {
3407   const DebugLoc &DL = MI.getDebugLoc();
3408 
3409   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3410 
3411   MachineBasicBlock *LoopBB;
3412   MachineBasicBlock *RemainderBB;
3413   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3414 
3415   // Apparently kill flags are only valid if the def is in the same block?
3416   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3417     Src->setIsKill(false);
3418 
3419   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3420 
3421   MachineBasicBlock::iterator I = LoopBB->end();
3422 
3423   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3424     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3425 
3426   // Clear TRAP_STS.MEM_VIOL
3427   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3428     .addImm(0)
3429     .addImm(EncodedReg);
3430 
3431   bundleInstWithWaitcnt(MI);
3432 
3433   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3434 
3435   // Load and check TRAP_STS.MEM_VIOL
3436   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3437     .addImm(EncodedReg);
3438 
3439   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3440   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3441     .addReg(Reg, RegState::Kill)
3442     .addImm(0);
3443   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3444     .addMBB(LoopBB);
3445 
3446   return RemainderBB;
3447 }
3448 
3449 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3450 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3451 // will only do one iteration. In the worst case, this will loop 64 times.
3452 //
3453 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3454 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3455   const SIInstrInfo *TII,
3456   MachineRegisterInfo &MRI,
3457   MachineBasicBlock &OrigBB,
3458   MachineBasicBlock &LoopBB,
3459   const DebugLoc &DL,
3460   const MachineOperand &IdxReg,
3461   unsigned InitReg,
3462   unsigned ResultReg,
3463   unsigned PhiReg,
3464   unsigned InitSaveExecReg,
3465   int Offset,
3466   bool UseGPRIdxMode,
3467   bool IsIndirectSrc) {
3468   MachineFunction *MF = OrigBB.getParent();
3469   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3470   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3471   MachineBasicBlock::iterator I = LoopBB.begin();
3472 
3473   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3474   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3475   Register NewExec = MRI.createVirtualRegister(BoolRC);
3476   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3477   Register CondReg = MRI.createVirtualRegister(BoolRC);
3478 
3479   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3480     .addReg(InitReg)
3481     .addMBB(&OrigBB)
3482     .addReg(ResultReg)
3483     .addMBB(&LoopBB);
3484 
3485   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3486     .addReg(InitSaveExecReg)
3487     .addMBB(&OrigBB)
3488     .addReg(NewExec)
3489     .addMBB(&LoopBB);
3490 
3491   // Read the next variant <- also loop target.
3492   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3493     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3494 
3495   // Compare the just read M0 value to all possible Idx values.
3496   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3497     .addReg(CurrentIdxReg)
3498     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3499 
3500   // Update EXEC, save the original EXEC value to VCC.
3501   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3502                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3503           NewExec)
3504     .addReg(CondReg, RegState::Kill);
3505 
3506   MRI.setSimpleHint(NewExec, CondReg);
3507 
3508   if (UseGPRIdxMode) {
3509     unsigned IdxReg;
3510     if (Offset == 0) {
3511       IdxReg = CurrentIdxReg;
3512     } else {
3513       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3514       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3515         .addReg(CurrentIdxReg, RegState::Kill)
3516         .addImm(Offset);
3517     }
3518     unsigned IdxMode = IsIndirectSrc ?
3519       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3520     MachineInstr *SetOn =
3521       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3522       .addReg(IdxReg, RegState::Kill)
3523       .addImm(IdxMode);
3524     SetOn->getOperand(3).setIsUndef();
3525   } else {
3526     // Move index from VCC into M0
3527     if (Offset == 0) {
3528       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3529         .addReg(CurrentIdxReg, RegState::Kill);
3530     } else {
3531       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3532         .addReg(CurrentIdxReg, RegState::Kill)
3533         .addImm(Offset);
3534     }
3535   }
3536 
3537   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3538   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3539   MachineInstr *InsertPt =
3540     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3541                                                   : AMDGPU::S_XOR_B64_term), Exec)
3542       .addReg(Exec)
3543       .addReg(NewExec);
3544 
3545   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3546   // s_cbranch_scc0?
3547 
3548   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3549   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3550     .addMBB(&LoopBB);
3551 
3552   return InsertPt->getIterator();
3553 }
3554 
3555 // This has slightly sub-optimal regalloc when the source vector is killed by
3556 // the read. The register allocator does not understand that the kill is
3557 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3558 // subregister from it, using 1 more VGPR than necessary. This was saved when
3559 // this was expanded after register allocation.
3560 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3561                                                   MachineBasicBlock &MBB,
3562                                                   MachineInstr &MI,
3563                                                   unsigned InitResultReg,
3564                                                   unsigned PhiReg,
3565                                                   int Offset,
3566                                                   bool UseGPRIdxMode,
3567                                                   bool IsIndirectSrc) {
3568   MachineFunction *MF = MBB.getParent();
3569   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3570   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3571   MachineRegisterInfo &MRI = MF->getRegInfo();
3572   const DebugLoc &DL = MI.getDebugLoc();
3573   MachineBasicBlock::iterator I(&MI);
3574 
3575   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3576   Register DstReg = MI.getOperand(0).getReg();
3577   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3578   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3579   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3580   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3581 
3582   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3583 
3584   // Save the EXEC mask
3585   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3586     .addReg(Exec);
3587 
3588   MachineBasicBlock *LoopBB;
3589   MachineBasicBlock *RemainderBB;
3590   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3591 
3592   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3593 
3594   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3595                                       InitResultReg, DstReg, PhiReg, TmpExec,
3596                                       Offset, UseGPRIdxMode, IsIndirectSrc);
3597   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3598   MachineFunction::iterator MBBI(LoopBB);
3599   ++MBBI;
3600   MF->insert(MBBI, LandingPad);
3601   LoopBB->removeSuccessor(RemainderBB);
3602   LandingPad->addSuccessor(RemainderBB);
3603   LoopBB->addSuccessor(LandingPad);
3604   MachineBasicBlock::iterator First = LandingPad->begin();
3605   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3606     .addReg(SaveExec);
3607 
3608   return InsPt;
3609 }
3610 
3611 // Returns subreg index, offset
3612 static std::pair<unsigned, int>
3613 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3614                             const TargetRegisterClass *SuperRC,
3615                             unsigned VecReg,
3616                             int Offset) {
3617   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3618 
3619   // Skip out of bounds offsets, or else we would end up using an undefined
3620   // register.
3621   if (Offset >= NumElts || Offset < 0)
3622     return std::make_pair(AMDGPU::sub0, Offset);
3623 
3624   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3625 }
3626 
3627 // Return true if the index is an SGPR and was set.
3628 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3629                                  MachineRegisterInfo &MRI,
3630                                  MachineInstr &MI,
3631                                  int Offset,
3632                                  bool UseGPRIdxMode,
3633                                  bool IsIndirectSrc) {
3634   MachineBasicBlock *MBB = MI.getParent();
3635   const DebugLoc &DL = MI.getDebugLoc();
3636   MachineBasicBlock::iterator I(&MI);
3637 
3638   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3639   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3640 
3641   assert(Idx->getReg() != AMDGPU::NoRegister);
3642 
3643   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3644     return false;
3645 
3646   if (UseGPRIdxMode) {
3647     unsigned IdxMode = IsIndirectSrc ?
3648       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3649     if (Offset == 0) {
3650       MachineInstr *SetOn =
3651           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3652               .add(*Idx)
3653               .addImm(IdxMode);
3654 
3655       SetOn->getOperand(3).setIsUndef();
3656     } else {
3657       Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3658       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3659           .add(*Idx)
3660           .addImm(Offset);
3661       MachineInstr *SetOn =
3662         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3663         .addReg(Tmp, RegState::Kill)
3664         .addImm(IdxMode);
3665 
3666       SetOn->getOperand(3).setIsUndef();
3667     }
3668 
3669     return true;
3670   }
3671 
3672   if (Offset == 0) {
3673     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3674       .add(*Idx);
3675   } else {
3676     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3677       .add(*Idx)
3678       .addImm(Offset);
3679   }
3680 
3681   return true;
3682 }
3683 
3684 // Control flow needs to be inserted if indexing with a VGPR.
3685 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3686                                           MachineBasicBlock &MBB,
3687                                           const GCNSubtarget &ST) {
3688   const SIInstrInfo *TII = ST.getInstrInfo();
3689   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3690   MachineFunction *MF = MBB.getParent();
3691   MachineRegisterInfo &MRI = MF->getRegInfo();
3692 
3693   Register Dst = MI.getOperand(0).getReg();
3694   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3695   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3696 
3697   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3698 
3699   unsigned SubReg;
3700   std::tie(SubReg, Offset)
3701     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3702 
3703   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3704 
3705   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3706     MachineBasicBlock::iterator I(&MI);
3707     const DebugLoc &DL = MI.getDebugLoc();
3708 
3709     if (UseGPRIdxMode) {
3710       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3711       // to avoid interfering with other uses, so probably requires a new
3712       // optimization pass.
3713       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3714         .addReg(SrcReg, 0, SubReg)
3715         .addReg(SrcReg, RegState::Implicit)
3716         .addReg(AMDGPU::M0, RegState::Implicit);
3717       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3718     } else {
3719       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3720         .addReg(SrcReg, 0, SubReg)
3721         .addReg(SrcReg, RegState::Implicit);
3722     }
3723 
3724     MI.eraseFromParent();
3725 
3726     return &MBB;
3727   }
3728 
3729   const DebugLoc &DL = MI.getDebugLoc();
3730   MachineBasicBlock::iterator I(&MI);
3731 
3732   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3733   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3734 
3735   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3736 
3737   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3738                               Offset, UseGPRIdxMode, true);
3739   MachineBasicBlock *LoopBB = InsPt->getParent();
3740 
3741   if (UseGPRIdxMode) {
3742     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3743       .addReg(SrcReg, 0, SubReg)
3744       .addReg(SrcReg, RegState::Implicit)
3745       .addReg(AMDGPU::M0, RegState::Implicit);
3746     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3747   } else {
3748     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3749       .addReg(SrcReg, 0, SubReg)
3750       .addReg(SrcReg, RegState::Implicit);
3751   }
3752 
3753   MI.eraseFromParent();
3754 
3755   return LoopBB;
3756 }
3757 
3758 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3759                                           MachineBasicBlock &MBB,
3760                                           const GCNSubtarget &ST) {
3761   const SIInstrInfo *TII = ST.getInstrInfo();
3762   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3763   MachineFunction *MF = MBB.getParent();
3764   MachineRegisterInfo &MRI = MF->getRegInfo();
3765 
3766   Register Dst = MI.getOperand(0).getReg();
3767   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3768   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3769   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3770   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3771   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3772 
3773   // This can be an immediate, but will be folded later.
3774   assert(Val->getReg());
3775 
3776   unsigned SubReg;
3777   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3778                                                          SrcVec->getReg(),
3779                                                          Offset);
3780   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3781 
3782   if (Idx->getReg() == AMDGPU::NoRegister) {
3783     MachineBasicBlock::iterator I(&MI);
3784     const DebugLoc &DL = MI.getDebugLoc();
3785 
3786     assert(Offset == 0);
3787 
3788     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3789         .add(*SrcVec)
3790         .add(*Val)
3791         .addImm(SubReg);
3792 
3793     MI.eraseFromParent();
3794     return &MBB;
3795   }
3796 
3797   const MCInstrDesc &MovRelDesc
3798     = TII->getIndirectRegWritePseudo(TRI.getRegSizeInBits(*VecRC), 32, false);
3799 
3800   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3801     MachineBasicBlock::iterator I(&MI);
3802     const DebugLoc &DL = MI.getDebugLoc();
3803     BuildMI(MBB, I, DL, MovRelDesc, Dst)
3804       .addReg(SrcVec->getReg())
3805       .add(*Val)
3806       .addImm(SubReg);
3807     if (UseGPRIdxMode)
3808       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3809 
3810     MI.eraseFromParent();
3811     return &MBB;
3812   }
3813 
3814   if (Val->isReg())
3815     MRI.clearKillFlags(Val->getReg());
3816 
3817   const DebugLoc &DL = MI.getDebugLoc();
3818 
3819   Register PhiReg = MRI.createVirtualRegister(VecRC);
3820 
3821   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3822                               Offset, UseGPRIdxMode, false);
3823   MachineBasicBlock *LoopBB = InsPt->getParent();
3824 
3825   BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3826     .addReg(PhiReg)
3827     .add(*Val)
3828     .addImm(AMDGPU::sub0);
3829   if (UseGPRIdxMode)
3830     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3831 
3832   MI.eraseFromParent();
3833   return LoopBB;
3834 }
3835 
3836 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3837   MachineInstr &MI, MachineBasicBlock *BB) const {
3838 
3839   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3840   MachineFunction *MF = BB->getParent();
3841   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3842 
3843   switch (MI.getOpcode()) {
3844   case AMDGPU::S_UADDO_PSEUDO:
3845   case AMDGPU::S_USUBO_PSEUDO: {
3846     const DebugLoc &DL = MI.getDebugLoc();
3847     MachineOperand &Dest0 = MI.getOperand(0);
3848     MachineOperand &Dest1 = MI.getOperand(1);
3849     MachineOperand &Src0 = MI.getOperand(2);
3850     MachineOperand &Src1 = MI.getOperand(3);
3851 
3852     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3853                        ? AMDGPU::S_ADD_I32
3854                        : AMDGPU::S_SUB_I32;
3855     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3856 
3857     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3858         .addImm(1)
3859         .addImm(0);
3860 
3861     MI.eraseFromParent();
3862     return BB;
3863   }
3864   case AMDGPU::S_ADD_U64_PSEUDO:
3865   case AMDGPU::S_SUB_U64_PSEUDO: {
3866     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3867     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3868     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3869     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3870     const DebugLoc &DL = MI.getDebugLoc();
3871 
3872     MachineOperand &Dest = MI.getOperand(0);
3873     MachineOperand &Src0 = MI.getOperand(1);
3874     MachineOperand &Src1 = MI.getOperand(2);
3875 
3876     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3877     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3878 
3879     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3880         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3881     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3882         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3883 
3884     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3885         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3886     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3887         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3888 
3889     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3890 
3891     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3892     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3893     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3894     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3895     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3896         .addReg(DestSub0)
3897         .addImm(AMDGPU::sub0)
3898         .addReg(DestSub1)
3899         .addImm(AMDGPU::sub1);
3900     MI.eraseFromParent();
3901     return BB;
3902   }
3903   case AMDGPU::V_ADD_U64_PSEUDO:
3904   case AMDGPU::V_SUB_U64_PSEUDO: {
3905     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3906     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3907     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3908     const DebugLoc &DL = MI.getDebugLoc();
3909 
3910     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3911 
3912     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3913 
3914     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3915     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3916 
3917     Register CarryReg = MRI.createVirtualRegister(CarryRC);
3918     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
3919 
3920     MachineOperand &Dest = MI.getOperand(0);
3921     MachineOperand &Src0 = MI.getOperand(1);
3922     MachineOperand &Src1 = MI.getOperand(2);
3923 
3924     const TargetRegisterClass *Src0RC = Src0.isReg()
3925                                             ? MRI.getRegClass(Src0.getReg())
3926                                             : &AMDGPU::VReg_64RegClass;
3927     const TargetRegisterClass *Src1RC = Src1.isReg()
3928                                             ? MRI.getRegClass(Src1.getReg())
3929                                             : &AMDGPU::VReg_64RegClass;
3930 
3931     const TargetRegisterClass *Src0SubRC =
3932         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
3933     const TargetRegisterClass *Src1SubRC =
3934         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
3935 
3936     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
3937         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
3938     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
3939         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
3940 
3941     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
3942         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
3943     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
3944         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
3945 
3946     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
3947     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3948                                .addReg(CarryReg, RegState::Define)
3949                                .add(SrcReg0Sub0)
3950                                .add(SrcReg1Sub0)
3951                                .addImm(0); // clamp bit
3952 
3953     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
3954     MachineInstr *HiHalf =
3955         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3956             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
3957             .add(SrcReg0Sub1)
3958             .add(SrcReg1Sub1)
3959             .addReg(CarryReg, RegState::Kill)
3960             .addImm(0); // clamp bit
3961 
3962     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3963         .addReg(DestSub0)
3964         .addImm(AMDGPU::sub0)
3965         .addReg(DestSub1)
3966         .addImm(AMDGPU::sub1);
3967     TII->legalizeOperands(*LoHalf);
3968     TII->legalizeOperands(*HiHalf);
3969     MI.eraseFromParent();
3970     return BB;
3971   }
3972   case AMDGPU::S_ADD_CO_PSEUDO:
3973   case AMDGPU::S_SUB_CO_PSEUDO: {
3974     // This pseudo has a chance to be selected
3975     // only from uniform add/subcarry node. All the VGPR operands
3976     // therefore assumed to be splat vectors.
3977     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3978     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3979     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3980     MachineBasicBlock::iterator MII = MI;
3981     const DebugLoc &DL = MI.getDebugLoc();
3982     MachineOperand &Dest = MI.getOperand(0);
3983     MachineOperand &CarryDest = MI.getOperand(1);
3984     MachineOperand &Src0 = MI.getOperand(2);
3985     MachineOperand &Src1 = MI.getOperand(3);
3986     MachineOperand &Src2 = MI.getOperand(4);
3987     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
3988                        ? AMDGPU::S_ADDC_U32
3989                        : AMDGPU::S_SUBB_U32;
3990     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
3991       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3992       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
3993           .addReg(Src0.getReg());
3994       Src0.setReg(RegOp0);
3995     }
3996     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
3997       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3998       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
3999           .addReg(Src1.getReg());
4000       Src1.setReg(RegOp1);
4001     }
4002     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4003     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
4004       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
4005           .addReg(Src2.getReg());
4006       Src2.setReg(RegOp2);
4007     }
4008 
4009     const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
4010     if (TRI->getRegSizeInBits(*Src2RC) == 64) {
4011       if (ST.hasScalarCompareEq64()) {
4012         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
4013             .addReg(Src2.getReg())
4014             .addImm(0);
4015       } else {
4016         const TargetRegisterClass *SubRC =
4017             TRI->getSubRegClass(Src2RC, AMDGPU::sub0);
4018         MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
4019             MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
4020         MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
4021             MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
4022         Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
4023 
4024         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
4025             .add(Src2Sub0)
4026             .add(Src2Sub1);
4027 
4028         BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4029             .addReg(Src2_32, RegState::Kill)
4030             .addImm(0);
4031       }
4032     } else {
4033       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
4034           .addReg(Src2.getReg())
4035           .addImm(0);
4036     }
4037 
4038     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
4039 
4040     BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
4041       .addReg(AMDGPU::SCC);
4042     MI.eraseFromParent();
4043     return BB;
4044   }
4045   case AMDGPU::SI_INIT_M0: {
4046     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
4047             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4048         .add(MI.getOperand(0));
4049     MI.eraseFromParent();
4050     return BB;
4051   }
4052   case AMDGPU::SI_INIT_EXEC:
4053     // This should be before all vector instructions.
4054     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
4055             AMDGPU::EXEC)
4056         .addImm(MI.getOperand(0).getImm());
4057     MI.eraseFromParent();
4058     return BB;
4059 
4060   case AMDGPU::SI_INIT_EXEC_LO:
4061     // This should be before all vector instructions.
4062     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
4063             AMDGPU::EXEC_LO)
4064         .addImm(MI.getOperand(0).getImm());
4065     MI.eraseFromParent();
4066     return BB;
4067 
4068   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
4069     // Extract the thread count from an SGPR input and set EXEC accordingly.
4070     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
4071     //
4072     // S_BFE_U32 count, input, {shift, 7}
4073     // S_BFM_B64 exec, count, 0
4074     // S_CMP_EQ_U32 count, 64
4075     // S_CMOV_B64 exec, -1
4076     MachineInstr *FirstMI = &*BB->begin();
4077     MachineRegisterInfo &MRI = MF->getRegInfo();
4078     Register InputReg = MI.getOperand(0).getReg();
4079     Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4080     bool Found = false;
4081 
4082     // Move the COPY of the input reg to the beginning, so that we can use it.
4083     for (auto I = BB->begin(); I != &MI; I++) {
4084       if (I->getOpcode() != TargetOpcode::COPY ||
4085           I->getOperand(0).getReg() != InputReg)
4086         continue;
4087 
4088       if (I == FirstMI) {
4089         FirstMI = &*++BB->begin();
4090       } else {
4091         I->removeFromParent();
4092         BB->insert(FirstMI, &*I);
4093       }
4094       Found = true;
4095       break;
4096     }
4097     assert(Found);
4098     (void)Found;
4099 
4100     // This should be before all vector instructions.
4101     unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
4102     bool isWave32 = getSubtarget()->isWave32();
4103     unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4104     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
4105         .addReg(InputReg)
4106         .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
4107     BuildMI(*BB, FirstMI, DebugLoc(),
4108             TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
4109             Exec)
4110         .addReg(CountReg)
4111         .addImm(0);
4112     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
4113         .addReg(CountReg, RegState::Kill)
4114         .addImm(getSubtarget()->getWavefrontSize());
4115     BuildMI(*BB, FirstMI, DebugLoc(),
4116             TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
4117             Exec)
4118         .addImm(-1);
4119     MI.eraseFromParent();
4120     return BB;
4121   }
4122 
4123   case AMDGPU::GET_GROUPSTATICSIZE: {
4124     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4125            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4126     DebugLoc DL = MI.getDebugLoc();
4127     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4128         .add(MI.getOperand(0))
4129         .addImm(MFI->getLDSSize());
4130     MI.eraseFromParent();
4131     return BB;
4132   }
4133   case AMDGPU::SI_INDIRECT_SRC_V1:
4134   case AMDGPU::SI_INDIRECT_SRC_V2:
4135   case AMDGPU::SI_INDIRECT_SRC_V4:
4136   case AMDGPU::SI_INDIRECT_SRC_V8:
4137   case AMDGPU::SI_INDIRECT_SRC_V16:
4138   case AMDGPU::SI_INDIRECT_SRC_V32:
4139     return emitIndirectSrc(MI, *BB, *getSubtarget());
4140   case AMDGPU::SI_INDIRECT_DST_V1:
4141   case AMDGPU::SI_INDIRECT_DST_V2:
4142   case AMDGPU::SI_INDIRECT_DST_V4:
4143   case AMDGPU::SI_INDIRECT_DST_V8:
4144   case AMDGPU::SI_INDIRECT_DST_V16:
4145   case AMDGPU::SI_INDIRECT_DST_V32:
4146     return emitIndirectDst(MI, *BB, *getSubtarget());
4147   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4148   case AMDGPU::SI_KILL_I1_PSEUDO:
4149     return splitKillBlock(MI, BB);
4150   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4151     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4152     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4153     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4154 
4155     Register Dst = MI.getOperand(0).getReg();
4156     Register Src0 = MI.getOperand(1).getReg();
4157     Register Src1 = MI.getOperand(2).getReg();
4158     const DebugLoc &DL = MI.getDebugLoc();
4159     Register SrcCond = MI.getOperand(3).getReg();
4160 
4161     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4162     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4163     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4164     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4165 
4166     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4167       .addReg(SrcCond);
4168     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4169       .addImm(0)
4170       .addReg(Src0, 0, AMDGPU::sub0)
4171       .addImm(0)
4172       .addReg(Src1, 0, AMDGPU::sub0)
4173       .addReg(SrcCondCopy);
4174     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4175       .addImm(0)
4176       .addReg(Src0, 0, AMDGPU::sub1)
4177       .addImm(0)
4178       .addReg(Src1, 0, AMDGPU::sub1)
4179       .addReg(SrcCondCopy);
4180 
4181     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4182       .addReg(DstLo)
4183       .addImm(AMDGPU::sub0)
4184       .addReg(DstHi)
4185       .addImm(AMDGPU::sub1);
4186     MI.eraseFromParent();
4187     return BB;
4188   }
4189   case AMDGPU::SI_BR_UNDEF: {
4190     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4191     const DebugLoc &DL = MI.getDebugLoc();
4192     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4193                            .add(MI.getOperand(0));
4194     Br->getOperand(1).setIsUndef(true); // read undef SCC
4195     MI.eraseFromParent();
4196     return BB;
4197   }
4198   case AMDGPU::ADJCALLSTACKUP:
4199   case AMDGPU::ADJCALLSTACKDOWN: {
4200     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4201     MachineInstrBuilder MIB(*MF, &MI);
4202     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4203        .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
4204     return BB;
4205   }
4206   case AMDGPU::SI_CALL_ISEL: {
4207     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4208     const DebugLoc &DL = MI.getDebugLoc();
4209 
4210     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4211 
4212     MachineInstrBuilder MIB;
4213     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4214 
4215     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4216       MIB.add(MI.getOperand(I));
4217 
4218     MIB.cloneMemRefs(MI);
4219     MI.eraseFromParent();
4220     return BB;
4221   }
4222   case AMDGPU::V_ADD_CO_U32_e32:
4223   case AMDGPU::V_SUB_CO_U32_e32:
4224   case AMDGPU::V_SUBREV_CO_U32_e32: {
4225     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4226     const DebugLoc &DL = MI.getDebugLoc();
4227     unsigned Opc = MI.getOpcode();
4228 
4229     bool NeedClampOperand = false;
4230     if (TII->pseudoToMCOpcode(Opc) == -1) {
4231       Opc = AMDGPU::getVOPe64(Opc);
4232       NeedClampOperand = true;
4233     }
4234 
4235     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4236     if (TII->isVOP3(*I)) {
4237       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4238       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4239       I.addReg(TRI->getVCC(), RegState::Define);
4240     }
4241     I.add(MI.getOperand(1))
4242      .add(MI.getOperand(2));
4243     if (NeedClampOperand)
4244       I.addImm(0); // clamp bit for e64 encoding
4245 
4246     TII->legalizeOperands(*I);
4247 
4248     MI.eraseFromParent();
4249     return BB;
4250   }
4251   case AMDGPU::DS_GWS_INIT:
4252   case AMDGPU::DS_GWS_SEMA_V:
4253   case AMDGPU::DS_GWS_SEMA_BR:
4254   case AMDGPU::DS_GWS_SEMA_P:
4255   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4256   case AMDGPU::DS_GWS_BARRIER:
4257     // A s_waitcnt 0 is required to be the instruction immediately following.
4258     if (getSubtarget()->hasGWSAutoReplay()) {
4259       bundleInstWithWaitcnt(MI);
4260       return BB;
4261     }
4262 
4263     return emitGWSMemViolTestLoop(MI, BB);
4264   case AMDGPU::S_SETREG_B32: {
4265     // Try to optimize cases that only set the denormal mode or rounding mode.
4266     //
4267     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4268     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4269     // instead.
4270     //
4271     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4272     // allow you to have a no side effect instruction in the output of a
4273     // sideeffecting pattern.
4274     unsigned ID, Offset, Width;
4275     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4276     if (ID != AMDGPU::Hwreg::ID_MODE)
4277       return BB;
4278 
4279     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4280     const unsigned SetMask = WidthMask << Offset;
4281 
4282     if (getSubtarget()->hasDenormModeInst()) {
4283       unsigned SetDenormOp = 0;
4284       unsigned SetRoundOp = 0;
4285 
4286       // The dedicated instructions can only set the whole denorm or round mode
4287       // at once, not a subset of bits in either.
4288       if (SetMask ==
4289           (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
4290         // If this fully sets both the round and denorm mode, emit the two
4291         // dedicated instructions for these.
4292         SetRoundOp = AMDGPU::S_ROUND_MODE;
4293         SetDenormOp = AMDGPU::S_DENORM_MODE;
4294       } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
4295         SetRoundOp = AMDGPU::S_ROUND_MODE;
4296       } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
4297         SetDenormOp = AMDGPU::S_DENORM_MODE;
4298       }
4299 
4300       if (SetRoundOp || SetDenormOp) {
4301         MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4302         MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4303         if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4304           unsigned ImmVal = Def->getOperand(1).getImm();
4305           if (SetRoundOp) {
4306             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4307                 .addImm(ImmVal & 0xf);
4308 
4309             // If we also have the denorm mode, get just the denorm mode bits.
4310             ImmVal >>= 4;
4311           }
4312 
4313           if (SetDenormOp) {
4314             BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4315                 .addImm(ImmVal & 0xf);
4316           }
4317 
4318           MI.eraseFromParent();
4319           return BB;
4320         }
4321       }
4322     }
4323 
4324     // If only FP bits are touched, used the no side effects pseudo.
4325     if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4326                     AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
4327       MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
4328 
4329     return BB;
4330   }
4331   default:
4332     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4333   }
4334 }
4335 
4336 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4337   return isTypeLegal(VT.getScalarType());
4338 }
4339 
4340 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4341   // This currently forces unfolding various combinations of fsub into fma with
4342   // free fneg'd operands. As long as we have fast FMA (controlled by
4343   // isFMAFasterThanFMulAndFAdd), we should perform these.
4344 
4345   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4346   // most of these combines appear to be cycle neutral but save on instruction
4347   // count / code size.
4348   return true;
4349 }
4350 
4351 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4352                                          EVT VT) const {
4353   if (!VT.isVector()) {
4354     return MVT::i1;
4355   }
4356   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4357 }
4358 
4359 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4360   // TODO: Should i16 be used always if legal? For now it would force VALU
4361   // shifts.
4362   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4363 }
4364 
4365 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
4366   return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
4367              ? Ty.changeElementSize(16)
4368              : Ty.changeElementSize(32);
4369 }
4370 
4371 // Answering this is somewhat tricky and depends on the specific device which
4372 // have different rates for fma or all f64 operations.
4373 //
4374 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4375 // regardless of which device (although the number of cycles differs between
4376 // devices), so it is always profitable for f64.
4377 //
4378 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4379 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4380 // which we can always do even without fused FP ops since it returns the same
4381 // result as the separate operations and since it is always full
4382 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4383 // however does not support denormals, so we do report fma as faster if we have
4384 // a fast fma device and require denormals.
4385 //
4386 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4387                                                   EVT VT) const {
4388   VT = VT.getScalarType();
4389 
4390   switch (VT.getSimpleVT().SimpleTy) {
4391   case MVT::f32: {
4392     // If mad is not available this depends only on if f32 fma is full rate.
4393     if (!Subtarget->hasMadMacF32Insts())
4394       return Subtarget->hasFastFMAF32();
4395 
4396     // Otherwise f32 mad is always full rate and returns the same result as
4397     // the separate operations so should be preferred over fma.
4398     // However does not support denomals.
4399     if (hasFP32Denormals(MF))
4400       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4401 
4402     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4403     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4404   }
4405   case MVT::f64:
4406     return true;
4407   case MVT::f16:
4408     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4409   default:
4410     break;
4411   }
4412 
4413   return false;
4414 }
4415 
4416 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4417                                    const SDNode *N) const {
4418   // TODO: Check future ftz flag
4419   // v_mad_f32/v_mac_f32 do not support denormals.
4420   EVT VT = N->getValueType(0);
4421   if (VT == MVT::f32)
4422     return Subtarget->hasMadMacF32Insts() &&
4423            !hasFP32Denormals(DAG.getMachineFunction());
4424   if (VT == MVT::f16) {
4425     return Subtarget->hasMadF16() &&
4426            !hasFP64FP16Denormals(DAG.getMachineFunction());
4427   }
4428 
4429   return false;
4430 }
4431 
4432 //===----------------------------------------------------------------------===//
4433 // Custom DAG Lowering Operations
4434 //===----------------------------------------------------------------------===//
4435 
4436 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4437 // wider vector type is legal.
4438 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4439                                              SelectionDAG &DAG) const {
4440   unsigned Opc = Op.getOpcode();
4441   EVT VT = Op.getValueType();
4442   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4443 
4444   SDValue Lo, Hi;
4445   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4446 
4447   SDLoc SL(Op);
4448   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4449                              Op->getFlags());
4450   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4451                              Op->getFlags());
4452 
4453   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4454 }
4455 
4456 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4457 // wider vector type is legal.
4458 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4459                                               SelectionDAG &DAG) const {
4460   unsigned Opc = Op.getOpcode();
4461   EVT VT = Op.getValueType();
4462   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4463 
4464   SDValue Lo0, Hi0;
4465   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4466   SDValue Lo1, Hi1;
4467   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4468 
4469   SDLoc SL(Op);
4470 
4471   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4472                              Op->getFlags());
4473   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4474                              Op->getFlags());
4475 
4476   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4477 }
4478 
4479 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4480                                               SelectionDAG &DAG) const {
4481   unsigned Opc = Op.getOpcode();
4482   EVT VT = Op.getValueType();
4483   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4484 
4485   SDValue Lo0, Hi0;
4486   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4487   SDValue Lo1, Hi1;
4488   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4489   SDValue Lo2, Hi2;
4490   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4491 
4492   SDLoc SL(Op);
4493 
4494   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4495                              Op->getFlags());
4496   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4497                              Op->getFlags());
4498 
4499   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4500 }
4501 
4502 
4503 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4504   switch (Op.getOpcode()) {
4505   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4506   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4507   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4508   case ISD::LOAD: {
4509     SDValue Result = LowerLOAD(Op, DAG);
4510     assert((!Result.getNode() ||
4511             Result.getNode()->getNumValues() == 2) &&
4512            "Load should return a value and a chain");
4513     return Result;
4514   }
4515 
4516   case ISD::FSIN:
4517   case ISD::FCOS:
4518     return LowerTrig(Op, DAG);
4519   case ISD::SELECT: return LowerSELECT(Op, DAG);
4520   case ISD::FDIV: return LowerFDIV(Op, DAG);
4521   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4522   case ISD::STORE: return LowerSTORE(Op, DAG);
4523   case ISD::GlobalAddress: {
4524     MachineFunction &MF = DAG.getMachineFunction();
4525     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4526     return LowerGlobalAddress(MFI, Op, DAG);
4527   }
4528   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4529   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4530   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4531   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4532   case ISD::INSERT_SUBVECTOR:
4533     return lowerINSERT_SUBVECTOR(Op, DAG);
4534   case ISD::INSERT_VECTOR_ELT:
4535     return lowerINSERT_VECTOR_ELT(Op, DAG);
4536   case ISD::EXTRACT_VECTOR_ELT:
4537     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4538   case ISD::VECTOR_SHUFFLE:
4539     return lowerVECTOR_SHUFFLE(Op, DAG);
4540   case ISD::BUILD_VECTOR:
4541     return lowerBUILD_VECTOR(Op, DAG);
4542   case ISD::FP_ROUND:
4543     return lowerFP_ROUND(Op, DAG);
4544   case ISD::TRAP:
4545     return lowerTRAP(Op, DAG);
4546   case ISD::DEBUGTRAP:
4547     return lowerDEBUGTRAP(Op, DAG);
4548   case ISD::FABS:
4549   case ISD::FNEG:
4550   case ISD::FCANONICALIZE:
4551   case ISD::BSWAP:
4552     return splitUnaryVectorOp(Op, DAG);
4553   case ISD::FMINNUM:
4554   case ISD::FMAXNUM:
4555     return lowerFMINNUM_FMAXNUM(Op, DAG);
4556   case ISD::FMA:
4557     return splitTernaryVectorOp(Op, DAG);
4558   case ISD::SHL:
4559   case ISD::SRA:
4560   case ISD::SRL:
4561   case ISD::ADD:
4562   case ISD::SUB:
4563   case ISD::MUL:
4564   case ISD::SMIN:
4565   case ISD::SMAX:
4566   case ISD::UMIN:
4567   case ISD::UMAX:
4568   case ISD::FADD:
4569   case ISD::FMUL:
4570   case ISD::FMINNUM_IEEE:
4571   case ISD::FMAXNUM_IEEE:
4572   case ISD::UADDSAT:
4573   case ISD::USUBSAT:
4574   case ISD::SADDSAT:
4575   case ISD::SSUBSAT:
4576     return splitBinaryVectorOp(Op, DAG);
4577   case ISD::SMULO:
4578   case ISD::UMULO:
4579     return lowerXMULO(Op, DAG);
4580   case ISD::DYNAMIC_STACKALLOC:
4581     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4582   }
4583   return SDValue();
4584 }
4585 
4586 // Used for D16: Casts the result of an instruction into the right vector,
4587 // packs values if loads return unpacked values.
4588 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4589                                        const SDLoc &DL,
4590                                        SelectionDAG &DAG, bool Unpacked) {
4591   if (!LoadVT.isVector())
4592     return Result;
4593 
4594   // Cast back to the original packed type or to a larger type that is a
4595   // multiple of 32 bit for D16. Widening the return type is a required for
4596   // legalization.
4597   EVT FittingLoadVT = LoadVT;
4598   if ((LoadVT.getVectorNumElements() % 2) == 1) {
4599     FittingLoadVT =
4600         EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4601                          LoadVT.getVectorNumElements() + 1);
4602   }
4603 
4604   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4605     // Truncate to v2i16/v4i16.
4606     EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
4607 
4608     // Workaround legalizer not scalarizing truncate after vector op
4609     // legalization but not creating intermediate vector trunc.
4610     SmallVector<SDValue, 4> Elts;
4611     DAG.ExtractVectorElements(Result, Elts);
4612     for (SDValue &Elt : Elts)
4613       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4614 
4615     // Pad illegal v1i16/v3fi6 to v4i16
4616     if ((LoadVT.getVectorNumElements() % 2) == 1)
4617       Elts.push_back(DAG.getUNDEF(MVT::i16));
4618 
4619     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4620 
4621     // Bitcast to original type (v2f16/v4f16).
4622     return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4623   }
4624 
4625   // Cast back to the original packed type.
4626   return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
4627 }
4628 
4629 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4630                                               MemSDNode *M,
4631                                               SelectionDAG &DAG,
4632                                               ArrayRef<SDValue> Ops,
4633                                               bool IsIntrinsic) const {
4634   SDLoc DL(M);
4635 
4636   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4637   EVT LoadVT = M->getValueType(0);
4638 
4639   EVT EquivLoadVT = LoadVT;
4640   if (LoadVT.isVector()) {
4641     if (Unpacked) {
4642       EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4643                                      LoadVT.getVectorNumElements());
4644     } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
4645       // Widen v3f16 to legal type
4646       EquivLoadVT =
4647           EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
4648                            LoadVT.getVectorNumElements() + 1);
4649     }
4650   }
4651 
4652   // Change from v4f16/v2f16 to EquivLoadVT.
4653   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4654 
4655   SDValue Load
4656     = DAG.getMemIntrinsicNode(
4657       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4658       VTList, Ops, M->getMemoryVT(),
4659       M->getMemOperand());
4660 
4661   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4662 
4663   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4664 }
4665 
4666 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4667                                              SelectionDAG &DAG,
4668                                              ArrayRef<SDValue> Ops) const {
4669   SDLoc DL(M);
4670   EVT LoadVT = M->getValueType(0);
4671   EVT EltType = LoadVT.getScalarType();
4672   EVT IntVT = LoadVT.changeTypeToInteger();
4673 
4674   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4675 
4676   unsigned Opc =
4677       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4678 
4679   if (IsD16) {
4680     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4681   }
4682 
4683   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4684   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4685     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4686 
4687   if (isTypeLegal(LoadVT)) {
4688     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4689                                M->getMemOperand(), DAG);
4690   }
4691 
4692   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4693   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4694   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4695                                         M->getMemOperand(), DAG);
4696   return DAG.getMergeValues(
4697       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4698       DL);
4699 }
4700 
4701 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4702                                   SDNode *N, SelectionDAG &DAG) {
4703   EVT VT = N->getValueType(0);
4704   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4705   unsigned CondCode = CD->getZExtValue();
4706   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4707     return DAG.getUNDEF(VT);
4708 
4709   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4710 
4711   SDValue LHS = N->getOperand(1);
4712   SDValue RHS = N->getOperand(2);
4713 
4714   SDLoc DL(N);
4715 
4716   EVT CmpVT = LHS.getValueType();
4717   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4718     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4719       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4720     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4721     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4722   }
4723 
4724   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4725 
4726   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4727   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4728 
4729   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4730                               DAG.getCondCode(CCOpcode));
4731   if (VT.bitsEq(CCVT))
4732     return SetCC;
4733   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4734 }
4735 
4736 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4737                                   SDNode *N, SelectionDAG &DAG) {
4738   EVT VT = N->getValueType(0);
4739   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4740 
4741   unsigned CondCode = CD->getZExtValue();
4742   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4743     return DAG.getUNDEF(VT);
4744 
4745   SDValue Src0 = N->getOperand(1);
4746   SDValue Src1 = N->getOperand(2);
4747   EVT CmpVT = Src0.getValueType();
4748   SDLoc SL(N);
4749 
4750   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4751     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4752     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4753   }
4754 
4755   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4756   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4757   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4758   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4759   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4760                               Src1, DAG.getCondCode(CCOpcode));
4761   if (VT.bitsEq(CCVT))
4762     return SetCC;
4763   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4764 }
4765 
4766 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4767                                     SelectionDAG &DAG) {
4768   EVT VT = N->getValueType(0);
4769   SDValue Src = N->getOperand(1);
4770   SDLoc SL(N);
4771 
4772   if (Src.getOpcode() == ISD::SETCC) {
4773     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4774     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4775                        Src.getOperand(1), Src.getOperand(2));
4776   }
4777   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4778     // (ballot 0) -> 0
4779     if (Arg->isNullValue())
4780       return DAG.getConstant(0, SL, VT);
4781 
4782     // (ballot 1) -> EXEC/EXEC_LO
4783     if (Arg->isOne()) {
4784       Register Exec;
4785       if (VT.getScalarSizeInBits() == 32)
4786         Exec = AMDGPU::EXEC_LO;
4787       else if (VT.getScalarSizeInBits() == 64)
4788         Exec = AMDGPU::EXEC;
4789       else
4790         return SDValue();
4791 
4792       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4793     }
4794   }
4795 
4796   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4797   // ISD::SETNE)
4798   return DAG.getNode(
4799       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4800       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4801 }
4802 
4803 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4804                                           SmallVectorImpl<SDValue> &Results,
4805                                           SelectionDAG &DAG) const {
4806   switch (N->getOpcode()) {
4807   case ISD::INSERT_VECTOR_ELT: {
4808     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4809       Results.push_back(Res);
4810     return;
4811   }
4812   case ISD::EXTRACT_VECTOR_ELT: {
4813     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4814       Results.push_back(Res);
4815     return;
4816   }
4817   case ISD::INTRINSIC_WO_CHAIN: {
4818     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4819     switch (IID) {
4820     case Intrinsic::amdgcn_cvt_pkrtz: {
4821       SDValue Src0 = N->getOperand(1);
4822       SDValue Src1 = N->getOperand(2);
4823       SDLoc SL(N);
4824       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4825                                 Src0, Src1);
4826       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4827       return;
4828     }
4829     case Intrinsic::amdgcn_cvt_pknorm_i16:
4830     case Intrinsic::amdgcn_cvt_pknorm_u16:
4831     case Intrinsic::amdgcn_cvt_pk_i16:
4832     case Intrinsic::amdgcn_cvt_pk_u16: {
4833       SDValue Src0 = N->getOperand(1);
4834       SDValue Src1 = N->getOperand(2);
4835       SDLoc SL(N);
4836       unsigned Opcode;
4837 
4838       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4839         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4840       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4841         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4842       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4843         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4844       else
4845         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4846 
4847       EVT VT = N->getValueType(0);
4848       if (isTypeLegal(VT))
4849         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4850       else {
4851         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4852         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4853       }
4854       return;
4855     }
4856     }
4857     break;
4858   }
4859   case ISD::INTRINSIC_W_CHAIN: {
4860     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4861       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4862         // FIXME: Hacky
4863         for (unsigned I = 0; I < Res.getNumOperands(); I++) {
4864           Results.push_back(Res.getOperand(I));
4865         }
4866       } else {
4867         Results.push_back(Res);
4868         Results.push_back(Res.getValue(1));
4869       }
4870       return;
4871     }
4872 
4873     break;
4874   }
4875   case ISD::SELECT: {
4876     SDLoc SL(N);
4877     EVT VT = N->getValueType(0);
4878     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4879     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4880     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4881 
4882     EVT SelectVT = NewVT;
4883     if (NewVT.bitsLT(MVT::i32)) {
4884       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4885       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4886       SelectVT = MVT::i32;
4887     }
4888 
4889     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4890                                     N->getOperand(0), LHS, RHS);
4891 
4892     if (NewVT != SelectVT)
4893       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4894     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4895     return;
4896   }
4897   case ISD::FNEG: {
4898     if (N->getValueType(0) != MVT::v2f16)
4899       break;
4900 
4901     SDLoc SL(N);
4902     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4903 
4904     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4905                              BC,
4906                              DAG.getConstant(0x80008000, SL, MVT::i32));
4907     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4908     return;
4909   }
4910   case ISD::FABS: {
4911     if (N->getValueType(0) != MVT::v2f16)
4912       break;
4913 
4914     SDLoc SL(N);
4915     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4916 
4917     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4918                              BC,
4919                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4920     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4921     return;
4922   }
4923   default:
4924     break;
4925   }
4926 }
4927 
4928 /// Helper function for LowerBRCOND
4929 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4930 
4931   SDNode *Parent = Value.getNode();
4932   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4933        I != E; ++I) {
4934 
4935     if (I.getUse().get() != Value)
4936       continue;
4937 
4938     if (I->getOpcode() == Opcode)
4939       return *I;
4940   }
4941   return nullptr;
4942 }
4943 
4944 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4945   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4946     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4947     case Intrinsic::amdgcn_if:
4948       return AMDGPUISD::IF;
4949     case Intrinsic::amdgcn_else:
4950       return AMDGPUISD::ELSE;
4951     case Intrinsic::amdgcn_loop:
4952       return AMDGPUISD::LOOP;
4953     case Intrinsic::amdgcn_end_cf:
4954       llvm_unreachable("should not occur");
4955     default:
4956       return 0;
4957     }
4958   }
4959 
4960   // break, if_break, else_break are all only used as inputs to loop, not
4961   // directly as branch conditions.
4962   return 0;
4963 }
4964 
4965 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4966   const Triple &TT = getTargetMachine().getTargetTriple();
4967   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4968           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4969          AMDGPU::shouldEmitConstantsToTextSection(TT);
4970 }
4971 
4972 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4973   // FIXME: Either avoid relying on address space here or change the default
4974   // address space for functions to avoid the explicit check.
4975   return (GV->getValueType()->isFunctionTy() ||
4976           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
4977          !shouldEmitFixup(GV) &&
4978          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4979 }
4980 
4981 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4982   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4983 }
4984 
4985 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
4986   if (!GV->hasExternalLinkage())
4987     return true;
4988 
4989   const auto OS = getTargetMachine().getTargetTriple().getOS();
4990   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
4991 }
4992 
4993 /// This transforms the control flow intrinsics to get the branch destination as
4994 /// last parameter, also switches branch target with BR if the need arise
4995 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4996                                       SelectionDAG &DAG) const {
4997   SDLoc DL(BRCOND);
4998 
4999   SDNode *Intr = BRCOND.getOperand(1).getNode();
5000   SDValue Target = BRCOND.getOperand(2);
5001   SDNode *BR = nullptr;
5002   SDNode *SetCC = nullptr;
5003 
5004   if (Intr->getOpcode() == ISD::SETCC) {
5005     // As long as we negate the condition everything is fine
5006     SetCC = Intr;
5007     Intr = SetCC->getOperand(0).getNode();
5008 
5009   } else {
5010     // Get the target from BR if we don't negate the condition
5011     BR = findUser(BRCOND, ISD::BR);
5012     assert(BR && "brcond missing unconditional branch user");
5013     Target = BR->getOperand(1);
5014   }
5015 
5016   unsigned CFNode = isCFIntrinsic(Intr);
5017   if (CFNode == 0) {
5018     // This is a uniform branch so we don't need to legalize.
5019     return BRCOND;
5020   }
5021 
5022   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
5023                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
5024 
5025   assert(!SetCC ||
5026         (SetCC->getConstantOperandVal(1) == 1 &&
5027          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
5028                                                              ISD::SETNE));
5029 
5030   // operands of the new intrinsic call
5031   SmallVector<SDValue, 4> Ops;
5032   if (HaveChain)
5033     Ops.push_back(BRCOND.getOperand(0));
5034 
5035   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
5036   Ops.push_back(Target);
5037 
5038   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
5039 
5040   // build the new intrinsic call
5041   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
5042 
5043   if (!HaveChain) {
5044     SDValue Ops[] =  {
5045       SDValue(Result, 0),
5046       BRCOND.getOperand(0)
5047     };
5048 
5049     Result = DAG.getMergeValues(Ops, DL).getNode();
5050   }
5051 
5052   if (BR) {
5053     // Give the branch instruction our target
5054     SDValue Ops[] = {
5055       BR->getOperand(0),
5056       BRCOND.getOperand(2)
5057     };
5058     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
5059     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
5060   }
5061 
5062   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
5063 
5064   // Copy the intrinsic results to registers
5065   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
5066     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
5067     if (!CopyToReg)
5068       continue;
5069 
5070     Chain = DAG.getCopyToReg(
5071       Chain, DL,
5072       CopyToReg->getOperand(1),
5073       SDValue(Result, i - 1),
5074       SDValue());
5075 
5076     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
5077   }
5078 
5079   // Remove the old intrinsic from the chain
5080   DAG.ReplaceAllUsesOfValueWith(
5081     SDValue(Intr, Intr->getNumValues() - 1),
5082     Intr->getOperand(0));
5083 
5084   return Chain;
5085 }
5086 
5087 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
5088                                           SelectionDAG &DAG) const {
5089   MVT VT = Op.getSimpleValueType();
5090   SDLoc DL(Op);
5091   // Checking the depth
5092   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
5093     return DAG.getConstant(0, DL, VT);
5094 
5095   MachineFunction &MF = DAG.getMachineFunction();
5096   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5097   // Check for kernel and shader functions
5098   if (Info->isEntryFunction())
5099     return DAG.getConstant(0, DL, VT);
5100 
5101   MachineFrameInfo &MFI = MF.getFrameInfo();
5102   // There is a call to @llvm.returnaddress in this function
5103   MFI.setReturnAddressIsTaken(true);
5104 
5105   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
5106   // Get the return address reg and mark it as an implicit live-in
5107   Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
5108 
5109   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
5110 }
5111 
5112 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
5113                                             SDValue Op,
5114                                             const SDLoc &DL,
5115                                             EVT VT) const {
5116   return Op.getValueType().bitsLE(VT) ?
5117       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
5118     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
5119                 DAG.getTargetConstant(0, DL, MVT::i32));
5120 }
5121 
5122 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
5123   assert(Op.getValueType() == MVT::f16 &&
5124          "Do not know how to custom lower FP_ROUND for non-f16 type");
5125 
5126   SDValue Src = Op.getOperand(0);
5127   EVT SrcVT = Src.getValueType();
5128   if (SrcVT != MVT::f64)
5129     return Op;
5130 
5131   SDLoc DL(Op);
5132 
5133   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
5134   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
5135   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
5136 }
5137 
5138 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5139                                                SelectionDAG &DAG) const {
5140   EVT VT = Op.getValueType();
5141   const MachineFunction &MF = DAG.getMachineFunction();
5142   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5143   bool IsIEEEMode = Info->getMode().IEEE;
5144 
5145   // FIXME: Assert during selection that this is only selected for
5146   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5147   // mode functions, but this happens to be OK since it's only done in cases
5148   // where there is known no sNaN.
5149   if (IsIEEEMode)
5150     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5151 
5152   if (VT == MVT::v4f16)
5153     return splitBinaryVectorOp(Op, DAG);
5154   return Op;
5155 }
5156 
5157 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5158   EVT VT = Op.getValueType();
5159   SDLoc SL(Op);
5160   SDValue LHS = Op.getOperand(0);
5161   SDValue RHS = Op.getOperand(1);
5162   bool isSigned = Op.getOpcode() == ISD::SMULO;
5163 
5164   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5165     const APInt &C = RHSC->getAPIntValue();
5166     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5167     if (C.isPowerOf2()) {
5168       // smulo(x, signed_min) is same as umulo(x, signed_min).
5169       bool UseArithShift = isSigned && !C.isMinSignedValue();
5170       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5171       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5172       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5173           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5174                       SL, VT, Result, ShiftAmt),
5175           LHS, ISD::SETNE);
5176       return DAG.getMergeValues({ Result, Overflow }, SL);
5177     }
5178   }
5179 
5180   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5181   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5182                             SL, VT, LHS, RHS);
5183 
5184   SDValue Sign = isSigned
5185     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5186                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5187     : DAG.getConstant(0, SL, VT);
5188   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5189 
5190   return DAG.getMergeValues({ Result, Overflow }, SL);
5191 }
5192 
5193 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5194   SDLoc SL(Op);
5195   SDValue Chain = Op.getOperand(0);
5196 
5197   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5198       !Subtarget->isTrapHandlerEnabled())
5199     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5200 
5201   MachineFunction &MF = DAG.getMachineFunction();
5202   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5203   Register UserSGPR = Info->getQueuePtrUserSGPR();
5204   assert(UserSGPR != AMDGPU::NoRegister);
5205   SDValue QueuePtr = CreateLiveInRegister(
5206     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5207   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5208   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5209                                    QueuePtr, SDValue());
5210   SDValue Ops[] = {
5211     ToReg,
5212     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
5213     SGPR01,
5214     ToReg.getValue(1)
5215   };
5216   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5217 }
5218 
5219 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5220   SDLoc SL(Op);
5221   SDValue Chain = Op.getOperand(0);
5222   MachineFunction &MF = DAG.getMachineFunction();
5223 
5224   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5225       !Subtarget->isTrapHandlerEnabled()) {
5226     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5227                                      "debugtrap handler not supported",
5228                                      Op.getDebugLoc(),
5229                                      DS_Warning);
5230     LLVMContext &Ctx = MF.getFunction().getContext();
5231     Ctx.diagnose(NoTrap);
5232     return Chain;
5233   }
5234 
5235   SDValue Ops[] = {
5236     Chain,
5237     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
5238   };
5239   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5240 }
5241 
5242 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5243                                              SelectionDAG &DAG) const {
5244   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5245   if (Subtarget->hasApertureRegs()) {
5246     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5247         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5248         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5249     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5250         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5251         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5252     unsigned Encoding =
5253         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5254         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5255         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5256 
5257     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5258     SDValue ApertureReg = SDValue(
5259         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5260     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5261     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5262   }
5263 
5264   MachineFunction &MF = DAG.getMachineFunction();
5265   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5266   Register UserSGPR = Info->getQueuePtrUserSGPR();
5267   assert(UserSGPR != AMDGPU::NoRegister);
5268 
5269   SDValue QueuePtr = CreateLiveInRegister(
5270     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5271 
5272   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5273   // private_segment_aperture_base_hi.
5274   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5275 
5276   SDValue Ptr =
5277       DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::Fixed(StructOffset));
5278 
5279   // TODO: Use custom target PseudoSourceValue.
5280   // TODO: We should use the value from the IR intrinsic call, but it might not
5281   // be available and how do we get it?
5282   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5283   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5284                      commonAlignment(Align(64), StructOffset),
5285                      MachineMemOperand::MODereferenceable |
5286                          MachineMemOperand::MOInvariant);
5287 }
5288 
5289 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5290                                              SelectionDAG &DAG) const {
5291   SDLoc SL(Op);
5292   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5293 
5294   SDValue Src = ASC->getOperand(0);
5295   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5296 
5297   const AMDGPUTargetMachine &TM =
5298     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5299 
5300   // flat -> local/private
5301   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5302     unsigned DestAS = ASC->getDestAddressSpace();
5303 
5304     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5305         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5306       unsigned NullVal = TM.getNullPointerValue(DestAS);
5307       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5308       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5309       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5310 
5311       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5312                          NonNull, Ptr, SegmentNullPtr);
5313     }
5314   }
5315 
5316   // local/private -> flat
5317   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5318     unsigned SrcAS = ASC->getSrcAddressSpace();
5319 
5320     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5321         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5322       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5323       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5324 
5325       SDValue NonNull
5326         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5327 
5328       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5329       SDValue CvtPtr
5330         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5331 
5332       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5333                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5334                          FlatNullPtr);
5335     }
5336   }
5337 
5338   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5339       Src.getValueType() == MVT::i64)
5340     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5341 
5342   // global <-> flat are no-ops and never emitted.
5343 
5344   const MachineFunction &MF = DAG.getMachineFunction();
5345   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5346     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5347   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5348 
5349   return DAG.getUNDEF(ASC->getValueType(0));
5350 }
5351 
5352 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5353 // the small vector and inserting them into the big vector. That is better than
5354 // the default expansion of doing it via a stack slot. Even though the use of
5355 // the stack slot would be optimized away afterwards, the stack slot itself
5356 // remains.
5357 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5358                                                 SelectionDAG &DAG) const {
5359   SDValue Vec = Op.getOperand(0);
5360   SDValue Ins = Op.getOperand(1);
5361   SDValue Idx = Op.getOperand(2);
5362   EVT VecVT = Vec.getValueType();
5363   EVT InsVT = Ins.getValueType();
5364   EVT EltVT = VecVT.getVectorElementType();
5365   unsigned InsNumElts = InsVT.getVectorNumElements();
5366   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5367   SDLoc SL(Op);
5368 
5369   for (unsigned I = 0; I != InsNumElts; ++I) {
5370     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5371                               DAG.getConstant(I, SL, MVT::i32));
5372     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5373                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5374   }
5375   return Vec;
5376 }
5377 
5378 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5379                                                  SelectionDAG &DAG) const {
5380   SDValue Vec = Op.getOperand(0);
5381   SDValue InsVal = Op.getOperand(1);
5382   SDValue Idx = Op.getOperand(2);
5383   EVT VecVT = Vec.getValueType();
5384   EVT EltVT = VecVT.getVectorElementType();
5385   unsigned VecSize = VecVT.getSizeInBits();
5386   unsigned EltSize = EltVT.getSizeInBits();
5387 
5388 
5389   assert(VecSize <= 64);
5390 
5391   unsigned NumElts = VecVT.getVectorNumElements();
5392   SDLoc SL(Op);
5393   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5394 
5395   if (NumElts == 4 && EltSize == 16 && KIdx) {
5396     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5397 
5398     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5399                                  DAG.getConstant(0, SL, MVT::i32));
5400     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5401                                  DAG.getConstant(1, SL, MVT::i32));
5402 
5403     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5404     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5405 
5406     unsigned Idx = KIdx->getZExtValue();
5407     bool InsertLo = Idx < 2;
5408     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5409       InsertLo ? LoVec : HiVec,
5410       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5411       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5412 
5413     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5414 
5415     SDValue Concat = InsertLo ?
5416       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5417       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5418 
5419     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5420   }
5421 
5422   if (isa<ConstantSDNode>(Idx))
5423     return SDValue();
5424 
5425   MVT IntVT = MVT::getIntegerVT(VecSize);
5426 
5427   // Avoid stack access for dynamic indexing.
5428   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5429 
5430   // Create a congruent vector with the target value in each element so that
5431   // the required element can be masked and ORed into the target vector.
5432   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5433                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5434 
5435   assert(isPowerOf2_32(EltSize));
5436   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5437 
5438   // Convert vector index to bit-index.
5439   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5440 
5441   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5442   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5443                             DAG.getConstant(0xffff, SL, IntVT),
5444                             ScaledIdx);
5445 
5446   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5447   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5448                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5449 
5450   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5451   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5452 }
5453 
5454 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5455                                                   SelectionDAG &DAG) const {
5456   SDLoc SL(Op);
5457 
5458   EVT ResultVT = Op.getValueType();
5459   SDValue Vec = Op.getOperand(0);
5460   SDValue Idx = Op.getOperand(1);
5461   EVT VecVT = Vec.getValueType();
5462   unsigned VecSize = VecVT.getSizeInBits();
5463   EVT EltVT = VecVT.getVectorElementType();
5464   assert(VecSize <= 64);
5465 
5466   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5467 
5468   // Make sure we do any optimizations that will make it easier to fold
5469   // source modifiers before obscuring it with bit operations.
5470 
5471   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5472   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5473     return Combined;
5474 
5475   unsigned EltSize = EltVT.getSizeInBits();
5476   assert(isPowerOf2_32(EltSize));
5477 
5478   MVT IntVT = MVT::getIntegerVT(VecSize);
5479   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5480 
5481   // Convert vector index to bit-index (* EltSize)
5482   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5483 
5484   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5485   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5486 
5487   if (ResultVT == MVT::f16) {
5488     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5489     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5490   }
5491 
5492   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5493 }
5494 
5495 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5496   assert(Elt % 2 == 0);
5497   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5498 }
5499 
5500 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5501                                               SelectionDAG &DAG) const {
5502   SDLoc SL(Op);
5503   EVT ResultVT = Op.getValueType();
5504   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5505 
5506   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5507   EVT EltVT = PackVT.getVectorElementType();
5508   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5509 
5510   // vector_shuffle <0,1,6,7> lhs, rhs
5511   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5512   //
5513   // vector_shuffle <6,7,2,3> lhs, rhs
5514   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5515   //
5516   // vector_shuffle <6,7,0,1> lhs, rhs
5517   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5518 
5519   // Avoid scalarizing when both halves are reading from consecutive elements.
5520   SmallVector<SDValue, 4> Pieces;
5521   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5522     if (elementPairIsContiguous(SVN->getMask(), I)) {
5523       const int Idx = SVN->getMaskElt(I);
5524       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5525       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5526       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5527                                     PackVT, SVN->getOperand(VecIdx),
5528                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5529       Pieces.push_back(SubVec);
5530     } else {
5531       const int Idx0 = SVN->getMaskElt(I);
5532       const int Idx1 = SVN->getMaskElt(I + 1);
5533       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5534       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5535       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5536       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5537 
5538       SDValue Vec0 = SVN->getOperand(VecIdx0);
5539       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5540                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5541 
5542       SDValue Vec1 = SVN->getOperand(VecIdx1);
5543       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5544                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5545       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5546     }
5547   }
5548 
5549   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5550 }
5551 
5552 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5553                                             SelectionDAG &DAG) const {
5554   SDLoc SL(Op);
5555   EVT VT = Op.getValueType();
5556 
5557   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5558     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5559 
5560     // Turn into pair of packed build_vectors.
5561     // TODO: Special case for constants that can be materialized with s_mov_b64.
5562     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5563                                     { Op.getOperand(0), Op.getOperand(1) });
5564     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5565                                     { Op.getOperand(2), Op.getOperand(3) });
5566 
5567     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5568     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5569 
5570     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5571     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5572   }
5573 
5574   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5575   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5576 
5577   SDValue Lo = Op.getOperand(0);
5578   SDValue Hi = Op.getOperand(1);
5579 
5580   // Avoid adding defined bits with the zero_extend.
5581   if (Hi.isUndef()) {
5582     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5583     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5584     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5585   }
5586 
5587   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5588   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5589 
5590   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5591                               DAG.getConstant(16, SL, MVT::i32));
5592   if (Lo.isUndef())
5593     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5594 
5595   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5596   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5597 
5598   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5599   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5600 }
5601 
5602 bool
5603 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5604   // We can fold offsets for anything that doesn't require a GOT relocation.
5605   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5606           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5607           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5608          !shouldEmitGOTReloc(GA->getGlobal());
5609 }
5610 
5611 static SDValue
5612 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5613                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5614                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5615   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5616   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5617   // lowered to the following code sequence:
5618   //
5619   // For constant address space:
5620   //   s_getpc_b64 s[0:1]
5621   //   s_add_u32 s0, s0, $symbol
5622   //   s_addc_u32 s1, s1, 0
5623   //
5624   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5625   //   a fixup or relocation is emitted to replace $symbol with a literal
5626   //   constant, which is a pc-relative offset from the encoding of the $symbol
5627   //   operand to the global variable.
5628   //
5629   // For global address space:
5630   //   s_getpc_b64 s[0:1]
5631   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5632   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5633   //
5634   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5635   //   fixups or relocations are emitted to replace $symbol@*@lo and
5636   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5637   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5638   //   operand to the global variable.
5639   //
5640   // What we want here is an offset from the value returned by s_getpc
5641   // (which is the address of the s_add_u32 instruction) to the global
5642   // variable, but since the encoding of $symbol starts 4 bytes after the start
5643   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5644   // small. This requires us to add 4 to the global variable offset in order to
5645   // compute the correct address. Similarly for the s_addc_u32 instruction, the
5646   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
5647   // instruction.
5648   SDValue PtrLo =
5649       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5650   SDValue PtrHi;
5651   if (GAFlags == SIInstrInfo::MO_NONE) {
5652     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5653   } else {
5654     PtrHi =
5655         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 12, GAFlags + 1);
5656   }
5657   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5658 }
5659 
5660 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5661                                              SDValue Op,
5662                                              SelectionDAG &DAG) const {
5663   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5664   SDLoc DL(GSD);
5665   EVT PtrVT = Op.getValueType();
5666 
5667   const GlobalValue *GV = GSD->getGlobal();
5668   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5669        shouldUseLDSConstAddress(GV)) ||
5670       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5671       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
5672     if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5673         GV->hasExternalLinkage()) {
5674       Type *Ty = GV->getValueType();
5675       // HIP uses an unsized array `extern __shared__ T s[]` or similar
5676       // zero-sized type in other languages to declare the dynamic shared
5677       // memory which size is not known at the compile time. They will be
5678       // allocated by the runtime and placed directly after the static
5679       // allocated ones. They all share the same offset.
5680       if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
5681         assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
5682         // Adjust alignment for that dynamic shared memory array.
5683         MFI->setDynLDSAlign(DAG.getDataLayout(), *cast<GlobalVariable>(GV));
5684         return SDValue(
5685             DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
5686       }
5687     }
5688     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5689   }
5690 
5691   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5692     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5693                                             SIInstrInfo::MO_ABS32_LO);
5694     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5695   }
5696 
5697   if (shouldEmitFixup(GV))
5698     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5699   else if (shouldEmitPCReloc(GV))
5700     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5701                                    SIInstrInfo::MO_REL32);
5702 
5703   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5704                                             SIInstrInfo::MO_GOTPCREL32);
5705 
5706   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5707   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5708   const DataLayout &DataLayout = DAG.getDataLayout();
5709   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5710   MachinePointerInfo PtrInfo
5711     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5712 
5713   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5714                      MachineMemOperand::MODereferenceable |
5715                          MachineMemOperand::MOInvariant);
5716 }
5717 
5718 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5719                                    const SDLoc &DL, SDValue V) const {
5720   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5721   // the destination register.
5722   //
5723   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5724   // so we will end up with redundant moves to m0.
5725   //
5726   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5727 
5728   // A Null SDValue creates a glue result.
5729   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5730                                   V, Chain);
5731   return SDValue(M0, 0);
5732 }
5733 
5734 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5735                                                  SDValue Op,
5736                                                  MVT VT,
5737                                                  unsigned Offset) const {
5738   SDLoc SL(Op);
5739   SDValue Param = lowerKernargMemParameter(
5740       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5741   // The local size values will have the hi 16-bits as zero.
5742   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5743                      DAG.getValueType(VT));
5744 }
5745 
5746 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5747                                         EVT VT) {
5748   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5749                                       "non-hsa intrinsic with hsa target",
5750                                       DL.getDebugLoc());
5751   DAG.getContext()->diagnose(BadIntrin);
5752   return DAG.getUNDEF(VT);
5753 }
5754 
5755 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5756                                          EVT VT) {
5757   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5758                                       "intrinsic not supported on subtarget",
5759                                       DL.getDebugLoc());
5760   DAG.getContext()->diagnose(BadIntrin);
5761   return DAG.getUNDEF(VT);
5762 }
5763 
5764 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5765                                     ArrayRef<SDValue> Elts) {
5766   assert(!Elts.empty());
5767   MVT Type;
5768   unsigned NumElts;
5769 
5770   if (Elts.size() == 1) {
5771     Type = MVT::f32;
5772     NumElts = 1;
5773   } else if (Elts.size() == 2) {
5774     Type = MVT::v2f32;
5775     NumElts = 2;
5776   } else if (Elts.size() == 3) {
5777     Type = MVT::v3f32;
5778     NumElts = 3;
5779   } else if (Elts.size() <= 4) {
5780     Type = MVT::v4f32;
5781     NumElts = 4;
5782   } else if (Elts.size() <= 8) {
5783     Type = MVT::v8f32;
5784     NumElts = 8;
5785   } else {
5786     assert(Elts.size() <= 16);
5787     Type = MVT::v16f32;
5788     NumElts = 16;
5789   }
5790 
5791   SmallVector<SDValue, 16> VecElts(NumElts);
5792   for (unsigned i = 0; i < Elts.size(); ++i) {
5793     SDValue Elt = Elts[i];
5794     if (Elt.getValueType() != MVT::f32)
5795       Elt = DAG.getBitcast(MVT::f32, Elt);
5796     VecElts[i] = Elt;
5797   }
5798   for (unsigned i = Elts.size(); i < NumElts; ++i)
5799     VecElts[i] = DAG.getUNDEF(MVT::f32);
5800 
5801   if (NumElts == 1)
5802     return VecElts[0];
5803   return DAG.getBuildVector(Type, DL, VecElts);
5804 }
5805 
5806 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5807                              SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5808   auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5809 
5810   uint64_t Value = CachePolicyConst->getZExtValue();
5811   SDLoc DL(CachePolicy);
5812   if (GLC) {
5813     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5814     Value &= ~(uint64_t)0x1;
5815   }
5816   if (SLC) {
5817     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5818     Value &= ~(uint64_t)0x2;
5819   }
5820   if (DLC) {
5821     *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5822     Value &= ~(uint64_t)0x4;
5823   }
5824 
5825   return Value == 0;
5826 }
5827 
5828 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5829                               SDValue Src, int ExtraElts) {
5830   EVT SrcVT = Src.getValueType();
5831 
5832   SmallVector<SDValue, 8> Elts;
5833 
5834   if (SrcVT.isVector())
5835     DAG.ExtractVectorElements(Src, Elts);
5836   else
5837     Elts.push_back(Src);
5838 
5839   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5840   while (ExtraElts--)
5841     Elts.push_back(Undef);
5842 
5843   return DAG.getBuildVector(CastVT, DL, Elts);
5844 }
5845 
5846 // Re-construct the required return value for a image load intrinsic.
5847 // This is more complicated due to the optional use TexFailCtrl which means the required
5848 // return type is an aggregate
5849 static SDValue constructRetValue(SelectionDAG &DAG,
5850                                  MachineSDNode *Result,
5851                                  ArrayRef<EVT> ResultTypes,
5852                                  bool IsTexFail, bool Unpacked, bool IsD16,
5853                                  int DMaskPop, int NumVDataDwords,
5854                                  const SDLoc &DL, LLVMContext &Context) {
5855   // Determine the required return type. This is the same regardless of IsTexFail flag
5856   EVT ReqRetVT = ResultTypes[0];
5857   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5858   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5859     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5860 
5861   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5862     DMaskPop : (DMaskPop + 1) / 2;
5863 
5864   MVT DataDwordVT = NumDataDwords == 1 ?
5865     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5866 
5867   MVT MaskPopVT = MaskPopDwords == 1 ?
5868     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5869 
5870   SDValue Data(Result, 0);
5871   SDValue TexFail;
5872 
5873   if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
5874     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5875     if (MaskPopVT.isVector()) {
5876       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5877                          SDValue(Result, 0), ZeroIdx);
5878     } else {
5879       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5880                          SDValue(Result, 0), ZeroIdx);
5881     }
5882   }
5883 
5884   if (DataDwordVT.isVector())
5885     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5886                           NumDataDwords - MaskPopDwords);
5887 
5888   if (IsD16)
5889     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5890 
5891   EVT LegalReqRetVT = ReqRetVT;
5892   if (!ReqRetVT.isVector()) {
5893     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5894   } else {
5895     // We need to widen the return vector to a legal type
5896     if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
5897         ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
5898       LegalReqRetVT =
5899           EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
5900                            ReqRetVT.getVectorNumElements() + 1);
5901     }
5902   }
5903   Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
5904 
5905   if (IsTexFail) {
5906     TexFail =
5907         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
5908                     DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5909 
5910     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5911   }
5912 
5913   if (Result->getNumValues() == 1)
5914     return Data;
5915 
5916   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5917 }
5918 
5919 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5920                          SDValue *LWE, bool &IsTexFail) {
5921   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5922 
5923   uint64_t Value = TexFailCtrlConst->getZExtValue();
5924   if (Value) {
5925     IsTexFail = true;
5926   }
5927 
5928   SDLoc DL(TexFailCtrlConst);
5929   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5930   Value &= ~(uint64_t)0x1;
5931   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5932   Value &= ~(uint64_t)0x2;
5933 
5934   return Value == 0;
5935 }
5936 
5937 static void packImageA16AddressToDwords(SelectionDAG &DAG, SDValue Op,
5938                                         MVT PackVectorVT,
5939                                         SmallVectorImpl<SDValue> &PackedAddrs,
5940                                         unsigned DimIdx, unsigned EndIdx,
5941                                         unsigned NumGradients) {
5942   SDLoc DL(Op);
5943   for (unsigned I = DimIdx; I < EndIdx; I++) {
5944     SDValue Addr = Op.getOperand(I);
5945 
5946     // Gradients are packed with undef for each coordinate.
5947     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5948     // 1D: undef,dx/dh; undef,dx/dv
5949     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5950     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5951     if (((I + 1) >= EndIdx) ||
5952         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5953                                          I == DimIdx + NumGradients - 1))) {
5954       if (Addr.getValueType() != MVT::i16)
5955         Addr = DAG.getBitcast(MVT::i16, Addr);
5956       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
5957     } else {
5958       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
5959       I++;
5960     }
5961     Addr = DAG.getBitcast(MVT::f32, Addr);
5962     PackedAddrs.push_back(Addr);
5963   }
5964 }
5965 
5966 SDValue SITargetLowering::lowerImage(SDValue Op,
5967                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
5968                                      SelectionDAG &DAG, bool WithChain) const {
5969   SDLoc DL(Op);
5970   MachineFunction &MF = DAG.getMachineFunction();
5971   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5972   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5973       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5974   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5975   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5976       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5977   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5978       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5979   unsigned IntrOpcode = Intr->BaseOpcode;
5980   bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5981 
5982   SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5983   SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5984   bool IsD16 = false;
5985   bool IsG16 = false;
5986   bool IsA16 = false;
5987   SDValue VData;
5988   int NumVDataDwords;
5989   bool AdjustRetType = false;
5990 
5991   // Offset of intrinsic arguments
5992   const unsigned ArgOffset = WithChain ? 2 : 1;
5993 
5994   unsigned DMask;
5995   unsigned DMaskLanes = 0;
5996 
5997   if (BaseOpcode->Atomic) {
5998     VData = Op.getOperand(2);
5999 
6000     bool Is64Bit = VData.getValueType() == MVT::i64;
6001     if (BaseOpcode->AtomicX2) {
6002       SDValue VData2 = Op.getOperand(3);
6003       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
6004                                  {VData, VData2});
6005       if (Is64Bit)
6006         VData = DAG.getBitcast(MVT::v4i32, VData);
6007 
6008       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
6009       DMask = Is64Bit ? 0xf : 0x3;
6010       NumVDataDwords = Is64Bit ? 4 : 2;
6011     } else {
6012       DMask = Is64Bit ? 0x3 : 0x1;
6013       NumVDataDwords = Is64Bit ? 2 : 1;
6014     }
6015   } else {
6016     auto *DMaskConst =
6017         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->DMaskIndex));
6018     DMask = DMaskConst->getZExtValue();
6019     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
6020 
6021     if (BaseOpcode->Store) {
6022       VData = Op.getOperand(2);
6023 
6024       MVT StoreVT = VData.getSimpleValueType();
6025       if (StoreVT.getScalarType() == MVT::f16) {
6026         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6027           return Op; // D16 is unsupported for this instruction
6028 
6029         IsD16 = true;
6030         VData = handleD16VData(VData, DAG, true);
6031       }
6032 
6033       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
6034     } else {
6035       // Work out the num dwords based on the dmask popcount and underlying type
6036       // and whether packing is supported.
6037       MVT LoadVT = ResultTypes[0].getSimpleVT();
6038       if (LoadVT.getScalarType() == MVT::f16) {
6039         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
6040           return Op; // D16 is unsupported for this instruction
6041 
6042         IsD16 = true;
6043       }
6044 
6045       // Confirm that the return type is large enough for the dmask specified
6046       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
6047           (!LoadVT.isVector() && DMaskLanes > 1))
6048           return Op;
6049 
6050       // The sq block of gfx8 and gfx9 do not estimate register use correctly
6051       // for d16 image_gather4, image_gather4_l, and image_gather4_lz
6052       // instructions.
6053       if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
6054           !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
6055         NumVDataDwords = (DMaskLanes + 1) / 2;
6056       else
6057         NumVDataDwords = DMaskLanes;
6058 
6059       AdjustRetType = true;
6060     }
6061   }
6062 
6063   unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
6064   SmallVector<SDValue, 4> VAddrs;
6065 
6066   // Optimize _L to _LZ when _L is zero
6067   if (LZMappingInfo) {
6068     if (auto *ConstantLod = dyn_cast<ConstantFPSDNode>(
6069             Op.getOperand(ArgOffset + Intr->LodIndex))) {
6070       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
6071         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
6072         VAddrEnd--;                      // remove 'lod'
6073       }
6074     }
6075   }
6076 
6077   // Optimize _mip away, when 'lod' is zero
6078   if (MIPMappingInfo) {
6079     if (auto *ConstantLod = dyn_cast<ConstantSDNode>(
6080             Op.getOperand(ArgOffset + Intr->MipIndex))) {
6081       if (ConstantLod->isNullValue()) {
6082         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
6083         VAddrEnd--;                           // remove 'mip'
6084       }
6085     }
6086   }
6087 
6088   // Push back extra arguments.
6089   for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++)
6090     VAddrs.push_back(Op.getOperand(ArgOffset + I));
6091 
6092   // Check for 16 bit addresses or derivatives and pack if true.
6093   MVT VAddrVT =
6094       Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
6095   MVT VAddrScalarVT = VAddrVT.getScalarType();
6096   MVT PackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
6097   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6098 
6099   VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
6100   VAddrScalarVT = VAddrVT.getScalarType();
6101   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
6102   if (IsA16 || IsG16) {
6103     if (IsA16) {
6104       if (!ST->hasA16()) {
6105         LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6106                              "support 16 bit addresses\n");
6107         return Op;
6108       }
6109       if (!IsG16) {
6110         LLVM_DEBUG(
6111             dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
6112                       "need 16 bit derivatives but got 32 bit derivatives\n");
6113         return Op;
6114       }
6115     } else if (!ST->hasG16()) {
6116       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6117                            "support 16 bit derivatives\n");
6118       return Op;
6119     }
6120 
6121     if (BaseOpcode->Gradients && !IsA16) {
6122       if (!ST->hasG16()) {
6123         LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
6124                              "support 16 bit derivatives\n");
6125         return Op;
6126       }
6127       // Activate g16
6128       const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
6129           AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
6130       IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
6131     }
6132 
6133     // Don't compress addresses for G16
6134     const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
6135     packImageA16AddressToDwords(DAG, Op, PackVectorVT, VAddrs,
6136                                 ArgOffset + Intr->GradientStart, PackEndIdx,
6137                                 Intr->NumGradients);
6138 
6139     if (!IsA16) {
6140       // Add uncompressed address
6141       for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
6142         VAddrs.push_back(Op.getOperand(I));
6143     }
6144   } else {
6145     for (unsigned I = ArgOffset + Intr->GradientStart; I < VAddrEnd; I++)
6146       VAddrs.push_back(Op.getOperand(I));
6147   }
6148 
6149   // If the register allocator cannot place the address registers contiguously
6150   // without introducing moves, then using the non-sequential address encoding
6151   // is always preferable, since it saves VALU instructions and is usually a
6152   // wash in terms of code size or even better.
6153   //
6154   // However, we currently have no way of hinting to the register allocator that
6155   // MIMG addresses should be placed contiguously when it is possible to do so,
6156   // so force non-NSA for the common 2-address case as a heuristic.
6157   //
6158   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
6159   // allocation when possible.
6160   bool UseNSA =
6161       ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
6162   SDValue VAddr;
6163   if (!UseNSA)
6164     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6165 
6166   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6167   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6168   SDValue Unorm;
6169   if (!BaseOpcode->Sampler) {
6170     Unorm = True;
6171   } else {
6172     auto UnormConst =
6173         cast<ConstantSDNode>(Op.getOperand(ArgOffset + Intr->UnormIndex));
6174 
6175     Unorm = UnormConst->getZExtValue() ? True : False;
6176   }
6177 
6178   SDValue TFE;
6179   SDValue LWE;
6180   SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
6181   bool IsTexFail = false;
6182   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6183     return Op;
6184 
6185   if (IsTexFail) {
6186     if (!DMaskLanes) {
6187       // Expecting to get an error flag since TFC is on - and dmask is 0
6188       // Force dmask to be at least 1 otherwise the instruction will fail
6189       DMask = 0x1;
6190       DMaskLanes = 1;
6191       NumVDataDwords = 1;
6192     }
6193     NumVDataDwords += 1;
6194     AdjustRetType = true;
6195   }
6196 
6197   // Has something earlier tagged that the return type needs adjusting
6198   // This happens if the instruction is a load or has set TexFailCtrl flags
6199   if (AdjustRetType) {
6200     // NumVDataDwords reflects the true number of dwords required in the return type
6201     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6202       // This is a no-op load. This can be eliminated
6203       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6204       if (isa<MemSDNode>(Op))
6205         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6206       return Undef;
6207     }
6208 
6209     EVT NewVT = NumVDataDwords > 1 ?
6210                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6211                 : MVT::i32;
6212 
6213     ResultTypes[0] = NewVT;
6214     if (ResultTypes.size() == 3) {
6215       // Original result was aggregate type used for TexFailCtrl results
6216       // The actual instruction returns as a vector type which has now been
6217       // created. Remove the aggregate result.
6218       ResultTypes.erase(&ResultTypes[1]);
6219     }
6220   }
6221 
6222   SDValue GLC;
6223   SDValue SLC;
6224   SDValue DLC;
6225   if (BaseOpcode->Atomic) {
6226     GLC = True; // TODO no-return optimization
6227     if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6228                           DAG, nullptr, &SLC, IsGFX10 ? &DLC : nullptr))
6229       return Op;
6230   } else {
6231     if (!parseCachePolicy(Op.getOperand(ArgOffset + Intr->CachePolicyIndex),
6232                           DAG, &GLC, &SLC, IsGFX10 ? &DLC : nullptr))
6233       return Op;
6234   }
6235 
6236   SmallVector<SDValue, 26> Ops;
6237   if (BaseOpcode->Store || BaseOpcode->Atomic)
6238     Ops.push_back(VData); // vdata
6239   if (UseNSA) {
6240     for (const SDValue &Addr : VAddrs)
6241       Ops.push_back(Addr);
6242   } else {
6243     Ops.push_back(VAddr);
6244   }
6245   Ops.push_back(Op.getOperand(ArgOffset + Intr->RsrcIndex));
6246   if (BaseOpcode->Sampler)
6247     Ops.push_back(Op.getOperand(ArgOffset + Intr->SampIndex));
6248   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6249   if (IsGFX10)
6250     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6251   Ops.push_back(Unorm);
6252   if (IsGFX10)
6253     Ops.push_back(DLC);
6254   Ops.push_back(GLC);
6255   Ops.push_back(SLC);
6256   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6257                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6258   if (IsGFX10)
6259     Ops.push_back(IsA16 ? True : False);
6260   Ops.push_back(TFE);
6261   Ops.push_back(LWE);
6262   if (!IsGFX10)
6263     Ops.push_back(DimInfo->DA ? True : False);
6264   if (BaseOpcode->HasD16)
6265     Ops.push_back(IsD16 ? True : False);
6266   if (isa<MemSDNode>(Op))
6267     Ops.push_back(Op.getOperand(0)); // chain
6268 
6269   int NumVAddrDwords =
6270       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6271   int Opcode = -1;
6272 
6273   if (IsGFX10) {
6274     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6275                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6276                                           : AMDGPU::MIMGEncGfx10Default,
6277                                    NumVDataDwords, NumVAddrDwords);
6278   } else {
6279     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6280       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6281                                      NumVDataDwords, NumVAddrDwords);
6282     if (Opcode == -1)
6283       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6284                                      NumVDataDwords, NumVAddrDwords);
6285   }
6286   assert(Opcode != -1);
6287 
6288   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6289   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6290     MachineMemOperand *MemRef = MemOp->getMemOperand();
6291     DAG.setNodeMemRefs(NewNode, {MemRef});
6292   }
6293 
6294   if (BaseOpcode->AtomicX2) {
6295     SmallVector<SDValue, 1> Elt;
6296     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6297     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6298   } else if (!BaseOpcode->Store) {
6299     return constructRetValue(DAG, NewNode,
6300                              OrigResultTypes, IsTexFail,
6301                              Subtarget->hasUnpackedD16VMem(), IsD16,
6302                              DMaskLanes, NumVDataDwords, DL,
6303                              *DAG.getContext());
6304   }
6305 
6306   return SDValue(NewNode, 0);
6307 }
6308 
6309 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6310                                        SDValue Offset, SDValue CachePolicy,
6311                                        SelectionDAG &DAG) const {
6312   MachineFunction &MF = DAG.getMachineFunction();
6313 
6314   const DataLayout &DataLayout = DAG.getDataLayout();
6315   Align Alignment =
6316       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6317 
6318   MachineMemOperand *MMO = MF.getMachineMemOperand(
6319       MachinePointerInfo(),
6320       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6321           MachineMemOperand::MOInvariant,
6322       VT.getStoreSize(), Alignment);
6323 
6324   if (!Offset->isDivergent()) {
6325     SDValue Ops[] = {
6326         Rsrc,
6327         Offset, // Offset
6328         CachePolicy
6329     };
6330 
6331     // Widen vec3 load to vec4.
6332     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6333       EVT WidenedVT =
6334           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6335       auto WidenedOp = DAG.getMemIntrinsicNode(
6336           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6337           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6338       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6339                                    DAG.getVectorIdxConstant(0, DL));
6340       return Subvector;
6341     }
6342 
6343     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6344                                    DAG.getVTList(VT), Ops, VT, MMO);
6345   }
6346 
6347   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6348   // assume that the buffer is unswizzled.
6349   SmallVector<SDValue, 4> Loads;
6350   unsigned NumLoads = 1;
6351   MVT LoadVT = VT.getSimpleVT();
6352   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6353   assert((LoadVT.getScalarType() == MVT::i32 ||
6354           LoadVT.getScalarType() == MVT::f32));
6355 
6356   if (NumElts == 8 || NumElts == 16) {
6357     NumLoads = NumElts / 4;
6358     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6359   }
6360 
6361   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6362   SDValue Ops[] = {
6363       DAG.getEntryNode(),                               // Chain
6364       Rsrc,                                             // rsrc
6365       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6366       {},                                               // voffset
6367       {},                                               // soffset
6368       {},                                               // offset
6369       CachePolicy,                                      // cachepolicy
6370       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6371   };
6372 
6373   // Use the alignment to ensure that the required offsets will fit into the
6374   // immediate offsets.
6375   setBufferOffsets(Offset, DAG, &Ops[3],
6376                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6377 
6378   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6379   for (unsigned i = 0; i < NumLoads; ++i) {
6380     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6381     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6382                                         LoadVT, MMO, DAG));
6383   }
6384 
6385   if (NumElts == 8 || NumElts == 16)
6386     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6387 
6388   return Loads[0];
6389 }
6390 
6391 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6392                                                   SelectionDAG &DAG) const {
6393   MachineFunction &MF = DAG.getMachineFunction();
6394   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6395 
6396   EVT VT = Op.getValueType();
6397   SDLoc DL(Op);
6398   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6399 
6400   // TODO: Should this propagate fast-math-flags?
6401 
6402   switch (IntrinsicID) {
6403   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6404     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6405       return emitNonHSAIntrinsicError(DAG, DL, VT);
6406     return getPreloadedValue(DAG, *MFI, VT,
6407                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6408   }
6409   case Intrinsic::amdgcn_dispatch_ptr:
6410   case Intrinsic::amdgcn_queue_ptr: {
6411     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6412       DiagnosticInfoUnsupported BadIntrin(
6413           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6414           DL.getDebugLoc());
6415       DAG.getContext()->diagnose(BadIntrin);
6416       return DAG.getUNDEF(VT);
6417     }
6418 
6419     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6420       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6421     return getPreloadedValue(DAG, *MFI, VT, RegID);
6422   }
6423   case Intrinsic::amdgcn_implicitarg_ptr: {
6424     if (MFI->isEntryFunction())
6425       return getImplicitArgPtr(DAG, DL);
6426     return getPreloadedValue(DAG, *MFI, VT,
6427                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6428   }
6429   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6430     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6431       // This only makes sense to call in a kernel, so just lower to null.
6432       return DAG.getConstant(0, DL, VT);
6433     }
6434 
6435     return getPreloadedValue(DAG, *MFI, VT,
6436                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6437   }
6438   case Intrinsic::amdgcn_dispatch_id: {
6439     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6440   }
6441   case Intrinsic::amdgcn_rcp:
6442     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6443   case Intrinsic::amdgcn_rsq:
6444     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6445   case Intrinsic::amdgcn_rsq_legacy:
6446     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6447       return emitRemovedIntrinsicError(DAG, DL, VT);
6448     return SDValue();
6449   case Intrinsic::amdgcn_rcp_legacy:
6450     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6451       return emitRemovedIntrinsicError(DAG, DL, VT);
6452     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6453   case Intrinsic::amdgcn_rsq_clamp: {
6454     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6455       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6456 
6457     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6458     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6459     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6460 
6461     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6462     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6463                               DAG.getConstantFP(Max, DL, VT));
6464     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6465                        DAG.getConstantFP(Min, DL, VT));
6466   }
6467   case Intrinsic::r600_read_ngroups_x:
6468     if (Subtarget->isAmdHsaOS())
6469       return emitNonHSAIntrinsicError(DAG, DL, VT);
6470 
6471     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6472                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6473                                     false);
6474   case Intrinsic::r600_read_ngroups_y:
6475     if (Subtarget->isAmdHsaOS())
6476       return emitNonHSAIntrinsicError(DAG, DL, VT);
6477 
6478     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6479                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6480                                     false);
6481   case Intrinsic::r600_read_ngroups_z:
6482     if (Subtarget->isAmdHsaOS())
6483       return emitNonHSAIntrinsicError(DAG, DL, VT);
6484 
6485     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6486                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6487                                     false);
6488   case Intrinsic::r600_read_global_size_x:
6489     if (Subtarget->isAmdHsaOS())
6490       return emitNonHSAIntrinsicError(DAG, DL, VT);
6491 
6492     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6493                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6494                                     Align(4), false);
6495   case Intrinsic::r600_read_global_size_y:
6496     if (Subtarget->isAmdHsaOS())
6497       return emitNonHSAIntrinsicError(DAG, DL, VT);
6498 
6499     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6500                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6501                                     Align(4), false);
6502   case Intrinsic::r600_read_global_size_z:
6503     if (Subtarget->isAmdHsaOS())
6504       return emitNonHSAIntrinsicError(DAG, DL, VT);
6505 
6506     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6507                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6508                                     Align(4), false);
6509   case Intrinsic::r600_read_local_size_x:
6510     if (Subtarget->isAmdHsaOS())
6511       return emitNonHSAIntrinsicError(DAG, DL, VT);
6512 
6513     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6514                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6515   case Intrinsic::r600_read_local_size_y:
6516     if (Subtarget->isAmdHsaOS())
6517       return emitNonHSAIntrinsicError(DAG, DL, VT);
6518 
6519     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6520                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6521   case Intrinsic::r600_read_local_size_z:
6522     if (Subtarget->isAmdHsaOS())
6523       return emitNonHSAIntrinsicError(DAG, DL, VT);
6524 
6525     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6526                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6527   case Intrinsic::amdgcn_workgroup_id_x:
6528     return getPreloadedValue(DAG, *MFI, VT,
6529                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6530   case Intrinsic::amdgcn_workgroup_id_y:
6531     return getPreloadedValue(DAG, *MFI, VT,
6532                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6533   case Intrinsic::amdgcn_workgroup_id_z:
6534     return getPreloadedValue(DAG, *MFI, VT,
6535                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6536   case Intrinsic::amdgcn_workitem_id_x:
6537     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6538                           SDLoc(DAG.getEntryNode()),
6539                           MFI->getArgInfo().WorkItemIDX);
6540   case Intrinsic::amdgcn_workitem_id_y:
6541     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6542                           SDLoc(DAG.getEntryNode()),
6543                           MFI->getArgInfo().WorkItemIDY);
6544   case Intrinsic::amdgcn_workitem_id_z:
6545     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6546                           SDLoc(DAG.getEntryNode()),
6547                           MFI->getArgInfo().WorkItemIDZ);
6548   case Intrinsic::amdgcn_wavefrontsize:
6549     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6550                            SDLoc(Op), MVT::i32);
6551   case Intrinsic::amdgcn_s_buffer_load: {
6552     bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
6553     SDValue GLC;
6554     SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
6555     if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
6556                           IsGFX10 ? &DLC : nullptr))
6557       return Op;
6558     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6559                         DAG);
6560   }
6561   case Intrinsic::amdgcn_fdiv_fast:
6562     return lowerFDIV_FAST(Op, DAG);
6563   case Intrinsic::amdgcn_sin:
6564     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6565 
6566   case Intrinsic::amdgcn_cos:
6567     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6568 
6569   case Intrinsic::amdgcn_mul_u24:
6570     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6571   case Intrinsic::amdgcn_mul_i24:
6572     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6573 
6574   case Intrinsic::amdgcn_log_clamp: {
6575     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6576       return SDValue();
6577 
6578     DiagnosticInfoUnsupported BadIntrin(
6579       MF.getFunction(), "intrinsic not supported on subtarget",
6580       DL.getDebugLoc());
6581       DAG.getContext()->diagnose(BadIntrin);
6582       return DAG.getUNDEF(VT);
6583   }
6584   case Intrinsic::amdgcn_ldexp:
6585     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6586                        Op.getOperand(1), Op.getOperand(2));
6587 
6588   case Intrinsic::amdgcn_fract:
6589     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6590 
6591   case Intrinsic::amdgcn_class:
6592     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6593                        Op.getOperand(1), Op.getOperand(2));
6594   case Intrinsic::amdgcn_div_fmas:
6595     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6596                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6597                        Op.getOperand(4));
6598 
6599   case Intrinsic::amdgcn_div_fixup:
6600     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6601                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6602 
6603   case Intrinsic::amdgcn_div_scale: {
6604     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6605 
6606     // Translate to the operands expected by the machine instruction. The
6607     // first parameter must be the same as the first instruction.
6608     SDValue Numerator = Op.getOperand(1);
6609     SDValue Denominator = Op.getOperand(2);
6610 
6611     // Note this order is opposite of the machine instruction's operations,
6612     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6613     // intrinsic has the numerator as the first operand to match a normal
6614     // division operation.
6615 
6616     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6617 
6618     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6619                        Denominator, Numerator);
6620   }
6621   case Intrinsic::amdgcn_icmp: {
6622     // There is a Pat that handles this variant, so return it as-is.
6623     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6624         Op.getConstantOperandVal(2) == 0 &&
6625         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6626       return Op;
6627     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6628   }
6629   case Intrinsic::amdgcn_fcmp: {
6630     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6631   }
6632   case Intrinsic::amdgcn_ballot:
6633     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6634   case Intrinsic::amdgcn_fmed3:
6635     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6636                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6637   case Intrinsic::amdgcn_fdot2:
6638     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6639                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6640                        Op.getOperand(4));
6641   case Intrinsic::amdgcn_fmul_legacy:
6642     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6643                        Op.getOperand(1), Op.getOperand(2));
6644   case Intrinsic::amdgcn_sffbh:
6645     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6646   case Intrinsic::amdgcn_sbfe:
6647     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6648                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6649   case Intrinsic::amdgcn_ubfe:
6650     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6651                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6652   case Intrinsic::amdgcn_cvt_pkrtz:
6653   case Intrinsic::amdgcn_cvt_pknorm_i16:
6654   case Intrinsic::amdgcn_cvt_pknorm_u16:
6655   case Intrinsic::amdgcn_cvt_pk_i16:
6656   case Intrinsic::amdgcn_cvt_pk_u16: {
6657     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6658     EVT VT = Op.getValueType();
6659     unsigned Opcode;
6660 
6661     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6662       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6663     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6664       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6665     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6666       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6667     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6668       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6669     else
6670       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6671 
6672     if (isTypeLegal(VT))
6673       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6674 
6675     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6676                                Op.getOperand(1), Op.getOperand(2));
6677     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6678   }
6679   case Intrinsic::amdgcn_fmad_ftz:
6680     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6681                        Op.getOperand(2), Op.getOperand(3));
6682 
6683   case Intrinsic::amdgcn_if_break:
6684     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6685                                       Op->getOperand(1), Op->getOperand(2)), 0);
6686 
6687   case Intrinsic::amdgcn_groupstaticsize: {
6688     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6689     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6690       return Op;
6691 
6692     const Module *M = MF.getFunction().getParent();
6693     const GlobalValue *GV =
6694         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6695     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6696                                             SIInstrInfo::MO_ABS32_LO);
6697     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6698   }
6699   case Intrinsic::amdgcn_is_shared:
6700   case Intrinsic::amdgcn_is_private: {
6701     SDLoc SL(Op);
6702     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6703       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6704     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6705     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6706                                  Op.getOperand(1));
6707 
6708     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6709                                 DAG.getConstant(1, SL, MVT::i32));
6710     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6711   }
6712   case Intrinsic::amdgcn_alignbit:
6713     return DAG.getNode(ISD::FSHR, DL, VT,
6714                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6715   case Intrinsic::amdgcn_reloc_constant: {
6716     Module *M = const_cast<Module *>(MF.getFunction().getParent());
6717     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6718     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6719     auto RelocSymbol = cast<GlobalVariable>(
6720         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6721     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6722                                             SIInstrInfo::MO_ABS32_LO);
6723     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6724   }
6725   default:
6726     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6727             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6728       return lowerImage(Op, ImageDimIntr, DAG, false);
6729 
6730     return Op;
6731   }
6732 }
6733 
6734 // This function computes an appropriate offset to pass to
6735 // MachineMemOperand::setOffset() based on the offset inputs to
6736 // an intrinsic.  If any of the offsets are non-contstant or
6737 // if VIndex is non-zero then this function returns 0.  Otherwise,
6738 // it returns the sum of VOffset, SOffset, and Offset.
6739 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6740                                       SDValue SOffset,
6741                                       SDValue Offset,
6742                                       SDValue VIndex = SDValue()) {
6743 
6744   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6745       !isa<ConstantSDNode>(Offset))
6746     return 0;
6747 
6748   if (VIndex) {
6749     if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6750       return 0;
6751   }
6752 
6753   return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6754          cast<ConstantSDNode>(SOffset)->getSExtValue() +
6755          cast<ConstantSDNode>(Offset)->getSExtValue();
6756 }
6757 
6758 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
6759                                                      SelectionDAG &DAG,
6760                                                      unsigned NewOpcode) const {
6761   SDLoc DL(Op);
6762 
6763   SDValue VData = Op.getOperand(2);
6764   auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6765   SDValue Ops[] = {
6766     Op.getOperand(0), // Chain
6767     VData,            // vdata
6768     Op.getOperand(3), // rsrc
6769     DAG.getConstant(0, DL, MVT::i32), // vindex
6770     Offsets.first,    // voffset
6771     Op.getOperand(5), // soffset
6772     Offsets.second,   // offset
6773     Op.getOperand(6), // cachepolicy
6774     DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6775   };
6776 
6777   auto *M = cast<MemSDNode>(Op);
6778   M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6779 
6780   EVT MemVT = VData.getValueType();
6781   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6782                                  M->getMemOperand());
6783 }
6784 
6785 SDValue
6786 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
6787                                                 unsigned NewOpcode) const {
6788   SDLoc DL(Op);
6789 
6790   SDValue VData = Op.getOperand(2);
6791   auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
6792   SDValue Ops[] = {
6793     Op.getOperand(0), // Chain
6794     VData,            // vdata
6795     Op.getOperand(3), // rsrc
6796     Op.getOperand(4), // vindex
6797     Offsets.first,    // voffset
6798     Op.getOperand(6), // soffset
6799     Offsets.second,   // offset
6800     Op.getOperand(7), // cachepolicy
6801     DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6802   };
6803 
6804   auto *M = cast<MemSDNode>(Op);
6805   M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
6806                                                       Ops[3]));
6807 
6808   EVT MemVT = VData.getValueType();
6809   return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
6810                                  M->getMemOperand());
6811 }
6812 
6813 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6814                                                  SelectionDAG &DAG) const {
6815   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6816   SDLoc DL(Op);
6817 
6818   switch (IntrID) {
6819   case Intrinsic::amdgcn_ds_ordered_add:
6820   case Intrinsic::amdgcn_ds_ordered_swap: {
6821     MemSDNode *M = cast<MemSDNode>(Op);
6822     SDValue Chain = M->getOperand(0);
6823     SDValue M0 = M->getOperand(2);
6824     SDValue Value = M->getOperand(3);
6825     unsigned IndexOperand = M->getConstantOperandVal(7);
6826     unsigned WaveRelease = M->getConstantOperandVal(8);
6827     unsigned WaveDone = M->getConstantOperandVal(9);
6828 
6829     unsigned OrderedCountIndex = IndexOperand & 0x3f;
6830     IndexOperand &= ~0x3f;
6831     unsigned CountDw = 0;
6832 
6833     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6834       CountDw = (IndexOperand >> 24) & 0xf;
6835       IndexOperand &= ~(0xf << 24);
6836 
6837       if (CountDw < 1 || CountDw > 4) {
6838         report_fatal_error(
6839             "ds_ordered_count: dword count must be between 1 and 4");
6840       }
6841     }
6842 
6843     if (IndexOperand)
6844       report_fatal_error("ds_ordered_count: bad index operand");
6845 
6846     if (WaveDone && !WaveRelease)
6847       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6848 
6849     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6850     unsigned ShaderType =
6851         SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
6852     unsigned Offset0 = OrderedCountIndex << 2;
6853     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6854                        (Instruction << 4);
6855 
6856     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6857       Offset1 |= (CountDw - 1) << 6;
6858 
6859     unsigned Offset = Offset0 | (Offset1 << 8);
6860 
6861     SDValue Ops[] = {
6862       Chain,
6863       Value,
6864       DAG.getTargetConstant(Offset, DL, MVT::i16),
6865       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6866     };
6867     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6868                                    M->getVTList(), Ops, M->getMemoryVT(),
6869                                    M->getMemOperand());
6870   }
6871   case Intrinsic::amdgcn_ds_fadd: {
6872     MemSDNode *M = cast<MemSDNode>(Op);
6873     unsigned Opc;
6874     switch (IntrID) {
6875     case Intrinsic::amdgcn_ds_fadd:
6876       Opc = ISD::ATOMIC_LOAD_FADD;
6877       break;
6878     }
6879 
6880     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6881                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
6882                          M->getMemOperand());
6883   }
6884   case Intrinsic::amdgcn_atomic_inc:
6885   case Intrinsic::amdgcn_atomic_dec:
6886   case Intrinsic::amdgcn_ds_fmin:
6887   case Intrinsic::amdgcn_ds_fmax: {
6888     MemSDNode *M = cast<MemSDNode>(Op);
6889     unsigned Opc;
6890     switch (IntrID) {
6891     case Intrinsic::amdgcn_atomic_inc:
6892       Opc = AMDGPUISD::ATOMIC_INC;
6893       break;
6894     case Intrinsic::amdgcn_atomic_dec:
6895       Opc = AMDGPUISD::ATOMIC_DEC;
6896       break;
6897     case Intrinsic::amdgcn_ds_fmin:
6898       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6899       break;
6900     case Intrinsic::amdgcn_ds_fmax:
6901       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6902       break;
6903     default:
6904       llvm_unreachable("Unknown intrinsic!");
6905     }
6906     SDValue Ops[] = {
6907       M->getOperand(0), // Chain
6908       M->getOperand(2), // Ptr
6909       M->getOperand(3)  // Value
6910     };
6911 
6912     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6913                                    M->getMemoryVT(), M->getMemOperand());
6914   }
6915   case Intrinsic::amdgcn_buffer_load:
6916   case Intrinsic::amdgcn_buffer_load_format: {
6917     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6918     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6919     unsigned IdxEn = 1;
6920     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6921       IdxEn = Idx->getZExtValue() != 0;
6922     SDValue Ops[] = {
6923       Op.getOperand(0), // Chain
6924       Op.getOperand(2), // rsrc
6925       Op.getOperand(3), // vindex
6926       SDValue(),        // voffset -- will be set by setBufferOffsets
6927       SDValue(),        // soffset -- will be set by setBufferOffsets
6928       SDValue(),        // offset -- will be set by setBufferOffsets
6929       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6930       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6931     };
6932 
6933     unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6934     // We don't know the offset if vindex is non-zero, so clear it.
6935     if (IdxEn)
6936       Offset = 0;
6937 
6938     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6939         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6940 
6941     EVT VT = Op.getValueType();
6942     EVT IntVT = VT.changeTypeToInteger();
6943     auto *M = cast<MemSDNode>(Op);
6944     M->getMemOperand()->setOffset(Offset);
6945     EVT LoadVT = Op.getValueType();
6946 
6947     if (LoadVT.getScalarType() == MVT::f16)
6948       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6949                                  M, DAG, Ops);
6950 
6951     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6952     if (LoadVT.getScalarType() == MVT::i8 ||
6953         LoadVT.getScalarType() == MVT::i16)
6954       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6955 
6956     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6957                                M->getMemOperand(), DAG);
6958   }
6959   case Intrinsic::amdgcn_raw_buffer_load:
6960   case Intrinsic::amdgcn_raw_buffer_load_format: {
6961     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6962 
6963     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6964     SDValue Ops[] = {
6965       Op.getOperand(0), // Chain
6966       Op.getOperand(2), // rsrc
6967       DAG.getConstant(0, DL, MVT::i32), // vindex
6968       Offsets.first,    // voffset
6969       Op.getOperand(4), // soffset
6970       Offsets.second,   // offset
6971       Op.getOperand(5), // cachepolicy, swizzled buffer
6972       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6973     };
6974 
6975     auto *M = cast<MemSDNode>(Op);
6976     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6977     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6978   }
6979   case Intrinsic::amdgcn_struct_buffer_load:
6980   case Intrinsic::amdgcn_struct_buffer_load_format: {
6981     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6982 
6983     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6984     SDValue Ops[] = {
6985       Op.getOperand(0), // Chain
6986       Op.getOperand(2), // rsrc
6987       Op.getOperand(3), // vindex
6988       Offsets.first,    // voffset
6989       Op.getOperand(5), // soffset
6990       Offsets.second,   // offset
6991       Op.getOperand(6), // cachepolicy, swizzled buffer
6992       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6993     };
6994 
6995     auto *M = cast<MemSDNode>(Op);
6996     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
6997                                                         Ops[2]));
6998     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6999   }
7000   case Intrinsic::amdgcn_tbuffer_load: {
7001     MemSDNode *M = cast<MemSDNode>(Op);
7002     EVT LoadVT = Op.getValueType();
7003 
7004     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7005     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7006     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7007     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7008     unsigned IdxEn = 1;
7009     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
7010       IdxEn = Idx->getZExtValue() != 0;
7011     SDValue Ops[] = {
7012       Op.getOperand(0),  // Chain
7013       Op.getOperand(2),  // rsrc
7014       Op.getOperand(3),  // vindex
7015       Op.getOperand(4),  // voffset
7016       Op.getOperand(5),  // soffset
7017       Op.getOperand(6),  // offset
7018       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7019       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7020       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
7021     };
7022 
7023     if (LoadVT.getScalarType() == MVT::f16)
7024       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7025                                  M, DAG, Ops);
7026     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7027                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7028                                DAG);
7029   }
7030   case Intrinsic::amdgcn_raw_tbuffer_load: {
7031     MemSDNode *M = cast<MemSDNode>(Op);
7032     EVT LoadVT = Op.getValueType();
7033     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
7034 
7035     SDValue Ops[] = {
7036       Op.getOperand(0),  // Chain
7037       Op.getOperand(2),  // rsrc
7038       DAG.getConstant(0, DL, MVT::i32), // vindex
7039       Offsets.first,     // voffset
7040       Op.getOperand(4),  // soffset
7041       Offsets.second,    // offset
7042       Op.getOperand(5),  // format
7043       Op.getOperand(6),  // cachepolicy, swizzled buffer
7044       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7045     };
7046 
7047     if (LoadVT.getScalarType() == MVT::f16)
7048       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7049                                  M, DAG, Ops);
7050     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7051                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7052                                DAG);
7053   }
7054   case Intrinsic::amdgcn_struct_tbuffer_load: {
7055     MemSDNode *M = cast<MemSDNode>(Op);
7056     EVT LoadVT = Op.getValueType();
7057     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7058 
7059     SDValue Ops[] = {
7060       Op.getOperand(0),  // Chain
7061       Op.getOperand(2),  // rsrc
7062       Op.getOperand(3),  // vindex
7063       Offsets.first,     // voffset
7064       Op.getOperand(5),  // soffset
7065       Offsets.second,    // offset
7066       Op.getOperand(6),  // format
7067       Op.getOperand(7),  // cachepolicy, swizzled buffer
7068       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7069     };
7070 
7071     if (LoadVT.getScalarType() == MVT::f16)
7072       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
7073                                  M, DAG, Ops);
7074     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
7075                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
7076                                DAG);
7077   }
7078   case Intrinsic::amdgcn_buffer_atomic_swap:
7079   case Intrinsic::amdgcn_buffer_atomic_add:
7080   case Intrinsic::amdgcn_buffer_atomic_sub:
7081   case Intrinsic::amdgcn_buffer_atomic_csub:
7082   case Intrinsic::amdgcn_buffer_atomic_smin:
7083   case Intrinsic::amdgcn_buffer_atomic_umin:
7084   case Intrinsic::amdgcn_buffer_atomic_smax:
7085   case Intrinsic::amdgcn_buffer_atomic_umax:
7086   case Intrinsic::amdgcn_buffer_atomic_and:
7087   case Intrinsic::amdgcn_buffer_atomic_or:
7088   case Intrinsic::amdgcn_buffer_atomic_xor:
7089   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7090     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7091     unsigned IdxEn = 1;
7092     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7093       IdxEn = Idx->getZExtValue() != 0;
7094     SDValue Ops[] = {
7095       Op.getOperand(0), // Chain
7096       Op.getOperand(2), // vdata
7097       Op.getOperand(3), // rsrc
7098       Op.getOperand(4), // vindex
7099       SDValue(),        // voffset -- will be set by setBufferOffsets
7100       SDValue(),        // soffset -- will be set by setBufferOffsets
7101       SDValue(),        // offset -- will be set by setBufferOffsets
7102       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7103       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7104     };
7105     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7106     // We don't know the offset if vindex is non-zero, so clear it.
7107     if (IdxEn)
7108       Offset = 0;
7109     EVT VT = Op.getValueType();
7110 
7111     auto *M = cast<MemSDNode>(Op);
7112     M->getMemOperand()->setOffset(Offset);
7113     unsigned Opcode = 0;
7114 
7115     switch (IntrID) {
7116     case Intrinsic::amdgcn_buffer_atomic_swap:
7117       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7118       break;
7119     case Intrinsic::amdgcn_buffer_atomic_add:
7120       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7121       break;
7122     case Intrinsic::amdgcn_buffer_atomic_sub:
7123       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7124       break;
7125     case Intrinsic::amdgcn_buffer_atomic_csub:
7126       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
7127       break;
7128     case Intrinsic::amdgcn_buffer_atomic_smin:
7129       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7130       break;
7131     case Intrinsic::amdgcn_buffer_atomic_umin:
7132       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7133       break;
7134     case Intrinsic::amdgcn_buffer_atomic_smax:
7135       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7136       break;
7137     case Intrinsic::amdgcn_buffer_atomic_umax:
7138       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7139       break;
7140     case Intrinsic::amdgcn_buffer_atomic_and:
7141       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7142       break;
7143     case Intrinsic::amdgcn_buffer_atomic_or:
7144       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7145       break;
7146     case Intrinsic::amdgcn_buffer_atomic_xor:
7147       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7148       break;
7149     case Intrinsic::amdgcn_buffer_atomic_fadd:
7150       if (!Op.getValue(0).use_empty()) {
7151         DiagnosticInfoUnsupported
7152           NoFpRet(DAG.getMachineFunction().getFunction(),
7153                   "return versions of fp atomics not supported",
7154                   DL.getDebugLoc(), DS_Error);
7155         DAG.getContext()->diagnose(NoFpRet);
7156         return SDValue();
7157       }
7158       Opcode = AMDGPUISD::BUFFER_ATOMIC_FADD;
7159       break;
7160     default:
7161       llvm_unreachable("unhandled atomic opcode");
7162     }
7163 
7164     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7165                                    M->getMemOperand());
7166   }
7167   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
7168     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7169   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
7170     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
7171   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
7172     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
7173   case Intrinsic::amdgcn_raw_buffer_atomic_add:
7174     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7175   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7176     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7177   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7178     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
7179   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7180     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
7181   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7182     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
7183   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7184     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
7185   case Intrinsic::amdgcn_raw_buffer_atomic_and:
7186     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7187   case Intrinsic::amdgcn_raw_buffer_atomic_or:
7188     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7189   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7190     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7191   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7192     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7193   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7194     return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7195   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7196     return lowerStructBufferAtomicIntrin(Op, DAG,
7197                                          AMDGPUISD::BUFFER_ATOMIC_SWAP);
7198   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7199     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
7200   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7201     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
7202   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7203     return lowerStructBufferAtomicIntrin(Op, DAG,
7204                                          AMDGPUISD::BUFFER_ATOMIC_SMIN);
7205   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7206     return lowerStructBufferAtomicIntrin(Op, DAG,
7207                                          AMDGPUISD::BUFFER_ATOMIC_UMIN);
7208   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7209     return lowerStructBufferAtomicIntrin(Op, DAG,
7210                                          AMDGPUISD::BUFFER_ATOMIC_SMAX);
7211   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7212     return lowerStructBufferAtomicIntrin(Op, DAG,
7213                                          AMDGPUISD::BUFFER_ATOMIC_UMAX);
7214   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7215     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
7216   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7217     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
7218   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7219     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
7220   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7221     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
7222   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7223     return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
7224 
7225   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7226     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7227     unsigned IdxEn = 1;
7228     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
7229       IdxEn = Idx->getZExtValue() != 0;
7230     SDValue Ops[] = {
7231       Op.getOperand(0), // Chain
7232       Op.getOperand(2), // src
7233       Op.getOperand(3), // cmp
7234       Op.getOperand(4), // rsrc
7235       Op.getOperand(5), // vindex
7236       SDValue(),        // voffset -- will be set by setBufferOffsets
7237       SDValue(),        // soffset -- will be set by setBufferOffsets
7238       SDValue(),        // offset -- will be set by setBufferOffsets
7239       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7240       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7241     };
7242     unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7243     // We don't know the offset if vindex is non-zero, so clear it.
7244     if (IdxEn)
7245       Offset = 0;
7246     EVT VT = Op.getValueType();
7247     auto *M = cast<MemSDNode>(Op);
7248     M->getMemOperand()->setOffset(Offset);
7249 
7250     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7251                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7252   }
7253   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7254     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7255     SDValue Ops[] = {
7256       Op.getOperand(0), // Chain
7257       Op.getOperand(2), // src
7258       Op.getOperand(3), // cmp
7259       Op.getOperand(4), // rsrc
7260       DAG.getConstant(0, DL, MVT::i32), // vindex
7261       Offsets.first,    // voffset
7262       Op.getOperand(6), // soffset
7263       Offsets.second,   // offset
7264       Op.getOperand(7), // cachepolicy
7265       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7266     };
7267     EVT VT = Op.getValueType();
7268     auto *M = cast<MemSDNode>(Op);
7269     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
7270 
7271     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7272                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7273   }
7274   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7275     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7276     SDValue Ops[] = {
7277       Op.getOperand(0), // Chain
7278       Op.getOperand(2), // src
7279       Op.getOperand(3), // cmp
7280       Op.getOperand(4), // rsrc
7281       Op.getOperand(5), // vindex
7282       Offsets.first,    // voffset
7283       Op.getOperand(7), // soffset
7284       Offsets.second,   // offset
7285       Op.getOperand(8), // cachepolicy
7286       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7287     };
7288     EVT VT = Op.getValueType();
7289     auto *M = cast<MemSDNode>(Op);
7290     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
7291                                                         Ops[4]));
7292 
7293     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7294                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7295   }
7296   case Intrinsic::amdgcn_global_atomic_fadd: {
7297     if (!Op.getValue(0).use_empty()) {
7298       DiagnosticInfoUnsupported
7299         NoFpRet(DAG.getMachineFunction().getFunction(),
7300                 "return versions of fp atomics not supported",
7301                 DL.getDebugLoc(), DS_Error);
7302       DAG.getContext()->diagnose(NoFpRet);
7303       return SDValue();
7304     }
7305     MemSDNode *M = cast<MemSDNode>(Op);
7306     SDValue Ops[] = {
7307       M->getOperand(0), // Chain
7308       M->getOperand(2), // Ptr
7309       M->getOperand(3)  // Value
7310     };
7311 
7312     EVT VT = Op.getOperand(3).getValueType();
7313     return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7314                          DAG.getVTList(VT, MVT::Other), Ops,
7315                          M->getMemOperand());
7316   }
7317   case Intrinsic::amdgcn_image_bvh_intersect_ray: {
7318     SDLoc DL(Op);
7319     MemSDNode *M = cast<MemSDNode>(Op);
7320     SDValue NodePtr = M->getOperand(2);
7321     SDValue RayExtent = M->getOperand(3);
7322     SDValue RayOrigin = M->getOperand(4);
7323     SDValue RayDir = M->getOperand(5);
7324     SDValue RayInvDir = M->getOperand(6);
7325     SDValue TDescr = M->getOperand(7);
7326 
7327     assert(NodePtr.getValueType() == MVT::i32 ||
7328            NodePtr.getValueType() == MVT::i64);
7329     assert(RayDir.getValueType() == MVT::v4f16 ||
7330            RayDir.getValueType() == MVT::v4f32);
7331 
7332     bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
7333     bool Is64 = NodePtr.getValueType() == MVT::i64;
7334     unsigned Opcode = IsA16 ? Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16_nsa
7335                                    : AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16_nsa
7336                             : Is64 ? AMDGPU::IMAGE_BVH64_INTERSECT_RAY_nsa
7337                                    : AMDGPU::IMAGE_BVH_INTERSECT_RAY_nsa;
7338 
7339     SmallVector<SDValue, 16> Ops;
7340 
7341     auto packLanes = [&DAG, &Ops, &DL] (SDValue Op, bool IsAligned) {
7342       SmallVector<SDValue, 3> Lanes;
7343       DAG.ExtractVectorElements(Op, Lanes, 0, 3);
7344       if (Lanes[0].getValueSizeInBits() == 32) {
7345         for (unsigned I = 0; I < 3; ++I)
7346           Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
7347       } else {
7348         if (IsAligned) {
7349           Ops.push_back(
7350             DAG.getBitcast(MVT::i32,
7351                            DAG.getBuildVector(MVT::v2f16, DL,
7352                                               { Lanes[0], Lanes[1] })));
7353           Ops.push_back(Lanes[2]);
7354         } else {
7355           SDValue Elt0 = Ops.pop_back_val();
7356           Ops.push_back(
7357             DAG.getBitcast(MVT::i32,
7358                            DAG.getBuildVector(MVT::v2f16, DL,
7359                                               { Elt0, Lanes[0] })));
7360           Ops.push_back(
7361             DAG.getBitcast(MVT::i32,
7362                            DAG.getBuildVector(MVT::v2f16, DL,
7363                                               { Lanes[1], Lanes[2] })));
7364         }
7365       }
7366     };
7367 
7368     if (Is64)
7369       DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0, 2);
7370     else
7371       Ops.push_back(NodePtr);
7372 
7373     Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
7374     packLanes(RayOrigin, true);
7375     packLanes(RayDir, true);
7376     packLanes(RayInvDir, false);
7377     Ops.push_back(TDescr);
7378     if (IsA16)
7379       Ops.push_back(DAG.getTargetConstant(1, DL, MVT::i1));
7380     Ops.push_back(M->getChain());
7381 
7382     auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
7383     MachineMemOperand *MemRef = M->getMemOperand();
7384     DAG.setNodeMemRefs(NewNode, {MemRef});
7385     return SDValue(NewNode, 0);
7386   }
7387   default:
7388     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7389             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7390       return lowerImage(Op, ImageDimIntr, DAG, true);
7391 
7392     return SDValue();
7393   }
7394 }
7395 
7396 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7397 // dwordx4 if on SI.
7398 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7399                                               SDVTList VTList,
7400                                               ArrayRef<SDValue> Ops, EVT MemVT,
7401                                               MachineMemOperand *MMO,
7402                                               SelectionDAG &DAG) const {
7403   EVT VT = VTList.VTs[0];
7404   EVT WidenedVT = VT;
7405   EVT WidenedMemVT = MemVT;
7406   if (!Subtarget->hasDwordx3LoadStores() &&
7407       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7408     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7409                                  WidenedVT.getVectorElementType(), 4);
7410     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7411                                     WidenedMemVT.getVectorElementType(), 4);
7412     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7413   }
7414 
7415   assert(VTList.NumVTs == 2);
7416   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7417 
7418   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7419                                        WidenedMemVT, MMO);
7420   if (WidenedVT != VT) {
7421     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7422                                DAG.getVectorIdxConstant(0, DL));
7423     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7424   }
7425   return NewOp;
7426 }
7427 
7428 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
7429                                          bool ImageStore) const {
7430   EVT StoreVT = VData.getValueType();
7431 
7432   // No change for f16 and legal vector D16 types.
7433   if (!StoreVT.isVector())
7434     return VData;
7435 
7436   SDLoc DL(VData);
7437   unsigned NumElements = StoreVT.getVectorNumElements();
7438 
7439   if (Subtarget->hasUnpackedD16VMem()) {
7440     // We need to unpack the packed data to store.
7441     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7442     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7443 
7444     EVT EquivStoreVT =
7445         EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
7446     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7447     return DAG.UnrollVectorOp(ZExt.getNode());
7448   } else if (NumElements == 3) {
7449     EVT IntStoreVT =
7450         EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
7451     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7452 
7453     EVT WidenedStoreVT = EVT::getVectorVT(
7454         *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
7455     EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
7456                                          WidenedStoreVT.getStoreSizeInBits());
7457     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
7458     return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
7459   }
7460 
7461   // The sq block of gfx8.1 does not estimate register use correctly for d16
7462   // image store instructions. The data operand is computed as if it were not a
7463   // d16 image instruction.
7464   if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
7465     // Bitcast to i16
7466     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7467     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7468 
7469     // Decompose into scalars
7470     SmallVector<SDValue, 4> Elts;
7471     DAG.ExtractVectorElements(IntVData, Elts);
7472 
7473     // Group pairs of i16 into v2i16 and bitcast to i32
7474     SmallVector<SDValue, 4> PackedElts;
7475     for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
7476       SDValue Pair =
7477           DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
7478       SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
7479       PackedElts.push_back(IntPair);
7480     }
7481 
7482     // Pad using UNDEF
7483     PackedElts.resize(PackedElts.size() * 2, DAG.getUNDEF(MVT::i32));
7484 
7485     // Build final vector
7486     EVT VecVT =
7487         EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
7488     return DAG.getBuildVector(VecVT, DL, PackedElts);
7489   }
7490 
7491   assert(isTypeLegal(StoreVT));
7492   return VData;
7493 }
7494 
7495 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7496                                               SelectionDAG &DAG) const {
7497   SDLoc DL(Op);
7498   SDValue Chain = Op.getOperand(0);
7499   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7500   MachineFunction &MF = DAG.getMachineFunction();
7501 
7502   switch (IntrinsicID) {
7503   case Intrinsic::amdgcn_exp_compr: {
7504     SDValue Src0 = Op.getOperand(4);
7505     SDValue Src1 = Op.getOperand(5);
7506     // Hack around illegal type on SI by directly selecting it.
7507     if (isTypeLegal(Src0.getValueType()))
7508       return SDValue();
7509 
7510     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7511     SDValue Undef = DAG.getUNDEF(MVT::f32);
7512     const SDValue Ops[] = {
7513       Op.getOperand(2), // tgt
7514       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7515       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7516       Undef, // src2
7517       Undef, // src3
7518       Op.getOperand(7), // vm
7519       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7520       Op.getOperand(3), // en
7521       Op.getOperand(0) // Chain
7522     };
7523 
7524     unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7525     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7526   }
7527   case Intrinsic::amdgcn_s_barrier: {
7528     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7529       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7530       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7531       if (WGSize <= ST.getWavefrontSize())
7532         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7533                                           Op.getOperand(0)), 0);
7534     }
7535     return SDValue();
7536   };
7537   case Intrinsic::amdgcn_tbuffer_store: {
7538     SDValue VData = Op.getOperand(2);
7539     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7540     if (IsD16)
7541       VData = handleD16VData(VData, DAG);
7542     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7543     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7544     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7545     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7546     unsigned IdxEn = 1;
7547     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7548       IdxEn = Idx->getZExtValue() != 0;
7549     SDValue Ops[] = {
7550       Chain,
7551       VData,             // vdata
7552       Op.getOperand(3),  // rsrc
7553       Op.getOperand(4),  // vindex
7554       Op.getOperand(5),  // voffset
7555       Op.getOperand(6),  // soffset
7556       Op.getOperand(7),  // offset
7557       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7558       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7559       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
7560     };
7561     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7562                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7563     MemSDNode *M = cast<MemSDNode>(Op);
7564     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7565                                    M->getMemoryVT(), M->getMemOperand());
7566   }
7567 
7568   case Intrinsic::amdgcn_struct_tbuffer_store: {
7569     SDValue VData = Op.getOperand(2);
7570     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7571     if (IsD16)
7572       VData = handleD16VData(VData, DAG);
7573     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7574     SDValue Ops[] = {
7575       Chain,
7576       VData,             // vdata
7577       Op.getOperand(3),  // rsrc
7578       Op.getOperand(4),  // vindex
7579       Offsets.first,     // voffset
7580       Op.getOperand(6),  // soffset
7581       Offsets.second,    // offset
7582       Op.getOperand(7),  // format
7583       Op.getOperand(8),  // cachepolicy, swizzled buffer
7584       DAG.getTargetConstant(1, DL, MVT::i1), // idexen
7585     };
7586     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7587                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7588     MemSDNode *M = cast<MemSDNode>(Op);
7589     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7590                                    M->getMemoryVT(), M->getMemOperand());
7591   }
7592 
7593   case Intrinsic::amdgcn_raw_tbuffer_store: {
7594     SDValue VData = Op.getOperand(2);
7595     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7596     if (IsD16)
7597       VData = handleD16VData(VData, DAG);
7598     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7599     SDValue Ops[] = {
7600       Chain,
7601       VData,             // vdata
7602       Op.getOperand(3),  // rsrc
7603       DAG.getConstant(0, DL, MVT::i32), // vindex
7604       Offsets.first,     // voffset
7605       Op.getOperand(5),  // soffset
7606       Offsets.second,    // offset
7607       Op.getOperand(6),  // format
7608       Op.getOperand(7),  // cachepolicy, swizzled buffer
7609       DAG.getTargetConstant(0, DL, MVT::i1), // idexen
7610     };
7611     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7612                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7613     MemSDNode *M = cast<MemSDNode>(Op);
7614     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7615                                    M->getMemoryVT(), M->getMemOperand());
7616   }
7617 
7618   case Intrinsic::amdgcn_buffer_store:
7619   case Intrinsic::amdgcn_buffer_store_format: {
7620     SDValue VData = Op.getOperand(2);
7621     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7622     if (IsD16)
7623       VData = handleD16VData(VData, DAG);
7624     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7625     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7626     unsigned IdxEn = 1;
7627     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7628       IdxEn = Idx->getZExtValue() != 0;
7629     SDValue Ops[] = {
7630       Chain,
7631       VData,
7632       Op.getOperand(3), // rsrc
7633       Op.getOperand(4), // vindex
7634       SDValue(), // voffset -- will be set by setBufferOffsets
7635       SDValue(), // soffset -- will be set by setBufferOffsets
7636       SDValue(), // offset -- will be set by setBufferOffsets
7637       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7638       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7639     };
7640     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7641     // We don't know the offset if vindex is non-zero, so clear it.
7642     if (IdxEn)
7643       Offset = 0;
7644     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7645                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7646     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7647     MemSDNode *M = cast<MemSDNode>(Op);
7648     M->getMemOperand()->setOffset(Offset);
7649 
7650     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7651     EVT VDataType = VData.getValueType().getScalarType();
7652     if (VDataType == MVT::i8 || VDataType == MVT::i16)
7653       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7654 
7655     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7656                                    M->getMemoryVT(), M->getMemOperand());
7657   }
7658 
7659   case Intrinsic::amdgcn_raw_buffer_store:
7660   case Intrinsic::amdgcn_raw_buffer_store_format: {
7661     const bool IsFormat =
7662         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7663 
7664     SDValue VData = Op.getOperand(2);
7665     EVT VDataVT = VData.getValueType();
7666     EVT EltType = VDataVT.getScalarType();
7667     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7668     if (IsD16) {
7669       VData = handleD16VData(VData, DAG);
7670       VDataVT = VData.getValueType();
7671     }
7672 
7673     if (!isTypeLegal(VDataVT)) {
7674       VData =
7675           DAG.getNode(ISD::BITCAST, DL,
7676                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7677     }
7678 
7679     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7680     SDValue Ops[] = {
7681       Chain,
7682       VData,
7683       Op.getOperand(3), // rsrc
7684       DAG.getConstant(0, DL, MVT::i32), // vindex
7685       Offsets.first,    // voffset
7686       Op.getOperand(5), // soffset
7687       Offsets.second,   // offset
7688       Op.getOperand(6), // cachepolicy, swizzled buffer
7689       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7690     };
7691     unsigned Opc =
7692         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7693     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7694     MemSDNode *M = cast<MemSDNode>(Op);
7695     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7696 
7697     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7698     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7699       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7700 
7701     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7702                                    M->getMemoryVT(), M->getMemOperand());
7703   }
7704 
7705   case Intrinsic::amdgcn_struct_buffer_store:
7706   case Intrinsic::amdgcn_struct_buffer_store_format: {
7707     const bool IsFormat =
7708         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7709 
7710     SDValue VData = Op.getOperand(2);
7711     EVT VDataVT = VData.getValueType();
7712     EVT EltType = VDataVT.getScalarType();
7713     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7714 
7715     if (IsD16) {
7716       VData = handleD16VData(VData, DAG);
7717       VDataVT = VData.getValueType();
7718     }
7719 
7720     if (!isTypeLegal(VDataVT)) {
7721       VData =
7722           DAG.getNode(ISD::BITCAST, DL,
7723                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7724     }
7725 
7726     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7727     SDValue Ops[] = {
7728       Chain,
7729       VData,
7730       Op.getOperand(3), // rsrc
7731       Op.getOperand(4), // vindex
7732       Offsets.first,    // voffset
7733       Op.getOperand(6), // soffset
7734       Offsets.second,   // offset
7735       Op.getOperand(7), // cachepolicy, swizzled buffer
7736       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7737     };
7738     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7739                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7740     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7741     MemSDNode *M = cast<MemSDNode>(Op);
7742     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7743                                                         Ops[3]));
7744 
7745     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7746     EVT VDataType = VData.getValueType().getScalarType();
7747     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7748       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7749 
7750     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7751                                    M->getMemoryVT(), M->getMemOperand());
7752   }
7753   case Intrinsic::amdgcn_end_cf:
7754     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7755                                       Op->getOperand(2), Chain), 0);
7756 
7757   default: {
7758     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7759             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7760       return lowerImage(Op, ImageDimIntr, DAG, true);
7761 
7762     return Op;
7763   }
7764   }
7765 }
7766 
7767 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7768 // offset (the offset that is included in bounds checking and swizzling, to be
7769 // split between the instruction's voffset and immoffset fields) and soffset
7770 // (the offset that is excluded from bounds checking and swizzling, to go in
7771 // the instruction's soffset field).  This function takes the first kind of
7772 // offset and figures out how to split it between voffset and immoffset.
7773 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7774     SDValue Offset, SelectionDAG &DAG) const {
7775   SDLoc DL(Offset);
7776   const unsigned MaxImm = 4095;
7777   SDValue N0 = Offset;
7778   ConstantSDNode *C1 = nullptr;
7779 
7780   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7781     N0 = SDValue();
7782   else if (DAG.isBaseWithConstantOffset(N0)) {
7783     C1 = cast<ConstantSDNode>(N0.getOperand(1));
7784     N0 = N0.getOperand(0);
7785   }
7786 
7787   if (C1) {
7788     unsigned ImmOffset = C1->getZExtValue();
7789     // If the immediate value is too big for the immoffset field, put the value
7790     // and -4096 into the immoffset field so that the value that is copied/added
7791     // for the voffset field is a multiple of 4096, and it stands more chance
7792     // of being CSEd with the copy/add for another similar load/store.
7793     // However, do not do that rounding down to a multiple of 4096 if that is a
7794     // negative number, as it appears to be illegal to have a negative offset
7795     // in the vgpr, even if adding the immediate offset makes it positive.
7796     unsigned Overflow = ImmOffset & ~MaxImm;
7797     ImmOffset -= Overflow;
7798     if ((int32_t)Overflow < 0) {
7799       Overflow += ImmOffset;
7800       ImmOffset = 0;
7801     }
7802     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7803     if (Overflow) {
7804       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7805       if (!N0)
7806         N0 = OverflowVal;
7807       else {
7808         SDValue Ops[] = { N0, OverflowVal };
7809         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7810       }
7811     }
7812   }
7813   if (!N0)
7814     N0 = DAG.getConstant(0, DL, MVT::i32);
7815   if (!C1)
7816     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7817   return {N0, SDValue(C1, 0)};
7818 }
7819 
7820 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7821 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7822 // pointed to by Offsets.
7823 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7824                                             SelectionDAG &DAG, SDValue *Offsets,
7825                                             Align Alignment) const {
7826   SDLoc DL(CombinedOffset);
7827   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7828     uint32_t Imm = C->getZExtValue();
7829     uint32_t SOffset, ImmOffset;
7830     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7831                                  Alignment)) {
7832       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7833       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7834       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7835       return SOffset + ImmOffset;
7836     }
7837   }
7838   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7839     SDValue N0 = CombinedOffset.getOperand(0);
7840     SDValue N1 = CombinedOffset.getOperand(1);
7841     uint32_t SOffset, ImmOffset;
7842     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7843     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7844                                                 Subtarget, Alignment)) {
7845       Offsets[0] = N0;
7846       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7847       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7848       return 0;
7849     }
7850   }
7851   Offsets[0] = CombinedOffset;
7852   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7853   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7854   return 0;
7855 }
7856 
7857 // Handle 8 bit and 16 bit buffer loads
7858 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7859                                                      EVT LoadVT, SDLoc DL,
7860                                                      ArrayRef<SDValue> Ops,
7861                                                      MemSDNode *M) const {
7862   EVT IntVT = LoadVT.changeTypeToInteger();
7863   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7864          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7865 
7866   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7867   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7868                                                Ops, IntVT,
7869                                                M->getMemOperand());
7870   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7871   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7872 
7873   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7874 }
7875 
7876 // Handle 8 bit and 16 bit buffer stores
7877 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7878                                                       EVT VDataType, SDLoc DL,
7879                                                       SDValue Ops[],
7880                                                       MemSDNode *M) const {
7881   if (VDataType == MVT::f16)
7882     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7883 
7884   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7885   Ops[1] = BufferStoreExt;
7886   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7887                                  AMDGPUISD::BUFFER_STORE_SHORT;
7888   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7889   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7890                                      M->getMemOperand());
7891 }
7892 
7893 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7894                                  ISD::LoadExtType ExtType, SDValue Op,
7895                                  const SDLoc &SL, EVT VT) {
7896   if (VT.bitsLT(Op.getValueType()))
7897     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7898 
7899   switch (ExtType) {
7900   case ISD::SEXTLOAD:
7901     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7902   case ISD::ZEXTLOAD:
7903     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7904   case ISD::EXTLOAD:
7905     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7906   case ISD::NON_EXTLOAD:
7907     return Op;
7908   }
7909 
7910   llvm_unreachable("invalid ext type");
7911 }
7912 
7913 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7914   SelectionDAG &DAG = DCI.DAG;
7915   if (Ld->getAlignment() < 4 || Ld->isDivergent())
7916     return SDValue();
7917 
7918   // FIXME: Constant loads should all be marked invariant.
7919   unsigned AS = Ld->getAddressSpace();
7920   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7921       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7922       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7923     return SDValue();
7924 
7925   // Don't do this early, since it may interfere with adjacent load merging for
7926   // illegal types. We can avoid losing alignment information for exotic types
7927   // pre-legalize.
7928   EVT MemVT = Ld->getMemoryVT();
7929   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7930       MemVT.getSizeInBits() >= 32)
7931     return SDValue();
7932 
7933   SDLoc SL(Ld);
7934 
7935   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7936          "unexpected vector extload");
7937 
7938   // TODO: Drop only high part of range.
7939   SDValue Ptr = Ld->getBasePtr();
7940   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7941                                 MVT::i32, SL, Ld->getChain(), Ptr,
7942                                 Ld->getOffset(),
7943                                 Ld->getPointerInfo(), MVT::i32,
7944                                 Ld->getAlignment(),
7945                                 Ld->getMemOperand()->getFlags(),
7946                                 Ld->getAAInfo(),
7947                                 nullptr); // Drop ranges
7948 
7949   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7950   if (MemVT.isFloatingPoint()) {
7951     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7952            "unexpected fp extload");
7953     TruncVT = MemVT.changeTypeToInteger();
7954   }
7955 
7956   SDValue Cvt = NewLoad;
7957   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7958     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7959                       DAG.getValueType(TruncVT));
7960   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7961              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7962     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7963   } else {
7964     assert(Ld->getExtensionType() == ISD::EXTLOAD);
7965   }
7966 
7967   EVT VT = Ld->getValueType(0);
7968   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7969 
7970   DCI.AddToWorklist(Cvt.getNode());
7971 
7972   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7973   // the appropriate extension from the 32-bit load.
7974   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7975   DCI.AddToWorklist(Cvt.getNode());
7976 
7977   // Handle conversion back to floating point if necessary.
7978   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7979 
7980   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7981 }
7982 
7983 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7984   SDLoc DL(Op);
7985   LoadSDNode *Load = cast<LoadSDNode>(Op);
7986   ISD::LoadExtType ExtType = Load->getExtensionType();
7987   EVT MemVT = Load->getMemoryVT();
7988 
7989   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7990     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7991       return SDValue();
7992 
7993     // FIXME: Copied from PPC
7994     // First, load into 32 bits, then truncate to 1 bit.
7995 
7996     SDValue Chain = Load->getChain();
7997     SDValue BasePtr = Load->getBasePtr();
7998     MachineMemOperand *MMO = Load->getMemOperand();
7999 
8000     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
8001 
8002     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
8003                                    BasePtr, RealMemVT, MMO);
8004 
8005     if (!MemVT.isVector()) {
8006       SDValue Ops[] = {
8007         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
8008         NewLD.getValue(1)
8009       };
8010 
8011       return DAG.getMergeValues(Ops, DL);
8012     }
8013 
8014     SmallVector<SDValue, 3> Elts;
8015     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
8016       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
8017                                 DAG.getConstant(I, DL, MVT::i32));
8018 
8019       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
8020     }
8021 
8022     SDValue Ops[] = {
8023       DAG.getBuildVector(MemVT, DL, Elts),
8024       NewLD.getValue(1)
8025     };
8026 
8027     return DAG.getMergeValues(Ops, DL);
8028   }
8029 
8030   if (!MemVT.isVector())
8031     return SDValue();
8032 
8033   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
8034          "Custom lowering for non-i32 vectors hasn't been implemented.");
8035 
8036   unsigned Alignment = Load->getAlignment();
8037   unsigned AS = Load->getAddressSpace();
8038   if (Subtarget->hasLDSMisalignedBug() &&
8039       AS == AMDGPUAS::FLAT_ADDRESS &&
8040       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
8041     return SplitVectorLoad(Op, DAG);
8042   }
8043 
8044   MachineFunction &MF = DAG.getMachineFunction();
8045   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8046   // If there is a possibilty that flat instruction access scratch memory
8047   // then we need to use the same legalization rules we use for private.
8048   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8049       !Subtarget->hasMultiDwordFlatScratchAddressing())
8050     AS = MFI->hasFlatScratchInit() ?
8051          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8052 
8053   unsigned NumElements = MemVT.getVectorNumElements();
8054 
8055   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8056       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
8057     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
8058       if (MemVT.isPow2VectorType())
8059         return SDValue();
8060       if (NumElements == 3)
8061         return WidenVectorLoad(Op, DAG);
8062       return SplitVectorLoad(Op, DAG);
8063     }
8064     // Non-uniform loads will be selected to MUBUF instructions, so they
8065     // have the same legalization requirements as global and private
8066     // loads.
8067     //
8068   }
8069 
8070   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8071       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8072       AS == AMDGPUAS::GLOBAL_ADDRESS) {
8073     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
8074         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
8075         Alignment >= 4 && NumElements < 32) {
8076       if (MemVT.isPow2VectorType())
8077         return SDValue();
8078       if (NumElements == 3)
8079         return WidenVectorLoad(Op, DAG);
8080       return SplitVectorLoad(Op, DAG);
8081     }
8082     // Non-uniform loads will be selected to MUBUF instructions, so they
8083     // have the same legalization requirements as global and private
8084     // loads.
8085     //
8086   }
8087   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
8088       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
8089       AS == AMDGPUAS::GLOBAL_ADDRESS ||
8090       AS == AMDGPUAS::FLAT_ADDRESS) {
8091     if (NumElements > 4)
8092       return SplitVectorLoad(Op, DAG);
8093     // v3 loads not supported on SI.
8094     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8095       return WidenVectorLoad(Op, DAG);
8096     // v3 and v4 loads are supported for private and global memory.
8097     return SDValue();
8098   }
8099   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8100     // Depending on the setting of the private_element_size field in the
8101     // resource descriptor, we can only make private accesses up to a certain
8102     // size.
8103     switch (Subtarget->getMaxPrivateElementSize()) {
8104     case 4: {
8105       SDValue Ops[2];
8106       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
8107       return DAG.getMergeValues(Ops, DL);
8108     }
8109     case 8:
8110       if (NumElements > 2)
8111         return SplitVectorLoad(Op, DAG);
8112       return SDValue();
8113     case 16:
8114       // Same as global/flat
8115       if (NumElements > 4)
8116         return SplitVectorLoad(Op, DAG);
8117       // v3 loads not supported on SI.
8118       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8119         return WidenVectorLoad(Op, DAG);
8120       return SDValue();
8121     default:
8122       llvm_unreachable("unsupported private_element_size");
8123     }
8124   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8125     // Use ds_read_b128 or ds_read_b96 when possible.
8126     if (Subtarget->hasDS96AndDS128() &&
8127         ((Subtarget->useDS128() && MemVT.getStoreSize() == 16) ||
8128          MemVT.getStoreSize() == 12) &&
8129         allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
8130                                            Load->getAlign()))
8131       return SDValue();
8132 
8133     if (NumElements > 2)
8134       return SplitVectorLoad(Op, DAG);
8135 
8136     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8137     // address is negative, then the instruction is incorrectly treated as
8138     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8139     // loads here to avoid emitting ds_read2_b32. We may re-combine the
8140     // load later in the SILoadStoreOptimizer.
8141     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
8142         NumElements == 2 && MemVT.getStoreSize() == 8 &&
8143         Load->getAlignment() < 8) {
8144       return SplitVectorLoad(Op, DAG);
8145     }
8146   }
8147 
8148   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8149                                       MemVT, *Load->getMemOperand())) {
8150     SDValue Ops[2];
8151     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
8152     return DAG.getMergeValues(Ops, DL);
8153   }
8154 
8155   return SDValue();
8156 }
8157 
8158 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8159   EVT VT = Op.getValueType();
8160   assert(VT.getSizeInBits() == 64);
8161 
8162   SDLoc DL(Op);
8163   SDValue Cond = Op.getOperand(0);
8164 
8165   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
8166   SDValue One = DAG.getConstant(1, DL, MVT::i32);
8167 
8168   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8169   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
8170 
8171   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
8172   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
8173 
8174   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
8175 
8176   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
8177   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
8178 
8179   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
8180 
8181   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
8182   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
8183 }
8184 
8185 // Catch division cases where we can use shortcuts with rcp and rsq
8186 // instructions.
8187 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
8188                                               SelectionDAG &DAG) const {
8189   SDLoc SL(Op);
8190   SDValue LHS = Op.getOperand(0);
8191   SDValue RHS = Op.getOperand(1);
8192   EVT VT = Op.getValueType();
8193   const SDNodeFlags Flags = Op->getFlags();
8194 
8195   bool AllowInaccurateRcp = DAG.getTarget().Options.UnsafeFPMath ||
8196                             Flags.hasApproximateFuncs();
8197 
8198   // Without !fpmath accuracy information, we can't do more because we don't
8199   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8200   if (!AllowInaccurateRcp)
8201     return SDValue();
8202 
8203   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8204     if (CLHS->isExactlyValue(1.0)) {
8205       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8206       // the CI documentation has a worst case error of 1 ulp.
8207       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8208       // use it as long as we aren't trying to use denormals.
8209       //
8210       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8211 
8212       // 1.0 / sqrt(x) -> rsq(x)
8213 
8214       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8215       // error seems really high at 2^29 ULP.
8216       if (RHS.getOpcode() == ISD::FSQRT)
8217         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8218 
8219       // 1.0 / x -> rcp(x)
8220       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8221     }
8222 
8223     // Same as for 1.0, but expand the sign out of the constant.
8224     if (CLHS->isExactlyValue(-1.0)) {
8225       // -1.0 / x -> rcp (fneg x)
8226       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8227       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8228     }
8229   }
8230 
8231   // Turn into multiply by the reciprocal.
8232   // x / y -> x * (1.0 / y)
8233   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8234   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8235 }
8236 
8237 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8238                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8239                           SDNodeFlags Flags) {
8240   if (GlueChain->getNumValues() <= 1) {
8241     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8242   }
8243 
8244   assert(GlueChain->getNumValues() == 3);
8245 
8246   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8247   switch (Opcode) {
8248   default: llvm_unreachable("no chain equivalent for opcode");
8249   case ISD::FMUL:
8250     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8251     break;
8252   }
8253 
8254   return DAG.getNode(Opcode, SL, VTList,
8255                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8256                      Flags);
8257 }
8258 
8259 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8260                            EVT VT, SDValue A, SDValue B, SDValue C,
8261                            SDValue GlueChain, SDNodeFlags Flags) {
8262   if (GlueChain->getNumValues() <= 1) {
8263     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8264   }
8265 
8266   assert(GlueChain->getNumValues() == 3);
8267 
8268   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8269   switch (Opcode) {
8270   default: llvm_unreachable("no chain equivalent for opcode");
8271   case ISD::FMA:
8272     Opcode = AMDGPUISD::FMA_W_CHAIN;
8273     break;
8274   }
8275 
8276   return DAG.getNode(Opcode, SL, VTList,
8277                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8278                      Flags);
8279 }
8280 
8281 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8282   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8283     return FastLowered;
8284 
8285   SDLoc SL(Op);
8286   SDValue Src0 = Op.getOperand(0);
8287   SDValue Src1 = Op.getOperand(1);
8288 
8289   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8290   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8291 
8292   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8293   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8294 
8295   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8296   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8297 
8298   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8299 }
8300 
8301 // Faster 2.5 ULP division that does not support denormals.
8302 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8303   SDLoc SL(Op);
8304   SDValue LHS = Op.getOperand(1);
8305   SDValue RHS = Op.getOperand(2);
8306 
8307   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8308 
8309   const APFloat K0Val(BitsToFloat(0x6f800000));
8310   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8311 
8312   const APFloat K1Val(BitsToFloat(0x2f800000));
8313   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8314 
8315   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8316 
8317   EVT SetCCVT =
8318     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8319 
8320   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8321 
8322   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8323 
8324   // TODO: Should this propagate fast-math-flags?
8325   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8326 
8327   // rcp does not support denormals.
8328   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8329 
8330   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8331 
8332   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8333 }
8334 
8335 // Returns immediate value for setting the F32 denorm mode when using the
8336 // S_DENORM_MODE instruction.
8337 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8338                                           const SDLoc &SL, const GCNSubtarget *ST) {
8339   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8340   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8341                                 ? FP_DENORM_FLUSH_NONE
8342                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8343 
8344   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8345   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8346 }
8347 
8348 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8349   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8350     return FastLowered;
8351 
8352   // The selection matcher assumes anything with a chain selecting to a
8353   // mayRaiseFPException machine instruction. Since we're introducing a chain
8354   // here, we need to explicitly report nofpexcept for the regular fdiv
8355   // lowering.
8356   SDNodeFlags Flags = Op->getFlags();
8357   Flags.setNoFPExcept(true);
8358 
8359   SDLoc SL(Op);
8360   SDValue LHS = Op.getOperand(0);
8361   SDValue RHS = Op.getOperand(1);
8362 
8363   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8364 
8365   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8366 
8367   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8368                                           {RHS, RHS, LHS}, Flags);
8369   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8370                                         {LHS, RHS, LHS}, Flags);
8371 
8372   // Denominator is scaled to not be denormal, so using rcp is ok.
8373   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8374                                   DenominatorScaled, Flags);
8375   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8376                                      DenominatorScaled, Flags);
8377 
8378   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8379                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8380                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8381   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8382 
8383   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8384 
8385   if (!HasFP32Denormals) {
8386     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8387     // lowering. The chain dependence is insufficient, and we need glue. We do
8388     // not need the glue variants in a strictfp function.
8389 
8390     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8391 
8392     SDNode *EnableDenorm;
8393     if (Subtarget->hasDenormModeInst()) {
8394       const SDValue EnableDenormValue =
8395           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8396 
8397       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8398                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8399     } else {
8400       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8401                                                         SL, MVT::i32);
8402       EnableDenorm =
8403           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8404                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8405     }
8406 
8407     SDValue Ops[3] = {
8408       NegDivScale0,
8409       SDValue(EnableDenorm, 0),
8410       SDValue(EnableDenorm, 1)
8411     };
8412 
8413     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8414   }
8415 
8416   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8417                              ApproxRcp, One, NegDivScale0, Flags);
8418 
8419   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8420                              ApproxRcp, Fma0, Flags);
8421 
8422   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8423                            Fma1, Fma1, Flags);
8424 
8425   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8426                              NumeratorScaled, Mul, Flags);
8427 
8428   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8429                              Fma2, Fma1, Mul, Fma2, Flags);
8430 
8431   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8432                              NumeratorScaled, Fma3, Flags);
8433 
8434   if (!HasFP32Denormals) {
8435     SDNode *DisableDenorm;
8436     if (Subtarget->hasDenormModeInst()) {
8437       const SDValue DisableDenormValue =
8438           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8439 
8440       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8441                                   Fma4.getValue(1), DisableDenormValue,
8442                                   Fma4.getValue(2)).getNode();
8443     } else {
8444       const SDValue DisableDenormValue =
8445           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8446 
8447       DisableDenorm = DAG.getMachineNode(
8448           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8449           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8450     }
8451 
8452     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8453                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8454     DAG.setRoot(OutputChain);
8455   }
8456 
8457   SDValue Scale = NumeratorScaled.getValue(1);
8458   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8459                              {Fma4, Fma1, Fma3, Scale}, Flags);
8460 
8461   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8462 }
8463 
8464 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8465   if (DAG.getTarget().Options.UnsafeFPMath)
8466     return lowerFastUnsafeFDIV(Op, DAG);
8467 
8468   SDLoc SL(Op);
8469   SDValue X = Op.getOperand(0);
8470   SDValue Y = Op.getOperand(1);
8471 
8472   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8473 
8474   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8475 
8476   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8477 
8478   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8479 
8480   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8481 
8482   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8483 
8484   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8485 
8486   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8487 
8488   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8489 
8490   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8491   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8492 
8493   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8494                              NegDivScale0, Mul, DivScale1);
8495 
8496   SDValue Scale;
8497 
8498   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8499     // Workaround a hardware bug on SI where the condition output from div_scale
8500     // is not usable.
8501 
8502     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8503 
8504     // Figure out if the scale to use for div_fmas.
8505     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8506     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8507     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8508     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8509 
8510     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8511     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8512 
8513     SDValue Scale0Hi
8514       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8515     SDValue Scale1Hi
8516       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8517 
8518     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8519     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8520     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8521   } else {
8522     Scale = DivScale1.getValue(1);
8523   }
8524 
8525   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8526                              Fma4, Fma3, Mul, Scale);
8527 
8528   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8529 }
8530 
8531 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8532   EVT VT = Op.getValueType();
8533 
8534   if (VT == MVT::f32)
8535     return LowerFDIV32(Op, DAG);
8536 
8537   if (VT == MVT::f64)
8538     return LowerFDIV64(Op, DAG);
8539 
8540   if (VT == MVT::f16)
8541     return LowerFDIV16(Op, DAG);
8542 
8543   llvm_unreachable("Unexpected type for fdiv");
8544 }
8545 
8546 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8547   SDLoc DL(Op);
8548   StoreSDNode *Store = cast<StoreSDNode>(Op);
8549   EVT VT = Store->getMemoryVT();
8550 
8551   if (VT == MVT::i1) {
8552     return DAG.getTruncStore(Store->getChain(), DL,
8553        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8554        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8555   }
8556 
8557   assert(VT.isVector() &&
8558          Store->getValue().getValueType().getScalarType() == MVT::i32);
8559 
8560   unsigned AS = Store->getAddressSpace();
8561   if (Subtarget->hasLDSMisalignedBug() &&
8562       AS == AMDGPUAS::FLAT_ADDRESS &&
8563       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8564     return SplitVectorStore(Op, DAG);
8565   }
8566 
8567   MachineFunction &MF = DAG.getMachineFunction();
8568   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8569   // If there is a possibilty that flat instruction access scratch memory
8570   // then we need to use the same legalization rules we use for private.
8571   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8572       !Subtarget->hasMultiDwordFlatScratchAddressing())
8573     AS = MFI->hasFlatScratchInit() ?
8574          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8575 
8576   unsigned NumElements = VT.getVectorNumElements();
8577   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8578       AS == AMDGPUAS::FLAT_ADDRESS) {
8579     if (NumElements > 4)
8580       return SplitVectorStore(Op, DAG);
8581     // v3 stores not supported on SI.
8582     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8583       return SplitVectorStore(Op, DAG);
8584 
8585     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8586                                         VT, *Store->getMemOperand()))
8587       return expandUnalignedStore(Store, DAG);
8588 
8589     return SDValue();
8590   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8591     switch (Subtarget->getMaxPrivateElementSize()) {
8592     case 4:
8593       return scalarizeVectorStore(Store, DAG);
8594     case 8:
8595       if (NumElements > 2)
8596         return SplitVectorStore(Op, DAG);
8597       return SDValue();
8598     case 16:
8599       if (NumElements > 4 || NumElements == 3)
8600         return SplitVectorStore(Op, DAG);
8601       return SDValue();
8602     default:
8603       llvm_unreachable("unsupported private_element_size");
8604     }
8605   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8606     // Use ds_write_b128 or ds_write_b96 when possible.
8607     if (Subtarget->hasDS96AndDS128() &&
8608         ((Subtarget->useDS128() && VT.getStoreSize() == 16) ||
8609          (VT.getStoreSize() == 12)) &&
8610         allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
8611                                            Store->getAlign()))
8612       return SDValue();
8613 
8614     if (NumElements > 2)
8615       return SplitVectorStore(Op, DAG);
8616 
8617     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8618     // address is negative, then the instruction is incorrectly treated as
8619     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8620     // stores here to avoid emitting ds_write2_b32. We may re-combine the
8621     // store later in the SILoadStoreOptimizer.
8622     if (!Subtarget->hasUsableDSOffset() &&
8623         NumElements == 2 && VT.getStoreSize() == 8 &&
8624         Store->getAlignment() < 8) {
8625       return SplitVectorStore(Op, DAG);
8626     }
8627 
8628     if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8629                                         VT, *Store->getMemOperand())) {
8630       if (VT.isVector())
8631         return SplitVectorStore(Op, DAG);
8632       return expandUnalignedStore(Store, DAG);
8633     }
8634 
8635     return SDValue();
8636   } else {
8637     llvm_unreachable("unhandled address space");
8638   }
8639 }
8640 
8641 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8642   SDLoc DL(Op);
8643   EVT VT = Op.getValueType();
8644   SDValue Arg = Op.getOperand(0);
8645   SDValue TrigVal;
8646 
8647   // Propagate fast-math flags so that the multiply we introduce can be folded
8648   // if Arg is already the result of a multiply by constant.
8649   auto Flags = Op->getFlags();
8650 
8651   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8652 
8653   if (Subtarget->hasTrigReducedRange()) {
8654     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8655     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8656   } else {
8657     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8658   }
8659 
8660   switch (Op.getOpcode()) {
8661   case ISD::FCOS:
8662     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8663   case ISD::FSIN:
8664     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8665   default:
8666     llvm_unreachable("Wrong trig opcode");
8667   }
8668 }
8669 
8670 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8671   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8672   assert(AtomicNode->isCompareAndSwap());
8673   unsigned AS = AtomicNode->getAddressSpace();
8674 
8675   // No custom lowering required for local address space
8676   if (!AMDGPU::isFlatGlobalAddrSpace(AS))
8677     return Op;
8678 
8679   // Non-local address space requires custom lowering for atomic compare
8680   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8681   SDLoc DL(Op);
8682   SDValue ChainIn = Op.getOperand(0);
8683   SDValue Addr = Op.getOperand(1);
8684   SDValue Old = Op.getOperand(2);
8685   SDValue New = Op.getOperand(3);
8686   EVT VT = Op.getValueType();
8687   MVT SimpleVT = VT.getSimpleVT();
8688   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8689 
8690   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8691   SDValue Ops[] = { ChainIn, Addr, NewOld };
8692 
8693   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8694                                  Ops, VT, AtomicNode->getMemOperand());
8695 }
8696 
8697 //===----------------------------------------------------------------------===//
8698 // Custom DAG optimizations
8699 //===----------------------------------------------------------------------===//
8700 
8701 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8702                                                      DAGCombinerInfo &DCI) const {
8703   EVT VT = N->getValueType(0);
8704   EVT ScalarVT = VT.getScalarType();
8705   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8706     return SDValue();
8707 
8708   SelectionDAG &DAG = DCI.DAG;
8709   SDLoc DL(N);
8710 
8711   SDValue Src = N->getOperand(0);
8712   EVT SrcVT = Src.getValueType();
8713 
8714   // TODO: We could try to match extracting the higher bytes, which would be
8715   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8716   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8717   // about in practice.
8718   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8719     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8720       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8721       DCI.AddToWorklist(Cvt.getNode());
8722 
8723       // For the f16 case, fold to a cast to f32 and then cast back to f16.
8724       if (ScalarVT != MVT::f32) {
8725         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8726                           DAG.getTargetConstant(0, DL, MVT::i32));
8727       }
8728       return Cvt;
8729     }
8730   }
8731 
8732   return SDValue();
8733 }
8734 
8735 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8736 
8737 // This is a variant of
8738 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8739 //
8740 // The normal DAG combiner will do this, but only if the add has one use since
8741 // that would increase the number of instructions.
8742 //
8743 // This prevents us from seeing a constant offset that can be folded into a
8744 // memory instruction's addressing mode. If we know the resulting add offset of
8745 // a pointer can be folded into an addressing offset, we can replace the pointer
8746 // operand with the add of new constant offset. This eliminates one of the uses,
8747 // and may allow the remaining use to also be simplified.
8748 //
8749 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8750                                                unsigned AddrSpace,
8751                                                EVT MemVT,
8752                                                DAGCombinerInfo &DCI) const {
8753   SDValue N0 = N->getOperand(0);
8754   SDValue N1 = N->getOperand(1);
8755 
8756   // We only do this to handle cases where it's profitable when there are
8757   // multiple uses of the add, so defer to the standard combine.
8758   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8759       N0->hasOneUse())
8760     return SDValue();
8761 
8762   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8763   if (!CN1)
8764     return SDValue();
8765 
8766   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8767   if (!CAdd)
8768     return SDValue();
8769 
8770   // If the resulting offset is too large, we can't fold it into the addressing
8771   // mode offset.
8772   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8773   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8774 
8775   AddrMode AM;
8776   AM.HasBaseReg = true;
8777   AM.BaseOffs = Offset.getSExtValue();
8778   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8779     return SDValue();
8780 
8781   SelectionDAG &DAG = DCI.DAG;
8782   SDLoc SL(N);
8783   EVT VT = N->getValueType(0);
8784 
8785   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8786   SDValue COffset = DAG.getConstant(Offset, SL, VT);
8787 
8788   SDNodeFlags Flags;
8789   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8790                           (N0.getOpcode() == ISD::OR ||
8791                            N0->getFlags().hasNoUnsignedWrap()));
8792 
8793   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8794 }
8795 
8796 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
8797 /// by the chain and intrinsic ID. Theoretically we would also need to check the
8798 /// specific intrinsic, but they all place the pointer operand first.
8799 static unsigned getBasePtrIndex(const MemSDNode *N) {
8800   switch (N->getOpcode()) {
8801   case ISD::STORE:
8802   case ISD::INTRINSIC_W_CHAIN:
8803   case ISD::INTRINSIC_VOID:
8804     return 2;
8805   default:
8806     return 1;
8807   }
8808 }
8809 
8810 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8811                                                   DAGCombinerInfo &DCI) const {
8812   SelectionDAG &DAG = DCI.DAG;
8813   SDLoc SL(N);
8814 
8815   unsigned PtrIdx = getBasePtrIndex(N);
8816   SDValue Ptr = N->getOperand(PtrIdx);
8817 
8818   // TODO: We could also do this for multiplies.
8819   if (Ptr.getOpcode() == ISD::SHL) {
8820     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
8821                                           N->getMemoryVT(), DCI);
8822     if (NewPtr) {
8823       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8824 
8825       NewOps[PtrIdx] = NewPtr;
8826       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8827     }
8828   }
8829 
8830   return SDValue();
8831 }
8832 
8833 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8834   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8835          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8836          (Opc == ISD::XOR && Val == 0);
8837 }
8838 
8839 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8840 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8841 // integer combine opportunities since most 64-bit operations are decomposed
8842 // this way.  TODO: We won't want this for SALU especially if it is an inline
8843 // immediate.
8844 SDValue SITargetLowering::splitBinaryBitConstantOp(
8845   DAGCombinerInfo &DCI,
8846   const SDLoc &SL,
8847   unsigned Opc, SDValue LHS,
8848   const ConstantSDNode *CRHS) const {
8849   uint64_t Val = CRHS->getZExtValue();
8850   uint32_t ValLo = Lo_32(Val);
8851   uint32_t ValHi = Hi_32(Val);
8852   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8853 
8854     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8855          bitOpWithConstantIsReducible(Opc, ValHi)) ||
8856         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8857     // If we need to materialize a 64-bit immediate, it will be split up later
8858     // anyway. Avoid creating the harder to understand 64-bit immediate
8859     // materialization.
8860     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8861   }
8862 
8863   return SDValue();
8864 }
8865 
8866 // Returns true if argument is a boolean value which is not serialized into
8867 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
8868 static bool isBoolSGPR(SDValue V) {
8869   if (V.getValueType() != MVT::i1)
8870     return false;
8871   switch (V.getOpcode()) {
8872   default: break;
8873   case ISD::SETCC:
8874   case ISD::AND:
8875   case ISD::OR:
8876   case ISD::XOR:
8877   case AMDGPUISD::FP_CLASS:
8878     return true;
8879   }
8880   return false;
8881 }
8882 
8883 // If a constant has all zeroes or all ones within each byte return it.
8884 // Otherwise return 0.
8885 static uint32_t getConstantPermuteMask(uint32_t C) {
8886   // 0xff for any zero byte in the mask
8887   uint32_t ZeroByteMask = 0;
8888   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8889   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8890   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8891   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8892   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8893   if ((NonZeroByteMask & C) != NonZeroByteMask)
8894     return 0; // Partial bytes selected.
8895   return C;
8896 }
8897 
8898 // Check if a node selects whole bytes from its operand 0 starting at a byte
8899 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8900 // or -1 if not succeeded.
8901 // Note byte select encoding:
8902 // value 0-3 selects corresponding source byte;
8903 // value 0xc selects zero;
8904 // value 0xff selects 0xff.
8905 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8906   assert(V.getValueSizeInBits() == 32);
8907 
8908   if (V.getNumOperands() != 2)
8909     return ~0;
8910 
8911   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8912   if (!N1)
8913     return ~0;
8914 
8915   uint32_t C = N1->getZExtValue();
8916 
8917   switch (V.getOpcode()) {
8918   default:
8919     break;
8920   case ISD::AND:
8921     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8922       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8923     }
8924     break;
8925 
8926   case ISD::OR:
8927     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8928       return (0x03020100 & ~ConstMask) | ConstMask;
8929     }
8930     break;
8931 
8932   case ISD::SHL:
8933     if (C % 8)
8934       return ~0;
8935 
8936     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8937 
8938   case ISD::SRL:
8939     if (C % 8)
8940       return ~0;
8941 
8942     return uint32_t(0x0c0c0c0c03020100ull >> C);
8943   }
8944 
8945   return ~0;
8946 }
8947 
8948 SDValue SITargetLowering::performAndCombine(SDNode *N,
8949                                             DAGCombinerInfo &DCI) const {
8950   if (DCI.isBeforeLegalize())
8951     return SDValue();
8952 
8953   SelectionDAG &DAG = DCI.DAG;
8954   EVT VT = N->getValueType(0);
8955   SDValue LHS = N->getOperand(0);
8956   SDValue RHS = N->getOperand(1);
8957 
8958 
8959   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8960   if (VT == MVT::i64 && CRHS) {
8961     if (SDValue Split
8962         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8963       return Split;
8964   }
8965 
8966   if (CRHS && VT == MVT::i32) {
8967     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8968     // nb = number of trailing zeroes in mask
8969     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8970     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8971     uint64_t Mask = CRHS->getZExtValue();
8972     unsigned Bits = countPopulation(Mask);
8973     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8974         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8975       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8976         unsigned Shift = CShift->getZExtValue();
8977         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
8978         unsigned Offset = NB + Shift;
8979         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
8980           SDLoc SL(N);
8981           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
8982                                     LHS->getOperand(0),
8983                                     DAG.getConstant(Offset, SL, MVT::i32),
8984                                     DAG.getConstant(Bits, SL, MVT::i32));
8985           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8986           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
8987                                     DAG.getValueType(NarrowVT));
8988           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
8989                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
8990           return Shl;
8991         }
8992       }
8993     }
8994 
8995     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8996     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8997         isa<ConstantSDNode>(LHS.getOperand(2))) {
8998       uint32_t Sel = getConstantPermuteMask(Mask);
8999       if (!Sel)
9000         return SDValue();
9001 
9002       // Select 0xc for all zero bytes
9003       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
9004       SDLoc DL(N);
9005       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9006                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9007     }
9008   }
9009 
9010   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
9011   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
9012   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
9013     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9014     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
9015 
9016     SDValue X = LHS.getOperand(0);
9017     SDValue Y = RHS.getOperand(0);
9018     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
9019       return SDValue();
9020 
9021     if (LCC == ISD::SETO) {
9022       if (X != LHS.getOperand(1))
9023         return SDValue();
9024 
9025       if (RCC == ISD::SETUNE) {
9026         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
9027         if (!C1 || !C1->isInfinity() || C1->isNegative())
9028           return SDValue();
9029 
9030         const uint32_t Mask = SIInstrFlags::N_NORMAL |
9031                               SIInstrFlags::N_SUBNORMAL |
9032                               SIInstrFlags::N_ZERO |
9033                               SIInstrFlags::P_ZERO |
9034                               SIInstrFlags::P_SUBNORMAL |
9035                               SIInstrFlags::P_NORMAL;
9036 
9037         static_assert(((~(SIInstrFlags::S_NAN |
9038                           SIInstrFlags::Q_NAN |
9039                           SIInstrFlags::N_INFINITY |
9040                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
9041                       "mask not equal");
9042 
9043         SDLoc DL(N);
9044         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9045                            X, DAG.getConstant(Mask, DL, MVT::i32));
9046       }
9047     }
9048   }
9049 
9050   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
9051     std::swap(LHS, RHS);
9052 
9053   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9054       RHS.hasOneUse()) {
9055     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
9056     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
9057     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
9058     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9059     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
9060         (RHS.getOperand(0) == LHS.getOperand(0) &&
9061          LHS.getOperand(0) == LHS.getOperand(1))) {
9062       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
9063       unsigned NewMask = LCC == ISD::SETO ?
9064         Mask->getZExtValue() & ~OrdMask :
9065         Mask->getZExtValue() & OrdMask;
9066 
9067       SDLoc DL(N);
9068       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
9069                          DAG.getConstant(NewMask, DL, MVT::i32));
9070     }
9071   }
9072 
9073   if (VT == MVT::i32 &&
9074       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
9075     // and x, (sext cc from i1) => select cc, x, 0
9076     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
9077       std::swap(LHS, RHS);
9078     if (isBoolSGPR(RHS.getOperand(0)))
9079       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
9080                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
9081   }
9082 
9083   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9084   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9085   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9086       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
9087     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9088     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9089     if (LHSMask != ~0u && RHSMask != ~0u) {
9090       // Canonicalize the expression in an attempt to have fewer unique masks
9091       // and therefore fewer registers used to hold the masks.
9092       if (LHSMask > RHSMask) {
9093         std::swap(LHSMask, RHSMask);
9094         std::swap(LHS, RHS);
9095       }
9096 
9097       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9098       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9099       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9100       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9101 
9102       // Check of we need to combine values from two sources within a byte.
9103       if (!(LHSUsedLanes & RHSUsedLanes) &&
9104           // If we select high and lower word keep it for SDWA.
9105           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9106           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9107         // Each byte in each mask is either selector mask 0-3, or has higher
9108         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
9109         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
9110         // mask which is not 0xff wins. By anding both masks we have a correct
9111         // result except that 0x0c shall be corrected to give 0x0c only.
9112         uint32_t Mask = LHSMask & RHSMask;
9113         for (unsigned I = 0; I < 32; I += 8) {
9114           uint32_t ByteSel = 0xff << I;
9115           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
9116             Mask &= (0x0c << I) & 0xffffffff;
9117         }
9118 
9119         // Add 4 to each active LHS lane. It will not affect any existing 0xff
9120         // or 0x0c.
9121         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
9122         SDLoc DL(N);
9123 
9124         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9125                            LHS.getOperand(0), RHS.getOperand(0),
9126                            DAG.getConstant(Sel, DL, MVT::i32));
9127       }
9128     }
9129   }
9130 
9131   return SDValue();
9132 }
9133 
9134 SDValue SITargetLowering::performOrCombine(SDNode *N,
9135                                            DAGCombinerInfo &DCI) const {
9136   SelectionDAG &DAG = DCI.DAG;
9137   SDValue LHS = N->getOperand(0);
9138   SDValue RHS = N->getOperand(1);
9139 
9140   EVT VT = N->getValueType(0);
9141   if (VT == MVT::i1) {
9142     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
9143     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
9144         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
9145       SDValue Src = LHS.getOperand(0);
9146       if (Src != RHS.getOperand(0))
9147         return SDValue();
9148 
9149       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
9150       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
9151       if (!CLHS || !CRHS)
9152         return SDValue();
9153 
9154       // Only 10 bits are used.
9155       static const uint32_t MaxMask = 0x3ff;
9156 
9157       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
9158       SDLoc DL(N);
9159       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
9160                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
9161     }
9162 
9163     return SDValue();
9164   }
9165 
9166   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
9167   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
9168       LHS.getOpcode() == AMDGPUISD::PERM &&
9169       isa<ConstantSDNode>(LHS.getOperand(2))) {
9170     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
9171     if (!Sel)
9172       return SDValue();
9173 
9174     Sel |= LHS.getConstantOperandVal(2);
9175     SDLoc DL(N);
9176     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
9177                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
9178   }
9179 
9180   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
9181   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9182   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
9183       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
9184     uint32_t LHSMask = getPermuteMask(DAG, LHS);
9185     uint32_t RHSMask = getPermuteMask(DAG, RHS);
9186     if (LHSMask != ~0u && RHSMask != ~0u) {
9187       // Canonicalize the expression in an attempt to have fewer unique masks
9188       // and therefore fewer registers used to hold the masks.
9189       if (LHSMask > RHSMask) {
9190         std::swap(LHSMask, RHSMask);
9191         std::swap(LHS, RHS);
9192       }
9193 
9194       // Select 0xc for each lane used from source operand. Zero has 0xc mask
9195       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
9196       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9197       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
9198 
9199       // Check of we need to combine values from two sources within a byte.
9200       if (!(LHSUsedLanes & RHSUsedLanes) &&
9201           // If we select high and lower word keep it for SDWA.
9202           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
9203           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
9204         // Kill zero bytes selected by other mask. Zero value is 0xc.
9205         LHSMask &= ~RHSUsedLanes;
9206         RHSMask &= ~LHSUsedLanes;
9207         // Add 4 to each active LHS lane
9208         LHSMask |= LHSUsedLanes & 0x04040404;
9209         // Combine masks
9210         uint32_t Sel = LHSMask | RHSMask;
9211         SDLoc DL(N);
9212 
9213         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
9214                            LHS.getOperand(0), RHS.getOperand(0),
9215                            DAG.getConstant(Sel, DL, MVT::i32));
9216       }
9217     }
9218   }
9219 
9220   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9221     return SDValue();
9222 
9223   // TODO: This could be a generic combine with a predicate for extracting the
9224   // high half of an integer being free.
9225 
9226   // (or i64:x, (zero_extend i32:y)) ->
9227   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9228   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9229       RHS.getOpcode() != ISD::ZERO_EXTEND)
9230     std::swap(LHS, RHS);
9231 
9232   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9233     SDValue ExtSrc = RHS.getOperand(0);
9234     EVT SrcVT = ExtSrc.getValueType();
9235     if (SrcVT == MVT::i32) {
9236       SDLoc SL(N);
9237       SDValue LowLHS, HiBits;
9238       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9239       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9240 
9241       DCI.AddToWorklist(LowOr.getNode());
9242       DCI.AddToWorklist(HiBits.getNode());
9243 
9244       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9245                                 LowOr, HiBits);
9246       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9247     }
9248   }
9249 
9250   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9251   if (CRHS) {
9252     if (SDValue Split
9253           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9254       return Split;
9255   }
9256 
9257   return SDValue();
9258 }
9259 
9260 SDValue SITargetLowering::performXorCombine(SDNode *N,
9261                                             DAGCombinerInfo &DCI) const {
9262   EVT VT = N->getValueType(0);
9263   if (VT != MVT::i64)
9264     return SDValue();
9265 
9266   SDValue LHS = N->getOperand(0);
9267   SDValue RHS = N->getOperand(1);
9268 
9269   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9270   if (CRHS) {
9271     if (SDValue Split
9272           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9273       return Split;
9274   }
9275 
9276   return SDValue();
9277 }
9278 
9279 // Instructions that will be lowered with a final instruction that zeros the
9280 // high result bits.
9281 // XXX - probably only need to list legal operations.
9282 static bool fp16SrcZerosHighBits(unsigned Opc) {
9283   switch (Opc) {
9284   case ISD::FADD:
9285   case ISD::FSUB:
9286   case ISD::FMUL:
9287   case ISD::FDIV:
9288   case ISD::FREM:
9289   case ISD::FMA:
9290   case ISD::FMAD:
9291   case ISD::FCANONICALIZE:
9292   case ISD::FP_ROUND:
9293   case ISD::UINT_TO_FP:
9294   case ISD::SINT_TO_FP:
9295   case ISD::FABS:
9296     // Fabs is lowered to a bit operation, but it's an and which will clear the
9297     // high bits anyway.
9298   case ISD::FSQRT:
9299   case ISD::FSIN:
9300   case ISD::FCOS:
9301   case ISD::FPOWI:
9302   case ISD::FPOW:
9303   case ISD::FLOG:
9304   case ISD::FLOG2:
9305   case ISD::FLOG10:
9306   case ISD::FEXP:
9307   case ISD::FEXP2:
9308   case ISD::FCEIL:
9309   case ISD::FTRUNC:
9310   case ISD::FRINT:
9311   case ISD::FNEARBYINT:
9312   case ISD::FROUND:
9313   case ISD::FFLOOR:
9314   case ISD::FMINNUM:
9315   case ISD::FMAXNUM:
9316   case AMDGPUISD::FRACT:
9317   case AMDGPUISD::CLAMP:
9318   case AMDGPUISD::COS_HW:
9319   case AMDGPUISD::SIN_HW:
9320   case AMDGPUISD::FMIN3:
9321   case AMDGPUISD::FMAX3:
9322   case AMDGPUISD::FMED3:
9323   case AMDGPUISD::FMAD_FTZ:
9324   case AMDGPUISD::RCP:
9325   case AMDGPUISD::RSQ:
9326   case AMDGPUISD::RCP_IFLAG:
9327   case AMDGPUISD::LDEXP:
9328     return true;
9329   default:
9330     // fcopysign, select and others may be lowered to 32-bit bit operations
9331     // which don't zero the high bits.
9332     return false;
9333   }
9334 }
9335 
9336 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9337                                                    DAGCombinerInfo &DCI) const {
9338   if (!Subtarget->has16BitInsts() ||
9339       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9340     return SDValue();
9341 
9342   EVT VT = N->getValueType(0);
9343   if (VT != MVT::i32)
9344     return SDValue();
9345 
9346   SDValue Src = N->getOperand(0);
9347   if (Src.getValueType() != MVT::i16)
9348     return SDValue();
9349 
9350   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
9351   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
9352   if (Src.getOpcode() == ISD::BITCAST) {
9353     SDValue BCSrc = Src.getOperand(0);
9354     if (BCSrc.getValueType() == MVT::f16 &&
9355         fp16SrcZerosHighBits(BCSrc.getOpcode()))
9356       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
9357   }
9358 
9359   return SDValue();
9360 }
9361 
9362 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9363                                                         DAGCombinerInfo &DCI)
9364                                                         const {
9365   SDValue Src = N->getOperand(0);
9366   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9367 
9368   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9369       VTSign->getVT() == MVT::i8) ||
9370       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9371       VTSign->getVT() == MVT::i16)) &&
9372       Src.hasOneUse()) {
9373     auto *M = cast<MemSDNode>(Src);
9374     SDValue Ops[] = {
9375       Src.getOperand(0), // Chain
9376       Src.getOperand(1), // rsrc
9377       Src.getOperand(2), // vindex
9378       Src.getOperand(3), // voffset
9379       Src.getOperand(4), // soffset
9380       Src.getOperand(5), // offset
9381       Src.getOperand(6),
9382       Src.getOperand(7)
9383     };
9384     // replace with BUFFER_LOAD_BYTE/SHORT
9385     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9386                                          Src.getOperand(0).getValueType());
9387     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9388                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9389     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9390                                                           ResList,
9391                                                           Ops, M->getMemoryVT(),
9392                                                           M->getMemOperand());
9393     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9394                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9395   }
9396   return SDValue();
9397 }
9398 
9399 SDValue SITargetLowering::performClassCombine(SDNode *N,
9400                                               DAGCombinerInfo &DCI) const {
9401   SelectionDAG &DAG = DCI.DAG;
9402   SDValue Mask = N->getOperand(1);
9403 
9404   // fp_class x, 0 -> false
9405   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9406     if (CMask->isNullValue())
9407       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9408   }
9409 
9410   if (N->getOperand(0).isUndef())
9411     return DAG.getUNDEF(MVT::i1);
9412 
9413   return SDValue();
9414 }
9415 
9416 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9417                                             DAGCombinerInfo &DCI) const {
9418   EVT VT = N->getValueType(0);
9419   SDValue N0 = N->getOperand(0);
9420 
9421   if (N0.isUndef())
9422     return N0;
9423 
9424   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9425                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9426     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9427                            N->getFlags());
9428   }
9429 
9430   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9431     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9432                            N0.getOperand(0), N->getFlags());
9433   }
9434 
9435   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9436 }
9437 
9438 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9439                                        unsigned MaxDepth) const {
9440   unsigned Opcode = Op.getOpcode();
9441   if (Opcode == ISD::FCANONICALIZE)
9442     return true;
9443 
9444   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9445     auto F = CFP->getValueAPF();
9446     if (F.isNaN() && F.isSignaling())
9447       return false;
9448     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9449   }
9450 
9451   // If source is a result of another standard FP operation it is already in
9452   // canonical form.
9453   if (MaxDepth == 0)
9454     return false;
9455 
9456   switch (Opcode) {
9457   // These will flush denorms if required.
9458   case ISD::FADD:
9459   case ISD::FSUB:
9460   case ISD::FMUL:
9461   case ISD::FCEIL:
9462   case ISD::FFLOOR:
9463   case ISD::FMA:
9464   case ISD::FMAD:
9465   case ISD::FSQRT:
9466   case ISD::FDIV:
9467   case ISD::FREM:
9468   case ISD::FP_ROUND:
9469   case ISD::FP_EXTEND:
9470   case AMDGPUISD::FMUL_LEGACY:
9471   case AMDGPUISD::FMAD_FTZ:
9472   case AMDGPUISD::RCP:
9473   case AMDGPUISD::RSQ:
9474   case AMDGPUISD::RSQ_CLAMP:
9475   case AMDGPUISD::RCP_LEGACY:
9476   case AMDGPUISD::RCP_IFLAG:
9477   case AMDGPUISD::DIV_SCALE:
9478   case AMDGPUISD::DIV_FMAS:
9479   case AMDGPUISD::DIV_FIXUP:
9480   case AMDGPUISD::FRACT:
9481   case AMDGPUISD::LDEXP:
9482   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9483   case AMDGPUISD::CVT_F32_UBYTE0:
9484   case AMDGPUISD::CVT_F32_UBYTE1:
9485   case AMDGPUISD::CVT_F32_UBYTE2:
9486   case AMDGPUISD::CVT_F32_UBYTE3:
9487     return true;
9488 
9489   // It can/will be lowered or combined as a bit operation.
9490   // Need to check their input recursively to handle.
9491   case ISD::FNEG:
9492   case ISD::FABS:
9493   case ISD::FCOPYSIGN:
9494     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9495 
9496   case ISD::FSIN:
9497   case ISD::FCOS:
9498   case ISD::FSINCOS:
9499     return Op.getValueType().getScalarType() != MVT::f16;
9500 
9501   case ISD::FMINNUM:
9502   case ISD::FMAXNUM:
9503   case ISD::FMINNUM_IEEE:
9504   case ISD::FMAXNUM_IEEE:
9505   case AMDGPUISD::CLAMP:
9506   case AMDGPUISD::FMED3:
9507   case AMDGPUISD::FMAX3:
9508   case AMDGPUISD::FMIN3: {
9509     // FIXME: Shouldn't treat the generic operations different based these.
9510     // However, we aren't really required to flush the result from
9511     // minnum/maxnum..
9512 
9513     // snans will be quieted, so we only need to worry about denormals.
9514     if (Subtarget->supportsMinMaxDenormModes() ||
9515         denormalsEnabledForType(DAG, Op.getValueType()))
9516       return true;
9517 
9518     // Flushing may be required.
9519     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9520     // targets need to check their input recursively.
9521 
9522     // FIXME: Does this apply with clamp? It's implemented with max.
9523     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9524       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9525         return false;
9526     }
9527 
9528     return true;
9529   }
9530   case ISD::SELECT: {
9531     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9532            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9533   }
9534   case ISD::BUILD_VECTOR: {
9535     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9536       SDValue SrcOp = Op.getOperand(i);
9537       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9538         return false;
9539     }
9540 
9541     return true;
9542   }
9543   case ISD::EXTRACT_VECTOR_ELT:
9544   case ISD::EXTRACT_SUBVECTOR: {
9545     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9546   }
9547   case ISD::INSERT_VECTOR_ELT: {
9548     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9549            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9550   }
9551   case ISD::UNDEF:
9552     // Could be anything.
9553     return false;
9554 
9555   case ISD::BITCAST: {
9556     // Hack round the mess we make when legalizing extract_vector_elt
9557     SDValue Src = Op.getOperand(0);
9558     if (Src.getValueType() == MVT::i16 &&
9559         Src.getOpcode() == ISD::TRUNCATE) {
9560       SDValue TruncSrc = Src.getOperand(0);
9561       if (TruncSrc.getValueType() == MVT::i32 &&
9562           TruncSrc.getOpcode() == ISD::BITCAST &&
9563           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9564         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9565       }
9566     }
9567 
9568     return false;
9569   }
9570   case ISD::INTRINSIC_WO_CHAIN: {
9571     unsigned IntrinsicID
9572       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9573     // TODO: Handle more intrinsics
9574     switch (IntrinsicID) {
9575     case Intrinsic::amdgcn_cvt_pkrtz:
9576     case Intrinsic::amdgcn_cubeid:
9577     case Intrinsic::amdgcn_frexp_mant:
9578     case Intrinsic::amdgcn_fdot2:
9579     case Intrinsic::amdgcn_rcp:
9580     case Intrinsic::amdgcn_rsq:
9581     case Intrinsic::amdgcn_rsq_clamp:
9582     case Intrinsic::amdgcn_rcp_legacy:
9583     case Intrinsic::amdgcn_rsq_legacy:
9584     case Intrinsic::amdgcn_trig_preop:
9585       return true;
9586     default:
9587       break;
9588     }
9589 
9590     LLVM_FALLTHROUGH;
9591   }
9592   default:
9593     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9594            DAG.isKnownNeverSNaN(Op);
9595   }
9596 
9597   llvm_unreachable("invalid operation");
9598 }
9599 
9600 // Constant fold canonicalize.
9601 SDValue SITargetLowering::getCanonicalConstantFP(
9602   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9603   // Flush denormals to 0 if not enabled.
9604   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9605     return DAG.getConstantFP(0.0, SL, VT);
9606 
9607   if (C.isNaN()) {
9608     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9609     if (C.isSignaling()) {
9610       // Quiet a signaling NaN.
9611       // FIXME: Is this supposed to preserve payload bits?
9612       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9613     }
9614 
9615     // Make sure it is the canonical NaN bitpattern.
9616     //
9617     // TODO: Can we use -1 as the canonical NaN value since it's an inline
9618     // immediate?
9619     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9620       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9621   }
9622 
9623   // Already canonical.
9624   return DAG.getConstantFP(C, SL, VT);
9625 }
9626 
9627 static bool vectorEltWillFoldAway(SDValue Op) {
9628   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9629 }
9630 
9631 SDValue SITargetLowering::performFCanonicalizeCombine(
9632   SDNode *N,
9633   DAGCombinerInfo &DCI) const {
9634   SelectionDAG &DAG = DCI.DAG;
9635   SDValue N0 = N->getOperand(0);
9636   EVT VT = N->getValueType(0);
9637 
9638   // fcanonicalize undef -> qnan
9639   if (N0.isUndef()) {
9640     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9641     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9642   }
9643 
9644   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9645     EVT VT = N->getValueType(0);
9646     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9647   }
9648 
9649   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9650   //                                                   (fcanonicalize k)
9651   //
9652   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9653 
9654   // TODO: This could be better with wider vectors that will be split to v2f16,
9655   // and to consider uses since there aren't that many packed operations.
9656   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9657       isTypeLegal(MVT::v2f16)) {
9658     SDLoc SL(N);
9659     SDValue NewElts[2];
9660     SDValue Lo = N0.getOperand(0);
9661     SDValue Hi = N0.getOperand(1);
9662     EVT EltVT = Lo.getValueType();
9663 
9664     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9665       for (unsigned I = 0; I != 2; ++I) {
9666         SDValue Op = N0.getOperand(I);
9667         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9668           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9669                                               CFP->getValueAPF());
9670         } else if (Op.isUndef()) {
9671           // Handled below based on what the other operand is.
9672           NewElts[I] = Op;
9673         } else {
9674           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9675         }
9676       }
9677 
9678       // If one half is undef, and one is constant, perfer a splat vector rather
9679       // than the normal qNaN. If it's a register, prefer 0.0 since that's
9680       // cheaper to use and may be free with a packed operation.
9681       if (NewElts[0].isUndef()) {
9682         if (isa<ConstantFPSDNode>(NewElts[1]))
9683           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9684             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9685       }
9686 
9687       if (NewElts[1].isUndef()) {
9688         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9689           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9690       }
9691 
9692       return DAG.getBuildVector(VT, SL, NewElts);
9693     }
9694   }
9695 
9696   unsigned SrcOpc = N0.getOpcode();
9697 
9698   // If it's free to do so, push canonicalizes further up the source, which may
9699   // find a canonical source.
9700   //
9701   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9702   // sNaNs.
9703   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9704     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9705     if (CRHS && N0.hasOneUse()) {
9706       SDLoc SL(N);
9707       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9708                                    N0.getOperand(0));
9709       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9710       DCI.AddToWorklist(Canon0.getNode());
9711 
9712       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9713     }
9714   }
9715 
9716   return isCanonicalized(DAG, N0) ? N0 : SDValue();
9717 }
9718 
9719 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9720   switch (Opc) {
9721   case ISD::FMAXNUM:
9722   case ISD::FMAXNUM_IEEE:
9723     return AMDGPUISD::FMAX3;
9724   case ISD::SMAX:
9725     return AMDGPUISD::SMAX3;
9726   case ISD::UMAX:
9727     return AMDGPUISD::UMAX3;
9728   case ISD::FMINNUM:
9729   case ISD::FMINNUM_IEEE:
9730     return AMDGPUISD::FMIN3;
9731   case ISD::SMIN:
9732     return AMDGPUISD::SMIN3;
9733   case ISD::UMIN:
9734     return AMDGPUISD::UMIN3;
9735   default:
9736     llvm_unreachable("Not a min/max opcode");
9737   }
9738 }
9739 
9740 SDValue SITargetLowering::performIntMed3ImmCombine(
9741   SelectionDAG &DAG, const SDLoc &SL,
9742   SDValue Op0, SDValue Op1, bool Signed) const {
9743   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9744   if (!K1)
9745     return SDValue();
9746 
9747   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9748   if (!K0)
9749     return SDValue();
9750 
9751   if (Signed) {
9752     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9753       return SDValue();
9754   } else {
9755     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9756       return SDValue();
9757   }
9758 
9759   EVT VT = K0->getValueType(0);
9760   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9761   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9762     return DAG.getNode(Med3Opc, SL, VT,
9763                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9764   }
9765 
9766   // If there isn't a 16-bit med3 operation, convert to 32-bit.
9767   MVT NVT = MVT::i32;
9768   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9769 
9770   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9771   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9772   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9773 
9774   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9775   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9776 }
9777 
9778 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9779   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9780     return C;
9781 
9782   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9783     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9784       return C;
9785   }
9786 
9787   return nullptr;
9788 }
9789 
9790 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9791                                                   const SDLoc &SL,
9792                                                   SDValue Op0,
9793                                                   SDValue Op1) const {
9794   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9795   if (!K1)
9796     return SDValue();
9797 
9798   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9799   if (!K0)
9800     return SDValue();
9801 
9802   // Ordered >= (although NaN inputs should have folded away by now).
9803   if (K0->getValueAPF() > K1->getValueAPF())
9804     return SDValue();
9805 
9806   const MachineFunction &MF = DAG.getMachineFunction();
9807   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9808 
9809   // TODO: Check IEEE bit enabled?
9810   EVT VT = Op0.getValueType();
9811   if (Info->getMode().DX10Clamp) {
9812     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9813     // hardware fmed3 behavior converting to a min.
9814     // FIXME: Should this be allowing -0.0?
9815     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9816       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9817   }
9818 
9819   // med3 for f16 is only available on gfx9+, and not available for v2f16.
9820   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9821     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9822     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9823     // then give the other result, which is different from med3 with a NaN
9824     // input.
9825     SDValue Var = Op0.getOperand(0);
9826     if (!DAG.isKnownNeverSNaN(Var))
9827       return SDValue();
9828 
9829     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9830 
9831     if ((!K0->hasOneUse() ||
9832          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9833         (!K1->hasOneUse() ||
9834          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9835       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9836                          Var, SDValue(K0, 0), SDValue(K1, 0));
9837     }
9838   }
9839 
9840   return SDValue();
9841 }
9842 
9843 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9844                                                DAGCombinerInfo &DCI) const {
9845   SelectionDAG &DAG = DCI.DAG;
9846 
9847   EVT VT = N->getValueType(0);
9848   unsigned Opc = N->getOpcode();
9849   SDValue Op0 = N->getOperand(0);
9850   SDValue Op1 = N->getOperand(1);
9851 
9852   // Only do this if the inner op has one use since this will just increases
9853   // register pressure for no benefit.
9854 
9855   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9856       !VT.isVector() &&
9857       (VT == MVT::i32 || VT == MVT::f32 ||
9858        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9859     // max(max(a, b), c) -> max3(a, b, c)
9860     // min(min(a, b), c) -> min3(a, b, c)
9861     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9862       SDLoc DL(N);
9863       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9864                          DL,
9865                          N->getValueType(0),
9866                          Op0.getOperand(0),
9867                          Op0.getOperand(1),
9868                          Op1);
9869     }
9870 
9871     // Try commuted.
9872     // max(a, max(b, c)) -> max3(a, b, c)
9873     // min(a, min(b, c)) -> min3(a, b, c)
9874     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9875       SDLoc DL(N);
9876       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9877                          DL,
9878                          N->getValueType(0),
9879                          Op0,
9880                          Op1.getOperand(0),
9881                          Op1.getOperand(1));
9882     }
9883   }
9884 
9885   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9886   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9887     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9888       return Med3;
9889   }
9890 
9891   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9892     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9893       return Med3;
9894   }
9895 
9896   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9897   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9898        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9899        (Opc == AMDGPUISD::FMIN_LEGACY &&
9900         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9901       (VT == MVT::f32 || VT == MVT::f64 ||
9902        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9903        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9904       Op0.hasOneUse()) {
9905     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9906       return Res;
9907   }
9908 
9909   return SDValue();
9910 }
9911 
9912 static bool isClampZeroToOne(SDValue A, SDValue B) {
9913   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9914     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9915       // FIXME: Should this be allowing -0.0?
9916       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9917              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9918     }
9919   }
9920 
9921   return false;
9922 }
9923 
9924 // FIXME: Should only worry about snans for version with chain.
9925 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9926                                               DAGCombinerInfo &DCI) const {
9927   EVT VT = N->getValueType(0);
9928   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9929   // NaNs. With a NaN input, the order of the operands may change the result.
9930 
9931   SelectionDAG &DAG = DCI.DAG;
9932   SDLoc SL(N);
9933 
9934   SDValue Src0 = N->getOperand(0);
9935   SDValue Src1 = N->getOperand(1);
9936   SDValue Src2 = N->getOperand(2);
9937 
9938   if (isClampZeroToOne(Src0, Src1)) {
9939     // const_a, const_b, x -> clamp is safe in all cases including signaling
9940     // nans.
9941     // FIXME: Should this be allowing -0.0?
9942     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9943   }
9944 
9945   const MachineFunction &MF = DAG.getMachineFunction();
9946   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9947 
9948   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9949   // handling no dx10-clamp?
9950   if (Info->getMode().DX10Clamp) {
9951     // If NaNs is clamped to 0, we are free to reorder the inputs.
9952 
9953     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9954       std::swap(Src0, Src1);
9955 
9956     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9957       std::swap(Src1, Src2);
9958 
9959     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9960       std::swap(Src0, Src1);
9961 
9962     if (isClampZeroToOne(Src1, Src2))
9963       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9964   }
9965 
9966   return SDValue();
9967 }
9968 
9969 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9970                                                  DAGCombinerInfo &DCI) const {
9971   SDValue Src0 = N->getOperand(0);
9972   SDValue Src1 = N->getOperand(1);
9973   if (Src0.isUndef() && Src1.isUndef())
9974     return DCI.DAG.getUNDEF(N->getValueType(0));
9975   return SDValue();
9976 }
9977 
9978 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
9979 // expanded into a set of cmp/select instructions.
9980 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
9981                                                 unsigned NumElem,
9982                                                 bool IsDivergentIdx) {
9983   if (UseDivergentRegisterIndexing)
9984     return false;
9985 
9986   unsigned VecSize = EltSize * NumElem;
9987 
9988   // Sub-dword vectors of size 2 dword or less have better implementation.
9989   if (VecSize <= 64 && EltSize < 32)
9990     return false;
9991 
9992   // Always expand the rest of sub-dword instructions, otherwise it will be
9993   // lowered via memory.
9994   if (EltSize < 32)
9995     return true;
9996 
9997   // Always do this if var-idx is divergent, otherwise it will become a loop.
9998   if (IsDivergentIdx)
9999     return true;
10000 
10001   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
10002   unsigned NumInsts = NumElem /* Number of compares */ +
10003                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
10004   return NumInsts <= 16;
10005 }
10006 
10007 static bool shouldExpandVectorDynExt(SDNode *N) {
10008   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
10009   if (isa<ConstantSDNode>(Idx))
10010     return false;
10011 
10012   SDValue Vec = N->getOperand(0);
10013   EVT VecVT = Vec.getValueType();
10014   EVT EltVT = VecVT.getVectorElementType();
10015   unsigned EltSize = EltVT.getSizeInBits();
10016   unsigned NumElem = VecVT.getVectorNumElements();
10017 
10018   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
10019                                                     Idx->isDivergent());
10020 }
10021 
10022 SDValue SITargetLowering::performExtractVectorEltCombine(
10023   SDNode *N, DAGCombinerInfo &DCI) const {
10024   SDValue Vec = N->getOperand(0);
10025   SelectionDAG &DAG = DCI.DAG;
10026 
10027   EVT VecVT = Vec.getValueType();
10028   EVT EltVT = VecVT.getVectorElementType();
10029 
10030   if ((Vec.getOpcode() == ISD::FNEG ||
10031        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
10032     SDLoc SL(N);
10033     EVT EltVT = N->getValueType(0);
10034     SDValue Idx = N->getOperand(1);
10035     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10036                               Vec.getOperand(0), Idx);
10037     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
10038   }
10039 
10040   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
10041   //    =>
10042   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
10043   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
10044   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
10045   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
10046     SDLoc SL(N);
10047     EVT EltVT = N->getValueType(0);
10048     SDValue Idx = N->getOperand(1);
10049     unsigned Opc = Vec.getOpcode();
10050 
10051     switch(Opc) {
10052     default:
10053       break;
10054       // TODO: Support other binary operations.
10055     case ISD::FADD:
10056     case ISD::FSUB:
10057     case ISD::FMUL:
10058     case ISD::ADD:
10059     case ISD::UMIN:
10060     case ISD::UMAX:
10061     case ISD::SMIN:
10062     case ISD::SMAX:
10063     case ISD::FMAXNUM:
10064     case ISD::FMINNUM:
10065     case ISD::FMAXNUM_IEEE:
10066     case ISD::FMINNUM_IEEE: {
10067       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10068                                  Vec.getOperand(0), Idx);
10069       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
10070                                  Vec.getOperand(1), Idx);
10071 
10072       DCI.AddToWorklist(Elt0.getNode());
10073       DCI.AddToWorklist(Elt1.getNode());
10074       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
10075     }
10076     }
10077   }
10078 
10079   unsigned VecSize = VecVT.getSizeInBits();
10080   unsigned EltSize = EltVT.getSizeInBits();
10081 
10082   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
10083   if (::shouldExpandVectorDynExt(N)) {
10084     SDLoc SL(N);
10085     SDValue Idx = N->getOperand(1);
10086     SDValue V;
10087     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10088       SDValue IC = DAG.getVectorIdxConstant(I, SL);
10089       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10090       if (I == 0)
10091         V = Elt;
10092       else
10093         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
10094     }
10095     return V;
10096   }
10097 
10098   if (!DCI.isBeforeLegalize())
10099     return SDValue();
10100 
10101   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
10102   // elements. This exposes more load reduction opportunities by replacing
10103   // multiple small extract_vector_elements with a single 32-bit extract.
10104   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
10105   if (isa<MemSDNode>(Vec) &&
10106       EltSize <= 16 &&
10107       EltVT.isByteSized() &&
10108       VecSize > 32 &&
10109       VecSize % 32 == 0 &&
10110       Idx) {
10111     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
10112 
10113     unsigned BitIndex = Idx->getZExtValue() * EltSize;
10114     unsigned EltIdx = BitIndex / 32;
10115     unsigned LeftoverBitIdx = BitIndex % 32;
10116     SDLoc SL(N);
10117 
10118     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
10119     DCI.AddToWorklist(Cast.getNode());
10120 
10121     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
10122                               DAG.getConstant(EltIdx, SL, MVT::i32));
10123     DCI.AddToWorklist(Elt.getNode());
10124     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
10125                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
10126     DCI.AddToWorklist(Srl.getNode());
10127 
10128     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
10129     DCI.AddToWorklist(Trunc.getNode());
10130     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
10131   }
10132 
10133   return SDValue();
10134 }
10135 
10136 SDValue
10137 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
10138                                                 DAGCombinerInfo &DCI) const {
10139   SDValue Vec = N->getOperand(0);
10140   SDValue Idx = N->getOperand(2);
10141   EVT VecVT = Vec.getValueType();
10142   EVT EltVT = VecVT.getVectorElementType();
10143 
10144   // INSERT_VECTOR_ELT (<n x e>, var-idx)
10145   // => BUILD_VECTOR n x select (e, const-idx)
10146   if (!::shouldExpandVectorDynExt(N))
10147     return SDValue();
10148 
10149   SelectionDAG &DAG = DCI.DAG;
10150   SDLoc SL(N);
10151   SDValue Ins = N->getOperand(1);
10152   EVT IdxVT = Idx.getValueType();
10153 
10154   SmallVector<SDValue, 16> Ops;
10155   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
10156     SDValue IC = DAG.getConstant(I, SL, IdxVT);
10157     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
10158     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
10159     Ops.push_back(V);
10160   }
10161 
10162   return DAG.getBuildVector(VecVT, SL, Ops);
10163 }
10164 
10165 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
10166                                           const SDNode *N0,
10167                                           const SDNode *N1) const {
10168   EVT VT = N0->getValueType(0);
10169 
10170   // Only do this if we are not trying to support denormals. v_mad_f32 does not
10171   // support denormals ever.
10172   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
10173        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
10174         getSubtarget()->hasMadF16())) &&
10175        isOperationLegal(ISD::FMAD, VT))
10176     return ISD::FMAD;
10177 
10178   const TargetOptions &Options = DAG.getTarget().Options;
10179   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10180        (N0->getFlags().hasAllowContract() &&
10181         N1->getFlags().hasAllowContract())) &&
10182       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
10183     return ISD::FMA;
10184   }
10185 
10186   return 0;
10187 }
10188 
10189 // For a reassociatable opcode perform:
10190 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
10191 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
10192                                                SelectionDAG &DAG) const {
10193   EVT VT = N->getValueType(0);
10194   if (VT != MVT::i32 && VT != MVT::i64)
10195     return SDValue();
10196 
10197   unsigned Opc = N->getOpcode();
10198   SDValue Op0 = N->getOperand(0);
10199   SDValue Op1 = N->getOperand(1);
10200 
10201   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
10202     return SDValue();
10203 
10204   if (Op0->isDivergent())
10205     std::swap(Op0, Op1);
10206 
10207   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
10208     return SDValue();
10209 
10210   SDValue Op2 = Op1.getOperand(1);
10211   Op1 = Op1.getOperand(0);
10212   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
10213     return SDValue();
10214 
10215   if (Op1->isDivergent())
10216     std::swap(Op1, Op2);
10217 
10218   // If either operand is constant this will conflict with
10219   // DAGCombiner::ReassociateOps().
10220   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10221       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10222     return SDValue();
10223 
10224   SDLoc SL(N);
10225   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10226   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10227 }
10228 
10229 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10230                            EVT VT,
10231                            SDValue N0, SDValue N1, SDValue N2,
10232                            bool Signed) {
10233   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10234   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10235   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10236   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10237 }
10238 
10239 SDValue SITargetLowering::performAddCombine(SDNode *N,
10240                                             DAGCombinerInfo &DCI) const {
10241   SelectionDAG &DAG = DCI.DAG;
10242   EVT VT = N->getValueType(0);
10243   SDLoc SL(N);
10244   SDValue LHS = N->getOperand(0);
10245   SDValue RHS = N->getOperand(1);
10246 
10247   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10248       && Subtarget->hasMad64_32() &&
10249       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10250       VT.getScalarSizeInBits() <= 64) {
10251     if (LHS.getOpcode() != ISD::MUL)
10252       std::swap(LHS, RHS);
10253 
10254     SDValue MulLHS = LHS.getOperand(0);
10255     SDValue MulRHS = LHS.getOperand(1);
10256     SDValue AddRHS = RHS;
10257 
10258     // TODO: Maybe restrict if SGPR inputs.
10259     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10260         numBitsUnsigned(MulRHS, DAG) <= 32) {
10261       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10262       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10263       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10264       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10265     }
10266 
10267     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10268       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10269       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10270       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10271       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10272     }
10273 
10274     return SDValue();
10275   }
10276 
10277   if (SDValue V = reassociateScalarOps(N, DAG)) {
10278     return V;
10279   }
10280 
10281   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10282     return SDValue();
10283 
10284   // add x, zext (setcc) => addcarry x, 0, setcc
10285   // add x, sext (setcc) => subcarry x, 0, setcc
10286   unsigned Opc = LHS.getOpcode();
10287   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10288       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10289     std::swap(RHS, LHS);
10290 
10291   Opc = RHS.getOpcode();
10292   switch (Opc) {
10293   default: break;
10294   case ISD::ZERO_EXTEND:
10295   case ISD::SIGN_EXTEND:
10296   case ISD::ANY_EXTEND: {
10297     auto Cond = RHS.getOperand(0);
10298     // If this won't be a real VOPC output, we would still need to insert an
10299     // extra instruction anyway.
10300     if (!isBoolSGPR(Cond))
10301       break;
10302     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10303     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10304     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10305     return DAG.getNode(Opc, SL, VTList, Args);
10306   }
10307   case ISD::ADDCARRY: {
10308     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10309     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10310     if (!C || C->getZExtValue() != 0) break;
10311     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10312     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10313   }
10314   }
10315   return SDValue();
10316 }
10317 
10318 SDValue SITargetLowering::performSubCombine(SDNode *N,
10319                                             DAGCombinerInfo &DCI) const {
10320   SelectionDAG &DAG = DCI.DAG;
10321   EVT VT = N->getValueType(0);
10322 
10323   if (VT != MVT::i32)
10324     return SDValue();
10325 
10326   SDLoc SL(N);
10327   SDValue LHS = N->getOperand(0);
10328   SDValue RHS = N->getOperand(1);
10329 
10330   // sub x, zext (setcc) => subcarry x, 0, setcc
10331   // sub x, sext (setcc) => addcarry x, 0, setcc
10332   unsigned Opc = RHS.getOpcode();
10333   switch (Opc) {
10334   default: break;
10335   case ISD::ZERO_EXTEND:
10336   case ISD::SIGN_EXTEND:
10337   case ISD::ANY_EXTEND: {
10338     auto Cond = RHS.getOperand(0);
10339     // If this won't be a real VOPC output, we would still need to insert an
10340     // extra instruction anyway.
10341     if (!isBoolSGPR(Cond))
10342       break;
10343     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10344     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10345     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10346     return DAG.getNode(Opc, SL, VTList, Args);
10347   }
10348   }
10349 
10350   if (LHS.getOpcode() == ISD::SUBCARRY) {
10351     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10352     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10353     if (!C || !C->isNullValue())
10354       return SDValue();
10355     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10356     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10357   }
10358   return SDValue();
10359 }
10360 
10361 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10362   DAGCombinerInfo &DCI) const {
10363 
10364   if (N->getValueType(0) != MVT::i32)
10365     return SDValue();
10366 
10367   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10368   if (!C || C->getZExtValue() != 0)
10369     return SDValue();
10370 
10371   SelectionDAG &DAG = DCI.DAG;
10372   SDValue LHS = N->getOperand(0);
10373 
10374   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10375   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10376   unsigned LHSOpc = LHS.getOpcode();
10377   unsigned Opc = N->getOpcode();
10378   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10379       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10380     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10381     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10382   }
10383   return SDValue();
10384 }
10385 
10386 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10387                                              DAGCombinerInfo &DCI) const {
10388   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10389     return SDValue();
10390 
10391   SelectionDAG &DAG = DCI.DAG;
10392   EVT VT = N->getValueType(0);
10393 
10394   SDLoc SL(N);
10395   SDValue LHS = N->getOperand(0);
10396   SDValue RHS = N->getOperand(1);
10397 
10398   // These should really be instruction patterns, but writing patterns with
10399   // source modiifiers is a pain.
10400 
10401   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10402   if (LHS.getOpcode() == ISD::FADD) {
10403     SDValue A = LHS.getOperand(0);
10404     if (A == LHS.getOperand(1)) {
10405       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10406       if (FusedOp != 0) {
10407         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10408         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10409       }
10410     }
10411   }
10412 
10413   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10414   if (RHS.getOpcode() == ISD::FADD) {
10415     SDValue A = RHS.getOperand(0);
10416     if (A == RHS.getOperand(1)) {
10417       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10418       if (FusedOp != 0) {
10419         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10420         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10421       }
10422     }
10423   }
10424 
10425   return SDValue();
10426 }
10427 
10428 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10429                                              DAGCombinerInfo &DCI) const {
10430   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10431     return SDValue();
10432 
10433   SelectionDAG &DAG = DCI.DAG;
10434   SDLoc SL(N);
10435   EVT VT = N->getValueType(0);
10436   assert(!VT.isVector());
10437 
10438   // Try to get the fneg to fold into the source modifier. This undoes generic
10439   // DAG combines and folds them into the mad.
10440   //
10441   // Only do this if we are not trying to support denormals. v_mad_f32 does
10442   // not support denormals ever.
10443   SDValue LHS = N->getOperand(0);
10444   SDValue RHS = N->getOperand(1);
10445   if (LHS.getOpcode() == ISD::FADD) {
10446     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10447     SDValue A = LHS.getOperand(0);
10448     if (A == LHS.getOperand(1)) {
10449       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10450       if (FusedOp != 0){
10451         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10452         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10453 
10454         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10455       }
10456     }
10457   }
10458 
10459   if (RHS.getOpcode() == ISD::FADD) {
10460     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10461 
10462     SDValue A = RHS.getOperand(0);
10463     if (A == RHS.getOperand(1)) {
10464       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10465       if (FusedOp != 0){
10466         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10467         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10468       }
10469     }
10470   }
10471 
10472   return SDValue();
10473 }
10474 
10475 SDValue SITargetLowering::performFMACombine(SDNode *N,
10476                                             DAGCombinerInfo &DCI) const {
10477   SelectionDAG &DAG = DCI.DAG;
10478   EVT VT = N->getValueType(0);
10479   SDLoc SL(N);
10480 
10481   if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
10482     return SDValue();
10483 
10484   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10485   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10486   SDValue Op1 = N->getOperand(0);
10487   SDValue Op2 = N->getOperand(1);
10488   SDValue FMA = N->getOperand(2);
10489 
10490   if (FMA.getOpcode() != ISD::FMA ||
10491       Op1.getOpcode() != ISD::FP_EXTEND ||
10492       Op2.getOpcode() != ISD::FP_EXTEND)
10493     return SDValue();
10494 
10495   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10496   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10497   // is sufficient to allow generaing fdot2.
10498   const TargetOptions &Options = DAG.getTarget().Options;
10499   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10500       (N->getFlags().hasAllowContract() &&
10501        FMA->getFlags().hasAllowContract())) {
10502     Op1 = Op1.getOperand(0);
10503     Op2 = Op2.getOperand(0);
10504     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10505         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10506       return SDValue();
10507 
10508     SDValue Vec1 = Op1.getOperand(0);
10509     SDValue Idx1 = Op1.getOperand(1);
10510     SDValue Vec2 = Op2.getOperand(0);
10511 
10512     SDValue FMAOp1 = FMA.getOperand(0);
10513     SDValue FMAOp2 = FMA.getOperand(1);
10514     SDValue FMAAcc = FMA.getOperand(2);
10515 
10516     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10517         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10518       return SDValue();
10519 
10520     FMAOp1 = FMAOp1.getOperand(0);
10521     FMAOp2 = FMAOp2.getOperand(0);
10522     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10523         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10524       return SDValue();
10525 
10526     SDValue Vec3 = FMAOp1.getOperand(0);
10527     SDValue Vec4 = FMAOp2.getOperand(0);
10528     SDValue Idx2 = FMAOp1.getOperand(1);
10529 
10530     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10531         // Idx1 and Idx2 cannot be the same.
10532         Idx1 == Idx2)
10533       return SDValue();
10534 
10535     if (Vec1 == Vec2 || Vec3 == Vec4)
10536       return SDValue();
10537 
10538     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10539       return SDValue();
10540 
10541     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10542         (Vec1 == Vec4 && Vec2 == Vec3)) {
10543       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10544                          DAG.getTargetConstant(0, SL, MVT::i1));
10545     }
10546   }
10547   return SDValue();
10548 }
10549 
10550 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10551                                               DAGCombinerInfo &DCI) const {
10552   SelectionDAG &DAG = DCI.DAG;
10553   SDLoc SL(N);
10554 
10555   SDValue LHS = N->getOperand(0);
10556   SDValue RHS = N->getOperand(1);
10557   EVT VT = LHS.getValueType();
10558   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10559 
10560   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10561   if (!CRHS) {
10562     CRHS = dyn_cast<ConstantSDNode>(LHS);
10563     if (CRHS) {
10564       std::swap(LHS, RHS);
10565       CC = getSetCCSwappedOperands(CC);
10566     }
10567   }
10568 
10569   if (CRHS) {
10570     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10571         isBoolSGPR(LHS.getOperand(0))) {
10572       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10573       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10574       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10575       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10576       if ((CRHS->isAllOnesValue() &&
10577            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10578           (CRHS->isNullValue() &&
10579            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10580         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10581                            DAG.getConstant(-1, SL, MVT::i1));
10582       if ((CRHS->isAllOnesValue() &&
10583            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10584           (CRHS->isNullValue() &&
10585            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10586         return LHS.getOperand(0);
10587     }
10588 
10589     uint64_t CRHSVal = CRHS->getZExtValue();
10590     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10591         LHS.getOpcode() == ISD::SELECT &&
10592         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10593         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10594         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10595         isBoolSGPR(LHS.getOperand(0))) {
10596       // Given CT != FT:
10597       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10598       // setcc (select cc, CT, CF), CF, ne => cc
10599       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10600       // setcc (select cc, CT, CF), CT, eq => cc
10601       uint64_t CT = LHS.getConstantOperandVal(1);
10602       uint64_t CF = LHS.getConstantOperandVal(2);
10603 
10604       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10605           (CT == CRHSVal && CC == ISD::SETNE))
10606         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10607                            DAG.getConstant(-1, SL, MVT::i1));
10608       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10609           (CT == CRHSVal && CC == ISD::SETEQ))
10610         return LHS.getOperand(0);
10611     }
10612   }
10613 
10614   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10615                                            VT != MVT::f16))
10616     return SDValue();
10617 
10618   // Match isinf/isfinite pattern
10619   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10620   // (fcmp one (fabs x), inf) -> (fp_class x,
10621   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10622   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10623     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10624     if (!CRHS)
10625       return SDValue();
10626 
10627     const APFloat &APF = CRHS->getValueAPF();
10628     if (APF.isInfinity() && !APF.isNegative()) {
10629       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10630                                  SIInstrFlags::N_INFINITY;
10631       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10632                                     SIInstrFlags::P_ZERO |
10633                                     SIInstrFlags::N_NORMAL |
10634                                     SIInstrFlags::P_NORMAL |
10635                                     SIInstrFlags::N_SUBNORMAL |
10636                                     SIInstrFlags::P_SUBNORMAL;
10637       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10638       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10639                          DAG.getConstant(Mask, SL, MVT::i32));
10640     }
10641   }
10642 
10643   return SDValue();
10644 }
10645 
10646 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10647                                                      DAGCombinerInfo &DCI) const {
10648   SelectionDAG &DAG = DCI.DAG;
10649   SDLoc SL(N);
10650   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10651 
10652   SDValue Src = N->getOperand(0);
10653   SDValue Shift = N->getOperand(0);
10654 
10655   // TODO: Extend type shouldn't matter (assuming legal types).
10656   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10657     Shift = Shift.getOperand(0);
10658 
10659   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10660     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
10661     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10662     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10663     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10664     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
10665     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10666       Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10667                                  SDLoc(Shift.getOperand(0)), MVT::i32);
10668 
10669       unsigned ShiftOffset = 8 * Offset;
10670       if (Shift.getOpcode() == ISD::SHL)
10671         ShiftOffset -= C->getZExtValue();
10672       else
10673         ShiftOffset += C->getZExtValue();
10674 
10675       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10676         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10677                            MVT::f32, Shift);
10678       }
10679     }
10680   }
10681 
10682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10683   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10684   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10685     // We simplified Src. If this node is not dead, visit it again so it is
10686     // folded properly.
10687     if (N->getOpcode() != ISD::DELETED_NODE)
10688       DCI.AddToWorklist(N);
10689     return SDValue(N, 0);
10690   }
10691 
10692   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10693   if (SDValue DemandedSrc =
10694           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10695     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10696 
10697   return SDValue();
10698 }
10699 
10700 SDValue SITargetLowering::performClampCombine(SDNode *N,
10701                                               DAGCombinerInfo &DCI) const {
10702   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10703   if (!CSrc)
10704     return SDValue();
10705 
10706   const MachineFunction &MF = DCI.DAG.getMachineFunction();
10707   const APFloat &F = CSrc->getValueAPF();
10708   APFloat Zero = APFloat::getZero(F.getSemantics());
10709   if (F < Zero ||
10710       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10711     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10712   }
10713 
10714   APFloat One(F.getSemantics(), "1.0");
10715   if (F > One)
10716     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10717 
10718   return SDValue(CSrc, 0);
10719 }
10720 
10721 
10722 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10723                                             DAGCombinerInfo &DCI) const {
10724   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10725     return SDValue();
10726   switch (N->getOpcode()) {
10727   case ISD::ADD:
10728     return performAddCombine(N, DCI);
10729   case ISD::SUB:
10730     return performSubCombine(N, DCI);
10731   case ISD::ADDCARRY:
10732   case ISD::SUBCARRY:
10733     return performAddCarrySubCarryCombine(N, DCI);
10734   case ISD::FADD:
10735     return performFAddCombine(N, DCI);
10736   case ISD::FSUB:
10737     return performFSubCombine(N, DCI);
10738   case ISD::SETCC:
10739     return performSetCCCombine(N, DCI);
10740   case ISD::FMAXNUM:
10741   case ISD::FMINNUM:
10742   case ISD::FMAXNUM_IEEE:
10743   case ISD::FMINNUM_IEEE:
10744   case ISD::SMAX:
10745   case ISD::SMIN:
10746   case ISD::UMAX:
10747   case ISD::UMIN:
10748   case AMDGPUISD::FMIN_LEGACY:
10749   case AMDGPUISD::FMAX_LEGACY:
10750     return performMinMaxCombine(N, DCI);
10751   case ISD::FMA:
10752     return performFMACombine(N, DCI);
10753   case ISD::AND:
10754     return performAndCombine(N, DCI);
10755   case ISD::OR:
10756     return performOrCombine(N, DCI);
10757   case ISD::XOR:
10758     return performXorCombine(N, DCI);
10759   case ISD::ZERO_EXTEND:
10760     return performZeroExtendCombine(N, DCI);
10761   case ISD::SIGN_EXTEND_INREG:
10762     return performSignExtendInRegCombine(N , DCI);
10763   case AMDGPUISD::FP_CLASS:
10764     return performClassCombine(N, DCI);
10765   case ISD::FCANONICALIZE:
10766     return performFCanonicalizeCombine(N, DCI);
10767   case AMDGPUISD::RCP:
10768     return performRcpCombine(N, DCI);
10769   case AMDGPUISD::FRACT:
10770   case AMDGPUISD::RSQ:
10771   case AMDGPUISD::RCP_LEGACY:
10772   case AMDGPUISD::RCP_IFLAG:
10773   case AMDGPUISD::RSQ_CLAMP:
10774   case AMDGPUISD::LDEXP: {
10775     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10776     SDValue Src = N->getOperand(0);
10777     if (Src.isUndef())
10778       return Src;
10779     break;
10780   }
10781   case ISD::SINT_TO_FP:
10782   case ISD::UINT_TO_FP:
10783     return performUCharToFloatCombine(N, DCI);
10784   case AMDGPUISD::CVT_F32_UBYTE0:
10785   case AMDGPUISD::CVT_F32_UBYTE1:
10786   case AMDGPUISD::CVT_F32_UBYTE2:
10787   case AMDGPUISD::CVT_F32_UBYTE3:
10788     return performCvtF32UByteNCombine(N, DCI);
10789   case AMDGPUISD::FMED3:
10790     return performFMed3Combine(N, DCI);
10791   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10792     return performCvtPkRTZCombine(N, DCI);
10793   case AMDGPUISD::CLAMP:
10794     return performClampCombine(N, DCI);
10795   case ISD::SCALAR_TO_VECTOR: {
10796     SelectionDAG &DAG = DCI.DAG;
10797     EVT VT = N->getValueType(0);
10798 
10799     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10800     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10801       SDLoc SL(N);
10802       SDValue Src = N->getOperand(0);
10803       EVT EltVT = Src.getValueType();
10804       if (EltVT == MVT::f16)
10805         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10806 
10807       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10808       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10809     }
10810 
10811     break;
10812   }
10813   case ISD::EXTRACT_VECTOR_ELT:
10814     return performExtractVectorEltCombine(N, DCI);
10815   case ISD::INSERT_VECTOR_ELT:
10816     return performInsertVectorEltCombine(N, DCI);
10817   case ISD::LOAD: {
10818     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10819       return Widended;
10820     LLVM_FALLTHROUGH;
10821   }
10822   default: {
10823     if (!DCI.isBeforeLegalize()) {
10824       if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
10825         return performMemSDNodeCombine(MemNode, DCI);
10826     }
10827 
10828     break;
10829   }
10830   }
10831 
10832   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10833 }
10834 
10835 /// Helper function for adjustWritemask
10836 static unsigned SubIdx2Lane(unsigned Idx) {
10837   switch (Idx) {
10838   default: return 0;
10839   case AMDGPU::sub0: return 0;
10840   case AMDGPU::sub1: return 1;
10841   case AMDGPU::sub2: return 2;
10842   case AMDGPU::sub3: return 3;
10843   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10844   }
10845 }
10846 
10847 /// Adjust the writemask of MIMG instructions
10848 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10849                                           SelectionDAG &DAG) const {
10850   unsigned Opcode = Node->getMachineOpcode();
10851 
10852   // Subtract 1 because the vdata output is not a MachineSDNode operand.
10853   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10854   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10855     return Node; // not implemented for D16
10856 
10857   SDNode *Users[5] = { nullptr };
10858   unsigned Lane = 0;
10859   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10860   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10861   unsigned NewDmask = 0;
10862   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10863   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10864   bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10865                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10866   unsigned TFCLane = 0;
10867   bool HasChain = Node->getNumValues() > 1;
10868 
10869   if (OldDmask == 0) {
10870     // These are folded out, but on the chance it happens don't assert.
10871     return Node;
10872   }
10873 
10874   unsigned OldBitsSet = countPopulation(OldDmask);
10875   // Work out which is the TFE/LWE lane if that is enabled.
10876   if (UsesTFC) {
10877     TFCLane = OldBitsSet;
10878   }
10879 
10880   // Try to figure out the used register components
10881   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10882        I != E; ++I) {
10883 
10884     // Don't look at users of the chain.
10885     if (I.getUse().getResNo() != 0)
10886       continue;
10887 
10888     // Abort if we can't understand the usage
10889     if (!I->isMachineOpcode() ||
10890         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10891       return Node;
10892 
10893     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10894     // Note that subregs are packed, i.e. Lane==0 is the first bit set
10895     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10896     // set, etc.
10897     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10898 
10899     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10900     if (UsesTFC && Lane == TFCLane) {
10901       Users[Lane] = *I;
10902     } else {
10903       // Set which texture component corresponds to the lane.
10904       unsigned Comp;
10905       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10906         Comp = countTrailingZeros(Dmask);
10907         Dmask &= ~(1 << Comp);
10908       }
10909 
10910       // Abort if we have more than one user per component.
10911       if (Users[Lane])
10912         return Node;
10913 
10914       Users[Lane] = *I;
10915       NewDmask |= 1 << Comp;
10916     }
10917   }
10918 
10919   // Don't allow 0 dmask, as hardware assumes one channel enabled.
10920   bool NoChannels = !NewDmask;
10921   if (NoChannels) {
10922     if (!UsesTFC) {
10923       // No uses of the result and not using TFC. Then do nothing.
10924       return Node;
10925     }
10926     // If the original dmask has one channel - then nothing to do
10927     if (OldBitsSet == 1)
10928       return Node;
10929     // Use an arbitrary dmask - required for the instruction to work
10930     NewDmask = 1;
10931   }
10932   // Abort if there's no change
10933   if (NewDmask == OldDmask)
10934     return Node;
10935 
10936   unsigned BitsSet = countPopulation(NewDmask);
10937 
10938   // Check for TFE or LWE - increase the number of channels by one to account
10939   // for the extra return value
10940   // This will need adjustment for D16 if this is also included in
10941   // adjustWriteMask (this function) but at present D16 are excluded.
10942   unsigned NewChannels = BitsSet + UsesTFC;
10943 
10944   int NewOpcode =
10945       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10946   assert(NewOpcode != -1 &&
10947          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10948          "failed to find equivalent MIMG op");
10949 
10950   // Adjust the writemask in the node
10951   SmallVector<SDValue, 12> Ops;
10952   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10953   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10954   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10955 
10956   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10957 
10958   MVT ResultVT = NewChannels == 1 ?
10959     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10960                            NewChannels == 5 ? 8 : NewChannels);
10961   SDVTList NewVTList = HasChain ?
10962     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10963 
10964 
10965   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10966                                               NewVTList, Ops);
10967 
10968   if (HasChain) {
10969     // Update chain.
10970     DAG.setNodeMemRefs(NewNode, Node->memoperands());
10971     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10972   }
10973 
10974   if (NewChannels == 1) {
10975     assert(Node->hasNUsesOfValue(1, 0));
10976     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10977                                       SDLoc(Node), Users[Lane]->getValueType(0),
10978                                       SDValue(NewNode, 0));
10979     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
10980     return nullptr;
10981   }
10982 
10983   // Update the users of the node with the new indices
10984   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
10985     SDNode *User = Users[i];
10986     if (!User) {
10987       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
10988       // Users[0] is still nullptr because channel 0 doesn't really have a use.
10989       if (i || !NoChannels)
10990         continue;
10991     } else {
10992       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
10993       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
10994     }
10995 
10996     switch (Idx) {
10997     default: break;
10998     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
10999     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
11000     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
11001     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
11002     }
11003   }
11004 
11005   DAG.RemoveDeadNode(Node);
11006   return nullptr;
11007 }
11008 
11009 static bool isFrameIndexOp(SDValue Op) {
11010   if (Op.getOpcode() == ISD::AssertZext)
11011     Op = Op.getOperand(0);
11012 
11013   return isa<FrameIndexSDNode>(Op);
11014 }
11015 
11016 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
11017 /// with frame index operands.
11018 /// LLVM assumes that inputs are to these instructions are registers.
11019 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
11020                                                         SelectionDAG &DAG) const {
11021   if (Node->getOpcode() == ISD::CopyToReg) {
11022     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
11023     SDValue SrcVal = Node->getOperand(2);
11024 
11025     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
11026     // to try understanding copies to physical registers.
11027     if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
11028       SDLoc SL(Node);
11029       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11030       SDValue VReg = DAG.getRegister(
11031         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
11032 
11033       SDNode *Glued = Node->getGluedNode();
11034       SDValue ToVReg
11035         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
11036                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
11037       SDValue ToResultReg
11038         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
11039                            VReg, ToVReg.getValue(1));
11040       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
11041       DAG.RemoveDeadNode(Node);
11042       return ToResultReg.getNode();
11043     }
11044   }
11045 
11046   SmallVector<SDValue, 8> Ops;
11047   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
11048     if (!isFrameIndexOp(Node->getOperand(i))) {
11049       Ops.push_back(Node->getOperand(i));
11050       continue;
11051     }
11052 
11053     SDLoc DL(Node);
11054     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
11055                                      Node->getOperand(i).getValueType(),
11056                                      Node->getOperand(i)), 0));
11057   }
11058 
11059   return DAG.UpdateNodeOperands(Node, Ops);
11060 }
11061 
11062 /// Fold the instructions after selecting them.
11063 /// Returns null if users were already updated.
11064 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
11065                                           SelectionDAG &DAG) const {
11066   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11067   unsigned Opcode = Node->getMachineOpcode();
11068 
11069   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
11070       !TII->isGather4(Opcode) &&
11071       AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) != -1) {
11072     return adjustWritemask(Node, DAG);
11073   }
11074 
11075   if (Opcode == AMDGPU::INSERT_SUBREG ||
11076       Opcode == AMDGPU::REG_SEQUENCE) {
11077     legalizeTargetIndependentNode(Node, DAG);
11078     return Node;
11079   }
11080 
11081   switch (Opcode) {
11082   case AMDGPU::V_DIV_SCALE_F32:
11083   case AMDGPU::V_DIV_SCALE_F64: {
11084     // Satisfy the operand register constraint when one of the inputs is
11085     // undefined. Ordinarily each undef value will have its own implicit_def of
11086     // a vreg, so force these to use a single register.
11087     SDValue Src0 = Node->getOperand(0);
11088     SDValue Src1 = Node->getOperand(1);
11089     SDValue Src2 = Node->getOperand(2);
11090 
11091     if ((Src0.isMachineOpcode() &&
11092          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
11093         (Src0 == Src1 || Src0 == Src2))
11094       break;
11095 
11096     MVT VT = Src0.getValueType().getSimpleVT();
11097     const TargetRegisterClass *RC =
11098         getRegClassFor(VT, Src0.getNode()->isDivergent());
11099 
11100     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11101     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
11102 
11103     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
11104                                       UndefReg, Src0, SDValue());
11105 
11106     // src0 must be the same register as src1 or src2, even if the value is
11107     // undefined, so make sure we don't violate this constraint.
11108     if (Src0.isMachineOpcode() &&
11109         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
11110       if (Src1.isMachineOpcode() &&
11111           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11112         Src0 = Src1;
11113       else if (Src2.isMachineOpcode() &&
11114                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
11115         Src0 = Src2;
11116       else {
11117         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
11118         Src0 = UndefReg;
11119         Src1 = UndefReg;
11120       }
11121     } else
11122       break;
11123 
11124     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
11125     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
11126       Ops.push_back(Node->getOperand(I));
11127 
11128     Ops.push_back(ImpDef.getValue(1));
11129     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
11130   }
11131   default:
11132     break;
11133   }
11134 
11135   return Node;
11136 }
11137 
11138 /// Assign the register class depending on the number of
11139 /// bits set in the writemask
11140 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
11141                                                      SDNode *Node) const {
11142   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11143 
11144   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
11145 
11146   if (TII->isVOP3(MI.getOpcode())) {
11147     // Make sure constant bus requirements are respected.
11148     TII->legalizeOperandsVOP3(MRI, MI);
11149 
11150     // Prefer VGPRs over AGPRs in mAI instructions where possible.
11151     // This saves a chain-copy of registers and better ballance register
11152     // use between vgpr and agpr as agpr tuples tend to be big.
11153     if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
11154       unsigned Opc = MI.getOpcode();
11155       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11156       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
11157                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
11158         if (I == -1)
11159           break;
11160         MachineOperand &Op = MI.getOperand(I);
11161         if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
11162              OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
11163             !Op.getReg().isVirtual() || !TRI->isAGPR(MRI, Op.getReg()))
11164           continue;
11165         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
11166         if (!Src || !Src->isCopy() ||
11167             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
11168           continue;
11169         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
11170         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
11171         // All uses of agpr64 and agpr32 can also accept vgpr except for
11172         // v_accvgpr_read, but we do not produce agpr reads during selection,
11173         // so no use checks are needed.
11174         MRI.setRegClass(Op.getReg(), NewRC);
11175       }
11176     }
11177 
11178     return;
11179   }
11180 
11181   // Replace unused atomics with the no return version.
11182   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
11183   if (NoRetAtomicOp != -1) {
11184     if (!Node->hasAnyUseOfValue(0)) {
11185       MI.setDesc(TII->get(NoRetAtomicOp));
11186       MI.RemoveOperand(0);
11187       return;
11188     }
11189 
11190     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
11191     // instruction, because the return type of these instructions is a vec2 of
11192     // the memory type, so it can be tied to the input operand.
11193     // This means these instructions always have a use, so we need to add a
11194     // special case to check if the atomic has only one extract_subreg use,
11195     // which itself has no uses.
11196     if ((Node->hasNUsesOfValue(1, 0) &&
11197          Node->use_begin()->isMachineOpcode() &&
11198          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11199          !Node->use_begin()->hasAnyUseOfValue(0))) {
11200       Register Def = MI.getOperand(0).getReg();
11201 
11202       // Change this into a noret atomic.
11203       MI.setDesc(TII->get(NoRetAtomicOp));
11204       MI.RemoveOperand(0);
11205 
11206       // If we only remove the def operand from the atomic instruction, the
11207       // extract_subreg will be left with a use of a vreg without a def.
11208       // So we need to insert an implicit_def to avoid machine verifier
11209       // errors.
11210       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11211               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11212     }
11213     return;
11214   }
11215 }
11216 
11217 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11218                               uint64_t Val) {
11219   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11220   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11221 }
11222 
11223 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11224                                                 const SDLoc &DL,
11225                                                 SDValue Ptr) const {
11226   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11227 
11228   // Build the half of the subregister with the constants before building the
11229   // full 128-bit register. If we are building multiple resource descriptors,
11230   // this will allow CSEing of the 2-component register.
11231   const SDValue Ops0[] = {
11232     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11233     buildSMovImm32(DAG, DL, 0),
11234     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11235     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11236     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11237   };
11238 
11239   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11240                                                 MVT::v2i32, Ops0), 0);
11241 
11242   // Combine the constants and the pointer.
11243   const SDValue Ops1[] = {
11244     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11245     Ptr,
11246     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11247     SubRegHi,
11248     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11249   };
11250 
11251   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11252 }
11253 
11254 /// Return a resource descriptor with the 'Add TID' bit enabled
11255 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11256 ///        of the resource descriptor) to create an offset, which is added to
11257 ///        the resource pointer.
11258 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11259                                            SDValue Ptr, uint32_t RsrcDword1,
11260                                            uint64_t RsrcDword2And3) const {
11261   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11262   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11263   if (RsrcDword1) {
11264     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11265                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11266                     0);
11267   }
11268 
11269   SDValue DataLo = buildSMovImm32(DAG, DL,
11270                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11271   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11272 
11273   const SDValue Ops[] = {
11274     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11275     PtrLo,
11276     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11277     PtrHi,
11278     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11279     DataLo,
11280     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11281     DataHi,
11282     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11283   };
11284 
11285   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11286 }
11287 
11288 //===----------------------------------------------------------------------===//
11289 //                         SI Inline Assembly Support
11290 //===----------------------------------------------------------------------===//
11291 
11292 std::pair<unsigned, const TargetRegisterClass *>
11293 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11294                                                StringRef Constraint,
11295                                                MVT VT) const {
11296   const TargetRegisterClass *RC = nullptr;
11297   if (Constraint.size() == 1) {
11298     const unsigned BitWidth = VT.getSizeInBits();
11299     switch (Constraint[0]) {
11300     default:
11301       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11302     case 's':
11303     case 'r':
11304       switch (BitWidth) {
11305       case 16:
11306         RC = &AMDGPU::SReg_32RegClass;
11307         break;
11308       case 64:
11309         RC = &AMDGPU::SGPR_64RegClass;
11310         break;
11311       default:
11312         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11313         if (!RC)
11314           return std::make_pair(0U, nullptr);
11315         break;
11316       }
11317       break;
11318     case 'v':
11319       switch (BitWidth) {
11320       case 16:
11321         RC = &AMDGPU::VGPR_32RegClass;
11322         break;
11323       default:
11324         RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth);
11325         if (!RC)
11326           return std::make_pair(0U, nullptr);
11327         break;
11328       }
11329       break;
11330     case 'a':
11331       if (!Subtarget->hasMAIInsts())
11332         break;
11333       switch (BitWidth) {
11334       case 16:
11335         RC = &AMDGPU::AGPR_32RegClass;
11336         break;
11337       default:
11338         RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth);
11339         if (!RC)
11340           return std::make_pair(0U, nullptr);
11341         break;
11342       }
11343       break;
11344     }
11345     // We actually support i128, i16 and f16 as inline parameters
11346     // even if they are not reported as legal
11347     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11348                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11349       return std::make_pair(0U, RC);
11350   }
11351 
11352   if (Constraint.size() > 1) {
11353     if (Constraint[1] == 'v') {
11354       RC = &AMDGPU::VGPR_32RegClass;
11355     } else if (Constraint[1] == 's') {
11356       RC = &AMDGPU::SGPR_32RegClass;
11357     } else if (Constraint[1] == 'a') {
11358       RC = &AMDGPU::AGPR_32RegClass;
11359     }
11360 
11361     if (RC) {
11362       uint32_t Idx;
11363       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11364       if (!Failed && Idx < RC->getNumRegs())
11365         return std::make_pair(RC->getRegister(Idx), RC);
11366     }
11367   }
11368 
11369   // FIXME: Returns VS_32 for physical SGPR constraints
11370   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11371 }
11372 
11373 static bool isImmConstraint(StringRef Constraint) {
11374   if (Constraint.size() == 1) {
11375     switch (Constraint[0]) {
11376     default: break;
11377     case 'I':
11378     case 'J':
11379     case 'A':
11380     case 'B':
11381     case 'C':
11382       return true;
11383     }
11384   } else if (Constraint == "DA" ||
11385              Constraint == "DB") {
11386     return true;
11387   }
11388   return false;
11389 }
11390 
11391 SITargetLowering::ConstraintType
11392 SITargetLowering::getConstraintType(StringRef Constraint) const {
11393   if (Constraint.size() == 1) {
11394     switch (Constraint[0]) {
11395     default: break;
11396     case 's':
11397     case 'v':
11398     case 'a':
11399       return C_RegisterClass;
11400     }
11401   }
11402   if (isImmConstraint(Constraint)) {
11403     return C_Other;
11404   }
11405   return TargetLowering::getConstraintType(Constraint);
11406 }
11407 
11408 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11409   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11410     Val = Val & maskTrailingOnes<uint64_t>(Size);
11411   }
11412   return Val;
11413 }
11414 
11415 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11416                                                     std::string &Constraint,
11417                                                     std::vector<SDValue> &Ops,
11418                                                     SelectionDAG &DAG) const {
11419   if (isImmConstraint(Constraint)) {
11420     uint64_t Val;
11421     if (getAsmOperandConstVal(Op, Val) &&
11422         checkAsmConstraintVal(Op, Constraint, Val)) {
11423       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11424       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11425     }
11426   } else {
11427     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11428   }
11429 }
11430 
11431 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11432   unsigned Size = Op.getScalarValueSizeInBits();
11433   if (Size > 64)
11434     return false;
11435 
11436   if (Size == 16 && !Subtarget->has16BitInsts())
11437     return false;
11438 
11439   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11440     Val = C->getSExtValue();
11441     return true;
11442   }
11443   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11444     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11445     return true;
11446   }
11447   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11448     if (Size != 16 || Op.getNumOperands() != 2)
11449       return false;
11450     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11451       return false;
11452     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11453       Val = C->getSExtValue();
11454       return true;
11455     }
11456     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11457       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11458       return true;
11459     }
11460   }
11461 
11462   return false;
11463 }
11464 
11465 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11466                                              const std::string &Constraint,
11467                                              uint64_t Val) const {
11468   if (Constraint.size() == 1) {
11469     switch (Constraint[0]) {
11470     case 'I':
11471       return AMDGPU::isInlinableIntLiteral(Val);
11472     case 'J':
11473       return isInt<16>(Val);
11474     case 'A':
11475       return checkAsmConstraintValA(Op, Val);
11476     case 'B':
11477       return isInt<32>(Val);
11478     case 'C':
11479       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11480              AMDGPU::isInlinableIntLiteral(Val);
11481     default:
11482       break;
11483     }
11484   } else if (Constraint.size() == 2) {
11485     if (Constraint == "DA") {
11486       int64_t HiBits = static_cast<int32_t>(Val >> 32);
11487       int64_t LoBits = static_cast<int32_t>(Val);
11488       return checkAsmConstraintValA(Op, HiBits, 32) &&
11489              checkAsmConstraintValA(Op, LoBits, 32);
11490     }
11491     if (Constraint == "DB") {
11492       return true;
11493     }
11494   }
11495   llvm_unreachable("Invalid asm constraint");
11496 }
11497 
11498 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11499                                               uint64_t Val,
11500                                               unsigned MaxSize) const {
11501   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11502   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11503   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11504       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11505       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11506     return true;
11507   }
11508   return false;
11509 }
11510 
11511 // Figure out which registers should be reserved for stack access. Only after
11512 // the function is legalized do we know all of the non-spill stack objects or if
11513 // calls are present.
11514 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11515   MachineRegisterInfo &MRI = MF.getRegInfo();
11516   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11517   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11518   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11519 
11520   if (Info->isEntryFunction()) {
11521     // Callable functions have fixed registers used for stack access.
11522     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11523   }
11524 
11525   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11526                              Info->getStackPtrOffsetReg()));
11527   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11528     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11529 
11530   // We need to worry about replacing the default register with itself in case
11531   // of MIR testcases missing the MFI.
11532   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11533     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11534 
11535   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11536     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11537 
11538   Info->limitOccupancy(MF);
11539 
11540   if (ST.isWave32() && !MF.empty()) {
11541     // Add VCC_HI def because many instructions marked as imp-use VCC where
11542     // we may only define VCC_LO. If nothing defines VCC_HI we may end up
11543     // having a use of undef.
11544 
11545     const SIInstrInfo *TII = ST.getInstrInfo();
11546     DebugLoc DL;
11547 
11548     MachineBasicBlock &MBB = MF.front();
11549     MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
11550     BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
11551 
11552     for (auto &MBB : MF) {
11553       for (auto &MI : MBB) {
11554         TII->fixImplicitOperands(MI);
11555       }
11556     }
11557   }
11558 
11559   TargetLoweringBase::finalizeLowering(MF);
11560 
11561   // Allocate a VGPR for future SGPR Spill if
11562   // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11563   // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11564   if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill &&
11565       !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects())
11566     Info->reserveVGPRforSGPRSpills(MF);
11567 }
11568 
11569 void SITargetLowering::computeKnownBitsForFrameIndex(
11570   const int FI, KnownBits &Known, const MachineFunction &MF) const {
11571   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11572 
11573   // Set the high bits to zero based on the maximum allowed scratch size per
11574   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11575   // calculation won't overflow, so assume the sign bit is never set.
11576   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11577 }
11578 
11579 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
11580                                    KnownBits &Known, unsigned Dim) {
11581   unsigned MaxValue =
11582       ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
11583   Known.Zero.setHighBits(countLeadingZeros(MaxValue));
11584 }
11585 
11586 void SITargetLowering::computeKnownBitsForTargetInstr(
11587     GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
11588     const MachineRegisterInfo &MRI, unsigned Depth) const {
11589   const MachineInstr *MI = MRI.getVRegDef(R);
11590   switch (MI->getOpcode()) {
11591   case AMDGPU::G_INTRINSIC: {
11592     switch (MI->getIntrinsicID()) {
11593     case Intrinsic::amdgcn_workitem_id_x:
11594       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
11595       break;
11596     case Intrinsic::amdgcn_workitem_id_y:
11597       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
11598       break;
11599     case Intrinsic::amdgcn_workitem_id_z:
11600       knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
11601       break;
11602     case Intrinsic::amdgcn_mbcnt_lo:
11603     case Intrinsic::amdgcn_mbcnt_hi: {
11604       // These return at most the wavefront size - 1.
11605       unsigned Size = MRI.getType(R).getSizeInBits();
11606       Known.Zero.setHighBits(Size - getSubtarget()->getWavefrontSizeLog2());
11607       break;
11608     }
11609     case Intrinsic::amdgcn_groupstaticsize: {
11610       // We can report everything over the maximum size as 0. We can't report
11611       // based on the actual size because we don't know if it's accurate or not
11612       // at any given point.
11613       Known.Zero.setHighBits(countLeadingZeros(getSubtarget()->getLocalMemorySize()));
11614       break;
11615     }
11616     }
11617     break;
11618   }
11619   case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
11620     Known.Zero.setHighBits(24);
11621     break;
11622   case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
11623     Known.Zero.setHighBits(16);
11624     break;
11625   }
11626 }
11627 
11628 Align SITargetLowering::computeKnownAlignForTargetInstr(
11629   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11630   unsigned Depth) const {
11631   const MachineInstr *MI = MRI.getVRegDef(R);
11632   switch (MI->getOpcode()) {
11633   case AMDGPU::G_INTRINSIC:
11634   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11635     // FIXME: Can this move to generic code? What about the case where the call
11636     // site specifies a lower alignment?
11637     Intrinsic::ID IID = MI->getIntrinsicID();
11638     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11639     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11640     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11641       return *RetAlign;
11642     return Align(1);
11643   }
11644   default:
11645     return Align(1);
11646   }
11647 }
11648 
11649 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11650   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11651   const Align CacheLineAlign = Align(64);
11652 
11653   // Pre-GFX10 target did not benefit from loop alignment
11654   if (!ML || DisableLoopAlignment ||
11655       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11656       getSubtarget()->hasInstFwdPrefetchBug())
11657     return PrefAlign;
11658 
11659   // On GFX10 I$ is 4 x 64 bytes cache lines.
11660   // By default prefetcher keeps one cache line behind and reads two ahead.
11661   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11662   // behind and one ahead.
11663   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11664   // If loop fits 64 bytes it always spans no more than two cache lines and
11665   // does not need an alignment.
11666   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11667   // Else if loop is less or equal 192 bytes we need two lines behind.
11668 
11669   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11670   const MachineBasicBlock *Header = ML->getHeader();
11671   if (Header->getAlignment() != PrefAlign)
11672     return Header->getAlignment(); // Already processed.
11673 
11674   unsigned LoopSize = 0;
11675   for (const MachineBasicBlock *MBB : ML->blocks()) {
11676     // If inner loop block is aligned assume in average half of the alignment
11677     // size to be added as nops.
11678     if (MBB != Header)
11679       LoopSize += MBB->getAlignment().value() / 2;
11680 
11681     for (const MachineInstr &MI : *MBB) {
11682       LoopSize += TII->getInstSizeInBytes(MI);
11683       if (LoopSize > 192)
11684         return PrefAlign;
11685     }
11686   }
11687 
11688   if (LoopSize <= 64)
11689     return PrefAlign;
11690 
11691   if (LoopSize <= 128)
11692     return CacheLineAlign;
11693 
11694   // If any of parent loops is surrounded by prefetch instructions do not
11695   // insert new for inner loop, which would reset parent's settings.
11696   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11697     if (MachineBasicBlock *Exit = P->getExitBlock()) {
11698       auto I = Exit->getFirstNonDebugInstr();
11699       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11700         return CacheLineAlign;
11701     }
11702   }
11703 
11704   MachineBasicBlock *Pre = ML->getLoopPreheader();
11705   MachineBasicBlock *Exit = ML->getExitBlock();
11706 
11707   if (Pre && Exit) {
11708     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11709             TII->get(AMDGPU::S_INST_PREFETCH))
11710       .addImm(1); // prefetch 2 lines behind PC
11711 
11712     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11713             TII->get(AMDGPU::S_INST_PREFETCH))
11714       .addImm(2); // prefetch 1 line behind PC
11715   }
11716 
11717   return CacheLineAlign;
11718 }
11719 
11720 LLVM_ATTRIBUTE_UNUSED
11721 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11722   assert(N->getOpcode() == ISD::CopyFromReg);
11723   do {
11724     // Follow the chain until we find an INLINEASM node.
11725     N = N->getOperand(0).getNode();
11726     if (N->getOpcode() == ISD::INLINEASM ||
11727         N->getOpcode() == ISD::INLINEASM_BR)
11728       return true;
11729   } while (N->getOpcode() == ISD::CopyFromReg);
11730   return false;
11731 }
11732 
11733 bool SITargetLowering::isSDNodeSourceOfDivergence(
11734     const SDNode *N, FunctionLoweringInfo *FLI,
11735     LegacyDivergenceAnalysis *KDA) const {
11736   switch (N->getOpcode()) {
11737   case ISD::CopyFromReg: {
11738     const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11739     const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11740     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11741     Register Reg = R->getReg();
11742 
11743     // FIXME: Why does this need to consider isLiveIn?
11744     if (Reg.isPhysical() || MRI.isLiveIn(Reg))
11745       return !TRI->isSGPRReg(MRI, Reg);
11746 
11747     if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
11748       return KDA->isDivergent(V);
11749 
11750     assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
11751     return !TRI->isSGPRReg(MRI, Reg);
11752   }
11753   case ISD::LOAD: {
11754     const LoadSDNode *L = cast<LoadSDNode>(N);
11755     unsigned AS = L->getAddressSpace();
11756     // A flat load may access private memory.
11757     return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
11758   }
11759   case ISD::CALLSEQ_END:
11760     return true;
11761   case ISD::INTRINSIC_WO_CHAIN:
11762     return AMDGPU::isIntrinsicSourceOfDivergence(
11763         cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
11764   case ISD::INTRINSIC_W_CHAIN:
11765     return AMDGPU::isIntrinsicSourceOfDivergence(
11766         cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
11767   }
11768   return false;
11769 }
11770 
11771 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
11772                                                EVT VT) const {
11773   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
11774   case MVT::f32:
11775     return hasFP32Denormals(DAG.getMachineFunction());
11776   case MVT::f64:
11777   case MVT::f16:
11778     return hasFP64FP16Denormals(DAG.getMachineFunction());
11779   default:
11780     return false;
11781   }
11782 }
11783 
11784 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
11785                                                     const SelectionDAG &DAG,
11786                                                     bool SNaN,
11787                                                     unsigned Depth) const {
11788   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
11789     const MachineFunction &MF = DAG.getMachineFunction();
11790     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11791 
11792     if (Info->getMode().DX10Clamp)
11793       return true; // Clamped to 0.
11794     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
11795   }
11796 
11797   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
11798                                                             SNaN, Depth);
11799 }
11800 
11801 // Global FP atomic instructions have a hardcoded FP mode and do not support
11802 // FP32 denormals, and only support v2f16 denormals.
11803 static bool fpModeMatchesGlobalFPAtomicMode(const AtomicRMWInst *RMW) {
11804   const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
11805   auto DenormMode = RMW->getParent()->getParent()->getDenormalMode(Flt);
11806   if (&Flt == &APFloat::IEEEsingle())
11807     return DenormMode == DenormalMode::getPreserveSign();
11808   return DenormMode == DenormalMode::getIEEE();
11809 }
11810 
11811 TargetLowering::AtomicExpansionKind
11812 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
11813   switch (RMW->getOperation()) {
11814   case AtomicRMWInst::FAdd: {
11815     Type *Ty = RMW->getType();
11816 
11817     // We don't have a way to support 16-bit atomics now, so just leave them
11818     // as-is.
11819     if (Ty->isHalfTy())
11820       return AtomicExpansionKind::None;
11821 
11822     if (!Ty->isFloatTy())
11823       return AtomicExpansionKind::CmpXChg;
11824 
11825     // TODO: Do have these for flat. Older targets also had them for buffers.
11826     unsigned AS = RMW->getPointerAddressSpace();
11827 
11828     if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) {
11829       if (!fpModeMatchesGlobalFPAtomicMode(RMW))
11830         return AtomicExpansionKind::CmpXChg;
11831 
11832       return RMW->use_empty() ? AtomicExpansionKind::None :
11833                                 AtomicExpansionKind::CmpXChg;
11834     }
11835 
11836     // DS FP atomics do repect the denormal mode, but the rounding mode is fixed
11837     // to round-to-nearest-even.
11838     return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
11839       AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
11840   }
11841   default:
11842     break;
11843   }
11844 
11845   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
11846 }
11847 
11848 const TargetRegisterClass *
11849 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
11850   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
11851   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11852   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
11853     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
11854                                                : &AMDGPU::SReg_32RegClass;
11855   if (!TRI->isSGPRClass(RC) && !isDivergent)
11856     return TRI->getEquivalentSGPRClass(RC);
11857   else if (TRI->isSGPRClass(RC) && isDivergent)
11858     return TRI->getEquivalentVGPRClass(RC);
11859 
11860   return RC;
11861 }
11862 
11863 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
11864 // uniform values (as produced by the mask results of control flow intrinsics)
11865 // used outside of divergent blocks. The phi users need to also be treated as
11866 // always uniform.
11867 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
11868                       unsigned WaveSize) {
11869   // FIXME: We asssume we never cast the mask results of a control flow
11870   // intrinsic.
11871   // Early exit if the type won't be consistent as a compile time hack.
11872   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
11873   if (!IT || IT->getBitWidth() != WaveSize)
11874     return false;
11875 
11876   if (!isa<Instruction>(V))
11877     return false;
11878   if (!Visited.insert(V).second)
11879     return false;
11880   bool Result = false;
11881   for (auto U : V->users()) {
11882     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
11883       if (V == U->getOperand(1)) {
11884         switch (Intrinsic->getIntrinsicID()) {
11885         default:
11886           Result = false;
11887           break;
11888         case Intrinsic::amdgcn_if_break:
11889         case Intrinsic::amdgcn_if:
11890         case Intrinsic::amdgcn_else:
11891           Result = true;
11892           break;
11893         }
11894       }
11895       if (V == U->getOperand(0)) {
11896         switch (Intrinsic->getIntrinsicID()) {
11897         default:
11898           Result = false;
11899           break;
11900         case Intrinsic::amdgcn_end_cf:
11901         case Intrinsic::amdgcn_loop:
11902           Result = true;
11903           break;
11904         }
11905       }
11906     } else {
11907       Result = hasCFUser(U, Visited, WaveSize);
11908     }
11909     if (Result)
11910       break;
11911   }
11912   return Result;
11913 }
11914 
11915 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
11916                                                const Value *V) const {
11917   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11918     if (CI->isInlineAsm()) {
11919       // FIXME: This cannot give a correct answer. This should only trigger in
11920       // the case where inline asm returns mixed SGPR and VGPR results, used
11921       // outside the defining block. We don't have a specific result to
11922       // consider, so this assumes if any value is SGPR, the overall register
11923       // also needs to be SGPR.
11924       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11925       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11926           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
11927       for (auto &TC : TargetConstraints) {
11928         if (TC.Type == InlineAsm::isOutput) {
11929           ComputeConstraintToUse(TC, SDValue());
11930           unsigned AssignedReg;
11931           const TargetRegisterClass *RC;
11932           std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11933               SIRI, TC.ConstraintCode, TC.ConstraintVT);
11934           if (RC) {
11935             MachineRegisterInfo &MRI = MF.getRegInfo();
11936             if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11937               return true;
11938             else if (SIRI->isSGPRClass(RC))
11939               return true;
11940           }
11941         }
11942       }
11943     }
11944   }
11945   SmallPtrSet<const Value *, 16> Visited;
11946   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
11947 }
11948 
11949 std::pair<int, MVT>
11950 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
11951                                           Type *Ty) const {
11952   auto Cost = TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
11953   auto Size = DL.getTypeSizeInBits(Ty);
11954   // Maximum load or store can handle 8 dwords for scalar and 4 for
11955   // vector ALU. Let's assume anything above 8 dwords is expensive
11956   // even if legal.
11957   if (Size <= 256)
11958     return Cost;
11959 
11960   Cost.first = (Size + 255) / 256;
11961   return Cost;
11962 }
11963